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1.0 INTRODUCTION 
 
In treating the topic, motion, we have so far discussed only motion along a straight 
line or rectilinear motion. In this chapter, we shall consider motion in more than one 
dimension. This is the same thing as discussing motion in a plane and in three 
dimensions. You have realised, from your studies of unit 1 to 4 that our physical 
world is in three dimensional space. So, as a particle moves, its co-ordinates with 
reference to a specified frame changes in two or three dimensions depending on where 
the motion is taking place. Having realised from unit 5 that the parameters for 
describing motion which include displacement/distance, velocity and acceleration are 
vector quantities, we shall draw on our knowledge of vectors from units 3 and 4 to 
understand this Unit better.   
 
We shall also study circular motion which will give us an insight into satellite motion, 
and then conclude the Unit with studies of Relative Motion.  Other types of motion 
and causes of motion will be developed in the subsequent Units. 
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2.0 OBJECTIVES  
 
At the end of this unit, you should be able to: 
 
 determine the displacement, velocity and acceleration of a particle in two or 

three dimensions in any given frame of reference. 
 distinguish between average and instantaneous velocity, and average and 

instantaneous acceleration in two or three dimensions. 
 determine relative velocity and acceleration of one particle with respect to 

another particle 
 solve problems concerning relative motion and uniform circular motion.  
                
3.0 MAIN CONTENT 
 
3.1 Displacement, Velocity and Acceleration 
 
 Let us consider the motion of a particle in space (Fig 3.1) 
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If the particle is at position A at some instant of time t and at position 
B at another instant of time t + t. Recall that the position of a particle in a particular 
frame of reference is given by a position vector drawn from the origin of the 
coordinate system in that frame to the position of the particle.  In our diagram (Fig. 
3.l), let the position vectors of A and B with respect to 0 be  respectively.  The 

displacement of the particle in the time interval is equal to in the direction AB.  Thus, 

the average velocity of the particle during the time t is given by  
 
  

 

 The direction  is the same as that 

of since t is a scalar quantity.  av We note that is the velocity at which the particle 

would have travelled the distance AB in uniform and rectilinear motion during the 
time interval t. 
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SELF-ASSESSMENT EXERCISE 1 
 
If the displacement versus time equation of a particle falling freely from rest is given 
by 

 
 

 
Where x is in metres, t is in seconds. Calculate the average velocity of the particle 
between time, t1 = 1s and t2 = 2s and also between t3 = 3s and t4 = 4s.   
When you solved exercises 3.1, you noticed that the values of average velocities 
during the two time intervals are not the same. 
 
Such a motion is described as non-uniform motion.  A practical example of non 
uniform motion is the motion of a bus leaving one bus stop and travelling up to the 
next bus stop.  The velocity of the bus at a given instant of time can be found. 

 
We remark that the velocity of a particle may change as a result of change in 
magnitude, direction or both.  In Figure 3.1b above, the average velocity during 

the time interval t is directed along the chord AB but the motion has taken place 
along the arc (AB).  The average velocities during the intervals t1(i.e A to B1) and 
t11 (i.e. A to B11) are different both in magnitude and direction.  The time interval 
t11 is smaller than t1, which is in turn smaller than t.  Note that as we decrease the 
interval of time, the point B approaches A, i.e. the chord approximates the actual 
motion of the particle better. These points finally merge and the direction of coincides 

with the tangent to the curve at the point of merger. 
 

 
 
 
 

As t decreases, the ratio approaches a limit.  The vector, having the magnitude 

equal to the limit of the ratios called the instantaneous velocity of the particle at time t. 

The instantaneous velocity is the direction of the tangent to the curve at the given 
moment of motion. 
Thus, 

 

  
  

 
  

In other words, the instantaneous velocity is the derivative of   with 

respect to time. 
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It follows from equation 3.2a that if  has components x, y, z then 

 
differentiating the RHS we get  

since i, j, k are independent of time 

 
 
 

      

 
 
 
 

 
 
 
 
 

 
Note that if we were using coordinates alone to write the equations for velocity, we 
would have to write three equations as in Equation 3.2b.  The advantage of the use of 
vectors is that it enables us to write a single equation as in equation 3.2a. 
 
Representing the instantaneous velocities of the particle when it passes through points 
A and B of its path as shown in Figure 3.2, 
 
 
 
 
 
 
 
 
 
 
 
 
 
We see that the velocity at B is different from that at A.  This means that the velocity 
is changing in magnitude and direction.  Thus the particle experiences an acceleration.  
Definition of average acceleration is given thus: 
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If the velocity of the particle changes from within the time interval from t 

to t + t, then the average acceleration during this interval of time is given by  

 

 
 
 
 

The direction of is along .  Remember that t is a scalar quantity.  Now, as the 

interval of time t decreases, the ratio  approaches a limit.  Hence we define 
the instantaneous acceleration of a particle at any particular instant of motion as 

 
 

 
 

 
So, 
fro
m 

our knowledge of calculus, acceleration is the derivative of  velocity  with respect to 

time, i.e.  and in component form, we have  

 
 
 
 
 
SELF-ASSESSMENT EXERCISE 2 
 

Given a wire helix of radius R oriented vertically along the z-axis.  If a 
frictionless bead slides down along the wire (Fig.3.3), and its position vector 

varies with time as 
 

 
where b and c are constants, find and , where   and   are the velocity and 

acceleration expressed as functions of t. 
  
 
Solution: 

 
 From the expression for given.  We know that for the three axes, x, y, z. 

x = R cos bt2, y = R sin bt2 , z = ½ ct2 
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Recall that 

 

 

 

 
 

 
The acceleration is given by 

 
 
 

 
 

 
 
SELF-ASSESSMENT EXERCISE 3 
 
A particle moves along the curve y = Ax2 such that x = Bt, A and B are constants. (a)
 Express the position vector of the particle in the form 

= xi, +  yj,  

(b) calculate the speed of the particle along this path at any instant t. 

 
Solution: 
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3.2 Uniform Circular Motion 
 
We shall now use the concepts we have developed so far to study uniform circular 
motion and you will see how simple it will all become. Uniform circular motion plays 
an important role in physics.  Uniform circular motion approximates many diverse 
phenomena, such as rotation of artificial satellites in circular orbits, designing of 
roads, motion of electrons in a magnetic field etc. 
 
 
 
      
      
 
 
 
 
 
In Figure 3.4, let us assume that a particle P is performing a circular motion along the 
circle, part of which has been represented by the curve with broken lines.  This 
particle, therefore, maintains a constant distance r from the centre of the circle, O. Let 
us also assume it turns through a constant angle 2 in a fixed time. Let A be the 
position of the particle along x axis at time t = 0.  Now, t seconds later, it is at point P 
after describing an angle 2 (= < AOP).  Through 0 we draw y-axis perpendicular to x-
axis.  Let the coordinates of P with respect to the mutually perpendicular axes x and y 
be (x, y).  From our knowledge of trigonometry and our course on resolution of 
vectors in unit, 2 and 3 we have  that: 
 x = r Cos  
 y = r Sin        3.5a 
 
Now, if the angle described per second by the particle be a constant equal to   
(pronounced ‘omega’) radians, then  = t and eqn. 3.5 can be written as 
 
 x = r Cos t 

y = r Sin t       3.5b 
 

 
T is also 
known as 

the 
angular 

speed of 
the 

particle. We note that the position vector of the particle at P is given by 
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 =  -r2 sin Tti  +  r 2cos  2tj                   3.7 

=  Vx I  +  Vy j 
 
where Vx = - rT sin Tt, Vy  =  rT cos Tt            3.8 
 
The magnitude of velocity is therefore, 

 
 
 

 
    

 
 
 
 

What is the direction of this velocity? To find out, let us calculate  

 = (- rT Sin Tti + rT Cos Ttj).(Cos Tti + r Sin Ttj) 

 
= - r2T Sin Tt cos Tt + r2 Cos Tt Sin Tt = 0 

 
we see that  

 
Since V. r = 0  is always perpendicular to.  This implies that V is always along 

the tangent to the circular path.  Eqn 3.9 reveals that has a constant magnitude.  

We have found that for circular motion, the particles velocity constantly changes 
direction because it (the velocity) is always along the tangent at any point.  So, we 
conclude that the velocity vector is not constant, i.e., the particle has an acceleration.  
Let us denote the particle acceleration by and then find the appropriate expression for 

it . 
 
Recall that acceleration  
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have from Eqn (3.8) that 
Since v = Tr from Eqn 3.9, we get 

 

  
 

 
 

 
The negative sign in the expression for the acceleration Eqn (3.11) indicates that 
the acceleration is opposite to i.e. towards the centre of the circle.  I would then 

like you to remember that a particle moving with uniform angular speed in a circle, 
experiences an acceleration directed towards the centre.  This is known as centripetal 
acceleration. 
 
Example 
 
Let us calculate the period of revolution of a satellite moving around the earth in a 
circular equatorial orbit, (Fig. 3.5). 
Let the velocity of the satellite in the  
 
 
 
 
 
 
 

 
orbit be, and the radius of the orbit be r.  Like any free object near the earth’s 

surface, the satellite has an acceleration towards the centre of the earth (= g, say), 
which is the centripetal acceleration. It is this acceleration that causes it to follow the 
circular path.  Hence from Eqn (3.12), we have  

 
 

 
 
 

 
If the angular speed of the satellite is T, we get from Eqn (3.9) that 
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Again the time period T is given by 
 

 

 

 
 
 
Where R = the radius of the earth and h = the height of the 

satellite above the surface of the earth. 
 
The orbit of the first artificial satellite Sputnik, was almost circular at a mean height of 
1.7 x 105m above the surface of the earth, where the value of acceleration due to 
gravity is 9.26m s-2. 
 
Thus the time taken for the satellite to complete one revolution round the earth was 
 

 
 

 
 
 
 

SELF ASSESSMENT EXERCISE 3.3 
 
A flat horizontal road is being designed for 60kmh-1 speed limit.  If the maximum 
acceleration of a car travelling on the road is to be 1.5 m s2 at the above speed limit, 
what must be the minimum radius of curvature for curves in the road? 
 
Solution 

 
  
 
 
 
 
 





2 2 1

2

1

r g r

or

g

r





T
r

g

or

T
R h

g

 




2
2

2

1

1








T
x x m

m s

x s hr




 

2
6 37 10 0 17 10

9 26

5 28 10 1 28

6 6

2

3


( . . )

( . )

. . min













 

 

 

2 2

2 2

1 1

2

60 1 5

1 8 10

r
a or

a
r

or r
a

i e r
a

Since km h a ms

r x m

, .

, .

.

min

min



PHY 111          MODULE 2 

73 
 

r r r

or r r r

Q Qp p

Qp p Q

  

  

 

  3 16.

 
Let us recapitulate what you have learnt so far. You now know that the language for 
describing motions is displacement, velocity and acceleration. You have also learnt 
about these quantities using vectors. 
 
We have also pointed out that the position, velocity and acceleration of a particle can 
only be defined with respect to some reference frame. The friends travelling in the 
same car are at rest with respect to each other, while they are in relative motion with 
respect to a person standing on the roadside. The velocity of their car as measured by 
the person standing on the roadside will be different from that measured by an 
“Okada” cyclist moving along the same road.  Hence, saying that a car moves at say, 
60kmh-1 means that it moves at 60kmh-1 relative to the earth.  But the earth itself is 
moving at 30km h-1 relative to the sun.  Thus the speed of the car relative to the sun is 
much, greater than 60km h-1.  By these examples we are only trying to show that all 
motion is relative.  This is interesting, isn’t it? Often in practical situation, we need to 
determine the relative position, velocity and acceleration of a particle or an object with 
respect to another one.  In the next section we shall find out how this is done. 
 
3.5 Relative Motion 
 
In this section, we shall discuss relative motion.  Your knowledge of units 1, 3 and 4 
will be applied here. 

 
Let be the position vectors of particles P and Q, respectively, at any instant 

of time, with respect to a fixed origin 0. This has been drawn in Figure 3.6 
above. 

  

  

  

 
 
 

 
Thus, the relative velocity of P with respect to Q is got by differentiating   with 

respect to time. 
 
Thus,  
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Relative acceleration of P with respect to Q us given by, 

 

  

 

 
 
 

If is constant then and we conclude that  

 

 
This means that the relative acceleration of P with respect to Q is the same as the 
acceleration of P with respect to O, provided Q has a constant velocity with respect to 
0. 
 
Let us consider the practical problem of Navigation and avoiding collisions at sea.  
Imagine that two ships S1 and S2 moving with constant velocities are at the positions 
A and B shown in Figure 3.7 at some instant of time.  The vectors V1 and V2 represent 
their velocities with respect to the sea.  The paths of the ships extended along their 
directions of motion from the initial points A and B intersect at point P. 
 

 
 
Fig 3.7 (a) Path of two ships moving at constant velocity along courses  

that intersect; 
 (b)  Path of S2 relative to S1 showing that they do not collide even  

though their paths cross. 

 
Will the ships collide, or will they pass one another at a distance? 
 
The relative velocity of ship S2 with respect to ship S1 is given from 

Eqn 3.17 as  

  is shown in Figure 3.7b. 
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Now, with respect to ship S1, ship S2 follows the straight line .  

It will miss S1 by the distance AN.  If you have travelled in a ship and 
experienced an event of this sort, on an open sea with land marks in sight, you will 
know that it is a curious experience.  The observed motion of the other ship seem to be 
unrelated to the direction in which it is going. 

 
We can now generalize our observations using equation 3.17 and 3.18 concerning 
relative motion. Let an object move with velocity relative to a frame of reference 

S, if another frame of reference S1 moves with velocity V relative to S (Fig. 3.8), then 
the velocityV1 of the object with respect to the frame S1 is given by 

 
 

 
If  a is constant, then 

 
 

 
 
 
 
 
 
 
 
 
 

 
Thus the acceleration of an object is the same in all frames of reference moving at 
constant velocity with respect to one another.  The discussion has but tested our earlier 
conclusion in Unit 1 that absolute motion is trivial (i.e. unrealistic). We need always 
to study the motion of one object with respect to another. 
 
4.0 CONCLUSION  
 
In this unit you learnt that: 
 
(i) Motion involves change in the position of an object with time. 
(ii) The language used to describe motion are displacement, velocity and 

acceleration. 
(iii) You have also learnt how to determine velocity and acceleration both along a 

straight line or on a circular motion. 
(iv) You have also learnt about relative motion and how it is determined. 
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5.0 SUMMARY 
 
What you have learnt in this unit are: 
 
 A body is said to be in motion if it changes position with time 
 A frame of reference is required to determine any kind of variation of position 

with time. 
 That the instantaneous velocity and instantaneous acceleration of the particle are: 

 

 

 

 
 
 
 
 
 
 
 
 

(iv) For a particle performing uniform circular motion, the instantaneous velocity is 
always directed along the tangent and. Has magnitude v = T where r is the 
radius of the circle and � is the angular speed of the particle. 

 
(v) That the instantaneous acceleration is directed towards the centre, and has 

magnitude  

 
 
 
 

(vi) That motion is relative 
(vii) That the relative position and velocity of a particle P with respect to a particle, 

Q are given as  
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where rP and rQ are the position vectors of P and Q in a given frame of reference. VP 
and VQ are the velocities of P and Q in this frame. 
 
6.0 TUTOR-MARKED ASSIGNMENT   
 
1. Why is the statement “I am moving ” meaningless? 
2. An automobile A, traveling relative to the earth at 65km h-1 on a straight level 

road, is ahead of an Okada cyclist (motor cyclist) B traveling in the same 
direction at 80km h-1 What is the velocity of B relative to A? 

3. A small body of mass 0.2 kg moves uniformly in a circle on a horizontal 
frictionless surface, attached by a cord 0.2m long to a pin set in the surface. If 
the body makes two complete revolutions per second, find the force P exerted 
on it by the cord.  
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UNIT 2  FORCE 
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1.0  INTRODUCTION 
 
In the last two Units we explored the parameters that describe motion such as velocity 
and acceleration. Such a description is called Kinematics.  Kinematics alone cannot 
predict the possible motion of an object.  In this Unit, we shall look at other things that 
cause changes in motion of an object. The studies of the causes of motion are called 
Dynamics.  A scientist called Sir Isaac Newton described the laws that govern motion 
in 1687. These are based on careful and extensive observations of motion and its 
changes. It may interest you to know that these laws actually provide an accurate 
description of motion of all objects, whether they are small or big, whether they are 
simple or complicated, though with minute exceptions.  These exceptions include 
motions within the atoms and motions near the speed of light (300,000km s-1). I would 
like you to note that Newton’s laws represent tremendous achievement in their 
simplicity and breadth of what they cover.  We use Newton’s law to calculate the 
motion of a body given the force acting on it. 
 
2.0  OBJECTIVES 
 
At the end of this unit, you should be able to: 
 
• define a force 
• State the conditions for equilibrium of a rigid body acted upon by a system of 

forces. 
• State the three Newton’s laws of motion for a particle in linear motion 
• solve problems using conditions for equilibrium of forces and Newton’s laws 

of motion. 
3.0 MAIN CONTENT 
 

3.1 Definition of Force 
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What makes things move?  I invite you to keep this question at the back of your mind 
as you study this Unit.  In this Unit we shall, in answer to the question above, look a 
bit to the history of physics.  Way back in the fourth Century B.C., Aristotle proffered 
an answer to the question above.  And for nearly 2000 years following his work most 
scientists believed in his answer that a force-which may be a push or a pull-on 
something was needed to keep the thing moving.  The motion ceased when the force 
was removed.  This stands to reason because from our experience we know that when 
we pull or push a wheel it moves.  But when we stop pushing or pulling the 
wheelbarrow, it remains at relative rest.  Therefore, when we push or pull on a body, 
we are said to exert a force on the body.  Non- living things can also exert force on 
other things.  For example, a relaxed spring exerts force on the body to which its ends 
are attached when compressed and released. 
 

 
  Fig 3.1 
 
In Figure 3.1 we show a mass, m attached to the end of a released spring.  The end of 
the spring is then pushed to the left and released.  It is seen to exert a force on the 
mass and pushes it to the right. Also, in our daily life, we experience what we call 
gravitational force. For example, stop reading and throw any object around you 
vertically upwards.  What do you observe? You see that the object got to a certain 
height and started coming down. What happens in effect is that the earth exerts a force 
of gravity on it to attract it to itself (the earth). This type of force we call weight. The 
earth exerts this pull on every physical body. Gravitational, electrical and magnetic 
forces can act through empty space without contact. Other forces can be termed 
contact forces.   
 
Contact forces are forces resulting from direct contact of two or more objects.  
Contact forces are said to be mainly as a result of attraction and repulsion of the 
electrons and nuclei making up the atom of materials. 
To describe a force, we need to describe the direction in which it acts and also the 
magnitude of the force.  This shows us that force is a vector quantity. 
 
3.1.1 Graphical Representation of Force 
 
Since forces are vectors, forces are represented exactly like vectors.  So, everything 
we studied in Units 3 and 4 about vectors apply to forces including vector 
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representation, addition, subtraction etc.  So, I would like you, at this juncture to go 
back and read Units 3 and 4 again to refresh your memory.  But for the sake of 
concretising what you have learnt, let us give one example of how forces are 
represented.  If you slide a box along the floor by pulling it with a string or by pushing 
it with a stick, the box moves (Fig 3.2)     
 
 
 
 
 
 
 
 
  
 
 
 
Note that it is not the objects (hand, stick, or string) that make the box to move but the 
force exerted by these objects.  If we imagine the magnitude of the pull or push to be 
“10N”.  Then, writing just 10N on the diagram would not completely describe the 
force because it does not indicate the direction in which the force acts. One might 
write “10N, 300 above horizontal to the right” or “10N, 450 below the horizontal to the 
right”. But all the above could be more briefly conveyed by representing the force by 
a line with an arrow head.  The length of the arrow to some chosen scale gives the 
magnitude of the force and the direction of the arrow indicates the direction of the 
force.  An example is given below in Fig. 3.3 
 
 
 
 
 
 
 
 
 
This is the force diagram corresponding to Figure 3.2.  We neglect other forces acting 
on the box. 
 
3.1.2 Equilibrium  
 
We have seen that one effect of a force is to change the motion of the object on which 
it acts.  Force also can alter the dimensions of an object.  The motion of an object is 
made up of both translational   motion and rotational motion of the object where 
applicable.  In some cases a single force can produce a change in both translational 
and rotational motion of a body at once.  But when several forces act on a body 
simultaneously, the effect can cancel each other resulting in no change either in 

b a floor 

string 

hand 
(pull) 

Box  Box  

stick 

hand (push) 

Fig. 3.2 

scale 

10N 5 0 

450 300 

10N 
10N 

b a floor 

Fig. 3.3 
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translational or rotational motion.  When this happens, the body is said to be in 
equilibrium.  This means that 
 
(i) the body as a whole either remains at rest or moves in a straight line with 

constant speed and  
(ii) the body is not rotating at all or is rotating at a constant rate. 
 
Now, let us look at an example to explain what we mean. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The forces acting on a body under different conditions are as indicated in Figure 3.4.  

If force F1



 only is applied as is in Figure 3.4a, the body originally at rest will move 

and also rotate clockwise.  So it no longer remains in equilibrium. But if an equal 
force is applied to it in the opposite direction (Fig. 3.4b) and it has the same line of 
action, then the resultant force is zero and equilibrium will be maintained.  Otherwise 
translational but not rotational motion will set in (Fig. 3.4c).  The force , in this case, 
will form what we call a couple.  This will be discussed later. 
 
Mathematically if  
   

F F2 1 31
 

  .   

then the Resultant, R


 is  

  

R F F F F
    

    1 2 1 1 0 32.  

 
Let us adopt the convention that when we say that two forces are “equal and opposite” 
we mean that their magnitudes are equal and that one is the negative of the other.  This 
meaning is what is conveyed throughout this course when three nonparallel coplanar 
forces 

hand 

F1 

A  

a 

hand 

F1 

A  

c 

F
 

C  

hand 

F1 

A  

b 

B  

hand 

Fig 3.4 
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F F F1 2 3

  

, ,  act on a rigid body, for equilibrium to be maintained, the resultant of the 

forces must be zero.  Let us look at Figure 3.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A force applied to a rigid body is taken to be acting anywhere along its line of action.  
Therefore, we can transfer the two forces F1 and F2 Figure 3.5a to the point of 
intersection of their lines of action.  We then obtain their resultant, R as indicated in 

Figure 3.5b.  By so doing, we have reduced the force to just two i.e. R and F
 

3 .  For 

equilibrium to be maintained, these two forces R and F
 

3  must. 

 
(i) be equal in magnitude 
(ii) be opposite in direction 
(iii) have the same line of action. 

 
It then follows from the first two conditions that the resultant of the three forces  

F F and F
 

1 2 3,  is zero.  Note that the third condition can only be fulfilled if the line of 

action of F


3  passes through the intersection of the lines of forces of F and F
 

1 2  as 

shown in Figure 3.5b. Another important point to note is that when the lines of action 
of several forces pass through a point, the forces are said to be concurrent.  The body 
in Figure 3.5b can be in equilibrium only when the three forces are concurrent. 
 
Stable, Unstable and Neutral Equilibrium 
 
On displacing a body in equilibrium slightly, the magnitudes, directions and lines of 
action of the forces acting on it may all change.    
 
Stable equilibrium 
 
This happens when the forces in the displaced position act such that they return the 
body in its original position Fig. 3.6a.   

F3 
 

F2 
 

F1 

Fig 3.5 

(a) 

R
  

F3 
 

F2 
 

F1 

(b) 
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Unstable equilibrium 
 
If the forces act to increase the displacement still further, the equilibrium is unstable. 
Fig. (3.6b).  
 
Neutral equilibrium 
 
If the body after being displaced is still in equilibrium, the equilibrium is neutral. 
(Fig.3.6c) 
 

 
 

Moments 
 
When the door of a room is opened, the applied force is said to exert a moment, or 
turning effect about the hinges attached to the back edge of the door and the wall.  The 
magnitude of the moment of a force P about a point 0 is defined as the product of the 
force P and the perpendicular distance OA from 0 to the line of action of P.  See the 
Figure 3.7a below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thus, moment about point 0 = P x A0.  The magnitude of the moment is expressed in 
Newton metre (Nm) when P is in Newtons and A0 is in metres.  By convention, we 
shall take an anticlockwise moment as positive in sign and a clockwise moment as 
negative in sign. 
 
Parallel Forces 
 

0 

900 

(a) 

0.80.40.3m 0.6

A  B  C  D  
0 

R=100 

20 10 

Fig 3.7 

30 15 25 
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x 



PHY 111      ELEMENTARY MECHANICS 

84 
 

If a rod carries loads of 10, 20, 30, 15 and 25N at point 0, A, B, C, D respectively, the 
resultant, R of the weights which are parallel forces for all the forces in Figure (3.7b) 
is  
 
resultant, R = (10 + 20+ 30 + 15 + 25) N 
                   = 100N 
 
From experimental results and theory it was seen that the moment of the resultant of a 
number of forces about any point is equal to the algebraic sum of the moments of the 
individual forces about the same point.  This result helps us to locate where the 
resultant of R acts. 
 
Taking moments about 0 for all forces in Figure (3.7b) we have (20 x 0.6) + (30 x 
0.9)+ (15x 1.3) + (25 x 2.1) because the distances between the forces are 0.6m, 0.3m, 
0.4m, 0.8m, as shown.  If xm is the distance of the line of action of R from 0, then, the 
moment of R about 0 = R x X = 100 x X 
  100x = (20 x 0.6) + (30 x 0.9) + (15 x 1.3) + (25 x 2.1) 
 
i.e. 
 X = 1.1m 
 
Equilibrium of Parallel Forces 
 
The resultant of a number of forces in equilibrium is zero.  Recall that we saw this in 
Unit 7.  It therefore follows that the algebraic sum of the moments of all the forces 
about any point is zero provided the forces are in equilibrium.  What does this mean?  
It means that the total clockwise moment of the forces about any point = the total 
anticlockwise moment of the remaining force about the same point. 
 
SELF-ASSESSMENT EXERCISE 1 
 
 
 
 
 
 
 
 
 
 
 
 
Suppose a light beam XY rests on two points A and B and has loads of 10, 20, and 4N 
at points, X1 0, Y respectively, then for equilibrium in the vertical direction to hold 
  
 R + S = (10 + 20 + 4)N 

A  

Fig 3.8 

x 

R  S  

Y  
B  

20

4m 1m 3m 2m 

10 40 
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  = 34N 
 
Then, to find R, we take moments about a suitable point such as B. Note that at point 
B, the moment of S in zero. 
Then for the other forces we have 
10 x 6 + 20 x 1 - R x 4-4 x4 = 0 
hence, we see that  
 
  R = 16N 
 
So, from the value for S + R above, it follows that S = 34 - 16 = 18N 
 
SELF ASSESSMENT EXERCISE 3.2 
 
Suppose that a 12m ladder of 20kg is placed at an angle of 600 to the horizontal, with 
one end B leaning against a smooth wall and the other end A on the ground. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The force R


 at B on the ladder is called the reaction of the wall, and if the latter is 

smooth, 

R


  acts perpendicularly to the wall.  Let us assume that the weight of the ladder, w 

acts from the midpoint of the ladder G


 , the forces R


and G


 meet at 0 as shown above.  

6m 

600 

θ 

6m 

a 

O  B  

G  

R  

A  D  

w = 20N 

F  

Fig 3.9 
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Consequently, the frictional force F


  at A passes through 0.  Use the triangle of forces 

to find the unknown forces R


 , F


  

 
Solution 
Since DA is parallel to R, AO is parallel to F, and OD is parallel to W, the triangle of 
forces is represented by AOD.  By means of a scale drawing R and F can be found, 
since 

w

OD

F

AO

R

DA

( )20
   

 
A quicker method is to take moments about A for all the forces.  The algebraic sum of 
the moments is zero about any point since the object is in equilibrium and hence, 
 
 R x a - w x AD = 0 
 
where a is the perpendicular distance from A to R.  (F has zero moment about A)   
 
But a = 12 sin 600 , and AD = 6 cos 600 
  R x 12 sin 600 - 20 x 6 cos 600 = 0 
  R = 10 cos 600  = 5.8N 
    Sin 600 

 

Suppose θ is the angle F makes with the vertical, resolving forces vertically, F cos = w 
= 20N. Resolving horizontally, F sin = R = 5.8N 
 
    

  



F F F

F

N

2 2 2 2 2 2

2 2

20 58

20 58

208

cos sin .

.

.

 

 

 
We have used graphical method to provide satisfactory solution of problems in 
equilibrium.  But it is much easer to use rectangular components of the forces to sum 
up forces acting on a body.  We refer to this as analytical method. Recall from your 
knowledge of resolution of vectors into its Cartesian coordinates, that the resultant, R 
or a set of coplanar forces (i.e. forces acting in one plane) are R fx x   i.e. sum of all 

x - components of the forces 
 

R fy y  i.e. sum of all y - components of the forces.  Hence, when a body is in 

equilibrium, the resultant of all the forces acting on it is zero.  This means that all the 
Cartesian components of the vectors must sum up to be zero. 
 

R or f fx y   0 0 0 33, .  
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These set of equations are called the first condition of equilibrium.  The second 
condition is that the forces must have no tendency to rotate the body. 
 

Note that the first condition of equilibrium ensures that a body be in translational 
equilibrium while the second condition ensures that it be in rotational equilibrium.  
These two conditions are the basis for Newton’s first law. 
 

Consider the body in Figure (3.8) below part (a) hanging at rest from the ceiling by a  
vertical cord. 
 
 
 
 
 
 
 
 
 
 
Part (b) of the Figure is the free-body diagram for the body.  The forces acting on it 
are its weight w1 and the upward forceT1 exerted on it by the cord.  Resolve the forces 
along the x and y-axes and find the conditions of equilibrium. 
 
Solution 
Let the x axis be along the horizontal and the y axis be along the vertical axis.  There 
are no x components of the forces 

  f x 0  

The y -component of the forces are W1 and T1. For equilibrium to hold, f y  0.  This 

means that 

 

T w f

T w first law

y1 1

1 1

0  

 


( )

 

 
Now for their line of actions to be the same, the centre of gravity must lie vertically 
below the point where the cord is attached. 
 
SELF-ASSESSMENT EXERCISE 2 
 
In the Figure below a block of weight w hangs from a cord which is knotted at 0 to 
two other cords fastened to the ceiling.  Find the tensions in these three cords.  The 
weight of the cords are taken to be negligible. 
 
 
 
 

(a) 

Fig 3.10 
(b) 
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Solution 
If we have to apply the conditions of equilibrium to find an unknown force, then we 
must consider a body in equilibrium.  In our problem, the hanging box is in 
equilibrium as shown in the diagram (Fig 3.11) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
The tension in the vertical cord supporting the block is equal to the weight of the 
block.  Note that the inclined cords do not exert forces on the block, but they do act on 
the knot at 0.  So, we consider the knot as a particle in equilibrium with negligible 
weight. 
 
In the free-body diagrams for the knot and the block shown above, T1, T2 and T3 
represent the forces extended on the knot by the three cords.  T1, T2 and T3 are the 
reactions to these forces. 
 
Now, because the hanging block is in equilibrium   
 
  T1

1 = w (first law) 
 
Since T1

 and T1
1 form an action-reaction pair,  

 

(a) 

θ2 θ1 B  A  

w 

o 

T1
|
 

 
T1 

 

T2 

 

T2
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T3 
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w 

(b) 
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Fig 3.11 
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 T1
1 =  T1

 (Third law) 
 
Hence T1 = w 
 
Now, to find the forces T2

 and T3, resolve them into their Cartesian components (see 
the Figure (3.12) above) 
 

   

   





f T T

f T T T

x

y

2 2 3 3

2 2 3 3 1

0

0

cos cos

sin sin

 

 
 

 
Since T1 and w are known, then these two equations can be solved simultaneously to 
find T2 and T3. Putting in numerical values, we have if w = 50N, T2 = 300, T3 = 600 
 
Then, 
 T1 = 50 N and the two preceding equations become 

T T

and

T T N

2 3

2 3

3

2

1

2
0

1

2

3

2
50

( ) ( )

( ) ( )

 

 

 

 
Solving simultaneously the results are 
 

T N T N2 325 433 , .  

 
3.2 Newton’s Laws of Motion 
 
Newton’s first law of motion describes what happens to atoms, oranges, and any other 
objects moving or at rest when they are left alone.  It is natural to think that a moving 
object will eventually come to rest when left alone.  The ancient Greeks believed so, 
but scientific observations have proved them wrong. From Galileo’s experiments on 
the motion of objects on smooth planes, continuity of motion was established.  This 
happened in the first part of the seventeenth century. Later, Isaac Newton extended 
Galileo’s   work and with great insight and power of   abstraction (Fishbane et al.), 
correctly and simply stated what happens: 
 

when an object is left alone, 
  it maintains a constant velocity. 
 
This law is Newton’s first law or the law of inertia. Notice that an object is at rest is a 
special, case of an object with constant velocity.  This first law of motion stated in 
Newton’s words is as follows: 
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“Every body continues in its state or rest or of uniform 
motion in straight line unless it is compelled to change that 
state by forces impressed on it” 

 
With the help of this law, we can define force as an external cause which changes or 
tends to change the state of rest or of uniform motion of a body. 
 
Have you noticed that the first law does not tell you anything about the observer?  But 
we know from our discussions on relative motion in Unit 1 and 6 , that the description 
of motion depends very much on the observer.  So, it would be worthwhile to know: 
for what kind of observer does Newton’s first law of motion hold? In answer to this, 
let us look at this scenario. 
 
   P 
(a)           O 
 

(b)            O            


 O|  
   Fig 3.13 

Suppose that an observer P is at rest with respect to an observer O who is also at rest 
Fig (3.13a). Let another observer O1 be accelerating with respect to O.  P will appear 
to O1 to be accelerating in a direction opposite to the acceleration of O1 Fig (3.13). 
According to Newton’s first law, the cause of the acceleration is some force. So, O1 
will infer that P is being acted upon by a force.  But O knows that no force is acting on 
P.  It only appears to be accelerated to O1.  Hence, the first law does not hold good for 
O1.  It rather holds good for O. 
 
An observer like O is at rest or is moving with a constant velocity is called an inertial 
observer and the one like O1 is called a non-inertial observer. 
 
But, how do we know whether an observer is inertial or not? For this, we need to 
measure the observer’s velocity with respect to some standard.   It is a common 
practice to consider the earth as a standard.  This we also saw in our Unit 1 of this 
course.  Now, the place where one is performing one’s experiment have an 
acceleration towards the polar axis due to the daily rotation of the earth.  Again the 
centre of the earth has an acceleration towards the sun owing to its yearly motion 
around the sun.  The sun also has acceleration towards the centre of the Galaxy, and so 
on.  Hence the search for an absolute inertial frame is unending. 
 
 
So, we modify the definition of the inertial observer.  We say that: 
 

two observers are inertial with each either if they are either at rest or in 
uniform motion with respect to one another.  If an observer has an 
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acceleration with respect to another, then, they are non-inertial with 
respect to one another.  
 

Thus a car moving with a constant velocity and a  man standing on a road are inertial 
with respect to one another while a car in the process of gathering speed, and the man 
standing are non- inertial with respect to each other. 
 
The first law tells you how to detect the presence or absence of force on a body.  In a 
sense, it tells you what a force does-it produces acceleration (either positive or 
negative ) in a body.  But the first law does not give quantitative, measurable 
definition of force.  This is what the second law does.  It gives quantitative, 
measurable definition of force. 
 
Newton’s Second Law of Motion 
 
If you are struck by a very fast moving hockey ball you get injured, but if you are hit 
by a flower moving with the same velocity as that of the ball, you do not feel 
perturbed at all.  However, if you are struck by a slower ball, the injury is less serious.  
This indicates that any kind of impact made by an object depends on two things viz. 
 

(i) its mass and 
(ii) its velocity 

 
Hence, Newton felt the necessity of defining the product of mass and velocity which 
later came to be known as linear momentum.  Mathematically speaking, linear 
momentum is given by 

P m
 

  34.  

 
Thus P is a vector quantity in the direction of velocity.  The introduction of the above 
quantity paved the way for stating the second law, which in Newton’s words are as 
follows: 
 

“The change of motion of an object is proportional to the 
force impressed; and is made in the direction of the 
straight line in which the force is impressed ” 
 

By “change of motion,” Newton meant the rate of change of momentum with time.  
So mathematically we have 
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F
d P

dt

or

F k
d P

dt











( )

( )
.35

 

 

where F


 is the impressed force ark k is a constant of proportionality.   

The differential operator 
 
d

dt
 indicates the rate of change with time.  Now, if the mass of the body remains 

constant (i.e. neither the body is gaining in mass like a conveyor belt nor it is 
disintergrating like a rocket), then 
 

d p

dt

d mv

dt
m

d v

dt
ma

 


  
( )

   

where 
 

a
d

dt







 the acceleration of the body. 

 
Thus from Eqn. 3.5 we get 
 

F kma and a

F kma b

 







36

36

.

.

 

 
We saw earlier that the need for a second law was felt in other to provide a 
quantitative definition of force.  Something must be done with the constant k.  We 

have realised that the task of a force F


 acting on a body of mass m is to produce in it 

an accelerations a


.  Hence, anything appearing in the expression for force other than 

m and a


 must be a pure number, i.e. k is a pure number.  So we can afford to make a 

choice for its numerical value. 
 
We define unit of force as one which produces unit acceleration in its direction when 
it acts on a unit mass. So we obtain from Eqn. (3.6b) that 1 = k . 1.1 or k = 1. Thus, 
Eqn. (3.5), and (3.6) take the form 
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F
d p

dt
and a




 37.   

for constant mass F ma
 

   3.7b 
 

Now, we know from Unit 6 that if the position vector of a particle is r
  at a time t then 

its velocity 


 and acceleration a


 are given by equations. 

 

  












d r

dt
and a

t

d

dtt
lim( )




0

 

 
Substituting for  

a and
 

 in Eqn. 3.7 we get 

 

F m
d

dt
m

d

dt

dr

dt

or

F
d r

dt














( )

.
2

2 38

 

 

Eqn. 3.8 is a second order differential equation in r


 . If we know the force F


 acting on 

a body of mass m, we can integrate Eqn. (3.8) to determine r as a function of t.  The 

function r t


( )  would give us the path of the particle.  Since Eqn. (3.8) is of second 

order, we shall come across two constants of integration.  So we require two initial 
conditions to work out a solution of this equation.  Conversely, if we know the path or 
trajectory of an accelerating particle, we can use Eqn. (3.8) to determine the force 
acting on the body. Eqn. (3.8) also enables us to determine unknown masses from 
measured forces and accelerations.   Don’t you see that calculations in this area have 
been made so easy by the second law of Newton? 
 
So far, we have considered only one force acting on the body.  But often several 
forces act on the same body. For example, the force of gravity, the force of air on the 
wings and body of the plane and the force associated with engine thrust act on a flying 
jet. (Fig 3.13) 
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Fig. 3.13 Forces on a Jet: Fg  the thrust of the engine, Fa ,  

the force of the air provides both lift and drag, Fg the force of gravity. 

  
In such cases, we add the individual forces vectorially, to find the net force acting on 
the object.  The object’s mass and acceleration are related to this net force by 
Newton’s second law.  You may now like to apply Newton’s second law to a simple 
situation. 
 
Units of Force 
 
In Unit 2 we discussed the dimensions and units of mass, length and time.  Because 
acceleration has dimensions of [LT-2] and units ms-2 in S.I units, force has dimensions 
of [M.LT-2] and in S. I, units of kg ms-2 or Newtons (N): 
  

1 1 392N kg ms . .  

In other words, a 1 N force exerted upon an object with a mass of 1kg will produce an 
acceleration of 1 ms-2. 
 
SELF-ASSESSMENT EXERCISE 1 
 
A force of 200N pulls a box of mass 50kg and overcomes a constant frictional force of 
40N.  What is the acceleration of the sledge? 
 
Solution 3.1 
The Resultant force, F = 200N - 40N = 160N  
from 

F ma x a

a
N

kg

ms

or a N

 

 







50

160

50

32

32

2.

.
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SELF-ASSESSMENT EXERCISE 2 
 
An object of mass 2.0kg is attached to the hook of a spring balance, and the latter is 
suspended vertically from the roof of a lift.  What is the reading on the spring balance 
when the lift is (i) ascending with an acceleration of 20cm s-2 (ii) descending with an 
acceleration of 10cms-2 
 
Solution 3.2 
(i) The object is acted upon by two forces  
 (a)   The tension TN in the spring-balance, which acts upwards 
 (b)   Its weight 20N which acts downwards. 
 
Since the object moves upwards, T is greater than 20N.  Hence the resultant or net 
force, F acting on the object is  
 (T - 20) N approximately 
Now F = ma 
where a is the acceleration 
 
(i) T (T - 20) N = 2kg x 0.2 ms-2 

   T = 20. 4 N     Answer 
 

(ii) When the lift descends with an acceleration of 10 cm s-2 or 0.1ms-2, the weight, 
20 N is now greater than T1 N the tension in the spring balance. 

(iii)  
 2 Resultant force = (20 - T1)N = 20 -T1 

2  F = (20 - T)N = ma = 2kg x 0.1ms-2 
 2 T = 20 - 0.2 
        = 19.8 N     Answer 
 
Newton’s Third Law of Motion 
 
So far we have been trying to understand how and why a single body moves.  We 
have identified force as the cause of change in the motion of a body.  But how does 
one exert a force on his body? Inevitably, there is an agent that makes this possible.  
Very often, your hands or feet are the agents.  In football, your feet bring the ball into 
motion.  Thus, forces arise from interactions between systems.  This fact is made clear 
in Newton’s third law of motion.  To put it in his own words: 

“ To every action there is an equal and opposite reaction.” 
 

Here the words ‘action’ and ‘reaction’ means forces as defined by the first and second 
laws.  If a body A exerts a force, FAB on a body B, then the body B in turn exerts a 
force FBA on A, such that 
  FAB = -FBA 
So, we have  FAB  + FBA = 0 
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Notice that Newton’s third law deals with two forces, each acting on a different body. 
You may now like to work out an exercise based on the third law. 
 
SELF-ASSESSMENT EXERCISE 3 
 
(a) When a footballer kicks the ball, the ball and the man experience forces of the 

same magnitude but in opposite directions according to the third law.  The ball 
moves but the man does not move.  Why? 

(b) The earth attracts an apple with a force of magnitude F.  What is the magnitude 
of the force with which the apple attracts the earth?  The apple moves towards 
the earth.  Why does not the reverse happen? 

 
Solution  
(3a) The reaction force acts on the man.  Due to the large mass(inertia) of the man 

the force is not able to make him move. 
(b) Apple also attracts the earth with a force of magnitude F.  The acceleration of 

the apple and the earth are, respectively, F/ma and F/m , where ma and m are 
the masses of the apple and the earth, respectively.  Since m>>ma F/m << F/ma.  
Hence the earth does not move appreciably. 

 
Newton’s laws of motion provide a means of understanding most aspects of motion.  
In the next Unit, we shall study impulse and momentum. 
 
4.0 CONCLUSION 
 
In this unit, you have learnt that  
 
• Objects are kept in motion as a result of externally implied forces on them 
• Even inanimate objects can exert forces  
• A body can only be in static or dynamic equilibrium if all the forces acting on it 

cancel each other. 
• The three Newton’s laws of motion are applied in solving problems relating to 

motion and forces that keep objects in motion 
 
5.0 SUMMARY 
 
What you have learnt in this unit are: 
 
• that the study of the parametres that describe linear motion is called kinematics  
• that the studies of the causes of motion is called dynamics 
• that force is a push or a pull exerted on a body by another body. 
• that there are gravitational forces and contact forces 
• that forces can be represented graphically just like vectors 
•  that the conditions for equilibrium when a system of forces are acting on a 

rigid body are: 
(i) the resultant of all the forces sum up to zero 
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  i.e. 

 
 

 
(iii) The forces must have no tendency to rotate the body. 

The three Newton’s laws express the dynamics of motion how forces acting 
between objects determine the subsequent motion of those objects. The first 
law states what happens to an object-moving or at rest when it is left alone.  
The second law is 

 
  F = ma 
 
The third law is 
 
  FBA = - FAB 
 
i.e. As regards forces between objects that if A and B interact and forces are acting 
between them, then by this third law the force an object A due to object B is FAB and 
is equal and opposite to the force an object B due to object A which is FBA . 
•  that in S. I, force is measured in Newtons abbreviated N where N = 1kg ms-2 
• Newton’s laws help us to determine the motion of an object if we know the 

nature of the forces that act on it. 
• Conversely, the laws enable us to measure forces acting on an object by 

measuring the objects motion. 
• that observers in reference frames moving with respect to one another observe 

the motion of a given object differently. 
 

6.0  TUTOR-MARKED ASSIGNMENT 
 

(1) Astronauts on the Skylab mission of the 1970s found their masses by using a 
chair on which a known force was exerted by a spring.  With an astronaut 
strapped in the chair, the 15kg chair underwent an acceleration of 2.04 x10-2ms-

2 when the spring force was 2.07N.  What was the astronaut’s mass? 
  

(2) Three children each tug at the same plank. All the forces are in the horizontal 
plane. The three forces on the plank have the vectorial decomposition F1 = -5k 
units, F2 = 5i units and F3 = (- 5i + 5k) units in terms of their unit vectors.  What 
is the force on the box?  What can you say about its consequent motion? Ignore 
the force of gravity. 

 

(3) A particle of mass m is hung by two lights strings.  The ends A and B are held 
by hands.  The strings OA and OB make angles 2 with the vertical.     
 

R F F F

or

R F F Fx y





   

    

1 2 3

2

0

0

..........
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Find the values of T and T1 in terms of m and T.  T is tension in hand A and T1 
is tension in hand B. 
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UNIT 3 THE PROJECTILE MOTION 
 
CONTENT 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 

3.1  Definition of Projectile Motion 
3.2 The Trajectory 
3.3 Determining the Parameters   of a Projectile Motion 

4.0 Conclusion 
5.0 Summary 
6.0 Tutor-Marked Assignment   
7.0 References/Further Reading 
 
1.0    INTRODUCTION 
 
In the preceding unit we discussed the concepts of force and acceleration.  We have 
applied Newton`s first law in solving problems in equilibrium.  In this unit we shall 
apply Newton’s second law to study projectile motion which is a type of motion in a 
plain under the influence of the earth`s gravitational field .This science explorers how 
a body behaves with the resultant force on it is not zero. The chief parameters we shall 
learn to celebrate here and the range, the maximum height and the time of flight of a 
particle undergoing projectile motion. 
 
2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
   
• define a projectile motion and a projectile 
• state the condition in which a projectile motion is possible 
• represent projectile motion graphically 
• compute the time of flight, highest point reached, maximum range attained by a 

projectile given initial conditions 
• find the angle of projection of a projectile given the necessary parametres.    
 
3.0 MAIN CONTENT 
 
3.1 Definition of Projectile Motion 
 
To appreciate what you will learn in this unit, find an open space in your 
neighborhood where you can conveniently throw up a small stone at an angle to the 
horizontal. Then throw the stone as indicated above.  Return to your room and try to 
sketch the path traced by the stone. 
Is your sketch similar to Figure (3.1) below? 
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The stone or object thrown into space is called a projectile.  The shape of the path 
traced by the projectile is called a parabola.  The maximum; horizontal distance 
traveled is the range, R. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
SELF-ASSESSMENT EXERCISE 1 
 
Give more examples of projectile motion. 
Projectile motion is a good example of motion in 2 dimensions.  The initial velocity of 
projection at an angle as shown in Figure 3.1 is always resolved into two components 
there is the vertical component by which it attains some height at any instant of time 
in the y-axis and some horizontal component by which it covers some range, R in the 
x-axis.  Hence, the motion can be described as a combination of horizontal motion 
with constant velocity and vertical motion with constant acceleration. 
 
SELF-ASSESSMENT EXERCISE 2 
 
Close your book and with a sheet of paper draw again the path traced by the stone you 
threw outside. Is your representation any better now? 
 
The Trajectory 
 
We can find the trajectory of a ball undergoing projectiles motion by plotting its 
height y versus its x-position.  We know both x and y as functions of time, and we can 
eliminate the time dependence by using appropriate equations of motion. 
Therefore from 

x t t

x t

t
x

   

 

 


0
1

2
0 1

2

3

0 0
2

0 0

0 0

( cos ) ( )

cos

cos







 

 

x 

y 

R 

H 

VO 

θ 

Fig 3.1 
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Now using the equation for y  

 

y v t gt

v t gt

  

 

0
1

2
4

1

2
5

0 0
2

0 0
2

( sin )

( sin )




 

 
y  becomes after substituting for t 
 

y
x

g
x

i e

y x
g

x

  





 


0
1

2
6

2
7

0 0
0 0 0 0

2

0
0

2 2
0

2

( sin )
cos

(
cos

)

. .

(tan ) (
cos

)


 




 

 
We see that the coefficients of x and x2 are both constants, so this equation have the 
form 
  

y = c1x - c2 x
2             8 

 
This is the general equation of a parabola.  Hence we conclude that the trajectory of 
all objects moving with a constant acceleration is parabolic. 
So, plotting different values of x, with their corresponding values of y will trace the 
trajectory of a projectile. Fig.(3.2) 
 

 
Is there any other thing you think could affect the motion of a projectile besides 
gravity? 
 
Yes there is.  You know that our atmosphere is not a vacuum.  The air in the 
atmosphere do resist the motion of the projectile.  But because the effect is so small 
we generally neglect its resistive force on the projectile. Note that this could be a 
source of error in our experiments. 
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SELF-ASSESSMENT EXERCISE 
 
A ball is projected horizontally with velocity vo of magnitude 8ms-1. Find its position 
and velocity after ¼ s  
 
Solution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The trajectory of the ball is represented in the diagram above Fig (3.3).  We notice that 
the angle of projection is zero.  This means that the initial vertical component of 
velocity is zero.  Thus, the horizontal component of velocity is equal to the initial 
velocity and we recall that it is constant. 
 

The x and y coordinates when
 
t s

1

4
 and g = 10m s-2 are 

 

x t ms s m

and

y gt ms s m

x   

    





( ) ( )

( ) ( ) .

8
1

4
2

1

2

1

2
10

1

4
0 32

1

2 2 2

 

  
 
The components of velocity are  

   

    









x

y

ms

gt ms s
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2

1

8
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4

2 5

( )( )
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Fig 3.3 Trajectory of a body projected horizontally 
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The Flight Time  
 
Let T be the total time of flight of a ball.  The ball reaches its maximum height, H 
exactly half way through its motion, Fig. 3.4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
At this point its motion is horizontal; i.e. the vertical component of velocity is zero. 
This occurs at time t = T/2.  Now, we can find T/2 by putting Vy = 0 in the following 
Eqn. 
   y gt0 0sin  

becomes, 
0 = V0 sin 20 - gt 
so far t = T/2 we have 
 

0
2

2

0 0

0
0

  

 


sin

sin





gT

T
g

 

 
Range 
We defined the range R of a projectile launched from the ground y = 0, to be the 
horizontal distance that the projectile travels over level ground.  Fig (3.2). The 
quantity R is the value of x when the projectile has returned to the ground.  That is, 
when y again equals zero.  Therefore from equations we have      
              

0 = R (c1 - c2 R)      9 
 
The value R = 0 satisfies the condition y = 0  in this equation.  Note that this is the 
starting point of the projectile motion.  Since it is launched from the ground, its x 
position is zero at launch time. 

x 

y 

R 

H 

VO 

θ 

Fig 3.4 
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Also if the factor (c1 - c2 R) = 0 in equation 8 :. R = c1/c2 .  This case corresponds to 
the projectile having landed back on the ground after its flight. 
 
Substituting the values of c1 and c2 from equation 7 we get 
 

R
c

c g

g

 





1

2

0 0
2 2

0

0
2

0

0

2
0

2
10

2
11

tan ( cos )

(
sin

cos
) cos

 






 

 
Simplifying, we get 

R
c

c

v

g

from trignometry

 



1

2

0

0 0 0

2 12

2 2

sin cos

, sin( ) sin cos

 

  

 
 
Then using it, we find that 

R
v

g
 0 02

13
sin 

 
 
The range varies with the initial angle, 2 of the projectile as seen in equation 13.  We 
see that for 2 = 0, then R = 0. If 2 = 900 again R = 0 ie when a projectile is launched 
straight up, it comes back straight down.  As 2 increases from 0 to 450 and then to 900, 
sin(2θ) first increases from 0 to 1 then decreases back to 0 respectively.  This means 
that there are two initial angles to launch the projectile in order to get the same range 
for a given initial speed. 
 
Note that the range reaches a maximum value when (sin 220)   reaches a maximum 
value of 1 with reference to Eqn. 13.  This occurs for 22 = 900, or 2 = 450 in which 
case 
 

R
gmax 

 0
2

14  

 
If the projectile is shot at an angle higher or lower than 450, the range is shorter. 
 
Maximum Height 
 
The maximum height, ymax = h is reached at time T/2  
θ from Eqn. 4 we find that the height at this time is  
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h
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SELF-ASSESSMENT EXERCISE 
 
A group of engineering students constructs a nozzle device that lobs water balloons at 
a target.  The device is constructed so that the launching speed is 12ms-1.  The target is 
14m away at the same elevation on the other side of the fence.  How can they 
accomplish this mission?(Hint use g = 9.8ms-2) 
 
Solution 
Analysing the problem, we see that the range equation for ground level is relevant.  
The range varies with the initial angle, so the students need to find a value of T that 
will give a range of 14m.  We apply Eqn. 13 which is 

 

R
g

to get

R m
ms

ms




 

 





0
2

0

1 2
0
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2
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.

sin .







 

This equation has two solutions-that is, 2θ 0 = 720 and 2θ 0 = 1080 
Hence θ0 = 36 and 540 

 
These are the two possible initial angles that the students will use that result in the 
given range.  For a given velocity of projection there are in general two angles of 
inclination that will achieve the same range for a projectile.  If one of these is θ, the 
other is what? 
 
SELF-ASSESSMENT EXERCISE 
 
A mass is projected horizontally from the top of a cliff with velocity V.  Three 
seconds later, the direction of the velocity of the mass is 450 to the horizonntal. 
 
Take the acceleration of free fall g to be 10ms-2 , find the value of the projection 
velocity, V. 
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Solution 
If the mass falls at 450 to the vertical, then, the horizontal and vertical components of 
velocity must be equal.  The vertical component can be calculated using the equation 
of motion, 
 V = µ + at 
for a =10ms-2 , u = initial velocity, t = 3s 
 µ = 0 
V = 0 + 10 x 3 
         = 30ms-1  
 
4.0 CONCLUSION 
 
In this unit, you have learnt: 
 
• that projectile motion is a type of motion with constant acceleration. 
• that projectile motion is an example of motion in two dimensions in the Earth’s 

gravitational field. 
• that we apply the laws of motion in solving problems that describe projectile 

motion. 
• how to represent projectile motion graphically. 
• that the concept of projectile motion can be employed in warfare. 
 
5.0   SUMMARY 
 
What you have learnt in this unit are: 
 
• that an object given an initial velocity and which subsequently follows a path 

determined by the gravitational force acting on it and by the frictional 
resistance of the atmosphere is called projectile. 

• that the path followed by the projectile is called a trajectory 
• that projectile motion is an application of Newton’s second law of motion from 

which we have that a = F/m. 
• that the forward component of velocity does not come into play in the projectile 

flight. 
• that projectile motion can be described as a combination of horizontal motion 

with constant velocity and vertical motion with constant acceleration. 
• that projectile motion is a form of parabolic motion. 
• that the parameters are 
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The x - coordinate is  
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x t t
x

   0 0 0( cos )  

 
the y-coordinate is  

 

y t gt t gt
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The resultant velocity 
 

    x y
2 2  

The range, R is  

R t x
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
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6.0 TUTOR-MARKED ASSIGNMENT   
 
1. A wayward ball rolls off the edge of a vertical cliff over-looking the Niger 

River.  The ball has a horizontal component of velocity of 10ms-1 and no 
vertical component when it leaves the cliff.  Describe the subsequent motion. 

2. A boy would rather shoot mangoes down from a tree than climb the tree or wait 
for the mango to drop on its own.  The boy aims his catapult at a mango on the 
tree, but just when his stone leaves the catapult, the mango falls from the tree.  
Show that the rock will hit the mango. 

3.  
 
 
 
 
 
 
 
 
 
 
For constant acceleration we apply equations  

x x t a t and

a t

x x

y y y

   

   

0 0
2

0

1

2  

We must specify the balls initial position and velocity by using the given information 
in the question. 
We then determine the velocity component 
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4. What was the maximum height attained by a ball projected off the cliff with an 
elevation angle 360 to the horizontal and how long was the ball in flight? 

 The other relevant information is 
height of cliff      = 52m 
initial velocity    = 48ms-1  

Total horizontal distance travelled  = 281m 
 

5. A projectile is shot at an angle of 340 to the horizontal with an initial speed of 
225ms-1.  What is the speed at the maximum height of the trajectory? 
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1.0    INTRODUCTION 
 
In Unit 7 we dealt with Force and Newton’s laws of motion.  In this Unit we shall 
treat impulse and momentum as a consequence of the action of force.  Pulse is a force 
acting for a very small or short duration of time as in a sudden impact of an object on 
another like in the impact of batting a tennis ball or an upsurge of current etc.  
Momentum of an object plays an important role in Newton’s second law.  A force 
produces a change in momentum. When a system of particles is isolated, the total 
momentum is constant.  This principle, known as the principle of conservation of 
momentum is particularly useful for understanding the behaviour of colliding objects. 
We shall learn about this principle in this unit of the course.  But first of all, we shall 
introduce the concept of impulse and momentum and how they are applied in motion 
of rockets. 
 
2.0 OBJECTIVES 
 
At the end of this unit, you should be able to:   
 
• define impulse and linear momentum. 
• write the mathematical definition of impulse and linear momentum 
• solve problems in linear momentum 
• describe the motion of rockets using the linear momentum principle 
• state the conditions for the conservation of linear momentum 
• apply the principles of conservation of linear momentum. 
 
3.0 MAIN CONTENT 
 
3.1 Definition of Impulse and Momentum 
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Imagine that a particle of mass m is moving along a straight line, Let us assume that 
the force acting on the particle is constant and directed along the line of motion of the 
particle.  If the particle’s velocity at some initial time t = 0 is V0, then its velocity at a 
later time, t, is given by V = V0 + at 
 
I know you recognise this expression as one of the equations of motion we treated in 
units 5 and 6.  Here, the constant of acceleration, a, is given by F/m from Newton’s 
second law.  Making the substitution for a we get. 
 

Ft mv mv  0 31.  

 
you will notice that the left hand side of equation 3.1 is the product of the force and 
the time during which the force acts.  This expression, (Ft) is called the impulse of the 
force. Generally, if a constant force, F acts for a short interval t1 to time t2 , the 
impulse of the force is defined mathematically as  
 
Impulse = F (t2- t1) = f�t 
 

where   t t t 2 1
 is very small interval. We notice that in Eqn.(3.1) the right hand side 

of it contains the product of mass and velocity of the particle at two different times.  
The product, mv has a special name called momentum.  This is very easy to 
remember.  The experience you get when someone suddenly bumps into you 
unsuspectingly at a bend in the street is an impact of momentum. Momentum during a 
linear motion is also called linear momentum.  We often use the symbol P to represent 
momentum. 
 
 Momentum  = P = mv 
 
So, for the time intervals t1 and t2 with corresponding particle velocities of V1 and V2, 
the impulse is given by, 
 

F t t mv mv( )2 1 2 1        3.2 

We note that this relation between impulse and force is the same as that between work 
and kinetic energy change which we shall discuss later.   
 
 
The differences between them I would like you to also note are that: 
(i) impulse is a product of force and time but work is a product of force and 

distance and depends on the angle between force and the displacement. 
 
(ii) force and velocity are vector quantities and , impulse and momentum are vector 

quantities but work and energy are scalars. In linear motion the force and 
velocity may be resolved, as we found earlier in this course, into their 
components along the x-axis and could have either positive or negative values. 
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SELF-ASSESSMENT EXERCISE 1 
 
A particle of mass 2kg moves along the x-axis with an initial velocity of 3 ms-1.  A 
force  F = - 6N (i.e. the force is moving in the negative x-direction) is applied for a 
period of 3s.  Find the initial velocity. 
 
Solution 
   
We apply the following eqn,    
                                                                                                                                                                                     
F t t m m

thus

N s kg kg ms

or ms

( )

( ) ( ) ( ) ( ) ( )

2 1 2 1

2
1

2
1

6 3 2 2 3

6

    

   

  





 

The final velocity of the particle is in the negative x - direction that is why we have a 
negative sign in the value for velocity. 
 
The unit of impulse is the same as the unit of the product of force and time in 
whatever system the calculation is made.  Thus in the S.I system, the unit is one 
Newton second (1 Ns) in cgs system it is one dyne second (1 dyne s) and in the 
engineering system it is one pound second (1 lb s). 
The unit of momentum in the S.I system is 1 kilogram metre per second (1 kg ms-1). 
Since 

 
1 1 11 2kgms kgms s Ns  ( ) ,   

  
this implies that momentum and impulse have the same units in a particular system. 
 
Generally, impulse are forces that vary with time.  For sufficiently small time 
intervals, t, the force acting could be taken to be constant.  So, the impulse during a 
time t is  F t.  This is shown graphically in Figure 3.1. 
 
 
 
 
 
 
 
 
 
 
 
 

Area = 

F  

t 

t2 Δt t1 

Fig 3.1 

t 
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Graphically, F t is represented by the area of the strip of width �t as shown under the 
curse of F versus t.  The total impulse is given by the areas under the curve between 
the initial time, t1 and final time of action of the force t2.  Momentum increases 
algebraically with increase in positive impulse but decreases with negative impulse. 
 
Note that if the impulse is zero, there is no change in momentum. 
The total impulse could also be found by integrating F�t as �t tends to zero or as t2 
approaches t1 thus, 
 

lim ( ) .F t F t dt
t t t

t


2 1 1

2

0
33

 
   

 
This value also gives the change in linear momentum of an object in which such a 
force acts. 
 

dp

dt
dt p t p t p

t

t

   ( ) ( ) .2 1 34
1

2

  

 
We have now seen that impulse of a force is change in linear momentum.  If a force 
acts during a time interval t but is variable, then to calculate impulse we would need 
to know the function F (t) explicitly.  However, this is usually not known.  A way out 

is to define the average for F  by the equation 

 

F
t

F t dtave
t

t

 
1

35
1

2


( ) .  

 
 
where t = t2- t1 
so from Eqns. 3.4 and 3.5 we get 
 
Total Impulse = Fave t = p    3.6 
 
There are many examples which illustrate the relationship between the average force, 
its duration and change of linear momentum. A tennis player hits the ball while 
serving with a great force to impart linear momentum to the ball. To impart maximum 
possible momentum, the player follows through with the serve.  This action prolongs 
the time of contact between the ball and the racket. Therefore to bring about the 
maximum possible change in the linear momentum, we should apply a large force as 
possible over a long time interval as possible. You may now like to apply these ideas 
to solve a problem  
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SELF-ASSESSMENT EXERCISE 2 
 

(1) A ball of mass 0.25kg moving horizontally with a velocity 20ms-1 is struck by a 
bat.  The duration of contact is 10-2 s. After leaving the bat, the speed of the 
ball is 40 ms-1 in a direction opposite to its original direction of motion. 
Calculate the average force exerted by the bat. 

 
(2) Give an example in which a weak force acts for a long time to generate a 

substantial impulse 
 
Solution:  
Let J = impulse 
(i) Impulse , J = p 
         = (0.25kg) x {40-(-20)}ms-1 
         = 15kgms-1 
  t = 10-2s 
 Faverage =     J   = 1500N 
     t 
 
(2) The gravitational force of attraction between sun and earth is very weak but it 

has been acting since their formation and so it can generate a substantial 
impulse. 

 
Motion with Variable Mass 
 
If the mass of a system varies with time, we can express Newton’s second law of 
motion as 
 

F
dp

dt

d mv

dt
m

dv

dt
v

dm

dt
   

( )
.37  

Under the special case when v is constant, Eqn. (3.7) becomes 
 

F v
dm

dt
 38.  

 
Let us study an example of this special type 
 
Example 
 
Sand falls on to a conveyer belt B (Fig. 3.2) at the constant rate of 0.2kgs-1.  Find the 
force required to maintain a constant velocity of 10m/s of the belt. Here, we shall 
apply Eqn. (3.8) as velocity remains constant.  Since the mass is increasing dm/dt is 
positive.  The direction of F, therefore, is same as that of  v, i.e. the direction of 
motion of the conveyer belt. Thus, using Eq. 3.8 we get 
 F = (10ms-1) x (0.2 kg ms-1) = 2kg ms-2 = 2N. 
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Another example of a varying mass system is the rocket.  In a rocket (Fig. 
3.3) a stream of gas produced at a very high temperature and pressure escapes at a 
very high velocity through an exhaust nozzle.  Thus, the rocket losses mass and 

 
dm

dt
 is negative.  So the Main Content of the rocket experiences a huge force in a 

direction opposite to that of the exhaust causing it to move.  This is a very simplified 
way of dealing with the motion of a rocket.  We shall next analyse the motion of a 
rocket with a little more rigour using the idea of impulse. 
 
3.2 Motion of a Rocket 
 
Let us assume that the rocket has a total mass M at a time t.  It moves with a velocity 
V and ejects a mass �M during a time interval Δt.  The situation is explained 
schematically in Fig. (3.3 And 3.4a and b)  
At time t the total initial momentum of the system = Mv (Fig.3.4a).  At time t + t the 
total final momentum of the system = (M - M) (v + v) + ( M)u (Fig. 3.4b). 
 
Notice that we have used the positive sign for u because the total final momentum of 
the system in Fig 3.4b is a vector sum and not the difference of the momenta of M and 
(M - M).  Let us now apply Eq.3.6.  If we take the vertically upward direction as 
positive the impulse is - Mg t and is equal to the change in linear momentum. 
 
So,  -Mg Δt = (M - M) (v + v) + ( M) u -  Mv 
  = M ( v) + M (u - v - v) 
 
 
 
 
 
 
 
 
 

 

10ms-1 

B 

Fig 3.2 

(b) 

u 

ΔM 

Fig 3.4 

v + Δv 

M-

(a) 

v 

M 

Fig 3.3 
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to simplify the above relation: recall that VQp = Vp - VQ 

   g
v

t M

M

t
urel










1
where u  =  u -  (v +  v)rel

    is  the relative velocity of the 

exhaust with respect to the rocket. 
 
Now, in the limit  
 t  0 , we have 

  g
dv

dt M

dM

dt
urel

1
39.  

 
The negative sign on the right-hand side of Eqn. 3.9 appears as 





t

M

t

dM

dt
  0
lim

, because M decreases with t. 

so, when we apply Eq. 3.9 in numerical problems we just replace 
dM

dt
 by its magnitude.  On integrating Eq. 3.9 with respect to t, we get 

dv

dt
dt gt u

dM

Mrel

M

M

   
00

1

 

where M0 is the initial mass of the rocket and M is its mass at time t.  Now, if v0 is the 
initial velocity, then we get 
 

v v u In
M

M
gtrel  0

0

310.  

 
We shall illustrate Eq. 3.10 with the help of an example. 
 
Example 
 
The stages of a two-stage rocket separately have masses 100kg and 10kg and contain 
800 kg and 90 kg of fuel, respectively.  What is the final velocity that can be achieved 
with exhaust velocity of 1.5 kms-1 relative to the rocket ? (Neglect any effect of 
gravity).  Since we are neglecting gravity Eq. 3.10 reduces to  
 

v v u In
M

Mrel 0
0

311.  

Now, let the unit vector along the vertically upward direction be  
n .  So, Eq. 3.11 can be written as 

 
 

v n v n u n In
M

M
where u u nrel rel rel

  ( ) , ,    0
0

 as the relative velocity of the exhaust 

points vertically downward. 
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v v u In
M

M
arel 0

0

311.  

 
For our problem, 
 
 urel = 1.5 kms-1      
 
For the first stage, v0 = 0 
M0 = (800 + 90 + 100 + 10) kg = 1000kg 
M = (90 + 10 + 100)kg = 200kg, as the 800 kg fuel gets burnt in the first stage. 
 
 
 
 
Hence, from Eq.3.11 a, we get 
 

v kms n

kms n n

x kms

kms

 








  













( . )

( . ) ( )

. .

.

15 1
200

1000

15 1 2 1 10

15 16

2 4

1

1

1

1

 

  
Note that the above will be the initial velocity for the second stage.  Also note that at 
the beginning of the second stage there occurs another drop in mass to the extent of 
the mass  
of the first stage (i.e. 100kg). For the second stage, 
 
 

   

  

   





  

0
1

0

1

1 1 1

2 4

90 10 100 10

2 4 151
10

100

2 4 15 2 3 585 58

.

( ) ,

( . . )

( . . . ) . .

kms

M kg kg M kg

n kms

x kms kms kms

 

 
The final result of this Example has to be rounded off to two significant digits.  Here 
we have a special case as the digit to be discarded is 5. By convention , we have 
rounded off to the nearest even number. 
Let us now follow up this example with an exercise 
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SELF-ASSESSMENT EXERCISE 3 
 
Find the final velocity of the rocket in the Example above taking it to be single-stage, 
i.e. its mass is 100kg and it carries 890kg of fuel.  Hence comment whether the two-
stage rocket has an advantage over single stage or not. 
 
Solution 
Had it been a single stage rocket, then v0 = 0 
M0 = (890 + 100)kg = 990kg 
M = 100kg 
 
V = (- 1.5km s-1)[ln  100 ] 
      990 
= (- 1.5km s-1)(In 10- In99) 
=3.4kms1 which is 41% less than the value of velocity (5.8kms-1) attained in a double-
stage rocket.  Hence double-stage has an advantage over the single-stage. 
 
 
3.3 Linear Momentum 
 
Let us first study a system of two interacting particles’1' and ‘2' having masses m1 and 
m2 (Fig.3.5). Let p1 and p2 be their linear momenta.  The total linear momentum p of 
this system is simply the vector sum of the linear momenta of theses two particles. 
 

p = p1 + p2      3.12  
 
From Newton’s second law, the rate to change of p1 is the vector sum of all the forces 
acting on 1, i.e. the total external force Fel on it and the internal force f21 due to 2: 

 

F f
dp

dt
ael  21

1 313.  

 
Similarly, for particle 2:  

F f
dp

dt
bel  21

2 313.

 

 
 
 
 
 
 
 
 
 

2 
Fe2 
 

f12 

 

Fe1 

f21 

1 

Fig 3.5 
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From Newton’s third law, we know that f12 = -f21. Therefore, on adding Equation .3.13 
a and 3.13b, we get 
 

F Fe
dp

dt

dp

dte1 2
1 2   ,  which may be written as 

F
d

dt
p pe  ( ),1 2

where Fe is the net external force on the system.   

 
Therefore, from Eq. 3.12 

F
dp

dte  . .314  

 
Thus, in a system of interacting particles, it is the net external force which produces 
acceleration and not the internal forces.  Now, we shall see how Equation. 3.14 leads 
to the principle of conservation of linear momentum. 
 
3.4   Conservation of Linear Momentum 
 
In the special case when the net external force Fe is zero, Equation 3.14 gives 
 

dp

dt
 0 315, .    

 
so that p = p1 + p2 = a constant vector. 
This is the principle of conservation of linear momentum for a two-particle system.  It 
is equally valid for a system of any number of particles.  Its formal proof for a many-
particle system will be given later. It states that: 

“if the net external force acting on a system is zero, then its total linear 
momentum is conserved”. 

 
Let us now apply this principle. 
 
Example  
 
A vessel at rest explodes, breaking into three pieces.  Two pieces having equal mass 
fly off perpendicular to one another with the some speed of 30 ms-1. Show that 
immediately after the explosion the third piece moves in the plane of the other two 
pieces.  If the third piece has three times the mass of either of the other piece, what is 
the magnitude of its velocity immediately after the explosion? 
 
The process is explained in the schematic diagram Fig (3.6). The vessel was at rest 
prior to the explosion. So its linear momentum was zero.  Since no net external force 
acts on the system, its total linear momentum is conserved.  Therefore, the final linear 
momentum is also zero, i.e. 
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 p1 + p2 + p3 = 0                                                     3.16a 
or p1 + p2  = -p3                                                                                      3.16b 

 

(p1 + p2) lies in the plane contained by p1and p2. So in accordance with Eq.3.16b, -p3 
must also lie in that plane.  Hence, p3 lies in the same plane as p1 and p2.  Now, from 
Eq.3.16 
 

( ).( ) ( ).( ), .

.

. ( ). .

,

( ) ( ) ( ) ,

, .

p p p p p p c

or p p p p p

But p p p is perpendicular to p d

So p p p

or mv mu mu

or m v m u or v u

1 2 1 2 3 3

1
2

2
2

1 2
2

3

1 2 1 2

3
2

1
2

2
2

2 2 2

2 2 2 2

316

0 316

3

9 2
2

3

    

  

 

 

 

 

 

According to the problem  

u ms v ms b   30 10 2 3161 1. .  

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There is another method of finding the magnitude of the velocity.  We can express 
Equation 3.16b in terms of the components of p1,p2 and p3 in two mutually 
perpendicular directions of x and y-axes. Let p1 be along x-axes, p2 along y-axis and 
let p3 make an angle θ with x-axis. Then Equation 3.16b gives: 
 

p i p j p i p j1 2 3 3 317  ( cos  sin ). .   


   

 
This equation is satisfied iff (see Eq. 1.6) 
 

Fig 3.6 
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   

 

p p p p

or p p p

3 1 3 2

3
2

1
2

2
2

318cos , sin .

,

 

Which is Eqn.  3.16c

 

 
 
SELF-ASSESSMENT EXERCISE 4 
 
Find the direction of v in the example above. 
From the above example and the way we obtained the principle of conservation of 
momentum, it may appear that the principle is limited in its application.  This is 
because we have assumed that no net external force acts on the system of particles.   
However, the scope of the principle is much broader. 
 
There are many cases in which an external force, such as gravity, is very weak 
compared to the internal forces.  The explosion of a rocket in mid air is an example. 
Since the explosion lasts for a very brief time, the external force can be neglected in 
this case.  In examples of this type, linear momentum is conserved to a very good 
approximation. 
 
Again, if a force is applied to a system by an external agent, then the system exerts an 
equal and opposite force on the agent.  Now if we consider the agent and the system to 
be a part of a new, larger system, then the momentum of this new system is conserved.  
Since there is no larger system containing the universe, its total linear momentum is 
conserved. 
 
We have seen that whenever we have a system of particles on which no net external 
force acts, we can apply the law of conservation of linear momentum to analyse their 
motion.  In fact, the advantage is that this law enables us to describe their motion 
without knowing the details of the forces involved. 
 
4.0 CONCLUSION 
 
In this unit, you have learnt 
 
 that impulse is a force of very short duration 
 that linear momentum is given by the product of the force and velocity. 
 that force is as a result of change of momentum of a particle 
 that the principle of momentum change is applied in rocket propulsion 
 that when two objects collide, their momentum must be conserved. 
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5.0    SUMMARY 
 
What you have learnt in this unit are: 
 
 that impulse = F t where t = t2 - t1 is a very short time interval F,  t2 and t1 

have their usual meanings. 
 that momentum, p = mv where m = mass of particle and v = velocity of particle 

 that force = mv2 - mv1 = mv = p or force    
dp

dt

d mv

dt
m

dv

dt
v

dm

dt

( )
 

 that the sum of the linear momentum p for a system of two particle p having 
mass m1 and m2 and linear momenta p1 and p2 is p = p1 + p2 

 that linear momentum is always conserved ie if 
dp

dt
 0 , then momentum is 

conserved. 
 
Note 
If the external force acting on a system is zero, then its total linear momentum is 
conserved. 
 
6.0 TUTOR-MARKED ASSIGNMENT  
  
(1) A ball of mass 0.4 kg is thrown against a brick wall.  When it strikes the wall it 

is moving horizontally to the left at 3 ms-1, and it rebounds horizontally to the 
right at 20m s-1.  Find the impulse of the force exerted on the ball by the wall. 
 

(2)       A ball moves with a velocity of 1.2m/s in the positive y-direction on a table 
and strikes an identical ball that was at rest. The rolling ball is deflected so that 
its velocity has a component of 0.80 ms-1 in the +ve y- direction and a 
component of 0.56m s-1 in the + x-direction.  What are the final velocity and 
final speed of the struck ball? 
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1.0 INTRODUCTION 
 
Attempts to understand collisions were carried out by Galileo and his contemporaries. 
The laws that describe collisions in one dimension were formulated by John Wallis, 
Christopher Wren and Christian Huygens is 1668.  In this Unit you will learn about 
collisions between two objects moving along a straight line.  You will find out what 
happens when objects collide.  The interesting phenomena of their change in velocity, 
momentum and possibly change in kinetic energy will be discussed.  This will lead us 
to the understanding of the phenomenon of explosions that is popularly applied in war 
fares. Relax and find out as you read how simple observations lead to important 
scientific discoveries. 
 
2.0  OBJECTIVES 
 
At the end of this unit, you should be able to: 
 
 define collision 
 classify collisions 
 apply the principles of conservation of energy and momentum in order to 

determine the energy lost by colliding particles 
 use collision principle in explaining rocket propulsion 
 explain what is meant by elastic, inelastic and perfectly inelastic collisions 
 solve problems in collisions. 
 
 
 
3.0  MAIN CONTENT 
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3.1  Classification of Collisions 
 
In Unit 9 you learnt about impulse and momentum. You learnt that impulse is a force 
which acts for only a very short duration of time.  This means that impulsive forces 
are the types of forces we experience during collisions.  Have you ever collided with 
somebody or with some object unsuspectingly?  Can you recall some actions that 
depict collisions?  An example is the collision of two balls rolling on a table.  Another 
is the popular pin-pong game popularly called table tennis.  You can imagine the very 
short time of impact between the tennis ball and the bat used by the player. 
 
Collision is the sudden impact felt between two objects. You may ask what happens 
during collisions?  During collision there could be transfer of energy from one object 
to the other or energy could be transformed from one form to another.  For example, 
some of the kinetic energy of the tennis ball is converted to sound energy on hitting 
the bat of the player while playing table tennis. Also during explosions, potential 
energy is converted to kinetic energy and sound energy.  From the principle of 
conservation of momentum you studied in unit 9, you learnt that momentum of 
colliding particles must be equal before and after collision.  This knowledge will be 
applied in this unit to determine the velocity of objects after collisions. 
 
There are two types of collisions viz elastic and inelastic collisions.  Elastic collision 
is a collision between two or more objects during which no energy is lost.  That is, the 
total kinetic energy of the objects before collision is equal to the total kinetic energy 
of the objects after collision.  In other words, kinetic energy is conserved.  But if the 
kinetic energy is not conserved in a collision the collision is called inelastic collision.  
This implies that during inelastic collision, some of the kinetic energy is converted to 
heat or sound. 
 
There is also a situation in which two bodies can collide and coalesce (i.e stick 
together). This kind of collision is referred to as perfectly inelastic collision because it 
corresponds to a situation where maximum kinetic energy is lost during collision. 
 
3.2  Perfectly Inelastic Collision 
 
We shall now discuss perfectly inelastic collision in one dimension because it is the 
simplest of the three types of collision we have identified.  In this type of collision, the 
objects coalesce at impact.  The collisions are described by the 

equatio MV m v m v 
1 1 2 2

3 1.  
M m m 1 2 Where that is the sum of the masses of the two colliding particles, V is 

the velocity of M after coalescing, v1 and v2 are the velocities of particles m1 and m2 
respectively before collision. 

  
 
 
 

V
m v m v

m m





1 1 2 2

1 2

3 2.
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Hence the velocity, V of the coalesced object is 
Let us look at special cases: 

Case 1: One of the objects is stationary and the other object runs into it.  In this case 
v2 = 0 so equation (3.2) becomes  

  

 

 
 
 
Equation (3.3) shows that 

if m1 >> m2 the coalesced object will move with a velocity nearly equal to v1 

 
Conversely if m1<<m2 as is the case when a stationary goalkeeper 
catches a ball, the keeper will recoil only with a low velocity.  This will 
be equivalent to just the fraction of the velocity of the ball i.e. . 

 
Case 2: There is heed-on collision between two objects moving towards each other 

and having equal velocities. 
  
 
 
 
 

Here v2 = -v1, therefore equation (3.1) becomes 
  
If m1 = m2 then their momenta are -m1v1 and m1v1 which means that their momenta 
are equal and opposite because substituting we have 
 
m1v1 + m2v2 = m1v1 +m1v2 = m1(v1 +v2)  = 0  3.5  
If this is so, the final momentum must be zero and that V = 0. 
Hence the objects collide and stay there. 
 
3.2.1 Energy lost in perfectly inelastic collisions 
 
The case under consideration here is to find the change in energy when two objects 
coalesce at impact. 

 
Let Ei be the sum of the kinetic energy K. E of the objects before 
collision.  And let Ef be the final energy i.e. K.E. of the coalesced 
object (composite object) of mass  

 
Hence the energy change E is given by 
 

V
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
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E = Ef - Ei              3.6 
 

To find this, we apply equation 3.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Since kinetic Energy is ½mv2, we have 
 
Note that the expression in the right hand side of equation (3.8) is always negative.  
This is because energy is lost in such a collision.  This means that the collision is 
inelastic. 
 
This composite object is at rest in only one frame of reference.  In this frame there is 
no final kinetic energy so the collision is known as perfectly inelastic collision.  In this 
frame of reference, the total momentum is zero.  The total kinetic energy of the system 
before collision goes into the coalesion of the objects. 
 
SELF-ASSESSMENT EXERCISE   1 
 
A dog running at a speed of 32km h-1 jumps into a stationary canoe on the river Niger 
at Lokoja.  The dog’s mass is 14kg and that of the canoe plus the rower is 160kg.  Let 
us assume that the water surface is frictionless,  
(i) what is the speed of the canoe after the collision. 
(ii) what is the ratio of the energy loss to the initial energy 
(iii) where did the energy go? 
 
Solution: 
The initial momentum is the momentum of the dog only. This is because the canoe is 
at rest.  Given mass of dog as m and initial velocity of the dog (i.e. its velocity as it 
enters the canoe) as vo then 
 
 Initial momentum Pi = mvo 
 the final momentum Pf = Mv 
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where v is the unknown speed, and M is the sum of the masses of the canoe, rower 
and dog = 174kg. 
Since 
(i) Initial Momentum = final momentum, therefore 
 
(ii) The initial energy is the K.E. of the dog, therefore 

 
 

 
 
  
 

 
 

(iii) The final energy is all in form  
of K.E. Therefore 

 
 
  

 
 
Hence, the loss in energy is 

 
 

 
 
 

The ratio of the energy loss to the initial energy is given by 
 

 
 

 
 

This means that E/Ki is of value less than unity.  The energy has decreased in value. 
 
Substituting our values for m and M we get 
 

v
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( ) .

,

i v
m v m v

m m
ms

Since v is positive the system goesto the rightafter collision

A A B B
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ii K E of massA before collision is m v J

K E of massB before collision is

m v J
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2


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Energy is lost as the rower ‘gives’ in order to bring the dog in. 
 
SELF-ASSESSMENT EXERCISE 2 
 

Suppose the collision in the Figure below is completely inelastic and that the masses 
and velocities have the values shown.  Find the velocity after the collision.  Find the 
K.E. of A and B before the collision (iii) The K.E after collision 
 

A

M A= 5kg

V A1= 2ms-1 V B1= -2ms-1

B

M B = 3kg

A

M A= 5kg

V A1= 2ms-1 V B1= -2ms-1

B

M B = 3kg
 

 

Let VA2 and VB2 be the velocities of blocks A and B respectively after collision 
 
Then 
 
  
The  
 
 
 
The total K.E. before collision is 16J 
 
Note that the kinetic energy of body B is positive but its velocity VB1 and its 
momentum MVB1 are both negative 
 
Therefore the kinetic energy after collision is  

 
 
 

What has happened to the rest of the K.E. they had before collision?  
For the same conditions above when 

 
  
 
 
The masses A and B travelling towards each other and 

under goes perfect elastic collision (i) what are the velocities of masses A and B after 
collision (ii) the kinetic energy before collision (iii) the total K. E. after collision. 
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Solution: 
From the principle of conservation of momentum, 

 
 

 
Since the collision is perfectly elastic.  VB2 - 
VA2 = - (VB1 - VA1) = 4m s-1. 

Solving these equations simultaneously we obtain 
 

   

 
 

This implies that both bodies reverse their directions of motion.  A now travels to the 
left at 1ms-1 and B goes to the right at 3ms-1. 
 
(ii) The total K.E. after collision is 

 

 
 

 
 

We see that this is equal to the total K.E. before collision which confirms that the 
collision is perfectly elastic. 
 
3.2.2 Explosions 

 
Let us consider a case where two objects approach each other and 
merge in a frame of reference where the total momentum is zero.  We 
also assume that these objects remain at rest after merging.  When the 

opposite of this action occurs, that is, when an object at rest in such a frame of 
reference breaks up into two or more objects with an attendant sound, it becomes an 
explosion.  The initial object of mass at rest breaks up into two objects, and they move 

with velocities such that the momentum is zero.  That is their 
 

                             3.9 

 
From the law of energy conservation, once an object has initial potential energy U, 
then explosion is possible. 

 

 
 

 
 

Explosives used during wars have potential energy stored in molecules.  When the 
explosives are detonated, there is tremendous release of energy.  Let us now use an 
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example to explain this concept. 
 
SELF-ASSESSMENT EXERCISE 3 
 
Let us consider what happens during fission of an element. That is, the case in which 
an unstable atomic nucleus disintegrates. Let’s use element Polonium, for example. 
It’s symbol is 210Pb which has mass 3.49 x 10-25 kg.  This element can decay into an 
alpha particle (actually a Helium nucleus) of mass 6.64 x 10-27kg and a type of lead 
nucleus (symbol 206Pb) of mass 3.42 x 10-25kg. 
� 
That is 

 

  

 
 

The products of the decay have K.E. of 8.65 x 10-13J above any K.E. possessed by the 
polonium nucleus itself.  For the decay of such a polonium nucleus at rest, Find the 
speeds of the � particle and the lead nucleus? 
 
Solution: 
 
Let Q = the K.E. of the products of decay 
 
Then by conservation of momentum law and 

 
 

 

 
 

 
 

where v is the speed of the respective particles as indicated by the subscripts.  We 
solve these two equations for the variables of interest and find that 

 

 

 

 
 
 
 

Given that Q = 8.65 x 1013J, then computing the above gives 
   v           =  1.60 x 107ms-1 
and 

vpb   =  3.10 x 105 ms-1 

210 206P PbO   

M v M vpb pb  
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We observe that the speed of the heavier of the two products of decay is much less 
than that of the lighter one. This result is seen in the conservation of momentum 
equation. 
 
3.3  Elastic and Inelastic Collisions 
 
In an elastic collision in one dimension, there is no transfer of mass from one object to 
another.  This implies that the total kinetic energy of the objects before collision is 
equal to the total kinetic energy of the objects after collision.  If the final velocities of 
the two objects 1 and 2 are v3 and v4 then additionally 

 

  
 

 
 

By the conservation of energy, it follows that 
 

  
 

 
 

We can find the final velocities of the colliding objects if we know the initial 
velocities. Rewriting equation (3.11) we have 

 

  

 
Now, applying our knowledge of mathematical algebra, we use. 

  

  

 

 
 
 
We now divide both sides 

of equation (3.14) by the two sides of equation (3.13) to get 
 

   

 
Let u be the relative velocity of the two colliding particles (objects)  
then, 
 

m v m v m v m v1 1 2 2 1 3 3 4 3 11   .

1

2

1

2

1

2

1

2
3 121 1

2
2 2

2
2 3

2
2 4

2m v m v m v m v   .

m v v m v v1 1 3 2 2 3 3 13( ) ( ) .   

v v v v v v

and

v v v v v v

to rewrite equation in the form

v v v v v v v vm

1
2

4
2

1 3 1 3

2
2

4
2

2 4 2 4

1 1 3 1 3 2 4 2 4

12

1

2

1

2
3 14

   

   

     

( )( )

( )( )

( )

( )( ) ( )( ) .

v v v v1 3 2 4 3 15   .



PHY 111      ELEMENTARY MECHANICS 

132 
 

  

 

 
We conclude from Eqn. (3.16) 
that in an elastic collision, the 
relative velocity of the colliding 

objects change sign but does not change in magnitude. 
 
As a rule of thumb always think of a perfectly elastic rubber ball hitting a brick well. 
Relative velocity behaves like the velocity of this rubber. 
 
We now solve Eqn.(3.15) for one of the unknown variables like v4 
Thus 

 

                                         3.17 

 
Substituting this in the momentum conservation equation (3.11) we get 

As an 

exercis
e, 

show 
the 

derivat
ion of 
equatio

n (3.19).Equations (3.18) and (3.19) seem complicated.  Let us now simplify them by 
applying them to practical situations (3.19). 
 
1. A Scenario where object 2 is initially at rest. 

Here V2 = O so that equations (3.18) and (3.19) reduce to 
  
 
 
 

 

 

 
1a. If the two objects have equal masses i.e.  
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V2= 0

V 1 V4
M 1

(c)

V3 M 2M1
M2

V2= 0

V 1 V4
M 1

(c)

V3 M 2M1
M2

 
Here. This means that the moving object after collision stays at 

rest while the object formerly at rest now moves with the 
initial velocity of the first object.  This effect can be seen vividly in hard billiard shots 
along a line. 
 
 
 

          
1b. If mass >> mass   

 
In this case eqns (3.20 a � b) yield  

It means that the velocity of the moving object decrease a 
little, while the object initially at rest picks up almost twice the velocity of the 
incoming object. 

 
1c. If mass  
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M
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V 1
B
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M M M
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M M M
V 4= V 1

(a)

M

V 2= 0

V 1
B

V 3= 0

M M M
V 4= V 1

(a)  
 
For these conditions Eqn. (3.20a and b) give  

 
We see that the moving object very nearly reverses 

its velocity, while the object initially at rest recoils (i.e. moves back) with a very small 
velocity. 

 
In the limit that approaches infinity, we neglect the velocity of recoil and the 

final velocity of the first object is equal and opposite to its incident velocity.  A 
practical example is what happens when a tennis ball bounces off a wall. 
 
Can you suggest more practical phenomena that demonstrate this case? 
 
2. Scenario where the initial total momentum is zero. 
 
The two objects under discussion approach each other with velocities such that the 
initial and total momentum is zero. 
That is, 
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Putting this value for v2 in Eqn. (3.18) we find  
 

 

 

 
 
 
 
 

To solve for, we apply the conditions set out in this scenario that the 

initial total momentum was zero.  Therefore, by the conservation of 
liner momentum, the final total momentum  must also be zero and 

  

 

 

 
 

We conclude that for the case where total momentum is zero, the velocities of each of 
the objects are unchanged in magnitude but they change in sign. We conclude that in 
each of these cases each of the objects behave as if it hit an infinite massive brick 
wall.  We now do some examples 
 
SELF-ASSESSMENT EXERCISE 4 
 
A bullet is fired in the + x-direction into a stationary block of wood that has a mass of 
5kg.  The speed of the bullet before entry into the block is V0 = 500ms-1. What is the 
speed of the block just after the bullet has become embedded?  What distance will the 
block slide on a surface with coefficient of friction equal to 0.50? 
 
Solution: 
  
Let     m = mass of the bullet 

V0 = bullet’s velocity before it enters the block of wood. 
 M   = combined mass of bullet and wood. 
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The initial momentum Pi = MvO 
if v = velocity of bullet combined with wood after the bullet has entered the wood 
then by conservation of momentum 

 

 

 

 
 
 

Note that if we ignore the mass of the bullet compared to the mass of the wood, we 
shall still get almost the same value for velocity. 
 
Given that the frictional force acting is  
 
 :N = -:Mg 
 
(here, the R.H.S. is minus because friction points to the left opposing motion of the 
block).  The frictional force has constant magnitude and leads to a constant 
acceleration, a, of the block.  Therefore, applying Newton’s second law we have 
 -:Mg = Ma 
             a = -:g 
 
The negative sign implies that the block slows down travelling a distance d before it 
stops. 
Since acceleration is uniform, we use the relation  
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Now with vf = 0 (that’s when the block stops moving) we have 
 

 

 

 
 
 

SELF-ASSESSMENT EXERCISE 
 
An empty freight car of mass 10,000kg rolls at 2ms-1 along a level track and collides 
with a loaded car of mass 20,000kg, standing at rest with brakes released.  If the cars 
couple together: 
 
1. find their speed after the collision. 
2. find the decrease in kenetic energy as a result of the collision 
3. with what speed should the loaded car be rolling toward the empty car in other 

that both shall be brought to rest by the collision? 
 
Solution: Recall that, 
(a) The momentum before collision = momentum after collision i.e. 

 
 
 

 
(b) Now, K.E. before collision - 

K.E. after collision = loss K.E. 
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4.0  CONCLUSION 
 
In this unit, you have learnt 
 
 that collision is the sudden impact felt between two objects that there are two 

types of collisions viz: elastic and inelastic collisions 
 how to determine the energy lost in perfectly inelastic collisions 
 how to distinguish between elastic and inelastic collisions 
 how to apply the principles of the conservation of energy and momentum in the 

solution of collision problems. 
 how to apply the collision principle in the study of rocket propulsion. 
 
5.0  SUMMARY 
 
What you have learnt in this unit are: 
 
 that collision is the sudden impact felt between two objects. 
 that collisions can be classified into elastic collisions 
 - inelastic collisions 
 - erfectly inelastic collisions 
 that during elastic collision no energy is lost, that is, 

- that the total K.E. of the colliding particles before and after collision are 
equal 

 that during inelastic collision kinetic energy is not conserved. 
 that when bodies collide and coalesce, the phenomenon constitutes perfectly 

inelastic collision. 
 that collisions are described by the equation 

  

  
 

where the symbols have their usual meaning 
 that for perfectly inelastic collision when the objects coalesce on impact that 

before collision one of the objects was at rest and the other runs into it, then, 
 

  

 

 
 
that if the coalesced 

object will move with a velocity nearly equal to v1 

 
 that if then, will move with velocity  
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 that for head-on collision of two objects moving towards each other with equal 
velocities 

 
 

 
 
 

 that the energy change is given by 
 

 

  

  
 
 

 that the negative sign in the R.H.S. of the equation above shows that energy is 
lost in such a collision. 

 that the ratio of the energy loss to the initial energy is given by 
 
 

 
 

 that E/Ki is of value less than unity. 
 that when a stationary object disintegrates with attendant sound, it becomes, an 

explosion.  Here, after explosion, particles move but their momentum is 
conserved, hence, 

 

 

 

 
 

that for elastic collision 
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6.0  TUTOR-MARKED ASSIGNMENTS 
 
1.  An object of mass 2kg is moving with a velocity of 3ms-1 and collides head on 

with an object B of mass 1kg moving in the opposite direction with a velocity 
of 4ms-1. 
(i)  After collision both objects coalesce, so that they move with a common 

velocity, v.  Calculate v. 
 

2. A 14,000kg truck and a 2000kg car have a head-on collision.  Despite attempts 
to stop, the truck has a speed of 6.6 ms-1 in the + x-direction when they collide 
and the car has a speed of 8.8ms-1 in the - x-direction.  If 10% of the initial total 
kinetic energy is dissipated through damage to the vehicle, what are the final 
velocities of the truck and the car after the collision?  Assume that all motions 
take place in one dimension. 

 
3. Two spheres with masses of 1.0kg and 1.5kg hang at rest at the ends of strings 

that are both 1.5 long.  These two strings are attached to the same point on the 
ceiling.  The lighter sphere is pulled aside so that its string makes an angle 2= 
600 with the vertical.  The lighter sphere is then released and the two spheres 
collide elastically.  When they rebound, what is the largest angle with respect 
to the vertical, that the string holding the lighter sphere makes? 

 
7.0 REFERENCES/FURTHER READING 
 
Duncan, T. (1982). A textbook for Advanced  Level students. London: John Murray 

Publ. Ltd. 
 
Grounds Stephen, & Kerby, E. (1994).  Longman revise guides A -Level and As-

Level PHYSICS (7th Impression.) Longman Group UK Ltd. 
 
Sears, F.W. Zemansky, M. W. & Young, W.D. (1975)College Physics Addision-

Wesley Publishing Company,   London  
 
Nelkon, M. & Parker, P. (1971).Advanced level physics(3rd ed}, London: Heinemann 

Educational Books Ltd 
 
 
 
 
 
 
 


