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1.0 INTRODUCTION 
 

The theory of sets lies at the foundation of mathematics.  It is a concept that rears its 

head in almost all fields of mathematics; pure and applied. 

 

This unit aims at introducing basic concepts that would be explained further in 

subsequent units.  There will be definition of terms and lots of examples and exercises 

to help you as you go along. 
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2.0 OBJECTIVES 
  

At the end of this unit, you should be able to: 

 

 identify sets from some given statements  

 rewrite sets in the different set notation 

 identify the different kinds of sets with examples 

 

3.1 SETS 
  

As mentioned in the introduction, a fundamental concept in all branches of 

mathematics is that of set.  Here is a definition. 

 

“A set is any well-defined list, collection or class of objects”.   The objects in sets, as 

we shall see from examples, can be anything: But for clarity, we now list ten 

particular examples of sets: 

 

Example 1.1  The numbers 0,2,4,6,8 

Example 1.2  The solutions of the equation x
2 
+ 2x+1 = 0 

Example 1.3  The vowels of the alphabet: a, e, i, o, u 

Example 1.4  The people living on earth 

Example 1.5  The students Tom, Dick and Harry 

Example 1.6  The students who are absent from school 

Example 1.7  The countries England, France and Denmark 

Example 1.8  The capital cities of Nigeria 

Example 1.9  The number 1, 3, 7, and 10 

Example 1.10 The rivers in Nigeria 

 

Note that the sets in the odd numbered examples are defined, that is, presented, by 

actually listing its members; and the sets in the even numbered examples are defined 

by stating properties that is, rules, which decide whether or not a particular object is a 

member of the set. 

 

3.1.1 Notation 
  

Sets will usually be denoted by capital letters; 

 

A, B, X, Y,…… 

Lower case letters will usually represent the elements in our sets: 

Lets take as an example; if we define a particular set by actually listing its members, 

for example, let A consist of numbers 1,3,7, and 10, then we write   A={1,3,7,10} 
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That is, the elements are separated by commas and enclosed in brackets {}. 

 

We call this the tabular form of a set 

 

Now, try your hand on this 

 

But if we define a particular set by stating properties which its elements must satisfy, 

for example, let B be the set of all even numbers, then we use a letter, usually x, to 

represent an arbitrary element and we write: 

 

B = {x│x is even} 

 

Which reads “B is the set of numbers x such that x is even”.  We call 

this the set builders form of a set.  Notice that the vertical line  “│” is read “such as”. 

 

In order to illustrate the use of ht above notations, we rewrite the sets in  

examples 1.1-1.10.  We denote the sets by A1, A2, . A10 respectively. 

 

 Example 2.1 A1 = {0, 2, 4, 6, 8} 

 Example 2.2 A2 = {x│x
2
 +2x + 1 = 0} 

 Example 2.3 A3 = {a, e, i, o, u} 

 Example 2.4 A4 = {x │x is a person living on the earth} 

 Example 2.5 A5 = {Tom, Dick, Harry} 

 Example 2.6 A6 = {x │ x is a student and x is absent from  

     school} 

 Example 2.7 A7 = {England, France, Denmark} 

 Example 2.8 A8 = {x│x is a capital city and x is in Nigeria} 

 Example 2.9 A9 = {1, 3, 7, 10} 

 Example 2.10 A10 = { x│x is a river and x is in Nigeria} 

It is as easy as that! 

 

If an object x is a member of a set A, i.e., A contains x as one of its elements, then we 

write: 

  xA 

 

which can be read “x belongs to A” or „x is in A”.  If, on the other hand, an object x is 

not a member of a set A, i.e. A does not contain x as one of its elements, then we 

write;        

xA 
 

It is a common custom in mathematics to put a vertical line “” or “\” through a 

symbol to indicate the opposite or negative meaning of the symbol. 

 

Example 3:1 Let A = {a, e, i o, u}.  Then  aA, bA, fA. 

Example 3.2  Let B = {x x is even}.  Then 3B, 6B, 11B, 14B. 
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3.1.1 Finite & Infinite Sets 
 

Sets can be finite or infinite.  Intuitively, a set is finite if it consists of a specific 

number of different elements, i.e. if in counting the different members of the set the 

counting process can come to an end.  Otherwise a set is infinite.  Lets look at some 

examples. 

 

Example 4:1 Let M be the set of the days of the week.  The M is finite 

Example 4:2  Let N = {0,2,4,6,8……..}.  Then N is infinite 

Example 4:3 Let P = {x x is a river on the earth}.  Although it may be 

difficult to count the number of rivers in the world, P is still a 

finite set. 

 

The first three sets are finite.  Although physically it might be impossible to count the 

number of people on the earth, the set is still finite.  The last two sets are infinite.  If 

we ever try to count the even numbers, we would never come to the end. 

 

3.1.2 Equality of Sets 
 

Set A is equal to set B if they both have the same members, i.e if every element which 

belongs to A also belongs to B and if every element which belongs to B also belongs 

to A.  We denote the equality of sets A and B by: 

  A = B 

 

Example 5.1 Let A = {1, 2, 3, 4} and B = {3, 1, 4, 2}.  Then A = B, that is 

{1,2,3,4} = {3,1,4,2}, since each of the elements 1,2,3 and 4 of A 

belongs to B and each of the elements 3,1,4 and 2 of B belongs to 

A.  Note therefore that a set does not change if its elements are 

rearranged.  

 

Example 5.3  Let E={x | x
2
–3x = -2}, F={2,1} and G ={1,2,2,  

   1}, Then E= F= G 

 

3.1.3 Null Set 
 

 It is convenient to introduce the concept of the empty set, that is, a set which 

contains no elements.  This set is sometimes called the null set.  We say that 

such a set is void or empty, and we denote its symbol. 

 

Example 6.1 Let A be the set of people in the world who are older than 

200 years.  According to known statistics A is the null set. 

 

Example 6.2 Let B = {x | x
2 

= 4, x is odd}, Then B is the empty set. 
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3.2 Subsets 
 

If every element in a set A is also a member of a set B, then A is called subset 

of B. 

 

More specifically, A is a subset of B if xA implies xB.  We denote this 

relationship by writing; A  B, which can also be read “A is contained in B”. 

 

Example 7.1 The set C = {1,3,5} is a subset of D = {5,4,3,2,1}, since each 

number 1, 3 and 5 belonging to C also belongs to D. 

 

Example 7.2 The set E = {2,4,6} is a subset of F = {6,2,4}, since each number 

2,4, and 6 belonging to E also belongs to F.  Note, in particular, 

that E = F.  In a similar manner it can be shown that every set is a 

subset of itself. 

 

Example 7.3 Let G = {x | x is even}, i.e. G = {2,4,6}, and let  

F = {x | x is a positive power of 2}, i.e. let  

F = {2,4,8,16…..} Then F  G, i.e. F is contained in G. 

 

With the above definition of a subset, we are able to restate the definition of the 

equality of two sets. 

 

Two set A and B are equal, i.e A = B, if an only if A  B and BA.   

If A is a subset of B, then we can also write  

  BA 

which reads “B is a superset of A”  or “B contains A”.  Furthermore, we write: 

  A  B 

if A is not a subset of B. 

 

Conclusively, we state: 

 

1. The null set  is considered to be a subset of every set 

2. If A is not a subset of B, that is, if A  B, then there is at least one element in A 

that is not a member of B. 

3.2.1 Proper Subsets 

 

Since every set A is a subset of itself, we call B a proper subset of A if, first, B is a 

subset of A and secondly, if B is not equal to A.  More briefly, B is a proper subset of 

A if:  

 

B  A  and B  A 
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In some books “B is a subset of A” is denoted by  

 

   B  A 

 

and B” is a proper subset of A” is denoted by 

  B  A   

 

We will continue to use the previous notation in which we do not distinguished 

between a subset and a proper subset. 

 

3.2.2 Comparability 

 

Two sets A and B are said to be comparable if: 

 A  B or B  A; 

That is, if one of the sets is a subset of the other set.  Moreover, two sets A and B are 

said to be not comparable if: 

 

A  B and B  A 

 

Note that if A is not comparable to B then there is an element in A which is not in B 

and … also, there is an element in B which is not in A. 

 

Example 8.1: Let A = {a,b} and B = {a,b,c}. The A is comparable to B, since A 

is a subset of B. 

 

Example 8.2: Let R – {a,b} and S = {b,c,d}.  Then R and S are not comparable, 

since a R nd a S and c  R 

 

In mathematics, many statements can be proven to be true by the use of previous 

assumptions and definitions. In fact, the essence of mathematics consists of theorems 

and their proofs.  We now proof our first 

 

Theorem 1.1 If A is a subset of B and B is a subset of C then A is a subset of C, that 

is,  

 

 A   B and B  C implies A  B 

Proof: (Notice that we must show that any element in A is also an element in C).  Let 

x be an element of A, that is, let x  A.  Since A is a subset of B, x also belongs to B, 

that is, x  B.  But by hypothesis,  

B  C; hence every element of B, which includes x, is a number of C.  We have 

shown that x  A implies x  C.  Accordingly, by definition, A  C. 
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3.2.3 Sets of Sets 
 

It sometimes will happen that the object of a set are sets themselves; for example, the 

set of all subsets of A. In order to avoid saying “set of sets”, it is common practice to 

say “family of sets” or “class of sets”.  Under the circumstances, and in order to avoid 

confusion, we sometimes will let script letters 
 
A, B,………. 

 

Denote families, or classes, of sets since capital letters already denote  

their elements. 

 

Example 9.1  In geometry we usually say “a family of lines” or  

“a family of curves” since lines and curves are themselves sets of 

points. 

 

Example 9.2  The set {{2,3}, {2}, {5,6}} is a family of sets.  Its  

   members are the sets {2,3}, {2} and {5,6}. 

 

Theoretically, it is possible that a set has some members, which are sets themselves 

and some members which are not sets, although in any application of the theory of 

sets this case arises infrequently. 

 

Example 9.3 Let A = {2, {1,3}, 4, {2,5}}.  Then A is not a family of sets;  here 

some elements of A are sets and some are not. 

 

3.2.4 Universal Set 
 

In any application of the theory of sets, all the sets under investigation will likely be 

subsets of a fixed set.  We call this set the universal set or universe of discourse.  We 

denote this set by U. 

 

Example 10.1 In plane geometry, the universal set consists of all the 

points in the plane. 

 

Example 10.2 In human population studies, the universal set consists of 

all the people in the world. 

3.2.5 Power set 
 

The family of all the subsets of any set S is called the power set of S. 

We denote the power set of S by: 2
S
 

 

Example11.1  Let M = {a,b} Then 

   2
M

 = {{a, b}, {a}, {b}, } 
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Example 11.2 Let T = {4,7,8} then 

   2
T
 = {T, {4,7}, {4,8}, {7,8}, {4}, {7}, {8}, } 

 

If a set S is finite, say S has n elements, then the power set of S can be shown to have 

2
n
 elements.  This is one reason why the class of subsets of S is called the power set of 

S and is denoted by 2
S    

 

3.2.6 Disjoint Sets 
  

If sets A and B have no elements in common, i.e if no element of A is in B and no 

element of B is in A, then we say that A and B are disjoint 

 

Example 12.1: Let A = {1,3,7,8} and B = {2,4,7,9}, Then A and B are not 

disjoint since 7 is in both sets, i.e 7 A and 7 B 

 

Example 12.2: Let A be the positive numbers and let B be the negative numbers.  

Then A and B are disjoint since no number is both positive and 

negative. 

 

Example 12.3:  Let E = {x, y, z} and F = {r, s, t}, Then E and F are disjoint. 

 

3.3 Venn-Euler Diagrams 
 

A simple and instructive way of illustrating the relationships between sets is in the use 

of the so-called Ven-Euler diagrams or, simply, Venn diagrams.  Here we represent a 

set by a simple plane area, usually bounded by a circle. 

 

Example 13.1 Suppose A  B and, say, A  B, then A and B can be described 

by either diagram: 

 

 

           B 

   A 

            A  

   B     

 

Example 13.2 Suppose A and B are not comparable.  Then A and B can be 

represented by the diagram on the right if they are disjoint, or the 

diagram on the let if they are not disjoint. 

              

 

A     A    B 

    

               

                A                     
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Example 13.3 Let A = {a, b, c, d} and B= {c, d, e, f}.  Then we illustrate these 

sets a Venn diagram of the form: 

 

 

    A        B 

         a         c          e 

 

         b         d          f 

 

 

3. 4 Axiomatic Development of Set Theory 
 

In an axiomatic development of a branch of mathematics, one begins with: 

1. Undefined terms 

2. Undefined relations 

3. Axioms relating the undefined terms and undefined relations. 

 

Then, one develops theorems based upon the axioms and definitions 

 

Example 14:1  In an axiomatic development of Plane Euclidean geometry 

 

1. “points” and “lines” are undefined terms 

2. “points on a line” or, equivalent, “line contain a point” is an undefined relation 

3. Two of the axioms are: 

 

Axiom 1 Two different points are on one and only one line 

Axiom 2 Two different lines cannot contain more than one point in common. 

 

 

 

In an axiomatic development of set theory: 

 

1. “element‟ and “set” are undefined terms 

2. “element belongs to a set” is undefined relation 

3. Two of the axioms are 

 

Axiom of Extension: Two sets A and B are equal if and only if every element in 

A belongs to B and every element in B belongs to A. 

 

Axiom of Specification: Let P(x) be any statement and let A be any set.  Then there 

exists a set: 

B={a a  A, P(a) is true} 
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Here, P(x) is a sentence in one variable for which P(a) is true or false for any a  A.  

for example P(x) could be the sentence “x
2
 = 4” or “x is a member of the United 

Nations” 

 

4.0 CONCLUSION 
 

You have been introduced to basic concepts of sets, set notation etc. that will be built 

upon in other units.  If you have not mastered them by now you will notice you have 

to come back to this unit from time to time. 

 

5.0 SUMMARY 
 

A summary of the basic concept of set theory is as follows: 

 

 A set is any well-defined list, collection, or class of objects. 

 Given a set A with elements 1,3,5,7 the tabular form of representing this set is 

A = {1, 3, 5, 7} 

 The set-builder form of the same set is A = {x| x = 2n + 1,0 n3} 

 Given the set N = {2,4,6,8,….} then N is said to be infinite, since the counting 

process of its elements will never come to an end, otherwise it is finite 

 Two sets of A and B are said to be equal if they both have the same elements, 

written A = B 

 The null set, , contains no elements and is a subset of every set 

 The set A is a subset of another set B, written A  B, if every element of A is 

also an element of B, i.e. for every xA then xB 

 If B  A and B A, then B is a proper subset of A 

 Two sets A and B are comparable if A B and B A 

 The power set 2
S
 of any set S is the family of all the subsets of S 

 Two sets A and B are said to be disjoint if they do not have any element in 

common, i.e. their intersection is a null set 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Rewrite the following statement using set notation: 
 

 x does not belong to A. 

 R is a superset of S 

 d is a member of E 

 F is not a subset of G 

 H does not included D.  

2. Which of these sets are equal:  {r,t,s}, {s,t,r,s}, {t,s,t,r}, {s,r,s,t}? 

 

3. Which sets are finite? 

 

 The months of the year 

 {1,2,3,……99, 100} 
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 The people living on the earth 

 {x | x is even} 

 {1,2,3……..) 

 

The first three set are finite.  Although physically it might be impossible to 

count the number of people on the earth, the set is still finite.  The last two set 

are infinite.  If we ever try to count the even numbers we would never come to 

the end. 

 

4. Which word is different from each other, and why:  (1) empty,   (2) void,  

(3)zero,  (4) null? 

 

5. Let A = {x, y,z}.  How many subsets does A contain, and what are they? 
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1.0 INTRODUCTION 
 

In this unit, we shall see operations performed on sets as in simple arithmetic. This 

operations simply give sets a language of their own.  You will notice in subsequent 

units that you cannot talk of sets without reference, sort of, to these operations. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 
 

 Compare two sets and/or assign to them another set depending on their 

comparability. 

 Represent these relationships on the Venn diagram. 

 

3.0 MAIN CONTENTS  
 

3.1 Set Operations 
 

In arithmetic, we learn to add, subtract and multiply, that is, we assign to each pair of 

numbers x and y a number x + y called the sum of x and y, a number x – y called the 

difference of x and y, and a number xy called the product of x and y. These 

assignments are called the operations of addition, subtraction and multiplication of 

numbers. In this unit, we define the operation Union, Intersection and difference of 

sets, that is, we will assign new pairs of sets A and B.  In a later unit, we will see that 

these set operations behave in a manner somewhat similar to the above operations on 

numbers. 
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3.1.1 Union 
 

The union of sets A and B is the set of all elements which belong to A or to B or to 

both.  We denote the union of A and B by; 

 

  A  B 

Which is usually read “A union B” 

 

Example 1.1:         In the Venn diagram in fig 2-1, we have shaded  

A B,   i.e. the area of A and the area of B. 

 

 

 

 

 

 

 

 

           

           

           

           

  

 

     A  B is shaded 

      Fig 2.1 

 

Example 1.2: Let S = {a, b. c. d} and T = {f, b, d, g}.  Then 

   S T = {a, b, c, d, f, g}. 

 

Example 1.3: Let P be the set of positive real numbers and let Q be the set of 

negative real numbers.  The P  Q, the union of P and Q, consist 

of all the real numbers except zero. 

 

The union of A and B may also be defined concisely by 

 

  A  B  =  {x x  A or x  B} 

 

Remark 2.1: It follows directly from the definition of the union of two sets that 

A  B and B  A are the same set, i.e., 

  A  B = B  A 

 

Remark 2.2: Both A and B are always subsets of A and B that is, 

 

  A  (A  B) and B  (A  B) 

 

A B 
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In some books, the union of A and B is denoted by A + B and is called the set-

theoretic sum of A and B or, simply, A plus B. 

 

3.1.2 Intersection 
 

The Intersection of sets A and B is the set of elements which are common to A and B, 

that is, those elements which belong to A and which belong to B.  We denote the 

intersection of A and B by: 

 

    A  B 

 

Which is read “A intersection B”. 

 

Example 2.1: In the Venn diagram in fig 2.2, we have shaded  

A  B, the area that is common to both A and B. 

 

 
A  B is shaded 

Fig  2.2 

 

 

Example 2.2: Let S = {a, b, c, d} and T = {f, b, d, g}.  Then   

S  T = {b, d} 

 

Example 2.3: Let V = 2, 3, 6, ……} i.e. the multiples of  

2; and let W = {3, 6, 9,….} i.e. the multiples of 3.  Then 

   V  W = {6, 12, 18……} 

 

The intersection of A and B may also be defined concisely by 

 

   A  B = {x  x  A, x  B} 

 

Here, the comma has the same meaning as “and”. 
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Remark 2.3:  It follows directly from the definition of the  

  intersection of two sets that; 

 

    A  B = B  A 

 

Remark 2.4:  Each of the sets A and B contains A  B as  

   a subset, i.e., 

 

   (A  B)  A and (A  B)  B 

 

Remark 2.5: If sets A and B have no elements in common, i.e. if A and B are 

disjoint, then the intersection of A and B is the null set, i.e. A  

B = . 

 

In some books, especially on probability, the intersection of A and B is denoted by 

AB and is called the set-theoretic product of A and B or, simply, A times B. 

 

3.1.3 Difference 
 

The difference of sets A and B is the set of elements which belong to A but which do 

not belong to B.  We denote the difference of A and B by 

 

  A – B 

 

Which is read “A difference B” or, simply, “A minus B”. 

 

Example 3.1: In the Venn diagram in Fig 2.3, we have shaded  

A – B, the area in A which is not part of B. 

 
   A – B is shaded 

      Fig 2.3 
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Example 3.2  Let R be the set of real numbers and let Q be the  

set of rational numbers.  Then R – Q consists of the irrational 

numbers. 

 

The difference of A and B may also be defined concisely by 

 

  A – B = { x  x  A, x  B} 

 

Remark 2.6  Set A contains A – B as a subset, i.e., 

 

   (A – B)  A 

 

Remark 2.7  The sets (A – B), A  B and (B – A) are mutually  

disjoint, that is, the intersection of any two is the null set. 

 

The difference of A and B is sometimes denoted by A/B or A ~ B 

 

3.1.4 Complement 
 

The complement of a set A is the set of elements that do not belong to A, that is, the 

difference of the universal set U and A.  We denote the complement of A by A 

 

 

 

Example 4.1  In the Venn diagram in Fig 2.4, we shaded the  

complement of A, i.e. the area outside A.  Here we assume that 

the universal set U consists of the area in the rectangle. 

 

 

 

 

 

 

 

 

 

 

 

 

     

   A’ is shaded 

    Fig. 2.4 

 

 

 

 

A B 
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Example 4.2  Let the Universal set U be the English alphabet  

   and let T = {a, b, c}.  Then; 

 

T‟ = {d, e, f, ….., y, z} 

 

Example 4.3  Let E = {2, 4, 6, …}, that is, the even numbers.   

   Then E = {1, 3, 5, …}, the odd numbers.  Here we  

assume that the universal set is the natural numbers, 1, 2, 3,….. 

 

The complement of A may also be defined concisely by; 

 

   A = {x x  U, x  A} or, simply, 

   A = {x  x  A} 

 

We state some facts about sets, which follow directly from the definition of the 

complement of a set. 

 

Remark 2.8 The union of any set A and its complement A is the universal set, 

i.e., 

 

    A  A‟  = U 

 

   Furthermore, set A and its complement A are  

   disjoint, i.e., 

    A  A‟ =  

Remark 2.9  The complement of the universal set U is the null  

   set , and vice versa, that is, 

 

   U‟ =  and ‟ = U 

 

Remark 2.10  The complement of the complement of set A is the  

   set A itself.  More briefly,  

 

   (A) = A 

 

Our next remark shows how the difference of two sets can be defined in terms 

of the complement of a set and the intersection of two sets.  More specifically, 

we have the following basic relationship: 

 

Remark 2.11  The difference of A and B is equal to the  

   intersection of A and the complement of B,  

   that is, 

 

    A – B = A  B 
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 The proof of Remark 2.11 follows directly from definitions: 

 

 A – B = {x  xA, xB} = {x  xA, xB‟} = A  B‟ 

 

3.2 Operations on Comparable Sets 
 

The operations of union, intersection, difference and complement have simple 

properties when the sets under investigation are comparable.  The following theorems 

can be proved. 

 

Theorem 2.1  Let A be a subset of B.  Then the union  

   intersection of A and B is precisely A, that is, 

 

   A  B implies A  B = A 

 

Theorem 2.2  Let A be a subset of B.  Then the of A and B is  

   precisely B, that is, 

 

   A  B implies A  B = B 

 

Theorem 2.3  Let A be a subset of B.  Then B‟ is a subset of A‟,  

   that is, 

  

  A  B implies B‟  A‟ 

 

We illustrate Theorem 2.3 by the Venn diagrams in Fig 2-5 and 2-6. Notice how the 

area of B‟ is included in the area of A‟. 

 
 

 

 

 

  

 

 

 

 

 

  B is shaded    A is shaded 

  Fig 2.5    Fig 2.6 

 

Theorem 2.4: Let A be a subset of B.  Then the Union of A and (B – A) is 

precisely B, that is, 

 

   A  B implies A  (B – A) = B 

 

A 

B 

A 

B 
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4.0 CONCLUSION 
 

You have seen how the basic operations of Union, Intersection, Difference and 

Complement on sets work like the operations on numbers.  These are also the basic 

symbols associated with set theory. 

 

5.0 SUMMARY 
 

The basic set operations are Union, Intersection, Difference and Complement defined 

as: 

 

 The Union of sets A and B, denoted by A  B, is the set of all elements, which 

belong to A or to B or to both. 

 The intersection of sets A and B, denoted by A  B, is the set of elements, 

which are common to A and B.  If A and B are disjoint then their intersection is 

the Null set . 

 The difference of sets A and B, denoted by A – B, is the set of elements which 

belong to A but which do not belong to B. 

 The complement of a set A, denoted by A’, is the set of elements, which do not 

belong to A, that is, the difference of the universal set U and A. 

 

6.0 TUTOR – MARKED ASSIGNMENT 
 

1. Let X = {Tom, Dick, Harry}, Y = {Tom, Marc, Eric} and Z = {Marc, Eric, 

Edward}.  Find (a) X  Y, (b) Y  Z  (c) X  Z 

2. Prove: A   = . 

3. Prove Remark 2.6: (A – B)  A. 

4. Let U = {1,2,3,…,8,9}, A = {1,2,3,4}, B = {2,4,6,8} and C = {3,4,5,6}.  Find 

(a) A‟,  (b) B‟,  (c) (A  C)‟, (d) (A  B)‟, (e) (A‟)‟,  (f) (B – C)‟ 

5. Prove: B – A is a subset of A‟. 
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1.0 INTRODUCTION 
 

Although, the theory of sets is very general, important sets, which we meet in 

elementary mathematics, are sets of numbers.  Of particular importance, especially in 

analysis, is the set of real numbers, which we denote by 

 

In fact, we assume in this unit, unless otherwise stated, that the set of real numbers  

is our universal set.  We first review some elementary properties of real numbers 

before applying our elementary principles of set theory to sets of numbers.  The set of 

real numbers and its properties is called the real number system. 

 

2.0 OBJECTIVES 
 

After studying this unit, you should be able to do the following: 
 

 represent the set of numbers on the real line 

 perform the basic set operations on intervals 
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3.0 MAIN CONTENTS 
 

3.1 Real Numbers,  
 

One of the most important properties of the real numbers is that points on a straight 

line that can represent them.  As in Fig 3.1, we choose a point, called the origin, to 

represent 0 and another point, usually to the right, to represent 1.  Then there is a 

natural way to pair off the points on the line and the real numbers, that is, each point 

will represent a unique real number and each real number will be represented by a 

unique point.  We refer to this line as the real line.  Accordingly, we can use the 

words point and number interchangeably. 

 

Those numbers to the right of 0, i.e. on the same side as 1, are called the positive 

numbers and those numbers to the left of 0 are called the negative numbers.  The 

number 0 itself is neither positive nor negative. 

 

 

 

 

 

 

 

-5   - 4   -3   -2   -1   0   1   2   3   4     5 

 

Fig 3.1 

 

3.1.2 Integers, Z 
 

The integers are those real numbers 

 

…, -3, -2, -1, 0, 1, 2, 3,… 

 

We denote the integers by Z; hence we can write 

Z = { …, -2, - 1, 0, 1, 2,…} 

 

The integers are also referred to as the “whole” numbers. 

 

One important property of the integers is that they are “closed” under the operations of 

addition, multiplication and subtraction; that is, the sum, product and difference of 

two integers is again in integer.  Notice that the quotient of two integers, e.g. 3 and 7, 

need not be an integer; hence the integers are not closed under the operation of 

division. 

 

 

 

 

- ½  2 

e = 2. 718 
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3.1.3 Rational Numbers, Q 
 

The rational numbers are those real numbers, which can be expressed as the ratio of 

two integers.  We denote the set of rational numbers by Q.  Accordingly, 

 

Q = {x  x = p q where p  z, q  z} 

Notice that each integer is also a rational number since, for example, 5 = 5/1; hence Z 

is a subset of Q. 

 

The rational numbers are closed not only under the operations of addition, 

multiplication and subtraction but also under the operation of division (except by 0).  

In other words, the sum, product, difference and quotient (except by 0) of two rational 

numbers is again a rational number. 

 

3.1.4 Natural Numbers, N 
 

The natural numbers are the positive integers.  We denote the set of natural numbers 

by N; hence N = {1,2,3…..} 

 

The natural numbers were the first number system developed and were used primarily, 

at one time, for counting.  Notice the following relationship between the above 

numbers systems: 

 

  N  Z  Q    

 

The natural numbers are closed only under the operation of addition and 

multiplication.  The difference and quotient of two natural numbers needed not be a 

natural number. 

 

The prime numbers are those natural numbers p, excluding 1, which are only divisible 

1 and p itself.  We list the first few prime numbers: 

 

  2,3,5,7,11,13,17,19… 

 

3.1.5 Irrational Numbers, Q’ 
 

The irrational numbers are those real numbers which are not rational, that is, the set of 

irrational numbers is the complement of the set of rational numbers Q in the real 

numbers ; hence Q‟ denote the irrational numbers.  Examples of irrational numbers 

are 3, , 2, etc. 
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3.1.6 Line Diagram of the Number Systems 
 

Fig 3 -2 below is a line diagram of the various sets of number, which we have 

investigated.  (For completeness, the diagram include the sets of complex numbers, 

number of the form a + bi where a and b are real.  Notice that the set of complex 

numbers is superset of the set of real numbers.) 

 

                                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 3.2 

 

3.2 Decimals and Real Numbers 
 

Every real number can be represented by a “non-terminating decimal.” The decimal 

representation of a rational number p/q can be found by “dividing the denominator q 

into the numerator p.” If the indicated division terminates, as for 
 

   3/8 = .375 

We write  3/8 = .375000 

Or   3/8 = .374999… 

 

If we indicated division of q into p does not terminate, then it is known that a block of 

digits will continually be repeated; for example, 
 

   2/11 = .181818… 

 

Complete Numbers 

Real Numbers 

Rational Numbers Irrational Numbers 

Integers 

Complete Numbers Zero Natural Numbers 

Prime Numbers 
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We now state the basic fact connecting decimals and real numbers.  The rational 

numbers correspond precisely to those decimals in which a block of digits is 

continually repeated, and the irrational numbers correspond to the other non-

terminating decimals. 

 

3.3 Inequalities 
 

The concept of “order” is introduce in the real number system by the  

 

Definition: The real number a is less than the real number b, written a < b 

 

If b – a is a positive number. 

 

The following properties of the relation a < b can be proven.  Let a, b and c be real 

numbers; then: 

 

P1: Either a <  b, a = b or b < a. 

P2: If a < b and b < c, then a < c. 

P3: If a < b, then a + c < b + c 

P4: If a < b and c is positive, then ac < bc 

P5: If a < b and c is negative, then bc < ac. 

 

Geometrically, if a < b then the point a on the real line lies to the left of the point b. 

 

We also denote a < b by b > a 

Which reads “b is greater then a”.  Furthermore, we write 

   a < b or b > a 

if a < b or a = b, that is, if a is not greater than b. 

 

Example 1.1  2 < 5; -6 < -3 and 4 < 4; 5 > -8 

 

Example 1.2 The notation x < 5 means that x is a real number which is less 

than 5; hence x lies to the left of 5 on the real line 

 

The notation 2 < x < 7; means 2 < x and also x < 7; hence x will 

lie between 2 and 7 on the real line. 

 

Remark 3.1 Notice that the concept of order, i.e. the relation a < b, is defined 

in terms of the concept of positive numbers.  The fundamental 

property of the positive numbers which is used to prove 

properties of the relation a < b is that the positive numbers are 

closed under the operations of addition and multiplication.  

Moreover, this fact is intimately connected with the fact that the 

natural numbers are also closed under the operations of addition 

and multiplication. 
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Remark 3.2 The following statements are true when a, b, c are any real 

numbers: 

 

   1. a < a 

   2. if a < b and b < a then a = b. 

   3. if a < b and b < c then a < c. 

 

3.4 Absolute Value 
 

The absolute value of a real number x, denoted by  x is defined by the formula 

 

 x = x if x > 0 

   -x if x < 0 

 

that is, if x is positive or zero then  x equals x, and if x is negative then  x equals – 

x.  Consequently, the absolute value of any number is always non-negative, i.e.  x > 

0 for every x  . 

 

Geometrically speaking, the absolute value of x is the distance between the point x on 

the real line and the origin, i.e. the point 0.  Moreover, the distance between any two 

points, i.e. real numbers, a and b is  a - b =  b - a. 

 

Example 2.1  -2 = 2, 7 = 7. -  =  

 

Example 2.2 The statement  x < 5 can be interpreted to mean that the 

distance between x and the origin is less than 5, i.e. x must lies 

between -5 and 5 on the real line.  In other words, 

 x < 5 and -5 < x < 5 have identical meaning.  Similarly, 

   x < 5 and -5 < x < 5  have identical meaning. 

 

3.5 Intervals 
 

Consider the following set of numbers; 

 

  A1 = {x 2 < x < 5} 

  A2 = {x 2 < x < 5} 

  A3 = {x 2 < x < 5} 

A4 = {x 2 < x < 5} 

 

Notice, that the four sets contain only the points that lie between 2 and 5 with the 

possible exceptions of 2 and/or 5.  We call these sets intervals, the numbers 2 and 5 

being the endpoints of each interval.  Moreover, A1 is an open interval as it does not 

contain either end point: A2 is a closed interval as it contains bother endpoints; A3 and 

A4 are open-closed and closed-open respectively. 
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We display, i.e. graph, these sets on the real line as follows. 

 

 

  

 

 

 

      A1 

 

 

           

           

           

        A2   

           

           

           

           

         

     A3      

           

           

           

      A4 

 

Notice that in each diagram we circle the endpoints 2 and 5 and thicken (or shade) the 

line segment between the points.  If an interval includes an endpoint, then this is 

denoted by shading the circle about the endpoint. 

 

Since intervals appear very often in mathematics, a shorter notation is frequently used 

to designated intervals,  Specifically, the above intervals are sometimes denoted by; 

 

    A1 = (2, 5) 

    A2 = [2, 5] 

    A3 = (2, 5) 

A4 = [2, 5) 

 

Notice that a parenthesis is used to designate an open endpoint, i.e. an endpoint that is 

not in the interval, and a bracket is used to designate a closed endpoint. 

 

3.5.1 Properties of Intervals 
 

Let  be the family of all intervals on the real line.  We include in   the null set  

and single points a = [a, a].  Then the intervals have the following properties: 

 

 

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 
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1. The intersection of two intervals is an interval, that is, 

A  , B   implies  A  B   

 

2. The union of two non-disjoint intervals is an interval, that is, 

A  , B  , A  B    implies  A  B   

 

3. The difference of two non-comparable intervals is an interval,  

that is,   

A  , B  , A  B, B  A  implies  A - B   

 

 Example 3.1: Let A = {2, 4),  B = (3, 8).  Then 

    A  B = (3, 4), A  B = [2, 8) 

    A – B = [2, 3], B – A = [4, 8) 

 

3.5.2 Infinite Intervals 
 

Sets of the form 

 

   A = {x  x > 1} 

   B = {x x > 2 

   C = {x x < 3} 

D = {x x < 4} 

E =  {x  x  } 

 

 Are called infinite intervals and are also denoted by 

 

 A = (1,  ), B = [2,  ), C = ( -, 3), D = (-, 4], E = (-, ) 
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We plot these intervals on the real line as follows:  

            

            

            

            

            

            

            

            

            

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.6 Bounded and Unbounded Sets 
 

Let A be a set of numbers, then A is called bounded set if A is the subset of a finite 

interval.  An equivalent definition of boundedness is  

 

Definition 3.1 Set A is bounded if there exists a positive number  

   M such that  

 

    x    M 

   for all x  A.  A set is called unbounded if it is  

   not bounded 

 

   Notice then, that A is a subset of the finite interval  

[ - M, M]. 

 

Example 4.1  Let A = {1, ½ , 1/3,…..}.  Then A is bounded  

since A is certainly a subset of the closed interval [0, 1]. 

 

-4 -3 -2 -1 0 1 2 3 4 

-4 -3 -2 -1 0 1 2 3 4 

-4 -3 -2 -1 0 1 2 3 4 

A is shaded 

B is shaded 

-4 -3 -2 -1 0 1 2 3 4 

C is shaded 

D is shaded 

-4 -3 -2 -1 0 1 2 3 4 

E is shaded 
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Example 4.2 Let A = {2, 4, 6,…..}.  Then A is an unbounded set. 

 

Example 4.3 Let A = {7, 350, -473, 2322, 42}.  Then A is bounded 

 

Remark 3.3  If a set A is finite then, it is necessarily bounded.   

If a set is infinite then it can be either bounded as in example 4.1 

or unbounded as in example 4.2 

 

4.0 CONCLUSION 
 

The set of real numbers is of utmost importance in analysis.  All (except the set of 

complex numbers) other sets of numbers are subsets of the set of real numbers as can 

be seen from the line diagram of the number system. 

 

5.0 SUMMARY 
 

In this unit, you have been introduced to the sets of numbers.  The set of real numbers, 

, contains the set of integers, Z, Rational numbers, Q, Natural numbers, N, and 

Irrational numbers, Q‟. 

 

Intervals on the real line are open, closed, open-closed or closed-open depending on 

the nature of the endpoints. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Prove:  If a < b and B < c, then a < c 

2. Under what conditions will the union of two disjoint interval be an interval? 

3. If two sets R and S are bounded, what can be said about the union and 

intersection of these sets? 
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1.0 INTRODUCTION 
 

In this unit, you will be introduced to the concept of functions, mappings and 

transformations.  You will also be given instructive and typical examples of functions. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 identify functions from statements or diagrams 

 state whether a function is one-one or onto 

 find composition function of two or more functions 
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3.0 MAIN CONTENTS  

 

3.1 Definition 
 

Suppose that to each element in a set A there is assigned by some manner or other, a 

unique element of a set .  We call such assignment of function.  If we let  denote 

these assignments, we write; 

 

  f :  A              B 

 

which reads “f is a function of A onto B”.  The set A is called the domain of the 

function f, and B is called the co-domain of f.  Further, if a  A the element in B 

which is assigned to a is called the image of a and is denoted by; 

    (a) 

 

which reads “f of a”. 

 

We list a number of instructive examples of functions. 

 

Example 1.1 Let f assign to each real number its square, that is, for every real 

number x let f(x) = x
2
.  The domain and co-domain of f are both 

the real numbers, so we can write 

 

    f :             

 

 The image of -3 is 9; hence we can also write f(-3) = 9 or  

f : 3  9 

 

Example 1.2 Let f assign to each country in the world its capital city.  Here, 

the domain of f is the set of countries in the world; The co-

domain of f is the list of capital cities in the world.  The image of 

France is Paris, that is, f(France) = Paris 

 

Example 1.3 Let A = {a, b, c, d} and B = {a, b, c}.  Define a function f of A 

into B by the correspondence f(a) = b, f(b) = c, f(c) = c and f(d) = 

b.  By this definition, the image, for example, of b is c. 

 

Example 1.4: Let A = {-1, 1}.  Let f assign to each rational number in  the 

number 1, and to each irrational number in  the number -1.  

Then f: A, and f can be defined concisely by 

 

    f(x)  =    1 if x is rational 

       -1 if a is irrational 
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Example 1.5: Let A = {a, b, c, d} and B = {x, y, z}.  Let f: A  B be 

defined by the diagram: 

 

      

     x 

a 

     y 

  b 

     z 

  c 

 

  d 

 

 

 

Notice that the functions in examples 1.1 and 1.4 are defined by specific 

formulas.  But this need not always be the case, as is indicated by the other 

examples.  The rules of correspondence which define functions can be 

diagrams as in example 1.5, can be geographical as in example 1.2, or, when 

the domain is finite, the correspondence can be listed for each element in the 

domain as in example 1.4. 

 

3.2 Mappings, Operators, Transformations 
 

If A and B are sets in general, not necessarily sets of numbers, then a function f 

of A into B is frequently called a mapping of A into B; and the notation 

 

   f: : A ---> B 

is then read “f maps A into B”.  We can also denote a mapping, or function, f 

of A into B by 

 

    A                    B 

Or by the diagram 

          B 

   A     

 

 

If the domain and co-domain of a function are both the same set, say 

 

   f:  A ---> A 

then f is frequently called an operator or transformation on A.  As we will see 

later operators are important special cases of functions. 
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3.3 Equal Functions 
 

If f and g are functions defined on the same domain D and if f(a) = g(a) for 

every a  D, then the functions f and g are equal and we write 

 

   f  = g 

 

Example 2.1: Let f(x) = x
2
 where x is a real number.  Let g(x) = x

2
 

where x is a complex number.  Then the function f is not 

equal to g since they have different domains. 

 

Example 2.2: Let the function f be defined by the diagram 

 

 

   1   1 

     2   2 

        3 

        4 

 

 Let a function g be defined by the formula g(x) = x
2
 where the 

domain of g is the set {1, 2}.  Then f = g since they both have the 

same domain and since f and g assign the same image to each 

element in the domain. 

 

Example 2.3: Let f:    and g:   .  Suppose f is defined by f(x) 

= x
2
 and g by g(y) = y

2
.  Then f and g are equal functions, 

that is, f = g.  Notice that x and y are merely dummy 

variable in the formulas defining the functions. 

 

 

3.4 Range of a Function 
 

Let f be the mapping of A into B, that is, let f: A  B.  Each element in B need 

not appear as the image of an element in A.  We define the range of f to consist 

precisely of those elements in B which appear and the image of at least one 

element in A.  We denote the range of f: A  B y f(A) 

 

    f(A) 

 

Notice that f(A) is a subset of B. i.e f(A)  

 

Example 3.1 Let the function f:    be defined by the formula f(x) = x
2
.  

Then the range of f consists of the positive real numbers and zero. 
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Example 3.2 Let f: A  B be the function in Example 1.3. 

 Then f(A) = {b, c} 

 

3.5 One – One (Injective) Functions 
 

Let f map A into B.  Then f is called a one-one or Injective function if 

different elements in B are assigned to different elements in A, that is, if no two 

different elements in A have the same image.  More briefly, f: A  B is one-

one if f(a) = f(a‟) implies a = a` or, equivalently, a = a` implies f(a)  f(a`) 

 

Example 4.1: Let the function f:    be defined by the formula f(x) = x
2
.  

Then f is not a one-one function since f(2) = f(-2) = 4, that is, 

since the image of two different real numbers, 2 and -2, is the 

same number, 4. 

 

Example 4.2: Let the function f:    be defined by the formula f(x) = x
3
.  

Then f is a one-one mapping since the cubes of the different real 

numbers are themselves different. 

 

Example 4.3: The function f which assigns to each country in the world, its 

capital city is one-one since different countries have different 

capitals, that is no city is the capital of two different countries. 

 

3.6 Onto (Subjective) Function 
 

Let f be a function of A into B.  Then the range f(A) of the function f is a 

subset of B, that is, f(A)  B.  If f(A) = B, that is, if every member of B 

appears as the image of at least one element of A, then we say “f is a function 

of A onto B”, or “f maps A onto B”, of “f is an onto or Subjective function”. 

 

Example 5.1: Let the function f:    be defined by the formula f(x) = x
2
.  

Then f is not an onto function since the negative numbers do not 

appear in the range of f, that is no negative number is the square 

of a real number. 

 

Example 5.2: Let f: A  B be the function in Example 1.3.  Notice that f(A) = 

{b, c}.  Since B = {a, b, c} the range of f does not equal co-

domain, i.e. is not onto. 

 

Example 5.3: Let f: A  B be the function in example 1.5: Notice that  

   f(A) = {x, y, z} = B 

 that is, the range of f is equal to the co-domain B.  Thus f maps A 

onto B, i.e. f is an onto mapping. 
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3.7 Identity Function 
 

Let A be any set.  Let the function f: A  A be defined b y the formula f(x) = 

x, that is, let f assign to each element in A the element itself.  Then f is called 

the identity function or the identity transformation on A.  We denote this 

function by 1 or by 1A. 

 

3.8 Constant Functions 
 

A function f of A onto B is called a constant function if the same element of 

bB is assigned to every element in A.  In other words, f: A  B is a constant 

function if the range of f consists of only one element. 

 

  (g 
o
 f) : A  C by 

    

     (g 
o
 f)(a)  g (f(a)) 

 

Here  is used to mean equal by definition.  We can now complete our 

diagram: 

 

 

  A    B     C 

 

 

 

 

           (g 
o
 f)    

 

Example 7.1: Let f: A  B and g: B  C be defined by the diagrams 

  

   A   B   C 

 

   a   x   r 

   b   y   s 

   c   z   t 

 

 

 

   We compute (g 
o
 f):  A  C by its definition: 

 

    (g 
o
 f)(a)   g(f(a)) = g(y) = t 

    (g 
o
 f)(b)   g(f(a)) = g(z) = r 

    (g 
o
 f)(c)   g(f(a)) = g(y) = t 

 
g 
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   Notice that the function (g o f) is equivalent to “following the  

arrows” from A to C in the diagrams of the functions f and g. 

 

Example 7.2: To each real number let f assign its square, i.e. let f(x) = x
2
.  To 

each real number let g assign the number plus 3, i.e. let g(x) = x + 

3.  Then 

 

   (g 
o
 f)(x)   f(g(x)) = f(x+3) = (x+3)

2
 = x

2
 + 6x + 9 

   (g 
o
 f)(x)  g(f(x)) = g(x

2
) = x

2
 + 3 

 

Remark 4.1: Let f: A  B.  Then 

 

     IB 
o
 f = f and f 

o
 1A = f 

   that is, the product of any function and identity is the function 

itself. 

 

3.9.1 Associativity of Products of Functions 
 

Let f: A  B, g: B  C and h: c  D.  Then, as illustrated in Figure 4-1, we 

can form the production function g 
o
 f: A  C, and then the function 

h 
o
 (g 

o
 f): A  D. 

 

 

    A   B   C   D 

 

 

 

     (g 
o
  f) 

 

 

   

    (h o (g o f) 

 

    Fig. 4.1 

 

 

 

 

 

 

 

 

 

 

 

f g h 
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Similarly, as illustrated in Figure 4-2, we can form the product function h 
o
 g:  

B --> D and then the function (h o g) o f: A  D. 

A B C D

 
 

     Fig 4.2 

 

Both h 
o
 (g 

o
 f) and (h 

o
 g) 

o
 f are function of A into D.  A basic theorem on 

functions states that these functions are equal.  Specifically, 

 

Theorem 4.1: Let f: A  B, B  C and h: C  D.  Then 

   (h o g) o f = h o (g o f) 

 

 

In view of Theorem 4.1, we can write 

 h 
o
 g 

o
 f: A   D 

without any parenthesis. 

 

3.10 Inverse of a Function 
 

Let f be a function of A into B, and let b  B.  Then the inverse of b, denoted 

by 

    f 
-1

 (b) 

Consist of those elements in A which are mapped onto b, that is, those element 

in A which have m as their image.  More briefly, if f: A  B then 

 

   f 
-1

 (b) = {x} x  A; f(x) = b} 

 

Notice that f 
-1

 (b) is always a subset of A.  We read f
 -1

 as “f inverse”. 

 

 

 

 

 

 

 

(h 
o
 g) 

(h o (g o f) 
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Example 8.1: Let the function f: A ---> B be defined by the diagram 

 

 

  a   x 

  b   y 

  c   z    

 

 

  Then f 
-1

 (x) = {b, c}, since both b and c have x as their image  

point. 

Also, f 
-1

 (y) = {a}, as only a is mapped into y.  The inverse of z, f 
-1

 (z), is the null set , since no element of A is mapped into z. 

 

Example 8.2: Let f:  ---> , the real numbers, be defined by the 

formula f(x) = x
2
.  Then f 

-1
 (4) = {2, -2}, since 4 is the image of 

both 2 and -2 and there is no other real number whose square is 

four.  Notice that f
 -1

 (-3) = , since there is no element in  

whose square is -3. 

 

Example 8.3: Let f be a function of the complex numbers into the 

complex numbers, where f is defined by the formula f(x) = x
2
.  

Then f 
-1

 (3) = { 3i, - 3i}, as the square of each of these 

numbers 

is -3. 

 

Notice that the function in Example 8.2 and 8.3 are different although they are 

defined by the same formula 

 

We now extend the definition of the inverse of a function.  Let f: A --> B and 

let D be a subset of B, that is, D  B.  Then the inverse of D under the mapping 

f, denoted by f 
–1

 (D), consists of those elements in A which are mapped onto 

some element in D.  More briefly, 

 

  f 
-1

 (D) = {x x  A, f(x)  D} 

 

 

 

 

 

 

 

 



   MTH 131                                                                                                                                              MODULE 1 

179 

 

 

Example 9.1: Let the function f: A --> B be defined by the diagram 

 

   x   r 

   y   s 

   z   t 

 

Then f 
-1

 ({r, s}) = {y}, since only y is mapped into r or s. Also 

f
 -1

 ({r, t}) = {x, y, z} = A, since each element in A as its image r 

or t. 

 

 Example 9.2: Let f:  --->  be defined by f(x) = x
2
, and let  

    D = [4, 9] = {x  4  x  9} 

   Then 

    f -1 (D) =  {x  -3  x  -2 or 2  x  3} 

 

Example 9.3: Let f: A ---> B be any function.  Then f 
-1

 (B) = A, since 

every element in A has its image in B.  If f(A) denote the range of 

the function f, then 

 

   f 
-1

 (f(A)) = A 

 

 Further, if b  B, then 

 

   f 
-1

(b) = f 
-1

({b}) 

 Here f 
-1

 has two meanings, as the inverse of an element of B and 

as the inverse of a subset of B. 

 

3.11 Inverse Function 
 

Let f be a function of A into B.  In general, f 
-1

(b) could consist of more than 

one element or might even be empty set .  Now if f: A  B is a one-one 

function and an onto function, then for each b  B the inverse f 
-1

 (b) will 

consist of a single element in A.  We therefore have a rule that assigns to each 

b  B a unique element f 
-1

(b) in A.  Accordingly, f 
-1

 is a function of B into A 

and we can write 

    f 
-1

 : B  A 

 

In this situation, when f: A  B is one-one and onto, we call f 
-1

 the inverse 

function of f. 
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Example 10.1: Let the function f: A  B be defined by the diagram 

 

 

   a    x 

   b    y 

   c    z 

 

 

 

 

 

Notice that f is one-one and onto.  Therefore f -1, the inverse function exists 

We describe f 
-1

: B  A by the diagram 

 

 

x    a 

y    b 

z    c 

  

 

Example 6.1: Let the function f be defined by the diagram: 

 

 

   a    1 

  

   b    2 

 

   c    3  

          

 

Then f is a constant function since 3 is assigned to every element 

in A. 

 

Example 6.3: Let f:    be defined by the formula f(x) = 5.  Then f 

is a constant function since 5 is assigned to every element. 

 

 

 

 

 

f 

f 
-1
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3.9 Product Function 
 

Let f be a function of A and B and let g be a function of B, the co-domain of f, 

into C.  We illustrate the function below. 

 

 

 

  A    B    C  

           

 

Let  a  A; then its image f (x) is in B which is the domain of g.  Accordingly, we can 

find the image of f (a) under the mapping of g, that is, we can find g (f(a)).  Thus, we 

have a rule which assigns to each element aA a corresponding element (f(a)) C.  In 

other words, we have a function of A into C.  This new function is called the product 

function or composition function of f and g and it is denoted by 

 

    (g 
o
 f) or (gf) 

 

More briefly, if f: A  B and g: B  C then we define a function 

 

Notice further, that if we send the arrows in the opposite direction in the first diagram 

of f we essentially have the diagram of f 
-1

. 

 

Example 10.2: Let the function f: A  B be defined by the diagram 

 

 

   a   x 

 

   b   y 

   c    

      z 

    

 

Since f(a) = y and f(c) = y, the function f is not one-one.  

Therefore, the inverse function f 
-1

 does not exist.  As f
 -1

 (y) = {a, 

c}, we cannot assign both a and c to the element y  B. 

 

Example 10.3: Let f:   , the real numbers, be defined by f(x) = x
3
.  Notice 

that f is one-one and onto.  Hence f 
-1

:   

   exists.  In fact, we have a formula which defines the 

inverse function, f 
-1

 (x) = 
3
x. 

 

 

 

 

f g 
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3.11.1 Theorems on the inverse Function 
 

Let a function f: A  B have an inverse function f 
-1

: B  A.  Then we see by 

the diagram 

 

A
B A

 
 

That we can form the product (f 
-1

 
o
 f) which maps A into A, and we see by the 

diagram 

BA
B

 
 

That we can form the product function (f 
o
 f 

-1
) which maps B into B.  We now 

state the basic theorems on the inverse function: 

 

Theorem 4.2: Let the function f: A  B be one-one and onto; i.e. the 

inverse function f 
-1

: B  A exists.  Then the product function 

 

    (f 
-1

 
o
 f): A  A 

 

is the identity function on A, and the product function 

    (f 
o
 f 

-1
): B  B 

is the identity function on B. 

 

Theorem 4.3: Let f: A  B and g: B  A.  Then g is the inverse function of f, 

i.e. g = f – 1, if the product function (g 
o
 f): A  A is the identity 

function on A and (f 
o
 g): B  B is the identity function on B. 

 

 

 

 

 

 

 

f f 
-1

 

( f 
-1

 
o
 f) 

f 
-1

 f 

(  f  
o
  f

-1
) 
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Both conditions are necessary in Theorem 4.3 as we shall see from the  

example below 

 

 

 x   a   a 

         x 

    b   b 

 y         

    c   c  y 

 

  (a)      (b) 

 

   

Now define a function g:  B  A by the diagram (b) above. 

 

We compute (g 
o
 f): A  A, 

 (g 
o
 f)(x) = g (f(x)) = g(c) = x and 

 (g 
o
 f)(y) = g (f(y)) = g(a) = y 

Therefore the product function (g 
o
 f) is the identity function on A.  But g is not the 

inverse function of f because the product function (f 
o
 G) is not the identity function 

on B, f not being an onto function. 

 

4.0 CONCLUSION 
 

I believe that by now you fully grasp the idea of functions, mappings and 

transformations.  This knowledge will be built upon in subsequent units. 

 

5.0 SUMMARY 
 

Recall that in this unit we have studied concepts such as mapping and functions. We 

have also examined the concepts of one-to-one and onto functions. This concept has 

allowed us to explain equality between two set. We also established in the unit that the 

inverse of f: A – N usually denoted f
-1

, exit, if f is a one-to-one and onto function. 

 

6.0 TUTOR – MARKED ASSIGNMENTS 
 

1. Let the function f: R
#
  R

#
 be defined by 

f (X) = {1 if x is rational] 

 {-1 if x is irrational. 

 a. Express f in words 

b. Suppose the ordered pairs (x + y, 1) and (3, x – y) are equal.   

Find x and y. 

2. Let M = {1, 2, 3, 4, 5} and let the function f: M   be defined by 

 f(x) = x
2
 + 2x -1 

 Find the graph of f. 

3. Prove: A x (B  C) = (A x B)  (A x C) 

4. Prove A  B and C  D implies (A x C)  (B x D). 
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UNIT 5 PRODUCT SETS AND GRAPHS OF FUNCTIONS 
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1.0 Introduction 

2.0 Objectives 

3.0 Main Content  

3.1 Ordered Pairs 
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6.0 Tutor – Marked Assignments 

7.0 References/Further Reading. 

 

1.0 INTRODUCTION 
 

In this unit, we are going to define a type of set that not only gives a better 

understanding of Cartesian coordinate but also brings the concept of real-valued 

functions to the fore. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 
 

 find the ordered pairs, given two sets 

 find the ordered pairs corresponding to the points on the Cartesian coordinate 

diagram 

 find the graph of functions 

 state whether or not a set of ordered pairs of a given set, say A, is a function of 

A into itself. 
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3.0 MAIN CONTENT  

 

3.1 Ordered Pairs 
 

Intuitively, an ordered pair consists of two elements, say a and b, in which one of 

them, say a, is designated as the first element and the other as the second element.  An 

ordered pair is denoted by (a, b) 

 

Two ordered pairs (a, b) and (c, d) are equal if and only if  

a = c and b = d. 

 

Example 1.1: The ordered pairs (2, 3) and (3, 2) are different 

Example 1.2: The points in the Cartesian plane shown in fig 5.1 below 

represent ordered pairs of real numbers. 

Example 1.3: The set {2, 3} is not an ordered pair since the elements 2 and 3 

are not distinguished 

Example 1.4: Ordered pairs can have the same first and second elements such 

as (1, 1), (4, 4) and (5, 5). 

 

Although the notation (a, b) is also used to denote an open interval, the correct 

meaning will be clear from the context. 

 

Remark 5.1: An ordered pair (a, b) can be defined rigorously by 

 

  (a, b) = { {a}, {a, b} }} 

 

From this definition, the fundamental property of ordered pairs can be proven: 

 

  (a, b) = (c, d) implies a = c and b = d 

 

3.2 Product Set 
 

Let A and B be two sets.  The product set of A and B consists of all ordered pairs (a, 

b) where aA and bB.  it is denoted by   

A x B. 

 

Which reads “A cross B”.  More precisely 

    A  x  B  = { (a, b)  aA, bB} 

 

Example 2.1: Let A = {1, 2, 3} and B = {a, b}.  Then the product set 

 A x B = {(1, a), (1, b), (2, a), (2, b), (3, a) (3, b)} 

Example 2.2: Let W = {s, t}.  Then 

   W x W = {(s, s), (s, t), (t, s), (t, t)} 

Example 2.3: The Cartesian plane shown in Fig 5.1 is the product set of 

the real numbers with itself, i.e.   x   
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The product set A x B is also called the Cartesian Product of A and B.  it is 

named after the mathematician Descartes who, in the seventeenth century, first 

investigated the set  x .  It is also for this reason that  x , as pictured in 

Fig. 5.1, is called the Cartesian Plane. 

 

Remark 5.2: If set A has n elements and set B has m elements then the product 

set A x B has n times m elements, i.e. nm elements.  If either A or 

B is the null set then A x B is also the null set.  Lastly, if either A 

or B is infinite and the other is not empty, then a x B is infinite. 

 

Remark 5.3: The Cartesian product of two sets is not commutative; more 

specifically, 

 

   A  x  B    B  x  A 

 

 Unless A  =  B or one of the factors is empty. 

 

3.3 Coordinate Diagrams 
 

You are familiar with the Cartesian plane   x , as shown in Fig 5.1 below. Each 

point P represents an ordered pair (a, b) of real numbers.  A vertical through P meets 

the horizontal axis at a and a horizontal line through P meets the vertical axis at b as in 

Fig. 5.1. 

 
       Fig. 5.1 

 

The Cartesian product of any two sets, if they do not contain too many1 elements, can 

be displayed on a coordinate diagram in a similar manner.  For example, if A = {a, b, 

c, d} and B = {x, y, z}, then the coordinate diagram of A x B is as shown in Fig 5.2 

below.  Here the elements of A are displayed on the horizontal axis and the elements 

of B are displayed on the vertical axis.  Notice that the vertical lines through the 

elements of A and the horizontal lines through the elements of B meet 12 points.  

These points represent A x B in the obvious way. The point P is the ordered pair (c, 

y). 

P 
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3.4 Graph of a Function 
 

Let f be a function of A into B, that is, let f: A ---> B.  The graph f* of the function f 

consists of all ordered pairs in which aA appears as a first element and its image 

appears as its second element.  In other words, 

 

f* = {(a, b)  aA, b + f(a)}s 

 

Notice that f*, the graph of f: A --> B, is a subset of A x B. 

 
 

Example 3.1: Let the function f: A --> B be defined by the diagram 

 

  A    B 

 

  a     

 

      1 

  b 

 

  c    2 

 

  d    3 

 

 

 

Then f(a) = 2, f(b) = 3, f(c) = 2 and f(d) = 1.  Hence the graph of f 

is 

 

  F* = {(a, 2), (b, 3), (c, 2), (d, 1)} 
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Example 3.2: Let W = {1,2,3,4}.  Let the function f: W -->  be defined by 

 

     f(x) = x + 3 

 

   Then the graph of f is 

 

     f* = {(1, 4), (2, 5), (3, 6), (4, 7)} 

 

Example 3.3: Let N be the natural numbers 1, 2, 3,………Let the function g:  

N --> N be defined by 

 

 g(x) = x
3
 

 

Then the graph of g is 

 

 g* = {1,1), (2,8), (3, 27), (4, 64),…..} 

 

3.4.1 Properties of the Graph of a function 
 

Let f: A ---> B.  We recall two properties of the function f.  First, for each element 

aA there is assigned an element in B.  Secondly, there is only one element B which 

is assigned to each aA.  In view of these properties of f, the graph f* of f has the 

following two properties: 

 

Property 1: For each aA, there is an ordered pair (a, b)  f* 

Property 2: Each aA appears as the first element in only one ordered pair in f*, 

that is 

 (a, b)  f*, (a, c)  f* implies b = c 

 

 In the following examples, let A = {1,2,3,4} and  

B = {3,4,5,6} 

 

Example 4.1:   The set of ordered pairs {(1,5), (2,3), (4,6)} cannot be the graph of a 

function of A into B since it violates property 1.  Specifically, 3A and 

there is no ordered pair in which 3 is a first element. 

 

Example 4.2: The set of ordered pairs 

 

  {(1,5), (2,3), (3,6), (4,6), (2,4)}. 

  

cannot be the graph of a function of A into B since it violates 

Property 2, that is, the element 2A appears as the first element 

in two different ordered pairs (2, 3) and (2,4) 
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3.5 Graphs and Coordinate Diagrams 
 

Let f* be the graph of a function f: A  B.  As f* is a subset of A x B, it can be 

displayed, i.e. graphed, on the coordinate diagram of A x B. 
 

Example 5.1: Let f(x) = x
2
 define a function on the interval - 2 x  4.  Then 

the graph of f is displayed in Fig 5.3 below in the usual way: 

 

                                   

 

 

 

 

                                          

 

 

 

 

 

                                       

Fig 5.3 

 

Example 5.2: Let a function f: A  B be defined by the diagram shown in Fig 

5.4 below 
 

Here f*, the graph of f, consist of the ordered pairs (a, 2), (b, 3), (c, 1) and (d, 2).   

Then f* is displayed on the coordinate diagram A x B as shown in Fig 5.5 below. 

 

A   B 

         

a   1 

 

b   2 

 

c   3 

 

d 

       Fig. 5.4 

     Fig. 5.5 

 

3.5.1 Properties of Graphs of Functions on Coordinate Diagrams 
 

Let f: A  B.  Then f*, the graph of f, has the two properties listed previously: 
 

Property 1: For each a A, there is an ordered pair (a, b)  f* 

Property 2: If (a, b)  f* and (a, c)  f*, then b = c. 

Therefore, if f* is displayed on the coordinate diagram of A x B, it has the following 

two properties: 

3 

2 

1 

a b c d 

-2 -1 0 1 2 3 4 

15 

 

 

10 

 

 

 5 

 

 

 

-5 
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Property 1: Each vertical line will contain at least one point of f* 

Property 2: Each vertical line will contain only one point of f* 
 

Example 6.1: Let a = {a, b, c} and B = {1, 2, 3}.  Consider the sets of points in 

the two coordinate diagrams of A x B below. 
 

 
In (1), the vertical line through b does not contain a point of the set; hence the set of 

points cannot be the graph of a function of A into B. 
 

In (2), the vertical line through a contains two points of the set, hence this set of point 

cannot be the graph of a function of A into B. 
 

Example 6.2: The circle x
2
 + y

2
 = 9, pictured below, cannot be the graph of a 

function since there are vertical lines which contain more than 

one point of the circle. 

 

           

   

  

 

 

 

 

 

 

 

 

 

 

 

           

      
      

 

    x
2
 + y

2
 = 9 is plotted 

4 

2 

-2 

-4 

2 4 -2 -4 
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3.6    Functions as Sets of Ordered Pairs 
 

Let f* be a subset of A x B, the Cartesian product of sets A and B; and let f* have the 

two properties discussed previously: 

 

Property 1: For each a  A, there is an ordered pair (a, b) f*. 

Property 2: No two different ordered pairs in f* have the same first element. 

 

Thus, we have a rule that assigns to each element a  A, the element b  B that 

appear in the ordered pair (a, b)  f*.  Property 1 guarantees that each element in A 

will have an image, and Property 2 guarantees that the image is unique.  Accordingly, 

f* is a function of A into B. 

 

In view of the correspondence between functions f: A  B and subset of A x B with 

property 1 and property 2 above, we redefine a function by the  

 

Definition 5.1: A function f of A into B is a subset of A x B in which each a  A 

appears as the first element in one and only one ordered pair 

belonging to f. 

 

Although, this definition of a function may seem artificial, it has the  

advantage that it does not use such undefined terms as “assigns”, “rules”, 

“correspondence”. 

 

Example 7.1: Let A = (a, b, c) and B = (1, 2, 3).  Furthermore, let  

  f = {(a, 2), (c, 1), (b, 2)} 

 

 

Then f has Property 1 and Property 2.  Hence f is a function of A into B, which is also 

illustrated in the following diagram: 
 

 

  A    B 

 

  a    1  

 

  b    2 

 

  c    3   

 

Example 7.2: Let V = {1, 2, 3} and W = {a, e, I, o, u}.Also let 

 

  f + {(1, a), (2, e), (3, 1), (2, u)} 
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Then f is not a function of V into W since two different ordered pairs in f, (2, e) and 

(2, u), have the same first element.  If f is to be a function of V into W, then it cannot 

assign both e and u to the element 2V. 

 

Example 7.3: Let S = {1,2,3,4} and T = {1,3,5}.  Let 

 

  f = {(1,1), (2, 5), (4, 3)} 

 

Then f is not a function of S into T since 3S does not appear as the first element in 

any ordered pair belonging to f. 

 

The geometrical implication of Definition 5.1 is stated in. 

 

Remark 5.4: Let f be the set of points in the coordinate diagram of  

A x B.  if every vertical line contains one and only point of f, then f is a 

function of A into B. 

 

Remark 5.5: Let the function f: A  B be one-one and onto.  Then the inverse 

function f
1
 consists of those ordered pairs which when reversed, i.e. 

permuted, belong to f. More specifically, 

 

 f
1
 = {(b, a)  (a, b)  f} 

3.7 Product Sets in General 
 

The concept of a product set can be extended to more than two sets in a natural way.  

The Cartesian product of sets A, B, and C, denoted by 

 

   A  x B x C 

 

Consists of all ordered triplets (a, b, c) where aA, bB and cC.  Analogously, the 

Cartesian product of n sets A1, A2,……An, denoted by 

   A1 x A2 x… x An 

 

Consists of all ordered n-tuples (a1, a2,…,an) where a1A,…., anA.  Here an ordered 

n-tuple has the obvious intuitive meaning, that is,, it consists of n elements, not 

necessarily distinct, in which one of them is designated as the first element, another as 

the second element, etc. 

 

Example 8.1: In three-dimensional Euclidean geometry each point represents 

an ordered triplet, i.e. its x-component, its y-component and its z 

– component. 
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Example 8.2: Let A = {a, b}, B = {1, 2, 3} and C = {x, y}.  Then 

   

  A x B x C  = {(a, 1, x), (a, 1, y), (a, 2, x) 

    (a, 2, y), (a, 3, x), (a, 3, y) 

    (b, 1, x), (b, 1, y), (b, 2, x) 

    (b, 2, y), (b, 3, x), (b, 3, y) 

 

4.0 CONCLUSION 
 

In this unit you have studied concepts such as ordered pairs, product sets, co-ordinate 

diagram, functions as set of ordered pairs. 

 

We have also learnt about how to represent function on a graph. We require the 

mastery of the above concepts in the understanding of the subsequent units. 

 

5.0 SUMMARY 
 

That an ordered pair is denoted by (a, B), a  A and b  B. Two ordered pairs (a, b) 

and (c, d) are if and only if a = c, and b = d. 

 

That is A and B are two sets such that a  A and bB them the product of A and B is 

denoted by A × B = {(a, b)} a  A, b  B} 

 

That the Cartesian place is the product set of real number with itself i.e 

IR × IR  

 

That the concept of product can be extended to more than two sets in a 

natural ways i.e if A, B and C are sets then the product of A, B and C is 

denoted as 

A × B × C = {(a, b, c) a  A, b  B, c C} 

 

Generally the Cartesian product of n sets A1, A2, ……..An is denoted by 

 
A1 A2 A3 …. × An = {(a1, a2, a3 ……an)} 

a1 A1, a2 A2 ………, an  An } 

 

6.0 TUTOR-MARKED ASSIGNMENTS 
 

1. Suppose the ordered pairs (x + y, 1) and (3, x – y) are equal.  Find x and y. 

2. Let M = {1,2,3,4,5} and let the function f: M   be defined by 

    f(x) = x
2
 + 2x – 1 

 Find the graph of f. 

 

3. Prove: A x (B  C) = ( A x B)  (A x C) 

4. Prove A  B and C  D implies (A x C)  (B x D). 
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