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1.0 INTRODUCTION 
 
We discussed linear, projectile and circular motions. Another common type of motion 
is the to- and fro motion which keeps repeating itself for ever if there are no frictional 
forces acting against it to dampen the motion. Such a motion we call a periodic, 
oscillatory or vibrational motion. Periodic or rythmic motion, we sense is an important 
feature in the physical world.  You have only to think of the very concept of time, 
which arose from the observation of certain motions as we saw in Unit 1. Think of the 
cycling of the seasons. Do they not repeat themselves at regular intervals?  Place your 
hand on your chest for about one minute. What do you sense? Your heart beat?  That’s 
an example of a rythmic motion. The most basic type of rythmic motion appears over 
and over again and this is what we call simple harmonic motion. 
 
Examples of this vibratory or oscillatory motion are provided by the motion of a 
swinging pendulum, the balance wheel of a watch and by the motion of a man on the 
end of a spring. 
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In simple harmonic motion (s.h.m) the position of a point varies with time as a sine or 
a cosine function. Such motion occurs where we have restoring forces, (that is, forces 
that tend to bring an object back to a point), that vary linearly with a position variable. 
It is interesting to note that all stable equilibrium situations in nature involve a linear 
restoring force. This makes the study of simple harmonic motion very important. 
 
In this unit we shall introduce the concept of s.h.m, show the connection between it 
and circular motion, and then derive expressions for the parameters used in solving 
problems of s.h.m. In the next unit, we shall study the s.h.m of say, a mass on a spring, 
the simple pendulum, and energy of a s.h.m. 
 

2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 
 describe an experiment to demonstrate simple harmonic motion s.h.m 
 define simple harmonic motion 
 list at least seven examples of phenomena in which s.h.m. occurs 
 show the connection between circular motion and s.h.m 
 determine the acceleration, period, velocity and displacement of a s.h.m. 

 
3.0 MAIN CONTENT 
 
3.1 Definitions 
 
3.1.1 What is simple Harmonic Motion (s.h.m) 
 
Earlier in this course, we considered accelerations that were constant in magnitude 
and direction when we discussed linear motion. In circular motion, we saw that 
accelerations (centripetal) were constant in magnitude but not in direction. Now, in 
oscillatory motion, which is also called simple harmonic motion (s.h.m) we shall see 
that accelerations like displacements and velocities change periodically in both 
magnitude and direction. To aid our definition, let us consider a body N, oscillating in 
a straight line about a point O, say between A and B as shown in Figure 3.1 below. 
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Let us also assume that N is a mass hanging from a spiral spring. We consider first its 
displacements and velocities. The displacement as measured from O to A is 
downwards when N is below O. While N moves away from O towards A, the velocity 
is directed downwards but upwards when N moves towards O. The velocity is zero at 
points A and B. When N is above O the displacement is upwards and the velocity is 
upwards or downwards depending on whether N is moving away from or towards O. 
 
Thus we can look at the variation of the acceleration of the oscillating body on the 
spiral spring by studying the variation in its displacement. It is restricted to move 
about O and the magnitude of the elastic restoring force increases with displacement 
but always acts towards the equilibrium position O. We expect the resulting 
acceleration to behave likewise, increasing with displacement but being directed to O 
no matter what the displacement is. Thus, If N is below O, the displacement is 
downwards but the acceleration is upwards, but if the displacement is upwards the 
acceleration is downwards. Adopting the sign connection that quantities acting 
downwards are negative, and then we see that displacement and acceleration will 
always have opposite signs during an oscillatory motion. 
 
The magnitude of the acceleration a is seen to be directly proportional to the 
magnitude of the displacement х. Such an oscillation is said to be a simple harmonic 
oscillation or motion (s.h.m) and is defined thus; 
 
If the acceleration of a body is directly proportional to its distance from a fixed point 
and is always directed towards this point, the motion is simple harmonic. 

 
The equation relating the acceleration and displacement in a S.H.M. is   

a   x 
   a = (- constant) x       3.1 
 

The negative sign indicates that acceleration is always in opposite direction to the 
displacement and directed to a fixed point.  
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SELF ASSESSMENT EXERCISE 3.1  
 

What kind of motion would you expect equation (3.1) to represent if the negative term 
were positive? 
 

Practically all mechanical motion are simple harmonic at small amplitudes or are 
combinations of such oscillations. Note that any system, which obeys Hook’s law, can 
exhibit s.h.m.  This equation of s.h.m. occurs in problems in other topics in physics 
like sound, optics, electrical circuits and atomic physics to mention but a few.  
 

So you except to be discussing this topic a lot in your physics programme in this 
university. In calculus notation Eqn. (3.1) is written  
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This is a second order differential equation and it could be solved to obtain the values of 
displacement and velocity. 
 

Can you think of other phenomena exhibiting Simple Harmonic Motion? 
 

3.1.2 Examples of Occurrence oOf Simple Harmonic Motion 
 

We have seen that a repetitive to and fro motion about a mean position is known as an 
oscillatory or periodic or simple harmonic motion.  
 

Examples of such a motion can be found in: 
 

(i) The balance wheel of a watch 
(ii) The pistons in a gasoline engine 
(iii) The strings in the musical instruments 
(iv) The molecules in a solid body vibrating about their mean positions in 

the crystal lattice 
(v) The beating of the heart 
(vi) Light waves and radio waves in space 
(vii) Voltages, currents and electric charges etc. 
 
Definitely, you see that the study of periodic motion can lay the foundation for future 
work in many different fields of physics. 
 
SELF-ASSESSMENT EXERCISE 2 

 
What do you understand by simple harmonic motion? List seven examples of 
phenomena where you expect s.h.m to occur. 
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3.2 Relating S.H.M. with Circular Motion 
 
 
 
 
 
 
 
 
 
 
 
Recall what you learnt about circular motion in Unit 12. In the figure above let point P 
move round the circle of radius r and the centre O with uniform angular velocity ω. It 
will have a constant speed V round the circumference. The speed V is equal to ωr. 
Note that as P moves round the circle in the direction shown (that is anti clockwise), N 
the foot of the perpendicular from P on the diameter AOB moves from A to O to B 
and back to A through O. By the time N arrives back to point A, P also completes one 
cycle. Now, let initial positions of N and P be at A at time t =O. At a later time, t = t, 
N and P are now as indicated in the diagram with radius OP making angle O with OA. 
Let distance ON be x. We are now going to show that the motion of N from A to B 
and back to A is simple harmonic about O by describing the parameters that govern 
s.h.m. 
 
3.2.1 Acceleration 
 
The motion of N is due to that of P hence the acceleration of N is the component of 
the acceleration of P parallel to AB. We know that the acceleration of P is ω2r  (or 
v2/r) along PO. Hence the component of this parallel to AB is simply ω2rn Cosθ. 
Therefore the acceleration a of N is  
 

a = –  ω2r Cosθ         3.2 
 

The negative sign, as already explained shows mathematically that acceleration is 
always directed towards O. 
But, x  = r Cosθ  in the  diagram 
 

 a  = –  ω2  x     3.3 
 

This equation (3.3) states that the acceleration of N towards O is directly proportional 
to its distance from O. We conclude that N describes a s.h.m. about O as P revolves 
round the circle-called the auxiliary circle – with constant speed.   
 
For different values of x during the to and fro journey of N, corresponding values of 
acceleration of N can be got. Such representative values have been tabulated in Table 
3.1 

O 

x 

B 

A 

p 

V= ωr 

r 
ω 

N 

Fig 3.2 
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Table 3.1 
x 
a 

O 
O 

+ r 
-ω2r 

-r 
+ω2r 

 
We see that at O displacement x is zero, acceleration a is zero. Acceleration a is 
maximum at the limit points A and B where the direction of motion changes. 
 
Alternatively, one can use the arrangements in Figure 3.3 below to connect s.h.m with 
motion in a circle. 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
With the above set up, it is possible to view the shadow of the ball, rotating steadily in 
a circle, on the screen. The shadow moves with s.h.m and represents the projection of 
the ball on the screen. 
 
 

3.2.2 Period  
 
The period T of N is the time it takes N to do one complete to and fro motion ie to go 
from A to B and back to A in the Figure (3.2). In the same time, P will move round 
the auxiliary circles once. Therefore, 
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For a particular s.h.m ω is constant and so T is constant and independent of the 
amplitude r of the oscillation. We note that if the amplitude increases, the body travels 
faster and so T remains unchanged. Know that a motion which, has a constat period 
whatever the amplitude, is said to be isochronous. This property is an important 
characteristic of s.h.m. The frequency f is the number of complete oscillations per unit 
time. That is f =I/T. An oscillation per second is a hertz. 

 
3.2.3 Velocity  
 
The velocity of N we have seen is the same as the component of P’s is velocity 
parallel to AB which 
 

= - v sinθ    from fig 3.2 
= - ωr sinθ       3.5 

 
Since sinθ  is positive when 0o< θ < 180o, that is, N moving upwards, and negative 
when 180o<θ<360o, ie. N moving downwards, the negative sign ensures acting 
upwards and positive when acting downwards. The variation of the velocity of N with 
time (assuming P, and so N, start from A at time zero) 

 
= – ωr Sin ωt (since θ  = ωt)      3.6a  

 
The variation of velocity of N with displacement  

x = – ωr Sinθ       3.6b  
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Hence the velocity of N is  
± ωr (a maximum) when x = O 
zero when x = ±r 
 
3.2.4 Displacement  
 
This is given by:  
 

x = r Cosθ  = r Cos ωt      3.9 
 

The maximum displacement OA or OB is called the amplitude of the oscillation Fig. 
(3.2). 
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The graph of the variation of the displacement of N with time is displayed in Figure 
(3.4). It is a sinusoidal pattern just as the graphs of velocity and acceleration with time 
Fig. (3.4b&c). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
  
 
 
 
 
 
Observe that when velocity is zero, the acceleration is a maximum and vice versa. We 
say that there exists a phase difference of a quarter of a period (ie. T/4) between the 
velocity and the acceleration. 
I would like you to find out the phase difference between the displacement and the 
acceleration. 
 
3.2.5  Expression for ω 
 
We shall now discover what quantity ω is equivalent to in a s.h.m. 
Recall that  
 

a =   – ω 2x 
 

Ignoring the sign we can write 
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where m is the mass of the system.  
The force causing the acceleration a at displacement x is ma, therefore ma/x is the 
force per unit displacement. Hence,  
 

systemocillatingofmass

ntdisplacemeunitperforce
w              3.11 

 
The period T of the s.h.m is given by  
 

12.32

2
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T


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


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This expression reveals that T increases if (1) the mass of the oscillating system 
increases and (2) the force per unit displacement decreases i.e. if the elasticity factor 
decreases. 
 
A vibration is simple harmonic if it’s equation of motion can be written in the form 

 
a  = – (positive constant)  x             3.13  
 

and we, by convention, represent this positive constant by ω2 since T=2π/ ω. Hence, ω 
is the square root of the positive constant in the acceleration –displacement equation. 
 
We have thus defined and explained the important parameters that we use in 
describing a s.h.m. 
 
Example. 
A cork floating on a pond moves in s.h.m, bobbing up and down over a range of 4cm. 
The period of the motion is T =1.0s and a clock is started at t = Os when the cork is at 
its minimum height. What are the height and velocity of the cork at  t = 10.5s? 
 
Solution:  
Let us suppose that the cork moves along the z – axis and we set the origin z = O to be 
the mid point of the motion. Thus the maximum value of Z is  
Zmax = 2cm, and the minimum value is Zmin = -2cm. The motion takes the general form 
z(t) = A sin (ωt +δ ). We know the period T and from the equation ω =2π/T. The 
constants A and δ must be determined from other information namely, the initial 
conditions. The amplitude, A is the maximum excursion from equilibrium and is given 
by A =Zmax = |Zmin|. The phase δ, is then determined by the initial condition that the 
height is   a minimum when t =0 s. Thus the equation determining δ is 
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Zmin = A sin ωt +δ/t=0 = A sin δ 
 

When we substitute A =  |Zmin|, this equation becomes Zmin = |Zmin| Sin δ. 
Because Zmin is negative, this result implies Sin δ = -1 
 
When the sign function is –1,its argument is –π/2 or 3π/2.  In fact, any integer multiple 
of 2π can be added to or subtracted from – π/2, and it is just a matter of convenience to 
choose the phase to be –π/2. When a simple phase such as this occurs, it is often 
worthwhile to expand the sine function with trigonometric identities  
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We have used the fact that Cos (π/2) =0 and Sin (π/2) = 1. Then instead of Sin (ωt +δ), 
We have –Cos (ωt) appearing in the expression for z(t). We gather our results. 
 

z = - A Cos 

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
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

T
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where A = 2cm and T = 1s 
 
 
 
The velocity is the time derivative of the expression, that is  
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We now evaluate z and V at t = 10.5 s or 10.5 period. Both z and V repeat themselves 
every period, so the values of z and V at 10.5 s are the same as at 0.5 s (or 0.5 period): 
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Thus, for  t = 10.5 s 
 
 Z = - A (-1) 
 = A = + 2cm 
and 

    100
2  scm
T

A
v


  

 
It is simple to deduce this result from physical reasoning. We are interested in where 
the cork is after exactly one half a period. So we look at it this way-because the cork 
starts at its minimum height, half a period later, it is at its maximum height, + 2cm in 
this case. That is a point where the cork stops momentarily and starts moving back 
down wards, so the velocity there is zero. 
 
SELF-ASSESSMENT EXERCISE 3      
 
A particle moving with s.h.m. has velocities of 4 cm s-1 and 3cms-1 at distances of 3cm 
and 4 cm respectively from its equilibrium position. 
Find   (a) the amplitude of the oscillation, 

(b) the period  
(c) the velocity of the particle as it passes through the equilibrium position. 
 

Solution: 
 
 
 
 
 
 
Let the above Figure represent the problem. Recall that 
 

22 xrv    
 
Assuming that velocities and displacements to the right are positive and those to the 
left are negative, we see that when x = + 3cm, velocity = -4cms-1

; therefore 
 

94 2  r  
 
When x = + 4 cm, velocity = -3cm s-1; therefore 
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163 2  r  

Squaring and dividing these equations we get  
16

9

9

16
2

2






r

r
 

 
Hence, r = ±5     
 
(b) We substitute for r in one of the velocity equations to get 
 

ω = 1s-1 

            sT 



2

2
  

 
 (c) At the equilibrium position x =0 

 :. Velocity = ±  22 xr   
   =  ±  r 
   =  ± 5 cm s-1 
 
4.0 CONCLUSION  
 
In this unit, you have learnt the preliminary concepts of simple harmonic motion 
(s.h.m.) equation. 
 that s.h.m is  a periodic vibration of a body whose acceleration is directly 

proportional to its distance from a fixed point and is always directed towards 
this point i.e. a = - constant x 

 at least seven phenomena where s.h.m. occurs 
 that s.h.m is connected to circular motion where 

a = -ω2x 
 that the period of a s.h.m is the same as the time it takes a particle to move 

round on auxiliary circle. 
 that  the velocity of a s.h.m is given by –ωr Sinθ and the displacement by r 

Cosθ   
 that when the velocity of a s.h.m is zero, the acceleration is maximum and vice 

versa. 
 that the motion of a particle undergoing a s.h.m could be represented by a 

sinusoidal function. 
 

5.0 SUMMARY  
 

What you have learnt in this unit concerns the phenomenon of simple harmonic 
motion. You have learnt that: 
 
 s.h.m is a to-and-fro motion under the influence of an elastic restoring force 

proportional to displacement and in the absence of all friction. That is a = - k x 
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 a complete vibration or complete cycle is one to –and fro motion regarded as 
one round trip. 

 examplesofpriodic motion include seasons of the year, beating of the heart, 
lattice vibrations, the simple pendulum, electrical oscillations etc. 

 s.h.m is intimately related to circular motion 
 te periodic time, T of a s.h.m is the  time required for one complete revolution 

or vibration, T= 2π/ω 
 The frequency f of vibration is f =1/T  
 In s.h.m the velocity and acceleration are also sinusoidal. 
 α = - ω2x 
 velocity v = - ω r Sinθ 
 displacement x = r Cosθ   = r cos ωt 
 amplitude is the maximum displacement. 
 simple Harmonic motion is a special class of oscillation where the  period T is 

the same for all amplitudes, be they large  or small. 
 
 
 
 
 

6.0 TUTOR-MARKED ASSIGNMENT  
 
1a. Complete the following sentences: 

When a particle oscillates in a straight line with simple harmonic motion, the 
period of the oscillation is independent of ---------------------------------------------
------------------------------------------------ 

 
b. The force towards the centre in a circular motion is called  --------------- force. 

 
2. Use a force displacement graph to represent the way in which the force F acting 

on a particle depends on the displacement r? (By convention, a force acting in 
the direction of +r is taken to be positive force). 

 
3.  What expression is ω in a s.h.m. Derive it from first principles. Use it to 

determine the expression for the period T of oscillation of the vibrating system. 
 
4. What is a simple harmonic motion?  
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1.0 INTRODUCTION 
 
In this Unit we shall study about harmonic motion as exhibited by a mass hanging 
from a coiled spring and the simple pendulum.  This will bring us to the study of the 
energy of a simple harmonic motion.  The rest of the introductory part is as covered in 
Unit 16.  In the next Unit, we shall conclude our discussion on simple harmonic 
motion by studying damped oscillations, forced oscillations and resonance. 

 
2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 
 determine the period of oscillation of a mass hanging from a coiled spring 

undergoing s. h. m 
 determine the length of such a spring undergoing s. h. m. and also the effective 

mass of the spring 
 explain what a simple pendulum is and how to determine its period of 

oscillation 
 describe an experiment to use the simple pendulum to calculate acceleration 

due to gravity, g. 
 determine the energy of s. h. m. 
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3.0 MAIN CONTENT 
 
3.1 Mass Hanging from a Coiled Spring 
 
3.1.1 Period of Oscillation 
 
From Hooke’s law, we know that the extension of a coiled spring is directly 
proportional to the force causing it.  
 
In the diagram below Figure 3.1 you expect the mass hanging from a coiled spring to 
exert a downward tension mg on the spring.  This is exactly 

 

 
Fig. 3.1 

 
what happens.  Let the extension produced by this downward tension be l, and if k is 
the tension required to produce a unit length of the spring than the stretching tension is 
also kl. (k is also known as the spring constant and is measured in Nm-1).  This means 
that, 
 

mg = kl.    3.1 
 
When we now pull down the mass below its equilibrium position as shown, a distance 
x, the stretching tension becomes k(l + x).  this is the same as the tension in the spring 
acting upwards as shown in Figure 3.1(b).  Thus we can represent the resultant 
restoring force upwards on the mass as  
 

K(l + x) – mg 
 
= Kl + kx – mg     3.2 

 
but mg = kl 
 
 The resultant restoring force = kx   3.3 
Note that when we then release the mass after extension it starts moving up and down 
continuously in what we call oscillatory motion.  If at an extension x it has 
acceleration a, then its equation of motion will be 



PHY 111          MODULE 4 

223 
 

 
ma = -kx      3.4 

 
The minus sign shows that at the instant while displacement x is downwards (i.e 
positive) acceleration a, is directed upwards the equilibrium position (i.e negative). 
 

What 2 = k/m.  Because m and k are positive constants we see that 2 also is a 
positive constant. Consequently acceleration a is constant and this is a condition for a 
motion to be simple harmonic. We therefore conclude that the motion of the mass is 
simple harmonic as long as Hooke’s law is obeyed.  
 
The period T is given by  
 

Squaring both sides we have that 
 

T2 = 4m/k      3.7   
 
If in an experiment, we vary the mass m and record the square of the corresponding 
periodic time, T on plotting the graph of T versus m, a straight line graph will be 
expected.  This type of experiment has actually been done many times over.  It was 
seen that  the straight line graph did not pass through the origin.  And explanation was 
sought by scientists and it was discovered that it was because the mass of the spring 
itself was not taken into consideration.  So it was essential to determine the effective 
mass undergoing simple harmonic motion and this is done as follows together with a 
method of determining the value of g in the next session. 
 
Example:  
A light spiral spring is loaded with a mass of 50g and it extends by 10cm. Calculate 
the period of small vertical oscillations.  Take g = 10ms-2  
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Solution: 
Recall that the expression for the period of oscillation of a mass hanging on a spiral 
spring is,  

 
When k is the force per unit displacement. Substituting values given we have 
 

 
3.1.2 Measurement of g and Effective Mass of Spring. 

 
If m is the effective mass of the spring then 
  

Let us recall that  
 

Kl  =  mg  m  =  kl/g 
 
So substituting this value for m in Eqn. (3. 8) we have 
 

 Squaring both sides of equation (3.9) gives    3.9 
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When the static extension l (i.e the extension of spring before the vibration of the 
spring sets in) are used and their corresponding periods, T noted, then, a graph of l 
versus T2 can be drawn.  The result gives a straight line with intercept gms/k on the 
negative axis.  The slope of the line is given by g/42.  This has been shown in figure 
3.2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.2 

 
 
It is estimated that theoretically the effective mass of a spring is about one third of its 
actual mass. 
 
The Simple Pendulum 

 
What is a Simple Pendulum? 
 
As we stated in Unit16, simple harmonic motion occurs throughout nature and an 
example of such a motion is the swinging pendulum in some clocks. Such clocks 
served as accurate, time pieces for many centuries. You may ask - what does a 
pendulum consist of?  But I tell you it is not far fetched. You can even construct one 
yourself.  If you get the fruit of a gmelina tree, for example, (you know it is a tiny 
fruit) and using needle and thread, you pass the thread of about 20cm long through its  
centre and suspend the thread and fruit (now called the bob) from a ceiling or clamp as 
shown in figure 3.3 below. That constitutes a pendulum. Thus, we say that the simple 
pendulum consists of a small bob referred to as a particle of mass m suspended by a 
light inextensible thread of length l from a fixed point B say. Fig.(3.3). below 
 
 
 
 
 
 

D 

Slope = CD/BD                   
          = g/4п2 

Intercept 
OA=gms/k 

T2 

l C 

A 

B 



PHY 111      ELEMENTARY MECHANICS 

226 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

When the bob is displaced vertically to point A through a very small angle  as shown 
and then released, it oscillates to and fro, in a vertical plane, about the equilibrium 
position 0. The motion of the bob is seen to trace an arc of a circle with radius l 
(assuming the bob is a point man). We shall see that this motion is simple harmonic 
about O. 

 
Now, let the arc thread by the bob be OA = x and the angle of displacement OBA =  
at some instant of time when the bob is at point A. At that instant, the forces on the 
bob are the weight of the bob mg acting vertically downwards as shown and P the 
tension in the string (or thread). But mg has tangential component mgSin  which acts 
as the balancing restoring force towards O and the radial component mgCos  
balancing the tension P in the string. If a is the acceleration of the bob along the arc at 
A due to mgsin then from Newtons law of motion we have, 

 
ma = --- mgsin       3.11a 

 
The displacement x is measured from 0 towards A. along arc OA whereas the negative 
sign shows that the restoring force is acting opposite to the direction of displacement 
that is towards . For very small angle, mathematics permits us to assume that sin  
=  in radians (for example, if  = 5o, Sin  = 0.0872 and  = 0.0873 rad.) and x = l.  
Therefore  = x/l 

 
 
 
 
 
Hence, 

Fig 3.3 
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We can then calculate that the motion of the bob is simple harmonic if the oscillations 
are of small amplitude   as we assumed. In short  should  not exceed 100. The period 
T for the simple pendulum, is given by 

 

 
We notice that T does not depend on the amplitude of the oscillations. For a particular 
location on the surface of the earth where g is constant, the period of oscillation of a 
simple pendulum is seen to depend only on the length of the pendulum. 

 
3.1.2 Measurement of g. With a Simple Pendulum 
 
The simple pendulum method provides a fairly accurate means of determining 
acceleration due to gravity g. When the periodic time T for a simple pendulum is 
measured and recorded for corresponding different values of the length, l of the string 
supporting the pendulum bob, a plot of l versus T2 gives a straight line so drawn so 
that the points on the graph are evenly distributed about the line. An example of such 
a result is shown in figure 3.4. 
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From the diagram, you see that such a line OB must pass through the origin. The slope 
of the line OB is given by BC/AC = l/T2. From this, we determine the value of g thus 

 

 
The necessary precautions you need to take in performing this experiment to achieve 
good results are that you must time at least fifty oscillations for each length of the 
pendulum; that you do not let the angle of swing to exceed 10o; that the length of your 
string is measured from the support to the centre of the pendulum bob and that you 
count the oscillations as the bob passes the equilibrium position O on a round trip. I 
suppose you can now try to perform this kind of experiment at home even before you 
go to the Study Centre for it.  It is easy and interesting to do it and get the expected 
result.  That’s where physics is stimulating. Wish you luck! 
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Example: 
A simple pendulum has a period of 2.0s and an amplitude of swing 5.0cm. Calculate 
the maximum magnitudes of (i)  the velocity of the bob (ii) the acceleration of the 
bob. 

 
Solution: 
Recall that,   

 

 
The velocity is a maximum at the equilibrium position where x displacement = 0  
 
Recall the expression for the variation of velocity with displacement x which  

  
(b) The acceleration is maximum at the limits of the swing where x = r =  5.0cm 

 
 a = -2r 
 = - x 5cm s-2 
 = -50cm s-2 
 

SELF-ASSESSMENT EXERCISE 1 
 
A simple pendulum 2.0m long is suspended in a region where g = 9.81m s-2.  The 
point mass at the end is displaced from the vertical and given a small push, so its 
maximum speed is 0.11m s-1.  What is the maximum horizontal displacement of the 
mass from the vertical line it makes when at rest?  Assume that all the motion take 
place at small angles. 

 
Solution: 
The angle that the string makes the vertical varies harmonically,  = ocos(t + ), 
where ω is the angular frequency. The horizontal displacement from the vertical is x = 
l (where l is the strings length) as long as   remains small.  Thus x also varies 
harmonically. 
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x = A cos (t + ) where A = l o.   

 
This is the quantity we want to find. 

 
Another good small angle approximation is that the vertical component of the velocity 
is small, so v = dx/dt.  Thus we have  

 

 
From this expression we see that v varies harmonically with amplitude A.  The 
maximum value of v occurs when   = 0. That is when the pendulum is passing 
through its equilibrium position.  This is given by Vmax = A = 0.11m s-1 as given. 
 
From the following equation, 

 
We observe that this horizontal displacement 5.0cm is indeed small compared to the 
length of the pendulum so our small angle approximations are good. The figures 
below illustrate the motion. 
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Fig. 3.5 

 
3.2 Energy of Simple Harmonic Motion 

 
During simple harmonic motion of an object, there is a constant interchange of energy 
of the object between its kinetic and potential forms.  Note that if there is no influence 
of resistive forces (i.e. damping forces) on the object, its total energy E = (K. E. + P. 
E) is constant. 
 
3.2.1 Kinetic Energy, K. E. 
 
The velocity of a particle N of mass m at a distance x from ist centre of oscillation O 
is given by:  

 
 

 

      22 xrvel    
        
 
 
 
 
 
The kinetic energy K. E. at x, say, is  
 

 
 
 
 
3.2.2 The Potential Energy, P. E. 
 
During the motion of the particle N from O towards A or B, work is done against the 
force trying to restore it to O.  Therefore, the particle loses some K. E. but gains some 
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P. E. When x = 0, the restoring force is zero. But at any displacement, say, x the force 
is mω2x because the acceleration at that point has magnitude ω2x. 
 
Thus, average force on N while moving to displacement x  

 

3.3 Total Energy, E 
 
The total energy at displacement x is then given by K. E + P. E 
 

We see that this value is constant and does not depend on x. It is also directly 
proportional to the product of (i) mass   (ii) the square of the frequency   (iii)   the 
square of the amplitude. 
 
We represent the variation of K. E. and P. E. for a simple harmonic motion in Figure 
3.7 below: 
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In the case of the simple pendulum we note that all the energy is kinetic when the 
pendulum bob passes through the centre of oscillation. But at the maximum point of 
displacement when velocity is momentarily zero, the total energy is Potential. 
 
SELF-ASSESSMENT EXERCISE 2 
 
A small bob of mass 20g oscillates as a simple pendulum with amplitude 5cm and 
period 2 seconds. Find the velocity of the bob and the tension in the supporting thread, 
when the velocity of the bob is maximum. 
 
Solution:  
The velocity v of the bob is a maximum when it passes through its original position 
given by 

Suppose P is the tension in the thread. The net force acting towards the centre of the 
circle along which the bob moves is given by (P – mg). The acceleration towards the 
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centre of the circle, which is the point of suspension, is v2
max/l where l is the length of 

the pendulum. 

 
4.0 CONCLUSION 
 
In this Unit, you have learnt 
 
 about the period of oscillation of a mass hanging from a coiled spring. 
 how to measure the acceleration due to gravity g and the effective mass of the 

spring. 
 to determine the period of oscillation of a simple pendulum and g also. 
 to determine the kinetic energy, potential energy and total energy of a simple 

harmonic motion. 
 
5.0 SUMMARY 
 
What you have learnt in the unit concerns simple harmonic motion as it relates to a 
mass hanging from a coiled spring and a simple pendulum. 

 
 that the vibration of mass hanging from a coiled spring is in the vertical plane 

with mg = kl 
K is the spring constant  
With the restoring force given by kx 
Hence with an acceleration of a, for an extension x the equation of motion for 
the mass is  
 
 
 ma  = -kx. 

For 2  =  k/m,   = angular velocity 
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 the length of the spring is given by  

 
Where ms is the mass of the spring 

 
 that the period T of the simple pendulum is given by  

 

 
From where g the acceleration due to gravity could be determined more accurately as  
 

 
 that the kinetic energy of a simple harmonic motion is  

 
 that Potential energy of s. h. m. is  

 
at displacement x 

 
 that total Energy of s. h. m. is given by 
 

 
 
 
6.0 TUTOR-MARKED ASSIGNMENT 
 
1a. Define simple harmonic motion and state the relation between displacement 

from its mean position and the restoring force when a body executes simple 
harmonic motion.  
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b. A body is supported by a spiral spring and causes a stretch of 1.5cm in the 
spring. If the mass is now set in vertical oscillation of small amplitude, what is 
the periodic time of oscillation?. 

 
2. A flat steel strip is mounted on a support. By attaching a spring balance to the 

free end and pulling side-ways, we determine that the force is proportional to 
the displacement, a force of 4N causing a displacement of 0.02m. Then a 2kg 
body is attached to the end, and pulled aside, a distance 0.04m and released. 
(a) Find the force constant of the spring  
(b) Find the frequency and period of vibration. 
(c) Compute the maximum velocity attained by the vibrating body. 
(d) Compute the maximum acceleration  
(e) Compute the velocity and acceleration when the body has moved half 

way toward the centre from its initial position.  
(f) How long a time is it required for the body to move half way in to the 

centre from its initial position? 
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1.0 INTRODUCTION 
 
See introduction of Units 16 and 17. 
In this unit you will study about damped simple harmonic motion, s. h. m., forced 
oscillation and resonance. These will lead us to see that s. h. m. is a mathematical 
model. We shall conclude by considering a physical pendulum where we observe that 
in reality the pendulum string and bob can have dimensions and some mass. The 
importance of s. h. m. to life is also emphasized in this unit. After which we shall 
move on to the motion of rigid bodies in the next unit because this is what we 
experience in real life situations. There, you will learn about translational and 
rotational motions of rigid bodies. 
 
2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 

 
 explain damped oscillations-stating the conditions under which a physical 

oscillator can experience it 
 draw the wave patterns of the effects of different types of damping 

phenomenon 
 state some applications of damping phenomenon 
 define resonance and give examples of its occurrence 
 state the importance of resonance 
 show that the period of a physical pendulum is given by 

 
3.0 MAIN CONTENT 
 
3.1 Damped Oscillations 
 
In Units 16 and 17 we discoursed simple harmonic motion as vibrations that continue 
perpetually without diminishing in amplitude. I want to let you know that in reality, 
this does not obtain. The amplitude of the oscillations of, for example, a simple 
pendulum, gradually decreases to zero over time as a result of resistive force arising 
from the surrounding air in this case. In other forms of s. h. m. it will arise from the 
surrounding medium (e. g. liquid or gas). The motion for such oscillations is not 
therefore a perfect s. h. m. It is said to be damped by air resistance, that is, there is 
steady loss of energy as the energy is converted to other forms. Usually it will be 

mgh
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internal energy through friction but energy may also be radiated away. For example, a 
vibrating turning fork loses energy by sound radiation. 
 
The behaviour of a mechanical system, we know, depends on the extent of the 
damping. For example, the mass hanging from a coiled spring and immersed in a 
liquid as shown in Figure 3.1, when set to vibrate, experiences more damping than 
when it is in air. Know that undamped oscillations are said to be free. Fig. 3.2a shows 
a graph of its  
 

 
 
displacement against time. Figure 3.2b depicts the case of slightly damped oscillations 
with decreasing amplitude. When the  
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
vibrating system is heavily damped, no oscillations occur. The system just gradually 
returns to its equilibrium position as shown in Figure 3.2c. Now, when the time taken 
for the displacement to be zero is very small, the vibrating system is said to be 
critically damped as in Fig. 3.2d. 
 

(C) heavily 
(d) critically 
damped 

Fig 3.2 
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When the damping forces are proportional to the velocity, v, the period remain 
constant as the amplitude diminishes and the oscillator is said to be isochronous. The 
dotted line in Fig. 3.2b is an exponentially diminishing curve. 
 
It will interest you to know that the motion of some devices is critically damped on 
purpose to achieve a certain desired objective. For example, the shock absorbers on a 
car critically damp the suspension of the vehicle and so resist the setting up of 
vibration, which could make control difficult or cause damage. In the shock absorber 
shown in Figure (3.3) the motion of the suspension up or down is opposed by viscous 
forces when the liquid passes through the transfer tube from one side of the piston to 
the other.  You can test the damping of a car by applying your weight momentarily on 
the car.  You will notice that the car will rapidly return to its original position without 
vibrating. 

 

 
Fig. 3.3 

 
Instruments such as balances and electrical meters are critically damped so that the 
pointer moves quickly to the correct position without oscillating. The damping is often 
produced by electro-magnetic forces. 

 
SELF-ASSESSMENT EXERCISE 1  
 
Describe some examples of simple harmonic motion that are not discussed in this unit. 

What do you understand by damped oscillation? 
 

3.2 Forced Oscillation and Resonance 
 

Barton’s Pendulums 
A number of paper coned pendulums of length varying from ¼ m to ¾ m, each loaded 
with a plastic curtain ring are suspended from the same string as a ‘driver’ pendulum 
which has a heavy bob and a length of ½ m. this is shown in Figure 3.4 below: 
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Fig. 3.4 

 
When the driver pendulum is pulled well aside and then released, it oscillates in a 
plane perpendicular to the plane of the diagram. After a short time, the motion settles 
down and all the other pendulums oscillate with very nearly the same frequency as 
that of the driver though with different amplitudes. This is an example of forced 
oscillation. Out of the set of pendulums, the one whose length equals that of the driver 
pendulum has the greatest amplitude of vibration.  Thus, its natural frequency of 
oscillation is the same as the frequency of the driving pendulum. This is an example of 
resonance and the driving oscillator passes on its energy most easily to the other 
system, that is, the proper cone pendulum of the same length.  
 
I would like you to note that the amplitudes of oscillations also depend on the extent 
to which the system is damped. Thus, when the rings on the paper cone pendulums are 
removed, their masses reduce and so the damping increases. All amplitudes are then 
found to be reduced and that of the resonance frequency being less pronounced. The 
results are summarized in Figure (3.5). It is shown that the sharpest resonance is given 
by a lightly damped system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2.3 Examples of Resonance 
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These are common throughout science and are generally useful. Resonance occurs in 
the production of musical sounds from air columns in wind instruments. In many 
cases it occurs between the vibrations of air columns and of small vibrating reeds. 
Electrical resonance occurs when a radio circuit is tuned by making its natural 
frequency for electrical oscillations equal to that of the incoming radio signal. I am 
sure you have experienced this a lot in your home while turning your radio.  
 
Resonance effect is also used to obtain information about the strength of chemical 
bonds between ions in a crystal. Taking light of infrared radiation as a kind of 
oscillating electrical disturbance and irradiating it on a crystal, the ions of the crystal 
will start oscillating. Then, with the radiation of the correct frequency, the ions could 
be set into vibration by resonance. The crystal would absorb energy from the radiation 
and the absorbed frequency could be found using a suitable instrument called the 
spectrometer. For example, sodium chloride would absorb infrared radiation and 
resonance could be observed in such crystals. 
 
In mechanical system, resonance can constitute a menace to engineers. For examples, 
resonance occurring in bridges can lead to the breaking of such bridges.  A life 
example is the breaking of the Tacoma Narrows Suspension Bridge in America in 
1940. This resulted when a moderate gale (wind) set the bridge oscillating and 
producing an oscillating resultant force in resonance with a natural frequency of the 
bridge. An oscillation of large amplitude was thus built up and it destroyed the 
structure. To avoid destruction due to resonance, materials for building constructions, 
aircraft etc are subjected under sever resonance test in the factories before they are put 
to use. You see that resonance phenomenon aids science in some respects but 
constitutes a nuisance in other respects. I want you to find out and list more examples 
of resonance phenomena. They are many in literature. 

 
SELF-ASSESSMENT EXERCISE 2 
 
What is resonance? Does resonance constitute a menace to science? Discuss. 
 
Solution:  
See text above. 

 
3.2.3 Energy Considerations 

 
 
 
 
 
 
 
 
 

Fig 3.6 Finding the Q factor of a Resonant system. 
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Whether or not a body is at or close to resonance, the oscillator settles down in a 
steady state where the energy supplied from the driver per cycle is equal to the energy 
dissipated per cycle. The sharpness of the resonance, called the Q-factor (Fig. 3.6) is 
equal to:  
 

 
It is also given by 

 
Where f is the width of the resonance curve  
 
When  

 
Xmax being the maximum value of displacement x and where fo is the resonant 
frequency. 
 
3.3.4 Phase 
 
At resonance, an oscillator lags behind the driver by 90o ie it is 90o out of phase with 
the driver. When the driver is at a much lower frequency than the oscillator’s natural 
frequency (fd < fN) the oscillator is in step with the driver. When the driver frequency 
is much higher than the natural frequency (fd > fN), the driver and the oscillator are 
180o out of phase (Fig. 3.7). 
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SELF-ASSESSMENT EXERCISE 3 
 
What is the phenomenon that allows you to increase the amplitude of your motion 
when you swing on a swing? 
 
3.3 S. H. M. – A Mathematical Model 
 
We want to emphasize here that s. h. m. is purely an idealized situation that does not 
exist in nature or in the practical world. Real oscillators such as a motor cycle on its 
suspension, a tall chimney swaying in the wind, atoms or ions vibrating in a crystal etc 
only approximate to the ideal type of motion we call s.h.m. 
 
Simple harmonic motion is a mathematical model, useful because it represents many 
real oscillations due to its simplicity.  It does not have complications such as damping, 
variable mass and stiffer (elastic modulus). The only condition it (s. h. m.) has to 
satisfy is that the restoring force should be directed towards the centre of motion and 
be proportional to the displacement. 
 
A more complex model might, for example, take damping into consideration and 
hence may be a better description of a particular oscillator.  Such may probably not be 
widely applicable. On the other hand, if a model is too simple, it may be of little use 
for dealing with real systems. Hence, a model must have just the correct degree of 
complexity. The mathematical s. h. m. has this and so is useful in practice. 

 
3.4 The Physical Pendulum 
 
It is not always that a pendulum consists of a massless string with a pointlike mass at 
the end of it. At times a pendulum can consist of a suspended swinging object of some 
form. We call this a physical pendulum. Any object can be suspended from any point 
on the object and act as physical pendulum. This illustrates the fact that s. h. m. is a 

O 

Phase angle 
between 
oscillator and 
driver 900 

Frequency of driver fα fN 

Low damping 

Heavy damping 

Fig 3.7 Phase relationship between driver and     
            oscillator for different amounts of     
            damping 



PHY 111      ELEMENTARY MECHANICS 

244 
 

general characteristic of motion about a stable equilibrium. You can even set up a 
physical pendulum, with your measuring ruler in your room. 
 
Hence, the so-called ‘physical’ pendulum is any real pendulum in which all the mass 
is taken to be concentrated at a point.  Figure 3.8 represents a body with irregular 
shape pivoted about a horizontal frictionless axis O and displaced from the vertical by 
an angle.  The distance from the pivot to the centre of gravity is h, the moment of 
inertia of the pendulum about an axis through the pivot is I and the mass of the 
pendulum is m. The weight mg causes a restoring torque  of value given by 

 =  - mgh sin 
When released, the body oscillates about its equilibrium position. Note that, unlike the 
s.h.m., the motion of the physical pendulum is not simple harmonic since the torque  
is proportional not to  but to sin .  However, if  is small, we can again approximate 
sin  by  so that the motion becomes approximately harmonic. 
 
 
 
Assuming this approximation then, 
 
   = -(mgh)    3.4 
 
The effective torque constant is  
 

 
Hence, the period of the physical pendulum is 
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O 
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h 

Fig 3.8:   A Physical Pendulum 
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Example: 
 

Let the body in Fig.3  be a meter-stick pivoted at one end. Then, if L is the total length 
= 1m, then the moment of inertia I is 

 

 
    = 1.65s 
 

SELF-ASSESSMENT EXERCISE 4 
 
Find the moment of inertia of the complex shape – a connecting rod pivoted about a 
horizontal knife edge. The rod has mass 2kg at its centre of gravity (c.g) is at 0.2 
below the knife edge. 
 
Solution: we apply the principle that period   

 

 
So, we set the system into vibration and using 100 complete vibration in 120s the 
period was found to be  1.2.5 

 

 
Rearranging, we have 

 

 
= 0.143 kg m2 
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4.0 CONCLUSION 
 

In this unit you have learnt that, 
 

a) most real oscillators are damped, that is, there is steady loss of energy as it is 
converted to their forms 

b) damping of oscillators is due to the presence of additional velocity - dependent 
drag, or resistive forces causing the amplitude of the vibrating particle to 
decrease. 

c) when a system that, by itself, would move in simple harmonic motion is driven 
by a force with sinusoidal time dependence, the system moves with the 
frequency of the driving force. The amplitude of the resulting motion of the 
system shows resonant behaviour when the frequency of the driving force 
equals the natural frequency of the system. 

d) the width of the resonance peak is inversely related to the exponential rate of 
fall off of the undriven system due to damping. 

e) s. h.m is a mathematical model. 
 
 
 
5.0 SUMMARY 

 
What you have learnt in this unit concerns damped simple harmonic oscillations, 
forced oscillations and resonance and the physical pendulum. You have learnt that 

 
 the amplitude of oscillations of a particle in s.h.m. is damped by resistive forces 

due to the surrounding medium. 
 when the amplitude is reduced to zero in minimal time the system is said to be 

critically damped  
 when the damping forces are proportional to velocity, the period remain 

constant as the amplitude diminishes the oscillator is said to be isochronous  
 resonance occurs when the driving frequency is the same as the natural 

frequency of the oscillator resulting in a maximum amplitude of oscillation. 
 the sharpness of the resonance curve is called the Q-factor and is given by 

Q = fo/f 
 

where f is the width of the resonance curve when  
 

Xmax is the maximum displacement and fo is the resonant frequency. 
 the period of a physical pendulum is  

 

 

2/maxxx 

mghIT /2
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6.0 TUTOR-MARKED ASSIGNMENT 
 

1. A light helical spring is suspended from a beam, and a mass m, is attached at its 
lower end, causing the spring to extend through a distance a.  The mass is now 
caused to execute vertical oscillations of amplitude a. When the mass is at its 
lowest point, what is the energy stored in the spring? 
 

2. A wire of mass per unit length 5.0 g m-1 is stretched between two points 30 cm 
apart. The tension in the wire is 70N. Calculate the frequency of the sound 
emitted by the wire when it oscillates in its fundamental mode. 

b. Explain, with reference to this example, the term damped harmonic motion. 
 
3. A thin rod of mass M and length L swings from its end as a physical pendulum. 

What is the period of the oscillatory motion for small angles? Find the length L 
of the simple pendulum that has the same period as the swinging rod. 
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UNIT 4  RIGID BODY DYNAMICS 1 
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1.0 INTRODUCTION 
 
So far in this course, we have been concerned primarily with the motion of point 
masses. We have also treated different objects such as boxes and planet as if they were 
point objects or particles. But we know that in nature, we hardly come across an ideal 
point mass. We have to deal with motion of bodies, which have finite dimensions. So 
we have to develop a technique for studying the motion of such bodies. 
 
A special class of such bodies is known as rigid bodies. In this Unit, you will first 
learn what a rigid body is. You will see that the definition of a rigid body provides a 
model for studying the motion of various kinds of physical bodies. You will then 
study about the different kinds of motion of a rigid body. A rigid body can execute 
both translational and rotational motion. We shall see that the general motion of a 
rigid body is a combination of both translation and rotation. 
 
You will find that the translational motion of a rigid body can be described in terms of 
the motion of its centre of mass. So, we shall be able to apply the dynamics of point 
masses for description of translational motion. Hence, our chief concern will be the 
study of dynamics of rotational motion of rigid bodies. 
 
To aid our understanding of the dynamics of rigid body we shall also study moment of 
inertia, radius of gyration, moments and couples and recapitulate equilibrium of 
coplanar forces. These will put us on a sound footing for studying angular momentum 
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and its conservation, torque and kinetic energy of a rotating body in the next Unit 
which will be the last Unit of this course. 
 
2.0 OBJECTIVES  
 
At the end of this unit, you should be able to: 
 
 identify a rigid body 
 distinguish between the features of translational and rotational motion of a rigid 

body 
 outline the features of the general motion of a rigid body 
 explain the significance of moment of inertia of a rigid body about a certain 

axis 
 solve problems on the concept of rotational dynamics of rigid bodies. 
 
3.0 MAIN CONTENT 
 
3.1 A Rigid Body and Its Motion 
 
3.1.1 What is a Rigid Body 
 
To attempt to answer this, just think of the wheel of a car rotating about its axle. Let 
us consider any two points on the wheel. You will see that the relative separation 
between them does not change when the wheel is in motion. This is an example of a 
rigid body. Can you think of objects in your room you can refer to as rigid bodies? Is 
the Bic ball pen you use in writing a rigid body? 
 
Technically speaking, a rigid body is defined as an aggregate of point masses such 
that the relative separation between any two of these always remains invariant, that is, 
for any position of the body, 
rik = a constant as shown in Figure 3.1. below.  
 
 
 
 
 
 
 
 
 
 
In short, a rigid body is one which has a definite shape. It does not change even when 
a deforming force is applied. But we know that in nature there is no perfectly rigid 
body as all real bodies experience some deformation when forces are exerted. So, a 
perfectly rigid body can only be idealised. We shall see that this model is quite useful 

Fig 
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in cases where such deformation can be ignored. For example, the deformation of a 
lawn tennis ball as it bounces off the ground can be ignored.  
 
You know that if a heavy block is dragged along a plane, frictional force acts on it.  
 
But its deformation due to the frictional force can be neglected. However, you cannot 
neglect the deformation of a railway track due to the weight of the train. So, the model 
of a rigid body cannot be applied in the last case. 
 
SELF-ASSESSMENT EXERCISE 1 
 
Which of the following can be considered as rigid bodies? 
(a) A top   (b) A rubber  (c) A ballet  (d) a balloon (e) The earth. 
Let us now study the motion of a rigid body. 
 
3.1.2 Translational Motion of a Rigid Body 
 
Suppose you are traveling in a bus, then, during a certain interval of time, your 
displacement will be exactly equal to that of your co – passenger provided both of you 
do not move with respect to the bus. This will also be true for any two objects attached 
to the body of the bus, say a bulb and a switch. This is the characteristic of 
translational motion. A rigid body is said to execute pure translational motion if each 
particle in it undergoes the same displacement as every other particle in a given 
interval of time. Translational motion of a rigid body is shown in Figure 3.2  

 
 
Fig 3.2 Translational Motion Of A Rigid Body 

 
You must have noticed that the path taken is not necessarily a straight line. The 
magnitudes of the distance between P O1 and Q should always be the same. 
 
SELF-ASSESSMENT EXERCISE 2 
 
Give two examples of translational motion  
Now that you have worked out exercise 3.2 you can see that if we are able to describe 
the motion of a single particle in the body, we can describe the motion of the body as 
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a whole. We have done this exercise a number of times before. However, you may 
like to consolidate your understanding by working out the following exercise. 
 
SELF-ASSESSMENT EXERCISE 3  
 
A rigid body of mass M is executing a translational motion under the influence of an 
external force Fe. Suggest a suitable differential equation of motion of the body. 
 
What does the answer to exercise 3.3 signify? We know that the relative separation 
between any two points of a rigid body does not change. That is, 
 

So all the points follow the same trajectory on as the centre of mass. Hence for 
studying translational motion, the body may be treated as a particle of mass M located 
at its centre of mass (C.M). You may recall that we had treated the sun and a planet as 
particles in Units 11, 12, and 13. They were treated as particles as their sizes are 
negligible compared to the distances between them and also because the shapes of 
these bodies were insignificant. But here we are considering a rigid body as a particle 
for another reason as explained above. Thus we can represent the translational motion 
of its C.M. It becomes easier to describe the translational motion in this way. Recall 
that we had applied the above idea when we studied cases like a body falling or 
sliding down an inclined plane in Unit 14. Let us now discuss the rotational motion of 
a rigid body. 
 
3.1.3 Rotational Motion of a Rigid Body 
 
Let us consider the motion of the earth. Every point on it moves in a circle (the 
corresponding latitude), the centres of which lie on the polar axis. Such a motion is an 
example of a rotational motion. A rigid body is said to execute rotational motion if all 
the particles in it move in circles, the centres of which lie on a straight line called the 
axis of rotation. When a rigid body rotates about an axis every particle in it remains at 
a fixed distance from the axis. So, each point in the body, such as P describes a circle 
about this axis. See Fig. 3.3.  
 
 


dt

drik
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      Fig. 3.3 

 
You must have realised that perpendiculars drawn from any point in the body to the 
axis will sweep through the same angle as any other such line in any given interval of 
time. 
 
3.1.4 General Motion of a Rigid Body 
 
The general motion of a rigid body is the combination of translation and rotation. This 
can be understood by considering the example of a moving car. If you look at the tyres 
of the moving car you observe that the wheel is turning round as well as moving 
forward or backwards as the case may be. So the car changes position as the wheels 
rotate. 
 
You may perform an activity for the sake of better understanding of the motion of a 
rigid body. 
 
SELF-ASSESSMENT EXERCISE 4 
 
Take a beer bottle or a pencil and roll it on its side on a table.  
What do you observe? 
 
You would have observed that the bottle or pencil, besides rotating round also 
changed location as it rolled down the table. That gives you a feel of what we are 
talking about. Now think of more examples. 
 
We shall now move on to study moment of inertia because it will play an important 
role in the determination of the angular momentum of a rotating rigid body. 
 
In dealing with circular motions, we have all these while considered particles in 
motion with the result that a particle revolved round a circle of the same radius. But 
now we are going to consider the rotation of a system of connected “particles” moving 
in circles of different radii. The spatial distribution of the mass of the body affects the 
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behaviour of the body. We note also that the mass of a body is a measure of its in – 
built resistance to any change of linear motion. Thus we say that mass measures 
inertia. The corresponding property for rotational motion is called the moment of 
inertia. The more difficult it is to change the velocity of a body rotating about a 
particular axis, the greater is its moment of inertia about that axis. From experiments, 
it was seen that a wheel with most of its mass concentrated in the rim is more difficult 
to start and stop than a uniform disc of equal mass - spread rotating about the same 
axis. The former has a greater moment of inertia. Take note of this important point – 
that moment of inertia is a property of a body rotating about a particular axis. If the 
axis changes, the value of the moment of inertia also changes.  
 
3.2 Moment of Inertia 
 
We need now to measure the moment of inertia which takes into account the mass 
distribution of the body about the axis of rotation and which plays a role in rotational 
motion. This is analogous to that played by mass in linear motion. 
 
Consider a rigid body rotating about a fixed axis through O with constant angular  
 
Velocity , as shown in Figure (3.4) below. A particle A, of mass m1, at a distance r1 
from O describes its own circular path and v1 is its linear velocity along the tangent of 
the path at the instant shown, then 
 v1 = r1         3.1 
and  
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The kinetic energy of the whole body is the sum of the kinetic energies of its 
component particles. Assuming these have masses m1, m2, m3, ….. mn and are at 
distances  
 
r1, r2, r3, ……rn from O, then, since all the particles have the same angular velocity , 
we have  
 
Total K.E for the whole body =  

 
i.e. Total K.E       =   
 

 

 
Where represents the sum of the miri

2 values for all the particles of the body. Note that 
the quantity miri

2 depends on the mass and its distribution and it is a measure of the 
moment of inertia I of the body about the axis in question. 
 
So we define I as 
 
                       I       =          3.4 
 
We can then write the K.E. as 
K.E of body =  

 
Comparing this with the kinetic energy for linear motion  ½ mv2 we see that mass m is 
replaced by the moment of inertia I and the velocity v is replaced by the angular 
velocity . 
   
The Unit of moment of inertia I is kg m2. 
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Values of I for regular shapes of bodies can be determined using calculus. For 
example, That for a uniform rod of mass m and length L about an axis through its 
centre is mL2/12. 
 
When the rotation is about an axis at one of its ends it becomes mL2/13. Fig. 3.5 say 
      
 
 
 
 
 
 
 
 
 
 
Do you think rotational kinetic energy ½ Iω2 is a new kind of energy? Not at all. It is 
simply the sum of the linear kinetic energies of all the particles making up the body, 
and is a convenient way of representing the K.E of a rotating rigid body. 
 
The mass of a flywheel is concentrated in the rim, thereby giving it a large moment of 
inertia. When it rotates, it possesses large K.E. This explains why it is able to keep an 
engine (e.g in a car) running at a fairly steady speed despite the fact that energy is 
applied only intermittently to it. You may do well to know that some toy cars have a 
small lead flywheel which is set into rapid rotation by a brief push across a solid 
surface. The K.E of the flywheel will then keep the car in motion for some distance.  
 
 
 
Values of moments of inertia for other regular shapes are shown in Figure 3.6 
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     Fig 3.6 
 
Example: 
Three small bodies, which can be considered as particles are connected by light rigid 
rods, as in the Figure 3.7 below. 
 
 
 
 
 
 
 
 
 
 
 
 
What is the moment of inertia of the system (a) about an axis through A, 
perpendicular to the plane of the diagram?  
(b) about an axis coinciding with the rod BC? 
 
Solution: 
Since particle A lies on the axis, it does not contribute to the moment of inertia 
because the distance from the axis of rotation is zero. 
 
 
 
 
Hence,  
 
I =  m r2 = (0.1kg) (0.5m)2 + (0.2kg) (0.4m)2  
   = 0.057kg m2  
 
(b) The particles B and C both lie in the axis and so they too contribute nothing  
Hence, 
   I =  m r2 = (0.3kg) (0.4m)2 
    = 0.048 kg m2  
 
SELF-ASSESSMENT EXERCISE 5  
 
If in Figure 3.4 above the body rotates about an axis through A and perpendicular to 
the plane of the diagram, with an angular velocity  = 4 rad s1, what is the rotational 
kinetic energy? 
 
Solution. 
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3.2.1 Raduis of Gyration 
 
No matter what the shape of a body is, it is always possible to find a radial distance 
from any given axis at which the mass of the body could be concentrated without 
changing the moment of inertia of the body about that axis. This distance is known as 
the radius of gyration of the body about the given axis. It is denoted by K. So if mass 
m of the body actually were concentrated at this distance, the moment of inertia would 
be that of a particle of mass m at a distance k from an axis, or mk2. But we see that 
this is equal to actual moment of inertia I, therefore  
 
  mk2 = I         3.6 
 
SELF-ASSESSMENT EXERCISE 6 
 
What is the radius of gyration of a slender rod of  mass m and length L about an axis 
perpendicular to its length and passing through the centre? 
 
 
 
 
 
Solution: 
The moment of inertia about an axis through the centre is I = mL2 / 12 
Therefore,  

  K0 =  
 
We therefore note that the radius of gyration, like the moment of inertia depends on 
the location of the axis. 
 
3.2.2 The Dumbbell.  
 
The simplest rotating object that we can contemplate is a dumbbell. It consists of two 
point masses m1 and m2 connected by a massless rigid rod of length L as shown in 
Figure 3.8 below. 
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Let the total mass M be m1 + m2. Positioning mass m1 at the origin of the x – axis and 
man m2 at x = L. it could be shown that the centre of mass is at x where 

 
If we consider the case in which the axis of rotation goes through the centre of mass 
(C.M) (i.e through point x = m2 L/M, then the axis is taken perpendicular to the rod. 
So, measuring from the C.M, the coordinates of m1 and m2 will be –m2 L/M and L- 
(m2/m) = m1L/M respectively.  
 
 
Now, the rotational inertia about an axis passing through the centre of mass and 
perpendicular to the axis of the dumbbell is given by  
 

 
3.3 Moments and Couples 
 
Knowledge of moments and couples will aid our understanding of the next section of 
this unit which will deal on torques and angular momentum. 
 
“A force applied to a hinged or pivoted body changes its rotation about the hinge or 
pivot. Experience shows that the turning effect or moment or torque of the force is 
greater, the greater the magnitude of the force and the greater the distance of its point 
of application from the pivot.The moment or torque of a force about a point is 
measured by the product of the force and the perpendicular distance from the line of 
action of the force to the point. 
 
Thus in Figure, 3.9 if OAB is a trapdoor hinged at O and acted on by forces P and Q 
as shown, then, 
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Moment of P about  
 

O = P x OA       3.7 
 
 
 
and moment of Q about  
 
O = Q x OC        3.8 
 
Note that the particular distance must be taken. Alternatively we can resolve Q into 
components Q cos perpendicular to OB and Q sin   along OB as shown in Figure 
3.b. 
 
The moment of the latter about O is zero, its line of action passes through O. for the 
former, we have  
 
Moment of Q cos   about O = Q cos x OB  3.9a 
    = Q x OC    3.9b 
 
(since cos  = OC / OB), we see that this result is as we had before.  
 
Note that moments are measured in Newton metres (Nm) and are given a positive sign 
if they tend to produce clockwise rotation. 
 
A couple consists of two equal and opposite parallel forces whose lines of action do 
not coincide. It always tends to change rotation. A couple is applied to a water tap to 
open it. Figure 3.10 shows a diagrammatic representation of a couple. We can say that 
the moment or torque of the couple P – P about O 
 
 = P x OA + P x OB (both are clockwise) 
 = P x AB         3.10 
 
Hence, moment of couple = one force x perpendicular distance between forces. 
 
 
 
 
 
 

Hinge  p 
B 

Fig 3.9 

P  

P  

A  

B  
Tap 
handle 

Fig 3.10 
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3.3.1 Equilibrium of Coplanar Forces 
 
General conditions for equilibrium. If a body is acted on by a number of coplanar 
forces (that is, forces in the same plane) and is in equilibrium (i.e. there is rest or 
motion under constant speed) then 
(i) The components of the forces in both of any two directions (usually taken at 

right angles) must balance. 
(ii) The sum of the clockwise moments about a point equals the sum of the 

anticlockwise moments about the same period. 
 
The first statement is a consequence of there being no translational motion in any 
direction and the second follows since there is no rotation of the body. In brief, if a 
body is in equilibrium the forces and the moment must both balance. The following 
worked example shows how the conditions for equilibrium are used to solve 
problems. 
 
Example: 
A sign of mass 5.0kg is hung from the end B of a uniform bar AB of mass 2.0kg. The 
bar is hinged to a wall at A and held horizontally by a wire joining B to a point C 
which is on the wall vertically above A. If angle ABC = 300, find the force in the wire 
and that exerted by the hinge (g = 10ms-2). 
   
Solution: 
The weight of the sign will be 50N and that of the bar 20N (since w = mg). The 
arrangement is as shown in Figure 3.11a. Let P  be the force in the wire and suppose 
Q, the force exerted by hinge, makes angle  with the bar. The bar is uniform and so 
its weight acts vertically downwards at its centre G. Let the length of the bar be 2L. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

i. There is no rotational acceleration, therefore taking moments about A we have  
Clockwise moments = anticlockwise moments. i.e.: 
 

G  θ 

D  

P  Q  

B  

(a) 
           Fig 3.11 

20N 50N 

L 

A  

C  

L

P sin30 
 

P cos30 
 

Q sinθ 
 

Q cosθ 

20N 50N 

(b) 
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20 x L  + 50 x 2L = P x AD (AD law to BC)  

120L = P x AB sin 30   since 
AB

AD
30  

        = P x 2L x 0.5 
 
  P = 1.2 x 102 N 
 

Note: by taking moments about A there is no need to consider Q since it passes 
through A and so has zero moment. 
 

ii. There is no translational acceleration, therefore the vertical components (and 
force) must balance, likewise the horizontal components. Hence resolving Q 
and P into vertical and horizontal components (which now replace them) 
shown in Fig. 11b, we have : 
 
Vertically  

  Q sin  + P sin 30 = 20 + 50 
  
Q sin  = 70 - 120 

 
                  Q sin  = 10                               (1) 
 

Horizontally. Q Cos  = P cos 30 = )
2

3
(120    

 
 
 Dividing (1) by (2) 

     
                   = 5.50  
 
Squaring (1) and (2) and adding  
 
 Q2 (sin2  + cos2 ) = 100 + 10800 
Q  = 10900  (sin2   + cos2  = 1) 
 
and Q = 1.0(4) x 102 N. 
 
Structures: Forces act at a joint in many structures and if these are in equilibrium 
then so too are the joints. The joint O in the bridge structure of Fig. 3.12 is in 
equilibrium under the action of forces P and Q exerted by girders and the normal force 

1 
 
2 

 2360sin  

 360/10tan 
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S exerted by the bride support at O.  The components of the forces in two 
perpendicular directions at the joint must balance.  
 
Hence,  
 
 S = Q sin   and P =  Q cos  
   
 
 
 
 
 
 
 
 
If   and S are known (the latter from the weight and loading of the bridge) then P and 
Q (which the bridge designer may wish to know) can be found. Other points may be 
treated similarly.”  (Duncan, 1982) 
 
4.0  CONCLUSION 
 
In this Unit, you have learnt 
 
 what a rigid body is. 
 that a rigid body can undergo both rotational and translational motions at the 

same time. 
 to distinguish between the features of translational and rotational motion of a 

rigid body. 
 to define moment of inertia and state its significance. 
 to determine the turning effect of a force. 
 to state the conditions off equilibrium of coplanar forces. 
 
5.0  SUMMARY 
 
What you have learnt in this unit concerns rigid body dynamics.  
You have learnt that: 
 
 a rigid body is an aggregate of point masses such that the relative separation 

between any two of these always remains invariant. 
 a rigid body can execute both translational and rotational motion.  
 a rigid body executes pure translational motion if each particle in it undergoes 

the same distance as every other particle in a given interval of time. 
 the total K.E for the whole rotating body is given by   mi ri

2 
 the moment of inertia for the rotating body is  

Q  

p 
θ 

S  

Fig 3.12 
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where the symbols have their usual meanings. 

 the moment or torque of a force about a point is measured by the product of the 
force and the perpendicular distance from the line of action of the force to the 
point. 

 a couple consists of two equal and opposite parallel forces whose lines of 
action do not coincide. It always tends to change rotation. 

 if a body is acted on by a number of coplanar forces then for equilibrium 
(i)  The components of the forces in both of any two directions must 

balance. 
(ii)   The sum of the clockwise moments about a point equals the sum of the 

anticlockwise moments about the same point. 
 
6.0 TUTOR-MARKED ASSIGNMENT 
 
1. Two point-like masses are placed on a massless rod that is 1.5m long. The 

masses    are placed as follows 1.6kg at the left end and 1.8kg 1.2m from the 
left end.  
(a) What is the location of the centre of mass?  
(b)  By moving the 1.8kg mass, can you arrange to have the centre of mass 

in the middle of the rod? 
 
2. A pulley is rotating at the rate of 32 rev/min. A motor speeds up the wheel so 

that 30.0s later it is turning at 82 rev/min.  
(a)  What is the average angular acceleration in radians per sec?  
(b)  How far will a point 0.30cm from the centre of the pulley travelled 

during the acceleration period, assuming that the acceleration is 
uniform? 

 
3. The flywheel of a gasoline engine is required to give up 300 J of kinetic energy 

while its angular velocity decreased from 600 rev min-1 to 540 rev.min-1. What 
moment of inertia is required? 
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1.0 INTRODUCTION 
 

This unit is a continuation of the preceding unit; so, most of the introductory remarks 
are covered there. 
 

Additionally, in this Unit you will study about the force that causes rotation; angular 
momentum and its conservation. We shall also see real physical systems, such as 
divers and figure skaters executing complex maneuvers, yet they are not rigid bodies 
showing that angular momentum and its conservation are very useful concepts. More 
examples of the applications of angular momentum and its conservation abound 
though they are beyond the scope of this course. You will definitely study about some 
of them in your future years.  
 

We shall wrap up this course with the introduction of the concept of the top or 
gyroscope. 
 

2.0  OBJECTIVES 
 

At the end of this unit, you should be able to: 
 

 state what causes rotation of rigid bodies 
 explain the concept of moment of a couple 
 define the angular momentum of a rigid body 
 apply the law of conservation of angular momentum 
 solve problems based on the concept of rotational dynamics of rigid bodies. 
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3.0 MAIN CONTENT 
 
3.1 Rotational Dynamics of a Rigid Body 
 
3.1.1 Torque 
 
It is time for us to ask what causes rotation. The analogies we have made between 
linear motion and rotational motion earlier in this course will be useful here. Recall 
that Newton’s, second law describes the dynamics of linear motion whereby we have 
that a force causes linear motion given by an equation.      
                             
Here you will learn that rotational motion is caused by what we call a torque. You 
know that when we talk of a force, you intuitively think of a push or pull, so, in the 
case of torque. I would want you always to think of a twist. Know also that to increase 
the angular velocity of a rotating body, a torque of a couple must be applied. We see 
that torque is analogous to force. 
where  Torque, 

 

         Torque      2.3
dt

d
I

dt

dI 
  

 
It is often necessary to find the work done by a couple so that the energy exchange 
that takes place as a result of its action on a body can be known. 
 
Consider a wheel as represented in Figure 3.1. Let the radius of the wheel be r and two 
equal and opposite forces p act tangentially so that rotation occurs through angle . 
Now, Work done by each force = force x distance 
 
 
 
 
 
 
 
 
 
 
 
 
Work done by each force = P x arc AB = pxr                 3.3 
 
Total work done by couple = Pr + Pr = 2Pr                3.4 
 

1.3.ma
dt

Mdv
F 

Fig 3.1 

Wheel  

B  
A   

B  A  

r 

θ 
θ 
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But torque or moment of couple = Px 2r = 2Pr                    3.5 
 
Therefore, work done by couple = torque x angle of rotation 
                                                   =                                       3.6 
Example: 
 If P = 2.0N, r = 0.50m 
 
And the wheel makes 10 revolutions, then,  
 
  = 10 x 2 ; and  = P x 2r 
i.e  = 2.0N x 2 x 0.05m 
             = 2Nm 
 
work done by couple =  = 2x20 = 1.3 x 10 2J. 
 
In general if a couple of torque  about a certain axis acts on a body of moment of 
inertia, I, through an angle  about the same axis and its angular velocity increases 
from O to , then, 
 
Work done by couple = kinetic energy of rotation 

  
SELF-ASSESSMENT EXERCISE 3 
  
A rope is wrapped several times around a uniform solid cylinder of radius 0.1m and 
mass 50 kg pivoted so it can rotate about its axis. What is the angular acceleration 
when the rope is pulled with a force of 20N?  
 
Solution: 
The torque is  = (0.1m) (20N) 
   = 2.0Nm 
 
And the angular acceleration is  

                                    

3.1.2  Angular Momentum   
 
3.1.2.1 Definition 
 

21
2

1
..  ei
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We recall that in linear motion we talked of linear momentum. Now, in rotational 
motion we shall talk of angular momentum. 
 
Let us consider a rigid body that is rotating about an axis O with an angular velocity  
at some instant of time. See figure 3.2 below. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Let A be a particle of this body a distance r, from O the axis of rotation. If the particle 
has linear velocity V, as shown in the diagram then the linear momentum of A is m1v1 
= m1 r1 ( since V1 = r1). 
 
The angular momentum L of AO about O is then defined as the moment of momentum 
about O. 
 
Hence, 
Angular momentum L of A = r1 x m1r1 
    

=  m1r1
2                                                                                3.7 

 Total angular momentum =    mr2 
    of a rigid body 
   

= mr2                                                3.8a 
            L                  = 1           3.8b 
 
Where we recognize 1 as the moment of inertia of the body about O. It is thus evident 
that angular momentum is the analogue of linear momentum (mv) where 1 is 
equivalent to mass m and  replaces velocity V. 
 
We can then state Newton’s second law of rotational dynamics as follows. 
 
A body rotates when it is acted on by a couple. 
 
 = 1       3.9 
 

Rigid body 

v1 

m1 

A 

r1 

Fig 3.2 
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where  is the torque of moment of the couple causing rotational acceleration .  
 
In terms of momentum we have that  
 Torque = rate of change of angular momentum 
i.e  
        

 
This is analogons to force which is the rate of change of linear momentum 
 
 

3.1.3 Conservation of Angular Momentum and Its Applications 
 
Angular momentum is a vector that points in the same direction as . For uniform 
rotational motion about an axis, the angular momentum does not change in either 
magnitude or direction. Just as in the case for linear momentum, angular momentum is 
independent of time for a system on which there is no torque due to external forces. 
Note that it is possible that the external torque is zero even when the external force is 
not zero. This will depend on where the external force is applied and on its direction. 
Similarly, a net torque could exist when a net force is zero. When the net torque is 
zero, the angular momentum is independent of time and is conserved. For rigid bodies, 
the rotational inertia is constant, and the conservation of angular momentum means 
that the angular velocity is constant in time. When the rotational inertia can vary 
because the system considered can vary its shape, then the conservation of angular 
momentum becomes a very important and useful principle.   

10.3
dt

dl

dt

d
I 


11.3
dt

mdv
F 
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Hence the principle of angular momentum states that: 
 

The total angular momentum of a system remains constant 
provided no external torque acts on the system rigid or otherwise. 
 

Mathematically we have that, 
             

 
Ice skaters, ballet dancers, acrobats and divers use this principle of conservation of 
angular momentum. For example, the diver in the Figure 3.3 below leaves the high 
diving board with outstretched arms and legs and some initial angular velocity about 
his centre of gravity. His angular momentum I remains constant since no external 
torques act on him. To make a somersault he must increase his angular velocity. He 
does this by pulling in his legs and arms so that I decreases and  therefore increases. 
By extending his arms and legs again, his angular velocity falls to its original value. 
Similarly a skater can whirl faster on ice by folding her arms.   
 

 
Fig 3.3 

 
The principle of conservation of angular momentum is useful for dealing with large 
rotating bodies such as the earth, as well as tiny, spinning particles such as electrons, 
protons, neutrons. 
 
The earth is an object which rotates about an axis passing through its geographic north 
and south poles with a period of 1 day . If it is struck by meteorites, then since action 
and reaction are equal, no external couple acts on the earth and meteorites. Their total 
angular momentum is thus conserved. 
Neglecting the angular momentum of the meteorites about the earth’s axis before 
collision compared with that of the earth. Then, Angular momentum of earth plus 
meteorites after collision = angular momentum of earth before collision. 
 

12.30
dt

dL
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Since the effective mass of the earth has increased after collision the moment of 
inertia has also increased. Hence, the earth will slow up slightly. Similarly, when a 
mass of object is dropped gently on to a turntable rotating freely at a steady speed, the 
conservation of angular momentum leads to a reduction in the speed of the turntable. 
 
Example:  
Calculate the angular momentum of earth’s motion about its axis of rotation given that 
earth’s mass is 6 x 1024kg and its radius is 6.4 x 106

m. Assume that the mass density is 
uniform. 
 
Solution :      
arth makes one revolution about its axis in 24h. Thus, its period of rotation is 
 

Now since the rotational inertia of a uniform sphere is  
 

 
We notice that our calculated value of I is some 20 percent larger than the correct 
value of 7.9 x 1037kg.m2. Why is it so 
 
 
 
 
SELF-ASSESSMENT EXERCISE 4 
 
The earth is suddenly condensed so that it’s radius becomes half of its usual value 
without its mass being changed. How will the period of daily rotation change? 
 
Solution: of (b) from the principle of conservation of angular momentum, we get  
 
                     I11    =     I2 2. 
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So the time period of daily rotation will become 6h. 
 
3.1.4 Experiment on Conservation Of Angular Momentum. 
 
A simple experiment to illustrate the principle of the conservation of angular 
momentum is illustrated below in Figure 3.4 

 

 
 

In the Figure, a bicycle wheel A without a tyre is set rotating in a horizontal plane and 
the time for three complete revolutions is taken with the aid of a tape maker M on the 
rim. A ring D of  known moment of inertia, I is then gently placed on the wheel 
concentric with it, by dropping it from a small height. The time for the next three 
revolutions is then determined. This is repeated with several more rings of greater 
known moment of inertia. 
 
If the principle of conservation of angular momentum is true, then  

 
I00          =     (I0  + I1) 1                                 3.13 
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Where I0 is the moment of inertia of the wheel alone, 0 is the angular frequency of 
the wheel alone and 1 is the angular frequency with a ring. Thus if to, t1 are the 
respective times for three revolutions, 
 

 
Thus a graph of t1/ to against I1 should be a straight line. Within the limits of 
experimental error, this is found to be the case. 
 
Example: 
Consider a disc Fig. 3.5 of mass 100g and radius 10cm is rotating freely about axis O 
through its contre at 40 r.p.m. Then, about O the moment of inertia I is  
 

 
Where  is the angular velocity corresponding to 40 r.p.m. 
 
Suppose some wax, w of mass m 20g is dropped gently on to disc at a distance r of 
8.0cm from the centre O. 
 
The disc then slows down to another speed, corresponding to an angular velocity 1 
say. The total angular momentum about 0 of disc plus wax. 
 
=     11+ mr22       = 5x10-41 + 0.02 x 10.082 1 
           = 6.28 x 10-41 

 
From the conservation of angular momentum for the disc and wax about O 
 
6.28 x 1041       =  5 x 10-4 

15.31
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SELF-ASSESSMENT EXERCISE 3 
 

(a) Define angular momentum. 
(b) Describe how you would demonstrate (using a simple experiment) the principle 

of conservation of angular momentum. 
 
Solution: 
 
(a) See the text. It is useful to include in your definition Units of angular 

momentum, also mention that it is a conserved quantity in physics and is a 
vector. 

(b) Remember to label the diagram you will use in the demonstration. Note that the 
question asks only for a demonstration not for a verification. 

 
SELF-ASSESSMENT EXERCISE 4 
 
The moment of inertia of a solid flywheel about its axis is 0.1kgm3. It is set in rotation 
by applying a tangential force of 19.6 N with a rope wound round the circumference, 
the radius of the wheel is 10cm. Calculate the angular acceleration of the flywheel. 
What would be the acceleration if a mass of 2kg were hung from the end of the rope? 
 
Solution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The couple C =  
 

 

2

2

2

56.19

1.0

1.0196

1.06.19

rad

onacceleratiangular

Nm

onacceleratiangularinertiaofmomentum
dt
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







 

T

mg = 19.8N 

r 
d2θ/dt2 

a = rd2θ/dt2 

Fig 3.6 
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If a mass of 2kg is hung from the end of the rope, it moves down with an acceleration 
a. See the figure above. In this case, T is the tension in the rope. 

mg – T = ma                 (i)  
 
 
For the flywheel Tr  =  couple    

 
 where r is the radius of the flywheel 
Now, the mass of 2kg descends a distance given by r where  is the angle the 
flywheel has turned. Hence the acceleration a = rd2 / dt2. Substituting we have  
 

 
3.1.5 The Top and the Gyroscope 
 
A symmetrical body rotating about an axis, one point of which is fixed is called a top. 
If the fixed point is at the centre of gravity, the body is called a gyroscope. We note 
that the axis of rotation of a top or gyroscope can itself rotate about the fixed point so 
the direction of the angular momentum vector can change. 
 
An example of the mounting of a toy gyroscope is shown in figure 3.7 below 
 

 

Fig 3.7: Vector L is the change in Angular Momentum produced in time t by the moment 
 of the force w Vectors L and  are in the same direction. 
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The top (since the fixed point is not at the centre of mass) is spinning about its axis of 

symmetry and if the axis is initially set in motion in the direction shown, with the 
proper angular velocity, the system continues to rotate uniformly about the pivot at O. 
The spin axis remains horizontal. 
 
The angular momentum of a top would equal the product of its moment of inertia 
about the axis and its angular velocity about the axis would point along it. If It’s axis 
were fixed in space. But since the axis itself also rotates the angular momentum no 
longer lies on the axis. However, if the angular velocity of the axis itself is small 
compared to the angular velocity about the axis, then the component of the angular 
momentum arising from former effect is small and can be neglected. The angular 
momentum vector L, about the fixed point O, can then be drawn along the axis as 
shown and as the top rotates about O, its angular momentum vector rotates with it.  
 
The upward force P at the pivot has no moment about O. The resultant external 
moment is that due to the weight w; its magnitude is   
 
  = ωR      3.14 
 
The direction of  is perpendicular to the axis as shown. In a time t, this torque 
produces a change L in the angular momentum, having the same direction as  and 
given by  
 L  =  t     3.15 
 
The angular momentum L + L, after a time L is perpendicular to L, the new angular 
momentum vector has the same magnitude as the old but a different direction. The top 
of the angular momentum vector moves as shown, and as time goes  on it swings 
around a horizontal circle. Since the angular momentum vector lies along the 
gyroscope axis, the axis turns also, rotating in a horizontal plane about the point O. 
This motion of the axis of rotatiion is called precession”. (Sears et at, 1975) 
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4.0      CONCLUSION. 
 
In this unit, you have learnt that  
 applied torque increases the angular velocity of a rotating body. 

 torque ,  =  
 

where, I is the moment of inertia and  is angular velocity. 
 work done by a couple or torque is given by the kinetic energy of rotation. That 

is 
 

 
 the angular momentum L of a rotating body is given by  

 
L = I  

 

 the total angular momentum of a system remains constant provided no external 
torque acts on the system – rigid  or otherwise. 

 a symmetric body rotating about an axis, one point of which  is fixed is called a 
top. 

 
5.0 SUMMARY 
 
What you have learnt in this unit concerns the angular momentum of a rigid body. 
You have learnt that: 
 
 torque is the rotational analogue of force in linear motion. 
 to increase the angular velocity of a rotating body a torque or a couple must be 

applied. 
 torque is given by  where  
 K.E of rotation is  

dt

d
I



21
2

1
 


dt

dL

dt

Id


2

2

1
 
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 the angular momentum L of a system about an axis is defined as the moment of 
its momentum about that axis. 

L  =I  
 when the net torque on a system in rotational motion is zero, the angular 

momentum is independent of time and is conserved. 
 using the formulas in this Unit and in the previous one you can solve problems 

relating to angular momentum. 
 a gyroscope is a symmetrical body rotating about its centre of gravity 
Summary of Equivalences Between Linear And Rotational Motion 
 

Quantity or Formular in Linear 
Motion 

Equivalent in Rigid  Body 
Rotation 

 
Displacement (s)   
Velocity (V) 
 
 
Acceleration  
 
 
Mass ( m) 
 Force ( f ) 
 
Kinetic energy                             
 
 
Work done (Fs) 
 
F = ma 
 
m1v1+ m2 v2 = constant 
 
V = u + at 
etc  

 
Angular displacement  
Angular velocity () 
 

Angular acceleration 
dt

d
   

 
Moment of inertia ( I ) 
Torque (  ) 
 
Kinetic energy  
 
Work done ( ) 
 
 = I  
 
I11+ I22 = constant 
 
final = initial + t 
Etc 

 
6.0 TUTOR-MARKED ASSIGNMENT  
 
1. A shaft rotating at 3 x 103 revolutions per minute is  transmitting a power of 10 

kilowatts. Find the magnitude of the driving couple. 
 
2. The turntable of a record player is a uniform disc of moment of inertia 1.2 x 10-

2 kg m2. When the motor is switched on it takes 2.5s for the turntable to 
accelerate uniformly from rest to 3.5 rad s-1 (33 1/3 r.p.m.) 
(a) What is the angular acceleration of the turntable?  
(b) What torque must the motor provide during this acceleration? 

a = dv 

       dt 

1   mv2 
2  

1  I2 

2 
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3. A stationary  horizontal hoop of mantle, 0.04 kg and mean radius 0.15m is 

dropped from a small height centrally and symmetrically onto a gramophone 
turntable which is freely rotating at an angular velocity of 3.0 rad. 51. 
Eventually the combined turntable and hoop rotate together with an angular 
velocity of 2.0 rad.S-1. Calculate  

 
(i) The moment of inertia of the turntable about its rotation axis 
(ii) The original kinetic energy of the turntable. 
(iii) The eventual kinetic energy of the combined hoop and turntable. 

 
Account for any change in kinetic energy which has occurred. 
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