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1.0 INTRODUCTION 
 
Let f be a real-valued function defined on the interval [a, b] and we denote f(xk) by fk. 
Suppose that the values of the function f(x) are given to be f0, f1, f2, …, fn when x = x0, 
x1, x2, …, xn respectively where x0< x1< x2 … <xn lying in the interval [a, b]. The 
function f(x) may not be known to us. The technique of determining an approximate 
value of f(x) for a non-tabular value of x which lies in the interval [a, b] is called 
interpolation. The process of determining the value of f(x) for a value of x lying 
outside the interval [a, b] is called extrapolation. In this unit, we derive a polynomial 
P(x) of degree n which agrees with the values of f(x) at the given (n + 1) distinct 
points, called nodes or abscissas. In other words, we can find a polynomial P(x) such 
that P(xj) = fj, j = 0, 1, 2, …, n. such a polynomial P(x) is called the interpolating 
polynomial of f(x). 
 
In section 3.1 we prove the existence of an interpolating polynomial by actually 
constructing one such polynomial having the desired property. The uniqueness is 
proved by invoking the corollary of the fundamental theorem of Algebra. In section 
3.2 we derive general expression for error in approximating the function by the 
interpolating polynomial at a point and this allows us to calculate a bound on the error 
over an interval. In proving this we make use of the general Rolle’s theorem. 
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2.0 OBJECTIVES 
At the end of this unit, you should be able to: 
 find the Lagrange’s form of interpolating polynomial interpolating f(x) at n + 1 

distinct nodal points 
 compute the approximate value of f at a non-tabular point 
 compute the value of x  (approximately) given a number y  such that f( x ) = ( y

) (inverse interpolation) 
 compute the error committed in interpolation, if the function is known, at a 

non-tabular point interest 
 find an upper bound in the magnitude of the error. 
 
3.0 MAIN CONTENT 
 
3.1 Lagrange’s Form 
 
Let us recall the fundamental theorem of algebra and its useful corollaries. 
 
Theorem 1 
 
If P(x) is a polynomial of degree n  1, that is P(x) = anx

n + an-1x
n-1 + … + a1x + a0, …, 

an real or complex numbers and an  0, then P(x) has at least one zero, that is, there 
exists a real or complex number  such that p( )= 0. 

 
Lemma 1 
 
If z1, z2, …, zk are distinct zeros of the polynomial P(x), then 
 

P(x) = (x – z1) (x – z2) … (x – zk)R(x) 
 
for some polynomial R(x). 
 
Corollary 
 
If Pk(x) and Qk(x) are the two polynomials of degree £  k which agree at the k + 1 
distinct points  z0, z1, z2, …, zk then Pk(x) = Qk(x) identically. 
 
You have come across Rolle’s theorem in the perquisite course.  But we need a 
generalized version of this theorem . (General Error Term). This is stated below. 
 
 

Theorem 2 
 

(GeneralisedRolle’s Theorem). Let f be a real-valued function defined on [a, b] which 
is n times differentiable on ]a, b[. If f vanishes at the n + 1 distinct points x0, …, xn in 
[a, b], then a number c in ]a, b[ exists such that f(n) (c) = 0. 
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We now show the existence of an interpolating polynomial and also show that it is 
unique. The form of the interpolating polynomial that we are going to discuss in this 
section is called the Lagrange’s form of the interpolating polynomial. We start with a 
relevant theorem. 
 
Theorem 3: Let x0, x1, … xn be n + 1 distinct points on the real line and let f(x) be a 
real-valued function defined on some interval I = [a, b] containing these points. Then, 
there exists exactly one polynomial Pn(x) of degree n, which interpolates f(x) at x0, … 
xn, that is, Pn(xj) = f(xj), i = 0, 1, 2, …, n. 
 
Proof: First we discuss the uniqueness of the interpolating polynomial, and then 
exhibit one explicit construction of an interpolating polynomial (Lagrange’s Form). 
 
Let Pn(x) and Qn(x) be two distinct interpolating polynomials of degree  n, which 
interpolate f(x) at (n + 1) distinct points x0, x1, … xn. Let h(x) = Pn(x) - Qn(x). Note 
that h(x) is also a polynomial of degree  n. Also 
 

h(xj) = Pn(xj) - Qn(xj) = f(xj) - f(xj) = 0, i = 0, 1, 2, …, n. 
 
That is, h(x) has (n + 1) distinct zeros. But h(x) is of degree £  n and from the 
Corollary to Lemma 1, we have h(x) º  0. That is Pn(x) Qn(x). This proves the 
uniqueness of the polynomial. 
 
Since the data is given at the points (x0, f0), (x1, f1), …, (xn, fn) let the required 
polynomial be written as  
 

Pn(xj) = L0(x)f0 + L1(x)f1 + … + Ln(x)fn = 


n

i 0

 Li(x)fi  (1) 

 
Setting x = xj in (1), we get 
 

Pn(xj) = 


n

i 0

 Li(xj)fi       (2) 

 
 

 
Since this polynomial fits the data exactly, we must have 
 
  Lj(xj) = 1 
and  Lj(xj) = 0, i   j 
or  Lj(xj) = ij       (3) 
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The polynomial Li(x) which are of degrees £  n are called the Lagrange fundamental 
polynomials. It is easily verified that these polynomial are given by 
 

Lj(x) = 0 1 i 1 i 1 n

i 0 i 1 i i 1 i i 1 i n

(x x )(x x )...(x x )(x x )...(x x )

(x x )(x x )...(x x )(x x )...( x x )
- +

- +

- - - - -

- - - - -
 

 

        =



n

ji
i 0

(x – xj)/



n

ji
i 0

(xi – xj)     (4) 

 
Substituting of (4) in (1) gives the required Lagrange form of the interpolating 
polynomial. 
 
Remark 
 
The Lagrange form (Eqn. (1)) of interpolating polynomial makes it easy to show the 
existence of an interpolating polynomial. But its evaluation at a point xi involves a lot 
computation. 
 
A more serious drawback of the Lagrange form arises in practice due to the following: 
One calculates a linear polynomial P1(x), a quadratic polynomial P2(x) e.t.c., by 
increasing the number of interpolation points, until a satisfactory approximationto f(x) 
has been found. In such a situation Lagrange form does not take any advantage of the 
availability of Pk-1(x) in calculating Pk(x). Later on, we shall see how in this respect, 
Newton form, discussed in the next unit, is more useful. 
 
Let us consider some example to construct this form of interpolation polynomials. 
 
Example 1 
 
If f(1) = -3, f(3) = 9, f(4) = 30 and f(6) = 132, find the Lagrange’s interpolation 
polynomial of f(x). 
 
 
Solution 
 
We have x0 = 1, x1 = 3, x2 = 4, x3 = 6 and f0 = -3, f1 = 9,  f2 = 30, f3 = 132. 
 
The Lagrange’s interpolating polynomial P(x) is given by 
 

P(x) = L0(x)f0 + L1(x)f1 + L2(x)f2 + L3(x)f3   (5) 
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where 
 

L0(x) = 1 2 3

0 1 0 2 0 3

(x x )(x x )(x x )

(x x )(x x )(x x )

- - -

- - -
 

= 
(x 3)(x 4)(x 6)

(1 3)(1 4)(1 6)

- - -

- - -
 

 

= 
1

30
 (x3 – 13x2 + 54x – 72) 

 

L1(x) = 0 2 3

1 0 1 2 1 3

(x x )(x x )(x x )

(x x )(x x )(x x )

- - -

- - -
 

 

 = 
(x 1)(x 4)(x 6)

(3 1)(3 4)(3 6)

- - -

- - -
 

 

 = 
1

6
 (x3 – 11x2 + 34x – 24) 

 

L2(x)  = 0 1 3

2 0 2 1 2 3

(x x )(x x )(x x )

(x x )(x x )(x x )

- - -

- - -
 

 

 = 
(x 1)(x 4)(x 6)

(4 1)(4 3)(4 6)

- - -

- - -
 

 

= 
1

6
 (x3 – 10x2 + 27x – 18) 

 

L3(x)  = 0 1 2

3 0 3 1 3 2

(x x )(x x )(x x )

(x x )(x x )(x x )

- - -

- - -
 

 

 = 
(x 1)(x 3)(x 4)

(6 1)(6 3)(6 4)

- - -

- - -
 

 

 = 
1

30
 (x3 – 8x2 + 19x – 12) 

 
Substituting Lj(x) and fjj = 0, 1, 2, 3 in Eqn. (5), we get 
 

P(x) = -
1

30
 [x3 – 13x2 + 54x – 72] (-3) + 

1

6
 [x3 – 11x2 + 34x – 24] (9) 
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- 
1

6
 [x3 – 10x2 + 27x – 18] (30) + 

1

30
[x3 – 8x2 + 19x – 12]  (132) 

       = 
1

10
[x3 – 13x2 + 54x – 72] + 

2

3
 [x3 – 11x2 + 34x – 24] 

 -5 [x3 – 10x2 + 27x – 18] + 
22

5
[x3 – 8x2 = 19x – 12] 

which gives on simplification 
 
P(x) = x3 – 3x2 = 5x – 6 
 
which is the Lagrange’s interpolating polynomial of f(x). 
 
Example 2 
 
Using Lagrange’s interpolation formula, find the value of f when x = 1.4 from the 
following table. 
 

x               1.2                 1.7                  1.8                 2.0 
f             3.3201           5.4739           6.0496           7.3891 

 
Solution 
 

the Lagrange’s interpolating formula with 4 points is 
 

P(x)= 1 2 3

0 1 0 2 0 3

(x x )(x x )(x x )

(x x )(x x )(x x )

- - -

- - -
f0 + 0 2 3

1 0 1 2 1 3

(x x )(x x )(x x )

(x x )(x x )(x x )

- - -

- - -
f1 + 

 

0 1 3

2 0 2 1 2 3

(x x )(x x )(x x )

(x x )(x x )(x x )

- - -

- - -
 f2 + 0 1 2

3 0 3 1 3 2

(x x )(x x )(x x )

(x x )(x x )(x x )

- - -

- - -
f3 (6) 

 
Substituting 
 
x0 = 1.2, x1 = 1.7, x2 = 1.8, x3 = 2.0 and 
f0 = 3.3201, f1 = 5.4739, f2 = 6.0496, f3 = 7.3891 
 
in (6), we get 

P(x) = 
(x 1.7)(x 1.8)(x 2.0)

(1.2 1.7)(1.2 1.8)(1.2 2.0)

- - -

- - -
* 3.3201 + 

 

 
(x 1.2)(x 1.8)(x 2.0)

(1.7 1.2)(1.7 1.8)(1.7 2.0)

- - -

- - -
* 5.4739 + 

 
(x 1.2)(x 1.7)(x 2.0)

(1.8 1.2)(1.8 1.7)(1.8 2.0)

- - -

- - -
* 6.0496 + 
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(x 1.2)(x 1.7)(x 1.8)

(2.0 1.2)(2.0 1.7)(2.0 1.8)

- - -

- - -
* 7.3891   (7) 

 
Putting x = 1.4 on both sides of (7), we get 
 

f (1.4) = P (1.4) = 
(1.4 1.7)(1.4 1.8)(1.4 2.0)

( 0.5)( 0.6)( 0.8)

- - -

- - -
 *  3.3201 + 

   
(1.4 1.2)(1.4 1.8)(1.4 2.0)

(0.5)( 0.1)(0.3)

- - -

-
 * 5.4739 + 

 

  
(1.4 1.2)(1.4 1.7)(1.4 2.0)

(0.6)(0.1)( 0.2)

- - -

-
  * 6.0496 + 

 

  
(1.4 1.2)(1.4 1.7)(1.4 1.8)

(0.8)(0.3)(0.2)

- - -
 * 7.3891 

 

   =
( 0.3)( 0.4)( 0.6)

( 0.5)( 0.6)( 0.8)

- - -

- - -
* 3.3201 + 

   

   
(0.2)( 0.4)( 0.6)

(0.5)( 0.1)( 0.3)

- -

- -
* 5.4739 + 

 

   
(0.2)( 0.3)( 0.6)

(0.6)(0.1)( 0.2)

- -

-
* 6.0496 + 

 

   
(0.2)( 0.3)( 0.4)

(0.8)(0.3)(0.2)

- -
 * 7.3891 

   = 0.99603 + 17.51648 – 18.1488 + 3.69455 
   = 4.05826 
  
          Therefore f(x) = 4.05826. 
 
3.2 Inverse Interpolation 
In inverse interpolation for a table of values of x and y = f(x), one is given a number 
y  and wishes to find the point x  so that f( x ) = y , where f(x) is the tabulated 

function. This problem can always be solved if f(x) is (continuous/and) strictly 
increasing or decreasing (that is, the inverse of f exists). This is done by considering 
the table of values xi, f(xi), i = 0, 1, …, n to be a table of values yi g(yi), i = 0, 1, 2, …, 
n for the inverse function g(y) = fn-1(y) = x by taking yi = f(xi), g(yi) = xi, i = 0, 1, 2, 
…, n. Then we can interpolate for the unknown value g( y ) in this table. 
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Pn( y ) = 
 
  





n

i
ix

0

n

ji
0i ji

j

y-y

y-y
 

 

and x =Pn( y ). This process is called inverse interpolation. 

 
Let us consider some examples. 
 
Example 3 
 
From the following table, find the Lagrange’s interpolating polynomial which agrees 
with the values of x at the given values of y. Hence find the value of x when y = 2. 
 

x               1                  19                  49                 101 
y               1                   3                    4                    5 

 
Solution 
 

Let x = g(y). the Lagrange’s interpolating polynomial P(y) of g(y) is given by 
 

P(y) = 
(y 3)(y 4)(y 5)

(1 3)(1 4)(1 5)

- - -

- - -
* 1 + 

(y 1)(y 4)(y 5)

(3 1)(3 4)(3 5)

- - -

- - -
* 19 

 

 + 
(y 1)(y 3)(y 5)

(4 1)(4 3)(4 5)

- - -

- - -
* 49 + 

(y 1)(y 3)(y 4)

(5 1)(5 3)(5 4)

- - -

- - -
* 101 

 

 = -
1

24
 [y3 – 12y2 + 47y – 60] + 

19

4
 [y3 – 10y2 + 29y – 20] 

 

    -
49

3
 [y3 – 9y2 + 23y – 15] + 

101

8
 [y3 – 8y2 + 19y – 12] 

which, on simplification, gives 
 
P(y) = y3 – y2 + 1. 
The Lagrange’s interpolating polynomial of x is given by P(y). 
 
There fore, x = P(y) = y3 – y2 + 1 
 
Therefore, when y = 2, x = P(2) = 5. 
 
Example 4 
 

Find the value of x when y = 3 from the following table of values. 
 
 
 

x               4                   7                  10                   12 
y              -1                   1                    2                    4 
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Solution 
 
The Lagrange’s interpolation polynomial of x is given by 
 

P(y) = 
(y 1)(y 2)(y 4)

( 2)( 3)( 5)

- - -

- - -
 (4) + 

(y 1)(y 2)(y 4)

2(1)( 3)

+ - -

-
 (7) 

 

 + 
(y 1)(y 1)(y 4)

(3)(1)( 2)

+ - -

-
 (10) + 

(y 1)(y 1)(y 2)

(5) (3) (2)

+ - -
 (12) 

 

Therefore P(3) = 
(2) (1) ( 1)

(2) (3) (5)

-

-
 (4) + 

(4) (1) ( 1)

(2) (3)

-
 (7) 

 

+ 
(4) (2) ( 1)

(3) (2)

-

-
 (10) + 

(4) (2) (1)

(5)(3) (2)
 (12) 

 

= 
4 14 40 48

15 3 3 15
- + +  

 

= 
182

15
 = 12.1333 

 
Hence, x(3) = P(3) = 12. 1333. 
 

Now we are going to find the error committed in approximating the value of the 
function by Pn(x). 
 
3.3 General Error Term 
 

Let En(x) = f(x) – Pn(x) be the error involved in approximating the function f(x) by an 
interpolating polynomial. We derive an expression for En(x) in the following theorem. 
This result helps us in estimating a useful bound on the error as explained in an 
example. 
 
Theorem 4 
 

Let x0, x1, …, xn be distinct numbers in the interval [a, b] and f has (continuous) 
derivatives upto order (n + 1) in the open interval ]a, b[. if Pn(x) is the interpolating 
polynomial of degree   n, which interpolates f(x) at the points x0, …, xn, then for each 
x  [a, b], a number )(x  in ]a, b[ exists such that 

 

En(x) = f(x) – Pn(x) =
   
 

    n

n

xxxxxx
n

xf






.......
!1

)(
10

1 
  (8) 
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Proof 
 

If x  xk for any k = 0, 1, 2, …, n, define the function g for t in [a, b] by 
 

g(t) = f(t) – Pn(t) – [f(x) – Pn(x)]
 
 

 

n

j j

j

xx

xt

0

. 

 
since f(t) has continuous derivatives up to order (n + 1) and P(t) ha derivatives of all 
orders, g(t) has continuous derivatives upto (n + 1) order. Now, for k = 0, 1, 2, …, n, 
we have 
 

g(xk) = f(xk) = Pn(xk) – [f(x) - Pn(x)] 
 
 

 

n

j j

jk

xx

xx

0

. 

         = 0 – [f(x) - Pn(x)].0 = 0 
 

Furthermore, g(x) = f(x) - Pn(x) - [f(x) - Pn(x)] 
 
 

 

n

j j

j

xx

xx

0

. 

   
          = f(x) - Pn(x) - [f(x) - Pn(x)]. 1 = 0 
 
Thus g has continuous derivatives upto order (n + 1) and g vanishes at the (n + 2) 
distinct points x, x0, …, xn. By the generalized Rolle’s Theorem (Theorem 2) there 
exists )(x in ]a, b[ for which g(n+1)

)(x  = 0. Differentiating g(t), (n + 1) times (with 

respect to t) and evaluating at )(x  i, we get 

 

0 = g(n+1)
)(x  = f(n+1)

)(x – (n + 1)!

 





n

i
i

n

xx

xPxf

0

)]()([
 

Simplifying we get (error at x = x ) 
 

 En( x ) = f( x ) – Pn( x ) =  
   
 








n

i

n

i
n

xf
xx

0

1

!1


  (9) 

 
The error formula (Eqn. (9)) derived above, is an important theoretical results because 
Lagrange interpolating polynomials are extensively used in deriving important 
formulae for numerical differentiation and numerical integration. 
 

It is to be noted that  x   depends on the point x  at which the error estimate is 

required. This dependence need not even be continuous. This error formula is of 
limited utility since f(n+1)(x) is not known (when we are given a set of data at specific 
nodes) and the point x  is hardly known. But the formula can be used to obtain a 

bound on the error of interpolating polynomial. Let us see how, by an example. 
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Example 5 
 
 The following table gives the values of f(x) = ex. If we fit an interpolating polynomial 
of degree four to the data, find the magnitude of the maximum possible error in the 
computed value of f(x) when x = 1.25. 
 
 
 
 
Solution 
 
From Eqn. (9), the magnitude of the error associated with the 4th degree polynomial 
approximation is given by 
 

E4(x)=      
   

!5

5

43210

f
xxxxxxxxxx   

          =      
   

!5
6.15.14.13.12.1

5 f
xxxxx       (10)  

Since f(x) = cx, f(5)(x) = ex. 
 
When x lies in the interval [1.2, 1.6], 
 
Max f(5)(x) = e1.6 = 4.9530               (11) 
 
Substituting (11) in (10), and putting x = 1.25, the upper bound on the magnitude of 
the error 
 

= (0.05 (-0.05) (-0.15) (-0.25) (-0.35)*
4.9530

120
 

= 0.00000135. 
 
4.0 CONCLUSION 
 
Let us take a brief look at what you have studied in this unit as the concluding path of 
this unit to the summary. 
 
5.0 SUMMARY 
 

In this unit, we have seen how to derive the Lagrange’s form of interpolating 
polynomial for a given data. It has been shown that he interpolating polynomial for a 
given data is unique. Moreover the Lagrange form of interpolating polynomial can be 
determined for equally spaced or unequally spaced nodes. We have also seen how the 
Lagrange’s interpolation formula can be applied with y as the independent variable 
and x as the dependent variable so that the value of x corresponding to a given value 
of y can be calculated approximately when some conditions are satisfied. Finally, we 

x           1.2            1.3              1.4              1.5             1.6 

y         3.3201      3.6692       4.0552        4.4817      4.9530 



MTH 213          MODULE 1 

12 
 

have derived the general error formula and its use has been illustrated to judge the 
accuracy of our calculation. The mathematical formulae derived in this unit are listed 
below for your easy reference. 
 
1) Lagrange’s Form 

 Pn(x) =   )(
0

xLxf i

n

i
i



 

 where 

 Li(x) =    


































 






n

ij
j

ji

n

ij
j

j xxxx
00

/  

 
2) Inverse Interpolation 

 Pn(y) = 
 
 

























n

ij
j ji

j
n

i
i

yy

yy
x

00

 

 
3) Interpolation Error 
 

 En( x ) = f( x ) – Pn( x ) =  
   
 








n

i

n

i
n

xf
xx

0

1

!1



 
 

6.0 TUTOR-MARKED ASSIGNMENT 
 
i Show that 

a) 


n

i 0

Li (x) = 1 

 

b) 


n

i 0

Li (x) k

ix  = xk, k   n 

where Li(x) are Lagrange fundamental polynomials 

ii Let w(x) =  



n

k
kxx

0

. Show that the interpolating polynomial of degree  n 

with the nodes x0, x1, …,xn can be written as 

Pn(x) = w(x) 


n

i 0

k

k k

f(x )

(x x )w '(x )-
 

iii Find the Lagrange’s interpolation polynomial of f(x) from the following data. 
Hence obtain f(2). 

 

 
 
 

x               0                   1                    4                    5 

f(x)           8                  11                  68                 123 
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iv Find the value of y when x = 6 from the following table: 
 
 
 
 
 
v Using the Lagrange’s interpolation formula, find the value of y when x = 10. 
 
 
 
 
vi For the data of Example 5 with last one omitted, i.e., considering only first four 

nodes, if we fit a polynomial of degree 3, find an estimate of the magnitude of 
the error in the computed value of f(x) when x = 1.25. Also find an upper 
bound in the magnitude of the error. 

 
 
vii Find the value of x when y = 4 from the table given below: 
 
 
 
 
viii Using Lagrange’s interpolation formula, find the value of f(4) from the 

following data: 
 
 
 
 
 
7.0 REFERENCES/FURTHER READINGS 
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McGraw – Hill N.Y. 
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x               1                   2                    7                    8 

y               4                   5                    5                    4 

x               5                   6                    9                    11 

y              12                13                   14                   16 

x           8            16              20              72             

y         -1              1                3                5      

x           8            16              20              72             

y         -1              1                3                5      
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UNIT 2  NEWTON FORM OF THE INTERPOLATING 
POLYNOMIAL 
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1.0 INTRODUCTION 
 
The Lagrange’s form of the interpolating polynomial derived in Unit 1 has some 
drawbacks compared to Newton form of interpolating polynomial that we are going to 
consider now. 
 
In practice, one is often not sure as to how many interpolation points to use. One often 
calculates P1(x), P2(x), … increasing the number of interpolation points, and hence the 
degrees of the interpolating polynomials till one gets a satisfactory approximation 
Pk(x), no advantage is taken of the fact that one has already constructed Pk-1(x), 
whereas in Newton form it is not so. 
 
Before deriving Newton’s general form of interpolating polynomial, we introduce the 
concept of divided difference and the tabular representation of divided differences. 
Also the error of the interpolating polynomial in this case is derived in terms of 
divided differences. Using the two different expressions for the error term we get a 
relationship between nth order divided difference and nth order derivative. 
 

2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 

 obtain a divided difference in terms of function values 
 form a table of divided differences and find divided differences with a given set 

of arguments from the table 
 show that divided difference is independent of the order of its arguments 
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 obtain the Newton’s divided differences interpolating polynomial for a given 
data 

 find an estimate of f(x) for a given non-tabular value of x from a table of values 
of x and y [f(x)] 

 relate the kth order derivative of f(x) with the kth order divided difference from 
the expression for the error term. 

 
3.0 MAIN CONTENTS 
 
3.1 Divided Differences 
 
Suppose that we have determined a polynomial Pk-1(x) of degree £  k – 1 which 
interpolates f(x) at the points x0, x1, …xk-1. In order to make use of Pk-1(x) in 
calculating Pk(x) we consider the following problem: What function g(x) should be 
added to Pk-1(x) to get Pk(x)? Let g(x) = Pk(x). - Pk-1(x). Now, g(x0 is a polynomial of 
degree £  k and g(xi) = Pk(xi) - Pk-1(xi) = f(xi) - f(xi) = 0 for i = 0, 1, …, k – 1. 
 
Suppose that Pn(x) is the Lagrange polynomial of degree at most n that agrees with the 
function f at the distinct numbers x0, x1, …xn. Pn(x) can have the following 
representation, called Newton form. 
 
Pn(x) = A0 + A1 (x1 – x0) + A1 (x1 – x0) (x – x1) + …  

+ An (x – x0)…(x – xn-1)    (1) 
 
for appropriate constant A0, A1, …, An. 
 
Evaluating Pn(x) (Eqn. (1)) at x0 we get A0 = Pn(x0). Similarly when Pn(x) is evaluated 

at x1, we get A1= 1

1 0

f(x) f(x )

x x

-

-
. Let us introduce the notation for divided differences 

and define it at this stage: The zeroeth divided difference of the function f, with 
respect to xi, is denoted by f[xi] and is simply the evaluation of f at xi, that is, f[xi] = 
f(xi). the first divided difference of f with respect to xi and xi+1 is denoted by f[xi, xi+1] 
and defined as 
 

f[xi, xi+1] = i 1 i

i 1 i

f[x ] f[x ]

x x
+

+

-

-
 

 
The remaining divided differences of higher orders are defined inductively as follows. 
The kth divided differences relative to xi, xi+1, …, xi+k is defined as 
 

f[xi, xi+1, …, xi+k] = i 1 i k i i k 1

i k i

f[x ..., x ] f[x , ..., x ]

x x
+ + + -

+

-

-
. 
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where the (k – 1)st divided differences f[xi, ….., xi+k] have been determined. This 
shows that kth divided difference is the divided differences of (k – 1)st divided 
differences justifying the name. The divided difference f[xi, x2, …., xk] is invariant 
under all permutations of the arguments xi, x2, …., xk. To show this we proceed giving 
another expression for the divided difference. 
 
For any integer k between 0 and n. let Qk(x) be the sum of the first k + 1 terms in form 
(1), i.e. 
 
Qk(x) = A0 + A1 (x – x0) + … + Ak(x – x0)…(x – xk-1).. 
 
Since each of the remaining terms in Eqn. (1) has the factor (x – x0) (x – x1)…(x – xk), 
Eqn. (1) can be rewritten as 
 
Pn(x) = Qk(x) + (x – x0)…(x – xk) R(x) for some polynomial R(x). as the term (x – 
x0)(x – x1)…(x – xk)R(x) vanishes at each of the points x0, … xk, we have f(xi) = Pn(xi) 
= Qk(xi), i = 0, 1, 2, …, k. Since Qk(x) is a polynomial of degree £  k, by uniqueness 
of interpolating polynomial Qk(x) = Pk(x). 
 
This shows that Pn(x) can be constructed step by step with the addition of the next 
term in Eqn. (1), as one construct the sequence P0(x), P1(x) … with Pk(x) obtained 
from Pk-1(x) in the form 
 
Pk(x) = Pk-1(x) + Ak(x – x0)…(x – xk-1)     (2) 
 
That is, g(x) is a polynomial of degree £  k having (at least) the k distinct zeros x0, …, 
xk-1. 
 
\ Pk(x) - Pk-1(x) = g(x) = Ak(x – x0)…(x – xk-1), for some constant Ak. this constant Ak 
is called the kth divided difference of f(x) at the points x0, …, xk for reasons discussed 
below and is denoted by f[x0, x1, …, xk]. this coefficient depends only on the values of 
f(x) at the point x0, …, xk. thus Eqn. (2) can be written as 
Pk(x) =Pk-1(x) + f[x0, …,xk] (x – x0)…(x – xk-1), 
 
since (x – x0) (x – x1)…(x – xk-1) = xk + a polynomial of degree < k, 
we can rewrite Pk(x) s Pk(x) = f[x0, …, xk] x

k + apolynomial of  
degree < k          (4) 
 
(as Pk-1(x) is a polynomial of degree < k). 
 

But considering the Lagrange form of interpolating polynomial we have 
 

Pk(x) =  
 
 


 

k

ij
j ji

j
k

i
i

xx

xx
xf

00
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= 
 

 






























k

i
k

ji
j

ji

k

i

xx

xf

0

0


xk + a polynomial of degree < k. 

 
Therefore, on comparison with Eqn. (4) we have 
 

f[x0, …, xk] =        
  

k

i kiiii

i

xxxxxxxx

xf

0 11110 .........

)(
 (5) 

 
This shows that 
 
f[y0, …, yk] = f[x0, …, xk] 
 
if y0, …, yk is a reordering of the sequence x0, …, xk. We have defined the zeroeth 
divided difference of f(x) at x0 by f[x0] = f(x0) which is consistent with Eqn. (5). 
 
For k = 1, we have from Eqn. (5) 
 

f[x0, xk] = 0

0 1

f(x )

x x-
 + 1

1 0

f(x )

x x-
 + 0 1

0 1

f(x ) f(x )

x x

-

-
 = 1 0

1 0

f[x ] f[x ]

x x

-

-
 

 
This shows that the first divided difference is really a divided difference of divided  
differences. 
 
We show below in Theorem 1 that for k> 2 
 

f[x0, …, xk] = 1 k 0 k 1

k 0

f[x , ...., x ] f[x ...., x ]

x x
--

-
    (6) 

 
This shows that the kth divided difference is the divided difference of (k – 1)st divided 
differences justifying the name. If M = (x0, …,xn) and N denotes any n – 1 elements of 
M and the remaining two elements are denoted by a  and b , then 

 
(f[x0,.., xn= 
[(n 1st divided difference on N and (n 1)st divided difference on N and ]- a - - b

a - b
 (7) 

 
Theorem 1: 

f[x0,.., xj] = 1 j 0 1 j 1

j 0

f[x , ...., x ] f[x , x ...., x ]

x x
--

-
    (8) 
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Proof: Let Pi-1(x) be the polynomial of degree £  i – 1 which interpolates f(x) at x0, 
…, xi-1 and let Qj-1(x) be the polynomial of degree   j – 1 which interpolates f(x) at 
the points x1, …, xj. Let us define P(x) as 
 

P(x) = 0

j 0

x x

x x

-

-
 Qj-1(x) + j

j 0

x x

x x

-

-
 Pj-1(x). 

 
This is a polynomial of degree £  j, and P(xi) = f(xi) for i = 0, 1, …, j. By uniqueness 
of the interpolating polynomial we have P(x) = Pj(x). Therefore 
 

Pj(x) 0

j 0

x x

x x

-

-
 Qj-1(x) + j

j 0

x x

x x

-

-
 Pj-1(x). 

 
Equating the coefficient of xj from both sides of Eqn. (8), we obtain (leading) 
coefficient of 
 

xj in Pj(x) = 
j 1

j 0

leading coefficient of Q (x)

x x

-

-
 

      -
j 1

j 0

leading coefficient of P (x)

x x

-

-
 

 

That is f[x0, ...,xj] = 1 j 0 j 1

j 0

f[x , ...., x ] f[x , ...., x ]

x x
--

-
. 

 
We now illustrate this theorem with the help of a few examples but before that we 
give the table of divided differences of various orders. 
 
 
Table of divided differences 
 
Suppose we denote, for convenience, a first order divided difference of f(x) with any 
two arguments by f[.,.], a second order divided difference with any three arguments by 
f[.,.,.] and so on. Then the table of divided difference can be written as follows 
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Table 1 
 

x                  f[.]                f[.,.]                 f[.,.,.]          f[.,.,.,.]             f[.,.,.,.,.] 

x0                 f0 

                                          f[x0,x1] 
x1                 f1                                                               f[x0,x1x2] 
                                          f[x1,x2]                             f[x0,x1x2x3] 
x2                           f2                                                                f[x1,x2x3]                          f[x0,x1x2x3x4] 
                                          f[x2,x3]                              f[x1x2x3x4] 
x3                           f3                                                                f[x2x3x4] 
                                          f[x3,x4] 
x4                           f4 

 
Example 1:  If f(x) = x3, find the value of f[a, b, c]. 
 

Solution: f[a, b] = 
f(b) f(a)

b a

-

-
 = 

3 3b a

b a

-

-
 

 
   = b2 + ba + a2 = a2 + ab + b2 
 
Similarly, 
f[a, b] = c2 + cb + b2 = b2 + bc + c2 
 

f[a, b, c] = 
f[b, c] f[a, b]

c a

-

-
 

 

= 
2 2 2 2

(b bc c ) (a ab b )

c a

+ + - + +

-
 

 

= 
2 2(c a ) b(c a)

c a

- + -

-
 

 

= 
(c a)(c a b)

(c a)

- + +

-
 

 
= a + b + c 

 
f[a, b, c] = a + b + c. 
 

Example 2: If f(x) = 
1

x
, show that 

  f[a, b, c, d] = -
1

abcd
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Solution: f[a, b] = 

1 1

b a
b a

-

-
 = 

a b

ab(b a)

-

-
 = -

1

ab
 

 
Similarly, 
 

f[b, c] = -
1

bc
, f[c, d] = -

1

cd
 

 

f[a, b, c] = 

1 1 1 1

bc ab ab bc
c a c a

+ -
=

- -
 

 

= 




















ac
abc

ac

= 
1

abc
 

Similarly, 

f[b, c, d] = 
1

bcd
 

 

howeverf[a, b, c, d] = 























ac
abc

ac

 = 
1

abc
 

 

   = 























ad
abcd

da

 

 

  = -
1

abcd
 

Consequently, f[a, b, c, d] = -
1

abcd
 

 
In next section we shall make use of the divided difference to derive Newton’s general 
form of interpolating polynomial. 
 
3.2 Newton’s General Form of Interpolating Polynomial 
 

In section 3.1 we have shown how Pn(x) can be constructed step by step as one 
construct the sequence P0(x), P1(x), P2(x), ..., with Pk(x) obtained from Pk-1(x) with the 
addition of the next term in Eqn. (3), that is, 
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Pk(x) = Pk-1(x) + (x – x0) (x – x1)...(x – xk-1) f[x0, ..., xk] 
Using this Eqn. (1) ca be rewritten as 
 
Pn(x) = f[x0] + (x – x0) f[x0,x1] + (x – x0) (x – x1)f[x0,x1,x2] +...+ (x – x0) (x – x1)...(x – 

xn-1) f[x0,x1,....,xn].    (9) 
 
This can be written compactly as follows: 

Pn(x) =   







n

i

j

j
ji xxxxf

0

1

0
0 ],...,[              (10) 

 
This is the Newton’s form of interpolating polynomial. 
 
Example 3: From the following table of values, find the Newton’s form of 
interpolating polynomial approximating (x). 
 

x -1           0             3              6               7 

f(x)  3          -6            39           822          1611 

 
Solution: We notice that the values of x are not equally spaced. We are required to 
find a polynomial which approximates f(x). We form the table of divided differences 
of f(x). 

 
Table 2 

x                  f[.]                f[.,.]                 f[.,.,.]          f[.,.,.,.]             f[.,.,.,.,.] 

-1                 3 
                                            9 
0                 - 6                                            6 
                                          15                                            5 
3                 39                                            41                                         1 
                                          261                                       13 
6                 822                                         132 
                                          789 
7                1611 

 
Since the divided difference upto order 4 are available, the Newton’s interpolating 
polynomial P4(x) is given by 
 
P4(x) = f(x0) + (x – x0) f[x0,x1] + (x – x0) (x – x1)f[x0,x1,x2] + 
   (x – x0) (x – x1) (x – x2)f[x0,x1,x2,x3] + 
  (x – x0) (x – x1) (x – x2)(x – x3) f[x0,x1,x2,x3,x4]           (11) 
 
where x0 = -1, x1 = 0, x2 = 3, x3 = 6 and x4 = 7. 
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The divided differences f(x0), f[x0,x1], f[x0,x1,x2], f[x0,x1,x2,x3] and f[x0,x1,x2,x3,x4] are 
those which lie along the diagonal at f(x0) as shown by the dotted line. Substituting the 
values of xi and the values of the divided differences in Eqn. (11), we get 
 
P4(x) = 3 + (x + 1) (-9) + (x + 1) x (6) + (x + 1) x (x – 3) (5) + 

(x + 1) x (x – 3 ) (x – 6) (1) 
 
which on simplification gives 
 
P4(x) =  x4 – 3x3 + 5x2 – 6 
 
Therefore, f(x) =P4(x) = x4 - 3x3 + 5x2 – 6 
 
We now consider an example to show how Newton’s interpolating polynomial can be 
used to obtain the approximate value of the function f(x) at any non-tabular point. 
 
Example 4: Find the approximate values of f(x) at x = 2 and x = 5 in Example 3. 
 
Solution: Since f(x) = P4(x), from Example 3, we get 
f(2) = P4(2) = 16 – 24 + 20 – 6 = 6 
 
and 
f(5) = P(5) = 625 – 375 + 125 – 6 = 369 
 
Note 1: When the values of f(x) for given values of x are required to be found, it is not 
necessary to find the interpolating polynomial P4(x) in its simplified form given 
above. We can obtain the required values by substituting the values of x in Eqn. (11) 
itself. Thus, 
 
P4(2) = 3 + (3) (-9) + (3) (2) (6) + (3) (2) (-1) (5) + (3) (2) (-1) (-4) 1 
 
Therefore, P4(2) = 3 – 27 + 36 – 30 + 24 = 6. 
 
Similarly, 
P4(5)  = 3 + (6) (-9) + (6) (5) (6) + (6) (5) (2) (5) + (6) (5) (2) (-1) (1) 
 = 3 – 54 + 180 + 300 – 60 = 369. 
 
Then f(2) = P4(2) = 6 
   And 
 f(5)  = P(5) = 369. 
 
Example 5: Obtain the divided differences interpolation polynomial and the 
Lagrange’s interpolating polynomial of f(x) from the following data and show that 
they are same. 
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x            0             2             3               4 

 f(x)       -4            6             26            64 

 
Solution:  
(a)  Divided differences interpolation polynomial: 
 

Table 3 
x                  f[x]                f[.,.]                 f[.,.,.]          f[.,.,.,.]             

0                   -4 
                                            5 
2                    6                                            5 
                                          20                                           1 
3                    26                                           9                                         
                                          38 
4                    64       

 
P(x) = -4 + x(5) + x(x – 2) (5) + x(x – 2) (x – 3) (1) 

 
         = x3 + x – 4 
 

\ P(x) = x3 + x – 4 
 
b) Lagrange’s interpolation polynomial: 
 

 P(x) = 
(x 2)(x 3)(x 4) x(x 3)(x 4)

( 4)
( 2)( 3)( 4) (2)( 1)( 2)

- - - - -
- +

- - - - -
   (6) 

 

  + 
x(x 2)(x 4)

(3)(1)( 1)

- -

-
  (26) + 

x(x 2)(x 3)

(4)(2)(1)

- -
  (64) 

 

  = 
1

6
 (x3 – 9x2 + 26x – 24) + 

3

2
 (x3 – 7x2 + 12x) 

 

  -
26

3
 (x3 – 6x2 + 8x) + 8(x3 – 5x2 + 6x). 

 
On simplifying, we get 
 
P(x) = x3 + x – 4. 
 
Thus, we find that both polynomials are same. 
In Unit 1 we have derived the general error term i.e. error committed in approximating 
f(x) by Pn(x). In next section we derive another expression for the error term in term 
of divided difference. 
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3.3 The Error of the Interpolating Polynomial 
 
Let Pn(x) be the Newton form of interpolating polynomial of degree £ n which 
interpolates f(x) at x0 ...., xn.  
The interpolating error En(x) of Pn(x) is given by 
 
En(x) = f(x) – Pn(x)                 (12) 
Let x  be any point different from x0, ...,xn. If Pn(x) is the Newton form of 
interpolating polynomial which interpolates f(x) at x0, ....,xn and x , then Pn+1( x ) = f(
x ). Then by (10) we have 

Pn+1(x) = Pn(x) + f[x0, ...,xn, x ]  



n

j
jxx

0

 

 
Putting x = x  in the above, we have 
 

f( x ) = Pn+1( x ) = Pn( x ) + f[x0, ..., xn, x ]  



n

j
jxx

0

 

i.e. En( x ) = f( x ) - Pn( x ) = f[x0, ..., xn, x ]  



n

j
jxx

0

            (13) 

This shows that the error is like the next term in the Newton form. 
 
3.4 Divided Difference and Derivative of the Function 
 
Comparing Eqn. (13) with the error formula derived in Unit 1 Eqn. (9), we can 
establish a relationship between divided difference and the derivatives of the function 
 

En( x ) = 
(n 1)f [ (x)]

(n 1) !

+ x

+
 




n

j
jxx

0

 

 = f[x0, x1, ...,xn, x ]  



n

j
jxx

0

 

Comparing, we have f[x0, x1, ..., xn+1] = 
 

 !1

1





n

f n 
 

(considering x  = xn+1) 
Further it can be shown that x Î ]min xi, max xi[. 

We state these results in the following theorem. 
 
Theorem 2: Let f(x) be a real-valued function, defined on [a, b] and n times 
differentiable in ]a, b[. If x0, ......,xn are n + 1 distinct points in [a, b], then there exists 
   ]a, b[ such that 
 

f[x0, ...., xn] = 
 

!

1

n

f n 
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Corollary 1: 
If f(x) = xn, then 
 

f[x0, ...., xn] =
n !

n !
 = 1. 

 
Corollary 2: 
If f(x) = xk, k < n, then 
 
f[x0, ...., xk] = 0 
 
since nth derivative of xk, k < n, is zero. 
 
For example, consider the first divided difference 
 

f[x0,x1] = 1 0

1 0

f(x ) f(x )

x x

-

-
 

 
by Mean Value Theorem f(x1) = f(x0) + (x1 – x0) f’( ), x0< < x, 

 
substituting, we get 
f[x0,x1] = f’( ), x0< < x1. 

 

Example 6: If f(x) = anx
n +an-1x

n-1 + ... + a0, then find f[x0, x1, ....,xn] = an*
n !

n !
 + 0 = an. 

 
Let us consider another example. 
 
Example 7: If f(x) = 2x3 + 3x2 – x + 1, find 
 
f[1, -1, 2, 3], f[a, b, c, d], f[4, 6, 7, 8]. 
 
Solution: Since f(x) is a cubic polynomial, the 3rd order divided differences of f(x) 
with any set of argument are constant and equal to 2, the coefficient of x3 in f(x). 
 
Thus, it follows that f[1, -1, 2, 3], f[a, b, c, d], and f[4, 6, 7, 8] are each equal to 2. 
 
In the next section, we are going to discuss about bounds on the interpolation error. 
 
3.5 Further Results on Interpolation Error 
 
We have derived error formula 
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En(x) = f(x) – Pn(x) =  
   
 








n

i

n

i
n

xf
xx

0

1

!1


.’ 

 
We assume that f(x) is (n + 1) times continuously differentiable in the interval of 
interest [a, b] = I that contains x0, ...,xn and x. since  x  is known we may replace 

f(n+1)(  x ) by ( n 1)max
x I f (x)

+
Î . If we denote (x - x0) (x – x1)...(x – xn) by ѱn(x) then we 

have 
 

nE (x)  = f(x) – Pn(x)£

(n 1)

n

max

x I max

x I

f (t)

(t)

(n 1) !

+

Î

Î

y

+
            (14) 

 
Consider now the case when the nodes are equally spaced, that is (m xj = x0 + jh), j = 
0,.....,N, and h is the spacing between consecutive nodes. For the case n = 1 we have 
linear interpolation. If x Î  [xi-1, xi], then we approximate f(x) by P1(x) which 
interpolates at 
 

xi-1, and xi. From Eqn. (14) we have En(x)£
1

2

max

t I

f "(t)

Î

1max

t I

(t)

Î

y
 

where ѱ1(x) = (x – xi-1) (x - – xi). 
 
Now, 

1d

dx

y
 = x –x - –= 0 

gives x = (xi-1 - xi)/2. 
 
Hence, the maximum value of (x – xi-1) (x - – xi) occurs at  
x = x* = (xi-1 - xi)/2. 
 
The maximum value is given by 

ѱ1(x*) = 
2

i i 1(x x )

4
--

= 
2

h

4
. 

Thus, we have for linear interpolation, for nay x I 
 

E1(x) = f(x) – P1(x) 
2

i i 1(x x )

4
-- 1

2

max

x I

f "(x)

Î
 

 

= 
2

h

8
M.                  (15) 

wheref”(x)  M on I. 
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For the case n = 2, it can be shown that for any x  [xi-1, xi+1]. 
 

E2(x) 
2h M

9 3
 where f’”(x)  M on I.              (16) 

 
Example 8: Determine the spacing h in table of equally spaced values of the function 
of f(x) = x  between 1 and 2, so that interpolation with a first degree polynomial in 
this table will yield seven place accuracy. 
 
Solution: Here 

f"(x) = -
1

4
x-3/2 

1max f "(x)
41 x 2

=
£ £ . 

andE1(x) 
2

h

32
. 

 
For seven place accuracy, h is to be chosen such that 

2
h

32
< 5.10-8. 

 
or h2< (160)10-8 that is h < .0013. 
 
4.0 CONCLUSION 
 
This unit shall be concluded by giving a summary of what we have covered in 
it. 
 
5.0 SUMMARY 
 
In this unit we have derived a form of interpolating polynomial called Newton’s 
general form, which has some advantage over the Lagrange’s form discussed in Unit 
1. This form is useful in deriving some other interpolating formulas. We have 
introduced the concept of divided differences and discussed some of its important 
properties before deriving Newton’s general form. The error term has also been 
derived and utilizing the error term we have established a relationship between the 
divided difference and the derivative of the function f(x) for which the interpolating 
polynomial has been obtained. The main formula derived are listed below: 
 

 f[x0,....,xj] = 

1 j 0 j 1

j 0

f[x , ...., x ] f[x , ...., x ]

x x
--

-  
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 Pn(x) = 
  








n

i

j

j
ji xxxxf

0

1

0
0 ],...,[

 

 En(x) = 

 



n

j
jn xxxxxf

0
0 ],,...,[

 

 f[x0,....,xn] = 
   

!n

f n 
,   ]min xi, maxi[ 

 
6.0 TUTOR-MARKED ASSIGNMENT 
 
i Find the Lagrange’s interpolating polynomial of f(x) from the table of values 

given below and show that it is the same as the Newton’s divided differences 
interpolating polynomial. 

 

x            0             1             4               5 

 f(x)       8            11             68            123 

 
ii Form the table of values given below, obtain the value of y when x = 1.5 using 

a) divided differences interpolation formula. 
b) Lagrange’s interpolation formula. 

 

x            0             1              2              4              5 

f(x)       5            14            41            98           122 

 
iii Using Newton’s divided difference interpolation formula, find the values of 

f(8) and f(15) from the following table. 
 

x            4             5              7              10              11            13 

f(x)       48          100          294            900          1210        2028 

 
iv If f(x) = 2x3 – 3x2 + 7x + 1, what is the value of f[1, 2, 3, 4]? 
v If f(x) = 3x2 – 2x + 5, find f[1, 2], f[2, 3] and f[1, 2, 3]. 
vi If f(x) takes the values -21, 15, 12 and 3 respectively when x assumes the 

values -1, 1, 2 and 3, find the polynomial which approximates f(x). 
vii Find the polynomial which approximate f(x), tabulated below 
 

x           -4             -1              0              2              5 

f(x)     1245           33            5              9          1335 

 
Also find an approximate value of f(x) at x = 1 and x = -2. 

viii From the following table, find the value of y when x = 102 
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x        93.0        96.2        100.0        104.2       108.7 

y      11.38       12.80       14.70       17.07        19.91 
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UNIT 3  INTERPOLATION AT EQUALLY SPACED POINTS 
 
CONTENTS 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 

3.1 Differences 
 3.1.1 Forward Differences 
 3.1.2 Backward Differences 
 3.1.3 Central Differences 
3.2 Difference Formulas 
 3.2.1 Newton’s Forward-Difference Formula 
 3.2.2 Newton’s Backward-Formula 

4.0 Conclusion 
5.0 Summary 
6.0 Tutor Marked Assignment 
7.0 References/Further Readings 
 
1.0 INTRODUCTION 
 
Suppose that y is a function of x. The exact functional relation y = f(x) between x and 
y may or may not be known. But, the values of y at        (n + 1) equally spaced of x are 
supposed to be known, i.e., (xi, yi); i = 0, ..., n are known where xi – xi-1 = h (fixed), i = 
1, 2, ..., n. Suppose that we are required to determine an approximate value of f(x) or 
its derivative f’(x) for some values of x in the interval of interest. The methods for 
solving such problems are based on the concept of finite differences. We have 
introduced the concept of forward, backward and central differences and discussed 
their interrelationship in the previous unit 
 
We have already introduced two important forms of the interpolating polynomial in 
Units 1 and 2. These forms simply when the nodes are equidistant. For the case of 
equidistant nodes, we have derived the Newton’s forward, backward difference forms 
and Stirling’s central difference form of interpolating, each suitable for use under a 
specific situation. We have derived these methods in the previous unit and also given 
the corresponding error term. 
 
2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 
 
 write a forward difference in terms of function values from a table of forward 

differences and locate a difference of given order at a given point 
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 write a backward difference in terms of function values from a table of 
backward differences and identify differences of various orders at any given 
point from the table 

 expand a central difference in terms of function values and form a table of 
central differences 

 establish relations between V , , d and divided difference 
 obtain the interpolating polynomial of f(x) for a given data by applying any one 

of the interpolating formulas 
 compute f(x) approximately when x lies near the beginning of the table and 

estimate the error 
 compute f(x) approximately when x lies near the end of the table and estimate 

the error 
 estimate the value of f(x) when x lies near the middle of the table and estimate 

the error. 
 
3.0 MAIN CONTENTS 
 
3.1 Differences 
 
Suppose that we are given a table of values (xi, yi), i = 0, 1, 2, ..., N where yi = f(xi) = 
fj. 
 
Let the nodal points be equidistant. That is 
 
xi = a + ih, i = 0, ...., N, with N = (b – a)/h    (1) 
 
For simplicity we introduce a linear change of variables 
 

s = s(x) = 0x x

h

-
, so that x = x(s) = x0 + sh    (2) 

 
and introduce the notation 
 
f(x) = f(x0 + sh) = fs        (3) 
 
The linear change of variables in Eqn. (2) transforms polynomials of degree n in x into 
polynomials of degree n is s. we have already introduced the divided-difference table 
to calculate a polynomial of degree £ n which interpolates f(x) at x0, x1, ..., xn. For 
equally spaced nodes, we shall deal with three types of differences, namely, forward, 
backward and central and discuss their representation in the form of a table. We shall 
also derive the relationship of these differences with divided differences and their 
interrelationship. 
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3.1.1 Forward Differences 
 
We denote the forward differences of f(x) if ith order at x = x0 + sh by  ifsand define 
it as follows: 
 

 ifs= { s
i 1 i 1 i 1

s s 1 s

f i 0
( f ) f f , i 0.

- - -

+

=
= - >V V V V  

 
Where Vdenotes forward difference operator. 
 
When s = k, that is, x = xk, we have 
 
for i = 1  fk = fk+1 - fk 
 
for i = 2  2fk = fk+1 - fk 
 

= fk+2 - fk+1 – [fk+1 - fk] 
 
= fk+2 - fk+1 + fk 

 
Similarly  3fk = fk+3 - 3fk+2 + 3fk+1 - fk 
 
We recall the binomial theorem 
 

(a + b)s = 











n

j

jrjba
j

s

0

       (4) 

 
where s is a real non-negative integer. 
 
We give below in Lemma 1 the relationship between the forward and divided 
differences. This relation will be utilized to derive the Newton’s forwarddifference 
formula which interpolates f(x) at xk + ih, i = 0, 1, ...., n. 
 
Lemma 1: For all i   0 
 

f[xk, ..., kk+1] = i

1

i !h


ifk       (5) 

 
Proof: We prove the result by induction. 
For i = 0, both sides of relation (5) are same by convention, that is, 
 
f[xk] = f(xk) = fk =  0fk. 
 
Assuming that relation (5) holds for i = n   0, we have for i = n + 1 
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f[xk, xk+1, ..., kk+n+1] = k 1 k n 1 k k n

k n 1 k

f[x , ....., x ] f[x , ....., x ]

x x
+ + + +

+ +

-

-
 

 

=
   

  khxhnkx

hnfhnf n
k

nn
k

n



 

00

1

1

!/!/
 

= 
    1

1

1

1

!1!1 















n

k
n

n

k
n

k
n

hn

f

hn

ff
 

 
This shows that relation (5) holds for i = n + 1 also. Hence (5) is proved. We now give 
a result which immediately follows from this theorem in the following corollary. 
 
Corollary: If Pn(x) is a polynomial of degree n with leading coefficient an, and x0 is an 
arbitrary point, then 
 


nPn(x0) = ann! hn 
 
and   n+1Pn(x0) = 0, i.e., all higher differences are zero. 

 
Proof: Taking k = 0 in relation (5) we have 
 

f[x0, ..., xi] = i

1

1!h


if0.       (6) 

 
Let us recall that 
 

f[x0, ..., xi] =
 

!1

)(1 f
        (7) 

 
where f(x) is a real-valued function defined on [a, b] and i times differentiable in ]a, b[ 
and   ]a, b[. 

 
Taking i = n and f(x) = Pn(x) in Eqns. (6) and (7), we get 
 


inPn(x0) = n!hnPn[x0, ..., xn] = n!hn

( n)

nP ( )

n !

x
 

  = hnn!an. 
Since  in+1Pn(x0) =  inPn(x1) - 

inPn(x0) 
 
        = hnn!an - h

nn!an = 0. 
 
This completes the proof 
 



MTH 213          MODULE 1 

34 
 

The shift operator E is defined as 
 
Efi = fi+1         (8) 
 
In general Ef(x) = f(x + h). 
 
We have Esfi = fi+s 
 
For example, 
 
E3fi = fi+3, E

1/2fi = fi+1/2 and E-1/2fi = fi-1/2 
 
Now, 
 


ifi = fi+1 - Efi – fi = (E – 1)fi 
 
Hence the shift and forward difference operations are related by 
 

 = E – 1 
or E = 1 +   
 
Operating s times, we get 
 


s = (e – 1)s =  












n

j

rjE
j

s

0

1
1      (9) 

 
Making use of relation (8) in Eqn. (9), we get 
 


sfi =   1

0

1
1 













 j

n

j

r
f

j

s
 

 
We now give in Table 1, the forward differences of various orders using 5 values. 
 
 

Table 1: Forward Difference Table 
 

x                  f(x)                
1
f                 

2
f

3
f

4  
f 

x0                 f0 

 f0 

x1                 f1 
2
f0 

 f1 
3
f0 

x2                 f2 
2
f1 

4
f0 

 f2 
3
f1 

x3                 f3 
2
f2 

x4                 f4  f3 
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Note that the forward diffirence 
kf0 lie on a straight line sloping downward to the 

right. 
 
3.1.2 Backward Differences 
 
Let f be a real-valued function of x. let the values of f(x) at n + 1 equally spaced points 
x0, x1, ....., xn be f0, f1, ...., fn respectively. 
 
The backward differences of f(x) of ith order at xk = x0 + kh are denoted by ifk. They 
are defined as follows: 
 

ifk = { k
i 1 i 1

k k 1

f , 1 0
( ) [f f ], i 1- -

-

=
= - ³k▽ ▽f ▽              (10) 

 

where  denotes backward difference operator. 
 
Using (10), we have for 
 
i = 1; fk = fk – fk-1 
 
i = 2; 2fk = (fk – fk-1) 
        = fk – fk-1 
        = fk – 2fk-1 + fk-2 
 
i = 3; 3fk = 2[fk – fk-1] = 2fk - 

2fk-1 = [fk] - [fk-1] 
= [fk - fk-1] - [fk-1 - fk-2] 
= fk – fk-1 - fk-1 + fk-2 
= fk – fk-1 – 2[fk-1 + fk-2] + fk-2 - fk-3 
= fk – 3fk-2 + 3fk-2 - fk-3 

 
By induction we can prove the following lemma which connects the divided 
difference with the backward difference. 
 
Lemma 2: The following relation holds 
 

f[xn-k, ..., xn] = k

1

k !h
kf(xn)               (11) 

 
The relation between the backward difference operator  and the shift operator E is 
given by 
 

 = 1 E-1 or E = (i - )-1 
 
Since  fk = fk – fk-1 = fk – E-1fk = [1 – E]fk. 
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Operating s times, we get 
 

sfk = [1 – E]sfk =   k

n

j

mm fE
m

s






















0

1  

       =  









n

j
mk

m
f

m

s

0

1                         (12) 

 
We can extend the binomial coefficient notation to include negative numbers, by 
letting 
 

    













!

1....21

i

issss

i

s
(-1)i s(s 1)....(s i 1)

i !

+ + -
 

 
The backward differences of various orders with 5 nodes are given in Table 2. 

 
Table 2: Backward Difference Table 

x                  f(x)                f                 2f               3f                 4f 

x0                 f0 

f1 

x1                 f1
2
f2 

f2
3
f3 

x2                 f2
2
f3

4
f4 

f3
3
f4 

x3                 f3
2
f4 

f4 
x4                 f4 

 
Let us consider the following example: 
 
Example 1: Evaluate the differences 
 
(a) 3[a2x

2 + a1x + a0] 
 
(b) 3[a3x

3 + a2x
2 + a3x + a0]. 

 
Solution: 
 
(a) 3[a2x

2 + a1x + a0] = 0 
 
(b) 3[a3x

3 + a2x
2 + a3x + a0]. 

 = a3
3(x3) + 3[a2x

2 + a1x + a0] 
 = a3.3 ! h2 
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Note that the backward differences kf4 lie on a straight line sloping upward to the 
right. 
 
Also note that Vfk = fk+1 = fk+1 – fk. 
 
Try to show that V 4f0 = 4f4. 
 
Let us now discuss about the central differences. 
 
3.1.3 Central Differences 
 
The first order central difference of f at xk, denoted by dfk, is defined as 
 
df = f(x + h/2) – f(x – h/2) = fk+1/2 – fk-1/2. 
 
Operating with d, we obtain the higher order central differences as 
 
dsfk = fk when s = 0. 
 
The second order central difference is given by 
 
d2fk = d[fk+1/2 – fk-1/2] = d[fk+1/2] - d[fk-1/2] 

= fk+1 – fk – fk + fk-1 
= fk+1 – 2fk + fk-1 
 

Similarly, 
d3fk = fk+3/2 - 3fk+1/2 + 3fk-1/2 - fk-3/2 
andd4fk = fk+2 - 4fk+1 + 6fk - 4fk-1 + fk-2. 
 
Notice that the even order differences at a tabular value xk are expressed in terms of 
tabular values of f and odd order differences at a tabular value xk are expressed in 
terms of non-tabular value of f. also note that the coefficients of dsfk are the same as 
those of the binomial expansion of (1 – x)s, s = 1, 2, 3, .... . 
 
Since 
dfk  fk+1/2 – fk-1/2 = (E1/2 – E-1/2)fk 
 
We have the operation relation 
 
d = E1/2 – E-1/2                                                                                      (14) 
 
The central differences at a non-tabular point xk+1/2 can be calculated in a similar way. 
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For example, 
 

dfk+1/2 = fk+1 - fk 
 
d2fk+1/2 = fk+3/2 - 2fk+1/2 + fk-1/2 
d3fk+1/2 = fk+2 - 3fk+1 + 3fk - fk-1                         (15) 
d4fk+1/2 = fk+3/2 - 4fk+3/2 + 6fk+1/2 - 4fk-1/2 + fk-3/2 
 

Relation (15) can be obtained easily by using the relation (14) 
 

We have 
 

dsfk = [E1/2 – E-1/2]sfk 
 

=   k

n

i

iini fEE
i

s






















0

2/)(2/ 1  

 

=   1)2/(
0

1 



















 nk

n

i

i
f

i

s
                (16) 

 

The following formulas can also be established: 
 

f[x0, ...., x2m] = 2m

1

(2m)!h
d2mfm               (17) 

f[x0, ...., x2m+1] = 2m 1

1

(2m 1)!h ++
d2m+1fm+1/2             (18) 

f[x-m, ...,x0, ...., xm] = 2m

1

(2m)!h
d2mf0              (19) 

f[x-m, ...,x0, ...., xm+1] = 2m 1

1

(2m 1)!h ++
d2m+1f1/2             (20) 

f[x-(m+1), ...,x0, ...., xm] = 2m 1

1

(2m 1)!h ++
d2m+1f-1/2            (21) 

 

We now give below the central difference table with 5 nodes. 
Table 3: Central Difference Table 

 
x                   f                    dfd2f                   d3f                 d4f 

x-2                 f-2 

df-3/2 

x-1                 f-1 d2
f-1 

df-1/2 d3
f-1/2 

x0                 f0 d2
f0 d4

f0 

df1/2 d3
f1/2 

x1                 f1 d2
f1 

df3/2 
x2                 f2 
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Note that the difference d2mf0lie on a horizontal line shown by the dotted lines. 
 

Table 4: Central Difference Table 
x                   f                    dfd2f                   d3f                 d4f 

x0                 f0 

df1/2 

x1                 f1 d2
f1 

df3/2 d3
f3/2 

x2                 f2 d2
f2 d4

f2 

df5/2 d3
f5/2 

x3                 f3 d2
f3 

df7/2 
x4                 f4 

 
Note that the difference d2mf2 lie on a horizontal line. 
 
We now define the mean operator mas follows 

mfk = 
1

2
[fk+1/2 + fk-1/2] 

 

= 
1

2
[E1/2 + E-1/2]fk. 

 
Hence 

m = 
1

2
[E1/2 + E-1/2] 

 
Relation Between the Operators V, , d and m 

 
We have expressed V , , d and m in terms of the operator E as follows 

 
V  = E – 1 
 = 1 – E-1 
 
d = E1/2 – E-1/2 
 

m = 
1

2
[E1/2 + E-1/2] 

 
V  = E(1 = E-1) = E 
 
= E1/2(E1/2 – E-1/2) E1/2 d 
 
 



MTH 213          MODULE 1 

40 
 

Also E1/2 = m + 
2

d
 

 

E-1/2 = m - 
2

d
 

 
Example 2: 
(a) Express V 3f1 as a backward difference. 
 
(b) Express V 3f1 as a central difference. 
 
(c) Express d2f2 as a forward difference. 
 
Solution: 
(a) 

3f1 = (E)3f1 = E33f1 = 3E3f1 = 3f4   ( = E) 
 
(b) 

3f1 = [E1/2 ]3f1 = E3/2 3f1 =  3E3/2f1 =  3f5/2  (=E1/2 ) 
 
(c)  2f2 = [E-1/2 ]2f2 = E-1


2f2 =

2E-1f2 =
2f1          ( =E-1/2

 ) 
 
Example 3: Prove that 

(a) m2 = 1 + 
4

2
 

(b) md = 
1

2
 ( + ) 

 

(c) 2 2
1 + md  = 1 + 

2

2
 

 
Solution: 

(a) We have m= 
1

2
[E1/2 + E-1/2] 

 m2 = 
1/ 2 1/ 2 2

(E E )

4

-
+

 = 
1/ 2 1/ 2 2

(E E ) 4

4

-
- +

 

 = 1 + 
1/ 2 1/ 2 2(E E )

4

--
 

 = 1 + 
4

2
 

 
(b) L.H.S. 

 md = 
1

2
(E1/2 + E-1/2) (E1/2 - E-1/2) = 

1

2
 (E – E-1) 

 R.H.S. 
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1

2
(  + ) = 

1

2
[(E-1) + (1-E-1)] =  

1

2
 (E – E-1). 

 
Hence, the result. 

 
(c) We have 

md = 
1

2
(E1/2 + E-1/2) (E1/2 - E-1/2) = 

1

2
 (E – E-1) 

\  1 + m2 d2 = 1 + 
1 2(E E )

4

--
 = 

1 2(E E ) 4

4

-- +
 = 

1 2(E E )

4

-+
 

\
2 21 + md  = 

1E E

2

-+
 = 

1/ 2 1/ 2 2
(E E ) 2

2

-
- +

 

 

= 
2 2

2

d +
 = 1 + 

4

2
 

 
3.2 Difference Formulas 

 
We shall now derive different difference formulas using the results obtained in the 
preceding section (Section 3.2). 

 
 

3.2.1 Newton’s Forward-Difference Formula 
 

In Unit 2, we have derived Newton’s form of interpolating polynomial (using divided 
differences). We have also established in Section 3.2 1, the following relationship 
between divided differences and forward differences 

 

f[xk, ...., xk+n] = n

1

n !h
V nfk               (21) 

 
Substituting the divided differences in terms of the forward differences in the 
Newton’s form, and simplifying we get Newton’s forward-difference form. The 
Newton’s form of interpolating polynomial interpolating at xk, xk+1, ...., xk+n is 

 

Pn(x) =      ],........[........... 111
0




 kkikk

n

i
k xxfxxxxxx  

 
Substituting (22), we obtain 
 

Pn(x) =      k
i

ikk

n

i
k f

h
xxxxxx  


 111

0 !1

1
...........               (23) 
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Setting k = 0, we have the form 
 

Pn(x) =      011
0

01
...........

!1

1
fxxxxxx

h

i
i

n

i

 

  

 

= f0 + 0(x x )

1!

-

h

f0
 + 0 1

2

(x x )(x x )

h

- -
2

0
2

h

f
+... 

+ 0 n 1(x x )....(x x )

n !
-- -

n

n

h

f0
                   (24) 

 

Using the transformation (2), we have 
 
x – xk+j = x0 + sh – [x0 + (k + j)h] = (s – k – i + 1)V ifk 
 

= 






 


 i

ks
f

n

i
k

0

1  

 

=fk + (s – k) kf  + 
(s k)(s k 1)

2!

- - -
kf2 +... 

+ 
(s k)(s n 1)

n !

- - -
k

n f               (25) 

 

of degree £  n. 
 
Setting k = 0 in (25) we get the formula 
 

Pn(x0 + sh) = 









 i

s
f

n

i

i

0
0                 (26) 

 
The form (23), (24), (25) or (26) is called the Newton’s forward-difference formula. 
 
The error term is now given by 
 

En(x) = 








1n

s
hn+1 fn+1 (x ) 

- 
Example 4: Find the Find the Newton’s forward-difference interpolating polynomial 
which agrees with the table of values given below. Hence obtain the value of f(x) at x 
= 1.5. 
 

x            1             2             3                4                 5                6 

f(x)       10           19           40              79              142            235 
 

Solution: We form a table of forward differences of f(x). 
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Table 5: Forward differences 

x                  f(x)                 f                   2f               3f               

1                  10 

                                             9 
2                  19                                          12  
                                            21                                        6 
3                  40                                          18                                       
                                            39                                        6 
4                 79                                           24 
                                            63                                        6 
5                 142                                         30 
                                            93 
6                 235 

 
Since the third order differences are constant, the higher order differences vanish and 
we can infer that f(x) is a polynomial of degree 3 and the Newton’s forward-
differences interpolation polynomial exactly represents f(x) and is not an 
approximation to f(x). The step length in the data id h = 1. Taking x0 = 1 and the 
subsequent values of x as x1, x2, ...., x5 the Newton’s forward-differnces interpolation 
polynomial. 
 

f(x) = f0 + (x – 1)Vf0 + 
(x 1)(x 2)

2!

- -
V 2f0 + 

(x 1)(x 2)(x 3)

3!

- - -
V 3f0 

 

becomes 

f(x) = 10 + (x – 1) (9) + 
(x 1)(x 2)

2

- -
(12)+ 

(x 1)(x 2)(x 3)

6

- - -
 (6) 

 
l= 10 + (x – 1) + 6(x – 1) (x – 2) + (x – 1) (x – 2) (x – 3) 
 
which on simplification gives 
 
f(x) = x3 + 2x + 7 
\ f(1.5) = (1.5)3 + 2(1.5) + 7 
= 3.375 + 3 + 7 = 13.375 
 
Note: 
If we want only the value of (1.5) and the interpolation polynomial is not needed, we 
can use the formula (26). In this case, 
 

s = 0x x

h

-
 = 

1.5 1

1

-
 = 0.5 

 

and 

f(1.5) = 10 + (0.5) (9) + 
(0.5)( 0.5)

2

-
 (12) + 

(0.5)( 0.5)( 1.5)

6

- -
 (6) 
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= 10 + 4.5 – 1.5 + 0.375 
 
= 13.375. 
 
Example 5: From the following table, find the number of students who obtained less 
than 45 marks. 
 
 

Marks                30 - 40      40 - 50       50 – 60       60 - 70        70 - 80 

No. of students       31            42                51              35               31            

 
Solution: We form a table of the number of students f(x) whose marks are less than x. 
In other words, we form a cumulative frequency table. 
 
 
 
 

Table 6: Frequency Table 
x              f(x)           V f            V 2f           V 3f           V 4f 

40              31 

                                   42 
50              73                               9  
                                   51                              -25 
60            124                              -16                              37       
                                   35                               12 
70            159                              -4 
                                   31                                    
80            190                                          

 
We have x0 = 40, x = 45 and h = 10,   s = 0.5 
 
 

\ f(45) ;  31 + (0.5) (42) + 
(0.5)( 0.5)

2

-
 (9) + 

(0.5)( 0.5)( 1.5)

6

- -
(-25) 

    + 
(0.5)( 0.5)( 1.5)( 2.5)

24

- - -
 (37) 

= 31 + 21 – 1.125 – 1.5625 – 1.4453 
= 47. 8672 ;  48 
 
\  The number of students who obtained less than 45 marks is approximately 48. 
 
3.2.2 Newton’s Backward-Difference Formula 
 
Reordering the interpolating nodes as xn, xn-1, ...., x0 and applying the  
Newton’s divided difference form, we get 
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Pn(x) = f[xn] + (x – xn) f[xn-1, xn] + (x – xn-1) f[xn-2, xn-1, xn] 
+ .... + (x – x) ... (x –xn) f[x0, ...., xn]              (27) 
 
We may also write 
 

Pn(x) = Pn
n

n

x x
x h

h

-é ù+ê úë û
 

= Pn[xn + sh] = 
n

n n 1 n i 1 n n 1

i 0

(x x )(x x )...(x x )f[x , ...., x ]- - + -

=

- - -å  

= 
n

i

i n n 1 n i 1 n

i 0

1
(x x )(x x )...(x x ) f

i !h - - +

=

- - -å ▽              (28) 

 
Set x = xn + sh, then 
 
x – xi = xn + sh – [xn – (n – i)h] = (s + n – i)h 
 
x – xn-j = (s + n – n + j)h = (s + j)h 
 
and 
(x – xn) (x – xn-1) ... (x – xn-i+1) = s(s + 1) ... s(s + i – 1)hi 
 
Equation (28) becomes 
 

Pn(x) =     n

n

i

fisss
i

1........1
!!

1

0




 

 

= fn + sfn + 
s(s 1)

2!

+
2fn + 

s(s 1)...(s n 1)

n !

+ + -
nfn                   (29) 

 
We have seen already that 










k

s
= (-1)k s(s 1)...(s k 1)

k !

+ + -
 

 
Hence, equation (29) ca be written as 

Pn(x) = f(xn) +    nxf
s











1
1  (-1) +    nxf

s 22

2
1 








  (-1)2 

 

 + ... +    n
kk

xf
k

s









1  

 
or 
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Pn(x) =    












n

k
n

kk
xf

k

s

0

1                (30) 

 
Equation (27), (28) or (29) is called the Newton’s backward-difference form. 
 
In this case error is given by 
 

En(x) = (-1)n+1 s(s 1)...(s n)

(n 1) !

+ +

+
hn+1 fn+1 ( x ).             (31) 

 
The backward-difference form is suitable for approximating the value of the function 
at x that lies towards the end of the table. 
 
Example 6: Find the Newton’s backward differences interpolating polynomial for the 
data of Example 4. 
 
Solution: We form the table of backward differences of f(x). 
 
 

Table 7: Backward Difference Table 
x              f(x)           f            2f           3f           

1              10 

                                   9 
2              19                               12  
                                   21                                6 
3              40                               18                                    
                                   39                                6 
4              79                               24 
                                   63                                6 
5            142                               30 
               93 
6            235 

 
Tables 5 and 7 are the same except that we consider the differences of Table 7 as 
backward differences. If we name the abscissas as x0, x1, ...., x5, then xn = x5 = 6, fn = 
f5 = 235. with h = 1, the Newton’s backward differences polynomial for the given data 
is given by 
 

P(x) = f5 + (x – x5) f5 + 5 4(x x )(x x )

2!

- -
2f5 + 5 4 3(x x )(x x )(x x )

3!

- - -
3f5 

 

= 235 + (x – 6) (93) + 
(x 6)(x 5)

2

- -
 (30) + 

(x 6)(x 5)(x 4)

6

- - -
 (6) 

 
= 235 + 93(x – 6) + 15(x – 6) + (x – 4) (x - 5) (x – 6) 
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which on simplification gives 
 
P(x) = x3 + 2x + 7, 
 
which is the same as the Newton’s forward differences interpolation polynomial in 
Example 4. 
 
Example 7: Estimate the value of (1.45) from the data given below: 
 

x              1.1           1.2              1.3              1.4           1.5  

f(x)       1.3357     1.5095        1.6984       1.9043      2.1293 

 
Solution: We form the backward differences table for the data given. 
 
 

Table 8: Backward Differences Table 
 

x              f(x)              f             2f            3f           4f 

1.1        1.3357 

                                  0.1738 
1.2        1.5095                              0.0151 
                                  0.1889                           0.0019 
1.3        1.6984                              0.0170                         0.0002      
                                  0.2059                           0.0021 
1.4        1.9043                              0.0191 
                                  0.2250                               
1.5        2.1293                                

 
Here xn = 1.5, x = 1.45, h = 0.1 
 

Hence,  s = nx x

h

-
 = 

1.45 1.5

0.5

-
 = -0.5 

 

The Newton’s backward differences interpolation formula gives 
 

f(x) = fn + sfn + 
s(x 1)

2!

+
2fn + 

s(s 1)(s 2)

3!

+ +
3fn + 

s(s 1)(s 2)(s 3)

4 !

+ + +
4fn 

 

= 2.1293 + (-0.5) (0.2250) + 
( 0.5)(0.5)

2

-
 (0.0191) +

( 0.5)(0.5)(1.5)

6

-
(0.0021) + 

( 0.5)(0.5)(2.5)

24

-
 (0.0002) 

 
= 2.1293 – 0.1125 – 0.00239 – 0.00013 – 0.0000078 
 
= 2.01427 »  2.0143 
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3.3.3 Stirling’s Central Difference Form 
 
A number of central difference formulas are available which can be used according to 
a situation to maximum advantage. But we shall consider only one such method 
known as Stirling’s method. This formula is used whenever interpolation is required 
of x near the middle of the table of values. 
 
For the central difference formulas, the origin x0, is chosen near the point being 
approximated and points below x0 are labeled as x1, x2, ... and those directly above as 
x-1, x-2, ... (as in Table 3). Using this convention, Stirling’s formula for interpolation is 
given by 

Pn(x) = f(x0) + 
s

2
[df1/2 + df-1/2] + 

2s

2 !
d2f0 

 + 
2 2

s(s 1 )

3!

- 1

2
[d3f1/2 + d3f-1/2] + ... 

 + 
2 2 2 2 2 2

s(s 1 )s(s 2 )...[s (p 1) ]

(2p 1)!

- - - -

-

1

2
[d2p-1f1/2 + d2p-1f-1/2] 

 + 
2 2 2 2s(s 1 )...[s (p 1) ]

(2p) !

- - -
d2pf0 

 + 
2 2 2 2

s(s 1 )...s(s p )

(2p 1) !

- -

+

1

2
[d2p+1f1/2 + d2p+1f-1/2]            (32) 

 
where s = (x – x0)/h and if n = 2p + 1 is odd. 
 
If n = 2p is even, then the same formula is used deleting the last term. 
 

The Stirling’s interpolation is used for calculation when x lies between x0 - 
1

4
h and x0 

+ 
1

4
h. 

 
It may be noted from the Table 3, that the odd order differences at x-1/2 are those 
which lie along the horizontal line between x0 and x-1. Similarly, the odd order 
differences at x1/2 are those which lie along the horizontal line between x0 and x1. even 
order differences at x0 are those which lie along the horizontal line through x0. 
 
Example 8: Using Stirling’s formula, find the value of (1.32) from the following table 
of values. 
 

x              1.1           1.2              1.3              1.4           1.5  

f(x)       1.3357     1.5095        1.6984       1.9043      2.1293 
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Solution: 
Table 9: Central Difference 

 
x              f(x)              df             d2f            d3f           d4f 

1.1        1.3357 

                                  0.1738 
1.2        1.5095                              0.0151 
                                  0.1889                           0.0019 
1.3        1.6984                              0.0170                         0.0002      
                                  0.2059                           0.0021 
1.4        1.9043                              0.0191 
                                  0.2250                               
1.5        2.1293                                

 
Choose x0 = 1.3 
 

Therefore     s = 0(x x )

h

-
 = 

1.32 1.3

0.1

-
 = 0.2. 

 
From Eqn. (32), we have 
 

f(x) »  f0 + 
s

2
[df-1/2 + df1/2]+

2s

2 !
d2f0+

2 2s(s 1 )

3!

- 1

2
[d3f-1/2 + d3f1/2]+

2 2 2s (s 1 )

4 !

-
d4f0. 

 

Now, 
1

2
[df-1/2 + df1/2] = 

1

2
(0.1889 + 0.2059) = 0.1974 

 
1

2
[d3f-1/2 + d3f1/2] = 

1

2
(0.0019 + 0.0021) = 0.0020 

 
Also d2f0 = 0.0170, d4f0 = 0.0002. 
 
Substituting in the above equation, we get 
 

f(x) = 1.6984 + (0.2) (0.1974) + 
0.04

2
 (0.0170) + 

(0.2)( 0.96)

6

-
(0.0020) 

 + 
(0.04)( 0.96)

24

-
 (0.0002) 

 
= 1.6984 + 0.03948 + 0.00034 – 0.00006 – 0 
 
= 1.73816 ;  1.7382. 
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4.0 CONCLUSION 
 
As in the summary 
 
5.0 SUMMARY 
 
In this unit, we have derived interpolation formulas for data with equally spaced 
values of the argument. We have seen how to find the value of f(x) for a given value 
of x by applying an appropriate interpolation formula derived in this section. The 
application of the formulas derived in this section is easier when compared to the 
application of the formulas derived in Units1 and 2. However, the formulas derived in 
this unit can only be applied to data with equally spaced arguments whereas the 
formulas derived in Units 1 and 2 can be applied for data with equally spaced or 
unequally spaced arguments. Thus, the formulas derived in Units 1 and 2 are of a 
more general nature than those of Unit 3. The interpolation polynomial which fits a 
given data can be determined by using any of the formulas derived in this section 
which will be unique whatever be the interpolation formula that is used. 
 
The interpolation formulas derived in this unit are listed below: 
 
1) Newton’s forward difference formula: 

Pn(x) = Pn(x0 + sh) =









n

i

i f
k

s

0
0  

 f0 + sVf0 + 
s(s 1)

2 !

-
V 2f0 + ... + 

s(s 1)...s(s n 1)

n !

- - +
V nf0 

 where s = (x – x0)/h. 
 
2) Newton’s backward difference formula: 

 Pn(x) = Pn(xn + sh) =  












n

k
n

kk
f

k

s

0

1  where s = (x – x0)/h 

 
3) Stirling’s central difference formula: 

Pn(x) = Pn(x0 + sh) = f0 + 
s

2
[df1/2 + df-1/2] + 

2s

2!
d2f0 + 

2 2s(s 1 )

3!

- 1

2
[d3f1/2 + d3f-

1/2] +...+ 
2 2 2 2 2 2

0s (s 1 )...(s (p 1) )s f

(2p) !

- - -
 + 

2 2 2 2 2
s (s 1 )...(s p )

(2p 1) !

- -

+
[d2p+1f1/2 + d

2p+1f-1/2] 
if n = 2p + 1 is odd. If n = 2p is even, the same formula is used deleting the last 
term. 

 
6.0 TUTOR-MARKED ASSIGNMENT. 
 

i Express 4f5 in terms of function values. 
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ii. Show that (E + 1) d = 2(E – 1) m. 

 
iii The population of a town in the decimal census was given below. Estimate 

population for the year 1915. 
 

Year x                  1911           1921          1931            1941           1951                

Population: y         46                66               81               93              101           
(in thousands)        

 
iv from the following table, find the value of y (0.23): 
  

x            0 .20         0.22           0.24          0.26           0.28         0.30 

y          1.6596      1.6698      1.6804       1.6912      1.7024      1.7139    

 
v Find the number of men getting wages between Rs. 10 and Rs. 15 from the 

following table. 
  

Wages in Rs. x           0 - 10         10 - 20           20 - 30          30 -40           

No. of men y                  9                 30                  35                 42       

 
vi The area A of a circle of diameter d is given in the following table. Find the 

area of the circle when the diameter is 82 units. 
  

d              80           85            90            95           100  

A          5026        5674        6362       7088         7854 

vii From the table of values of 3a, find the value of y when x = 0.29. 
 
viii Using the backward differences interpolation, find the polynomial which agree 

with the values of y(x) where 
 
 y(0) = 1, y(1) = 0, y(2) = 1 and y(3) = 10. 
 
ix In 3c, find the number of candidates whose marks are less than or equal to (i) 

70, (ii) 89. 
 
x Find f(1.725) from the following table. 
 

x              1.5           1.6              1.7              1.8           1.9  

f(x)       4.4817     4.9530        5.4739       6.0496      6.6859 
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xi Evaluate f(4.325) from the following. 
  

x              4.1           4.2              4.3             4.4           4.5  

f(x)      30.1784    33.3507     36.8567     40.7316   45.0141 

 
xii Find the approximate value of y(2.15) from the table 
 
 

x              0              1                 2                 3                4  

f(x)       6.9897     7.4036       7.7815       8.1281       8.4510 
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