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MODULE 2 SOLUTION OF LINEAR ALGEBRAIC EQUATIONS 
 
Unit 1  Direct Methods 
Unit 2  Inverse of a Square Matrix 
Unit 3  Iterative Methods 
Unit 4  Eigen Values and Eigen Vectors 
 
 
UNIT 1  DIRECT METHOD 
 
CONTENTS 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 

3.1 Preliminaries 
3.2 Cramer’s Rule 
3.3 Direct Methods for Special Matrices 
3.4 Gauss Elimination Methods 
3.5 LU Decomposition Methods 

4.0 Conclusion 
5.0 Summary 
6.0 Tutor-Marked Assignment 
7.0 References/Further Readings 
 
Notations and Symbols 
 

A = [ ]ika     Matrix with the elements aik 

det A = |A|    Determinant of a square matrix A 
¥      infinity 
r      Rho 

u      Nu 
m     Mu 

l      Lambda 
||A||    Norm of a matrix A 
  i     Imaginary unit, i2 = -1. 
 

Also see the list given in Block 1. 
 
 
 
 
 
 



MTH 213                                MODULE 2 

 

54 
 

1.0 INTRODUCTION 
 
One of the commonly occurring problems in applied mathematics is finding one or 
more roots of an equation f(x) = 0. In most cases explicit solutions are not available 
and we are satisfied with being able to find one or more roots to a specified degree of 
accuracy. In Block 1, we have discussed various numerical methods for finding the 
roots of an equation f(x) = 0. there we have also discussed the convergence of these 
methods. Another important problem of applied mathematics is to find the solution of 
systems of linear equations arise in a large number of areas, both directly in modeling 
physical situations and indirectly in the numerical solution of other mathematical 
models. These applications occur in all areas of the physical, biological and 
engineering sciences. For instance, in physics, the problem of steady state temperature 
in a plate is reduced to solving linear equations. 
 
Engineering problems such as determining the potential in certain electrical networks, 
stresses in a building frame, flow rates in a hydraulic system etc. are all reduced to 
solving a set of algebraic equations simultaneously. Linear algebraic systems are also 
involved in the optimization theory, least squares fitting of data, numerical solution of 
boundary value problems for ordinary and partial differential equations, statistical 
inference etc. Hence, the numerical solution of systems linear algebraic equations 
plays a very important role. 
 
Numerical methods for solving linear algebraic systems may be divided into two 
types, direct and iterative. Direct methods are those which, in the absence of round-off 
or other errors, yield the exact solution in a finite number of elementary arithmetic 
operations. Iterative methods start with an initial approximation. 
 
To understand the numerical methods for solving linear system of equations it is 
necessary to have some knowledge of the properties of matrices. You might have 
already studied matrices, determinants and their properties in your linear algebra 
courses. However, we begin with a quick recall of few definitions here. In this unit, 
we have also discussed some direct methods for finding the solution of system of 
linear algebraic equations. 
 
 
2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 
 state the difference between the direct and iterative methods of solving the 

system of linear algebraic equations 
 obtain the solution of system of linear algebraic equations by using the direct 

method 
 use the pivoting technique while transforming the coefficient matrix to upper or 

lower triangular matrix. 
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3.0 MAIN CONTENTS 
 

3.1 Preliminaries 
 
As we have mentioned earlier, you might be already familiar with vectors, matrices, 
determinants and their properties (Ref. Linear algebra MTE-02). A rectangular array 
of (real or complex) numbers of the from 
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is called a matrix. The numbers a11, a12, ..., ann are the elements of the matrix. The 
horizontal lines are called rows and the vertical lines called columns of the matrix. A 
matrix with m rows and n columns is called an m´ n matrix (read as m by n matrix). 
We usually denote matrices by capital letters A, b etc., or by (ajk), (bik) etc. 
 
If the matrix has the same number of rows and columns, we call it a square matrix and 
the number of rows or columns is called its order. If a matrix has only one column it is 
a column matrix or column vector and if it has only one row it is a row matrix or row 
vector. 
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B = [a11, a12, ..., a1n] are respectively the column and row matrices. We give below 
some special square matrices A = (aij) of order n. 
1 A matrix A = (aij) in which aij = 0 (i, j = 1, 2 ....., n) is called a null matrix and 

is denoted by 0. 
e.g., 

A = 








00

00
 is a 2 ´  2 null matrix. 

 
2. A matrix A in which all the non-diagonal elements vanish i.e., aij 

= 0 for i ¹  j is called a diagonal matrix. 
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E.g., A =
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is a 3 ´  3 diagonal matrix. 
 

3 The identity matrix I is a diagonal matrix in which all the diagonal elements are 
equal to one. The identity matrix of order 4 is 

 

 I =



















1000

0100

0010

0001

 

 
4 A square matrix is lower triangular if all the elements above the main diagonal 

vanish i.e., aij = 0 for j > i. A lower triangular matrix of order 3 has the form 
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Similarly upper triangular matrices are matrices in which, 
aij = 0 for i > j. 

 

e.g., A =
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Two matrices A = (aij) and B = (bij) are equal iff they have the same number of rows 
and columns and their corresponding elements are equal, that is aij = bij for all i, j. 
 
You must also be familiar with the addition and multiplication of matrices. 
 
Addition of matrices is defined only for matrices of same order. The sum C = A + B 
of two matrices A and B, is obtained by adding the corresponding elements of A and 
B, i.e., cij = aij + bij. 
 
 

For example, if A = 

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  then 
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A + B = 








223

351
 

 
Product of an m ´  n matrix A = (aij) and an n ´  p matrix B = (bij) is an m ´  p matrix 
C. C = AB, whose (i, k)th entry is 
 

cij = ij
j

ijba


0

1

= aij bij + ai2bi2 + ... + ain bnk 

 

That is, to obtain the (i, k)th element of AB, take the ith row of A and kth column of 
B, multiply their corresponding elements and add up all these products. For example, 
if 
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the elementof AB is 
 

[2  3  -1] 
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
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 = 2 * 1 + 3 * 4 + (-1) *2 = 12 

 
Note that two matrices A and B can be multiplied only if the number of columns of A 
equals the number of rows of B. In the above example the product BA is not defined. 
 

The matrix obtained by interchanging the rows and columns of A is called the 
transpose of A and is denoted by AT 
 

If A = 



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Determinant is a number associated with square matrices. 
 

For a 2 ´  2 matrix A = 
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For a 3 ´  3 matrix A = 
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det(A) = a11det 
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A determinant can be expanded about any row or column. The determinant of an n ´ n 
matrix A = (aij) is given by det(A) = (-1)i+1aijdet(Aij) + (-1)i+2ai2det(Ai2) + ... + (-
1)i+naindet(Ain), where the determinant is expanded about the ith row and Aij is the (n – 
1) ´  (n – 1) matrix obtained from A by deleting the ith row and jth column and i £ i£  
n. Obviously, computation is simple if det(A) is expanded along a row or column that 
has maximum number of zeros. This reduces the number of terms to be computed. 
 
The following example will help you to get used to calculating determinants. 
 
Example 1: 

If A = 

















237

145

621

 calculated det (A). 

 
Solution: Let us expand by the first row. We have 
 

|A11| = 








23

14
 = 4 * 2 – 1 * 3 = 5, |A12| = 









27

15
  = 5 * 2 = 7 * 1 = 3, 

|A13| = 








37

45
= 5 * 3 – 4 * 7 = -13. 

Thus, 
 
|A| = (-1)1+1*1*|A11|+(-1)1+2*2*|A12|+(-1)1+3*6*|A13|=5–6–78 = -79 
 
If the determinant of a square matrix A has the value zero, then the matrix A is called 
a singular matrix, otherwise, A is called a nonsingular matrix. 
 
We shall now give some more definitions. 
 
Definition: The inverse of an n ´ nnonsingular matrix A is an n ´ n matrix B having 
the property 
 
A B = B A = i 
where I is an identity matrix of order n ´ n. 
 
the inverse matrix B if it exists, is denoted by A-1 and is unique. 
 
Definition: For a matrix A = (aij), the cofactor Aij of the element aij is given by  
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Aij = (-1)i+jMij 
 
whereMij (minor) is the determinant of the matrix of order (n – 1) ´  (n – 1) obtained 
from A after deleting its ith row and the jth column. 
 
Definition: The matrix of cofactors associated with the n ´ n matrix A is an n ´ n 
matrix Ac obtained from A by replacing each element of A by its cofactor. 
 
Definition: The transpose of the cofactor matrix Ac of A is called the adjoint of A and 
is written as adj(A). Thus 
 
adj(A) = (Ac)T 
 
Let us now consider a system of n linear algebraic equations in n unknowns 
 
a11x1 + a12x2 + .... + a1nxn = b1 
a21x1 + a22x2 + .... + a2nxn = b2      (1) 
 .  . . 
 .  . . 
 .  . . 
an1x1 + an2x2 + .... + annxn = bn 
where the coefficients aij and the constant bi (i = 1, ...., n) are real and known. This 
system of equations in matrix from may be written as 
 
A x = b         (2) 
 
Where 
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 b = 
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




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A is called the coefficient matrix and has real elements. 
 
Our problem is to find the values xi, i = 1, 2 ...., n if they exist, satisfying Eqn. (2). 
Before we discuss some methods of solving the system (2), we give the following 
definitions. 
 
Definition: A system of linear Eqns. (2) is said to be consistent if it has at least one 
solution. If no solution exists, then the system is said to be inconsistent. 
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Definition: The system of Eqns. (2) is said to be homogeneous if b = 0, that is, all the 
elements bi, b2, ...., bn are zero, otherwise the system is called non-homogeneous. 
 
In this unit, we shall consider only non-homogeneous systems. 
 
You also know from you linear algebra that the non-homogeneous system of Eqns. (2) 
has a unique solution, if the matrix A is nonsingular. You may recall the following 
basic theorem on the solvability of linear systems (Ref. Theorem 4, Sec. 5.0, Unit 1, 
Block 3, Module 1). 
 
Theorem 1: A non-homogeneous system of n linear equations in n known has a 
unique solution if and only if the coefficient matrix A is nonsingular. 
 
If A is nonsingular, thenA-1 exists, and the solution of system (2) can be expressed as 
 
x = A-1b. 
 
In case the matrix A is singular, then the system (2) has no solution if b ¹  0 or has an 
infinite number of solutions if b = 0. here we assume that A is a nonsingular matrix. 
 
As we have already mentioned in the introduction, the methods of solution of the 
system (2) may be classified into two types: 
 
i Direct Methods: which in the absence of round-off errors give the exact 

solution in a finite number of steps. 
ii. Iterative Methods: Starting with an approximate solution vector x(0), these 

methods generates a sequence of approximate solution vectors {x(k)} which 
converge to the exact solution vector x as the number of iterations k ® ¥ . 
Thus iterative methods are infinite processes. Since we perform only a finite 
number of iterations, these methods can only find some approximation to the 
solution vector x. We shall discuss iterative methods later in Units 4 and 5. 

 
In this unit we shall discuss only the direct methods. You are familiar with one such 
method due to the mathematician Cramer and known as Cramer’s Rule. Let us briefly 
review it. 
 
3.2 Cramer’s Rule 
 
In the system (2), let d = det(A) ¹  0 and b ¹  0. Then the solution of the system is 
obtained as 
 
xi = di/d, i = 1, 2, ...., n       (3) 
where di is the determinant of the matrix obtained from A by replacing the ith column 
of A by the column vector b. let us illustrate the method through an example. 
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Example 2: Solve the system of equations. 
 
3x1 + x2 + 2x3 = 3 
2x1 - 3x2 - x3 = -3 
x1 - 2x2 - x3 = 4 
using Cramer’s rule. 
 
Solution: We have, 

d = |A| = 

3 1 2

1 3 1

1 2 1

- -  = 8 

 

d1 = 

3 1 2

3 3 1

4 2 1

- - -  

= 8 (first column in A is replaced by the column vector b) 
 

d2 = 

3 3 2

2 3 1

1 4 1

- -  

= 16 (second column in A is replaced by the column vector b 
 

d3 = 

3 1 3

2 3 3

1 2 4

- -  

= -8 (third column in A is replaced by the column vector b) 
 
Using (3), we get the solution 
x1 = d1/d = 1; x2 = d2/d = 2; x3 = d3/d = -1 
 
While going through the example and attempting the self assessment exercises you 
must have observed that in Cramer’s methods we need to evaluate n + 1 determinants 
each of order n, where n is the number of equations. If the number of operations 
required to evaluate a determinant is measured in terms of multiplications only, then 
to evaluate a determinant of second order, i.e., 
 










2221

1211

aa

aa
 = a11 a22 – a12 a21 
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we need two multiplications or (2 – 1) 2! multiplications. To evaluate a determinant of 
third order 
 

















333231

232221

131211

aaa

aaa

aaa

=(a11a22a33-a11a23a32-a12a21a33+a12a23a31+a13a21a32-a13a22a31) 

 
we need 12 multiplication or (3 – 1)3! multiplications. In general, to evaluate a 
determinant of nth order we need (n – 1)n! multiplications. 
Also for a system of n equations, Cramer’s rule requires n + 1determinants each of 
order n and performs n divisions to obtain xi, i = 1, 2, ...., n. Thus the total number of 
multiplications and divisions needed to solve a system of n equations, using Cramer’s 
rule becomes 
 
M = total number of multiplications + total number of divisions 
    = (n + 1) (n  - 1)n! + n 
 
In Table 1, we have given the values of M for different values of n. 
 
 

Table 1 
Number of equations 

N 
Number of operations 

n 
2 
3 
4 
5 
6 
7 
8 
9 

10 

8 
51 

364 
2885 

25206 
241927 

2540168 
29030409 

359251210 

 
From the table, you will observe that as n increases, the number of operations required 
for Cramer’s rule increases very rapidly. For this reason, Cramer’s rule is not 
generally used for n > 4. hence for solving large systems, we need more efficient 
methods. In the next section we describe some direct methods which depend on the 
form of the coefficient matrix. 
 
3.3 Direct Methods for Special Matrices 
 
We now discuss three special forms of matrix A in Eqn. (2) for which the solution 
vector x can be obtained directly. 
 
Case 1: A = D, where D is diagonal matrix. In this case the systems of Eqns. (2) are of 
the form 
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a11x1  ...................... = b1 
.     a22x2          . = b2 
.      .          . =   . 
.          .          .      . 
.    .      .      . 
.  annxn = bn 
 
and det (A) – a11 a22 .... ann 
 
Since the matrix A is nonsingular, a11 ¹  0 for 1, 2, ....., n and we obtain the solution 
as 
 

xi = bi/aii, i = 1, 2, ...., n. 
 
Note that in this case we need only n divisions to obtain the solution vector. 
Case 2 : A = L, where L is a lower triangular matrix (aij = 0, j > i). The system of 
Eqns. (2) is now of the form 
 
a11x1     = b1 
a21x1 + a22x2    = b2 

a31x1 + a32x2 + a33x3  = b3 
.          (4) 
. 
. 
an1x1 + an2x2 + an3x3 + ... + annxn = bn 
and det (A) = a11a22...ann. 
 
You may notice here that the first equation of the system (4) contains only x1, the 
second equation contains only x1 and x2 and so on. Hence, we find x1 from the first 
equation, x2 from the second equation and proceed in that order till we get xn from 
the last equation. 
 
Since the coefficient matrix A is nonsingular, a11¹  0, i = 1, 2, ..., n. we thus obtain 
 
x1 = b1/a11 
x2 = (b2 – a21x1)/a22 
x3 = (b3 – a31x1 – a32x2)/a33 
. 
. 
. 

xn = (bn -




1

1

n

j

aijxj)/ann 

 

In general, we have for any i 
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xi = (bi -   ii

n

j
jij axa /

1

1





  i = 1, 2, ...., n.     (5) 

 
For example, consider the system of equations 
5x1   = 5 
-x1 - 2x2  = -7 
-x1 + 3x2 + 2x3 = 5 
 
From the first equation we have, 
x1 = 1 
 
From the second equation we get, 

x2 = 17 x

2

- +

-
 = 3 

and from the third equation we have, 

x3 = 1 25 x 3x

2

+ -
 = -

3

2
. 

 
Since the unknowns in this methods are obtained in the order x1, x2, ...., xn, this 
method is called the forward substitution method. 
 
The total number of multiplications and divisions needed to obtain the complete 
solution vector x, using this method is 
 
M = 1 + 2 + ..... + n = n(n + 1)/2. 
 
Case 3: A = U, where U is an upper triangular matrix (aij = 0, j < 1). The system (2) 
is now of the form 
 
a11x1 + a12x2 + a13x3 + ... + a1nxn  = b1 

a22x2 + a23x3 + ... + a2nxn  = b2 
a33x3 + ... + a3nxn  = b3    (6) 

 
an-1,n-1xn-1 + an-1,nxn = bn-1 
annxn = bn 
and det (A) = a11a22...ann. 
 
You may notice here that the nth (last) equation contains only xn, the (n – 1)th 
equation contains xn and xn-1 and so on. We can obtain xn from the nth equation, xn-1 
from the (n – 1)th equation and proceed in that order till we get x1 from the first 
equation. Since the coefficient matrix A is nonsingular, aii ¹  0, i = 1, 2, ...., n and we 
obtain 
 
xn = bn/ann 
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xn-1 = (bn-1 – an-1,nxn)/an-1,n-1 
 

x1 = (bi - 


n

j 2

aijxj)/a11 

or in general 

xi = (bi - 


n

ij 1

aijxj)/aii i = 1, 2, ..., n     (7) 

 
Since the unknowns in this method are determined in the order xn, xn-1, ..., x1, this 
method is called the back substitution method. The total number pf multiplications 
and divisions needed to obtain the complete solution vector x using this method is 
again n(n + 1)/2. 
Let us consider the following example. 
 
Example 3: Solve the linear system of equations 
 
2x1 + 3x2 – x3 = 5 
        -2x2 – x3 = -7 
               -5x3 = -15 
 
Solution: From the last equation, we have 
 
x3 = 3. 
From the second equation, we have 
 

x2 = 2 23 3

22

b a x

a

-
 = 

( 7 3)

( 2)

- +

-
 = 2. 

 
Hence from the first equation, we get 
 

x1 = 1 12 2 13 3

11

b a x a x

a

- -
 = 

(5 3.2 3)

2

- +
 = 1 

 
In the above discussion you have observed that the system of Eqns. (2) can be easily 
solved if the coefficient matrix A in Eqns. (2) has one of the three forms D, L or U or 
if it can be transformed to one of these forms. Now, you would like to know how to 
reduce the given matrix A into one of these three forms? One such method which 
transforms the matrix A to the form U is the Gauss elimination method which we shall 
describe in the next section. 
 
3.4 Gauss Elimination Method 
 
Gauss elimination is one of the oldest and most frequently used methods for solving 
systems of algebraic equations. It is attributed to the famous German mathematician, 
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Carl Fredrick Gauss (1777 – 1855). This method is the generalization of the familiar 
method of eliminating one unknown between a pair of simultaneous linear equations. 
You must have learnt this method in your linear algebra course (MTH 122). In this 
method the matrix A is reduced to the form U by using the elementary row operations 
which include: 
 
i) interchanging any two rows 
ii) multiplying (or dividing) any row by a non-zero constant 
iii) adding (or subtracting) a constant multiple of one row to another row. 

 
The operation Ri + mRj is an elementary row operation, that means, add to the 
elements of the ith row m times the corresponding elements of the jth row. The 
elements in the jth row remain unchanged. 
If any matrix A is transformed into another matrix B by a series of elementary row 
operations, we say that A and B are equivalent matrices. Consequently, we have the 
following definition. 
 
To understand the Gauss elimination method let us consider a system of three 
equations: 
 

a11x1 + a12x2 + a13x3 = b1 
a21x1 + a22x2 + a23x3 = b2       (8) 
a31x1 + a32x2 + a33x3 = b3 
 
Let a11¹  0. In the first stage of elimination we multiply the first equation in Eqns. (8) 
by m21 = (-a21/a11) and add to the second equation. Then multiply the first equation by 
m31 = (-a31/a11) and addto the third equation. This eliminates x1 from the second and 
third equations. The new system called the first derived system then becomes 
 
a11x1 + a12x2 + a13x3 = b1 
 

(1)

22a x2 + a (1)

23 x3 = b (1)

2         (9) 

 

a (1)

32 x2 + a (1)

33 x3 = b (1)

3  

 
where, 

(1)

22a  = a22 - 
21

11

a

a
a12 

a (1)

23  = a23 - 
21

11

a

a
a13 

b (1)

2  = b2 - 
21

11

a

a
b1 

a (1)

32  = a32 - 
31

11

a

a
a12 
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a (1)

33  = a33 - 
31

11

a

a
a13 

b (1)

3  = b3 - 
31

11

a

a
b1 

 
In the second stage of elimination we multiply the second equation in (9) by m32 = (-a
(1)

32 / (1)

22a ), (1)

22a ¹  0 and add to the third equation. This eliminates x2 from the third 

equation. The new system called the second derived system becomes 
a11x1 + a12x2 + a13x3 = b1 

(1)

22a x2 + a (1)

23 x3 = b (1)

2        (11) 

a (2)

33 x3 = b (2)

3  

where 

a (2)

33  = a (1)

33  - 
(1)

32

(1)

22

a

a
 a (1)

23  

b (2)

3  = b (1)

3  - 
(1)

32

(1)

22

a

a
b (1)

2                  (12) 

 
You may note here that the system of Eqns. (11) is an upper triangular system of the 

form (6) and can be solved using the back substitution provided method a (2)

33 ¹  0. 

 
Let us illustrate the method through an example. 
 
Example 4: Solve the following linear system 
 
 2x1 + 3x2 – x3 = 5 
 4x1 + 4x2 – 3x3 = 3                 (13) 
-2x1 + 3x2 – x3 = 1 
using Gauss elimination method. 
 
Solution: to eliminate x1 from the second and third equations of the system (13) add 

4

2

-
 = -2 times the first equation to the second equation and add -(-2)/2 = 1 times the 

first equation to the third equation. We obtain the new system as 
 
2x1 + 3x2 – x3 = 5 
        -2x2 – x3 = -7                 (14) 
        6x2 – 2x3 = 6 
 
In the second stage, we eliminate x2 from the third equation of system (14). Adding -
6/(-2) = 3 times the second equation to the third equation, we get 
 
2x1 + 3x2 - x3 = 5  
        -2x2 - x3 = -7         (15) 
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               -5x3 = -15 
 
System (15) is in upper triangular form and its solution is 
 
x3 = 3, x2 = 2, x1 = 1. 
 
You may observe that we can write the above procedure more conveniently in matrix 
form. Since the arithmetic operations we have performed here affect only the elements 
of the matrix A and the vector b, we consider the augmented matrix i., [A|b] (matrix A 
augmented by the vector b) and perform the elementary now operations on the 
augmented matrix. 
 

[A|b] = 

















3

2

1

333231

232221

131211

b

b

b

aaa

aaa

aaa

R2 - 
21

11

a

a
 R1, R3 - 

31

11

a

a
 R1 

 

»    

 

 

















3

1
2

1

33
1

32

1
32

1
22

131211

b

b

b

aa

aa

aaa

  R3 - 
(1)

32

(1)

22

a

a
 R2 

 

»      

















3

1
2

1

33

1
32

1
22

131211

b

b

b

a

aa

aaa

 

which is in the desired from where, a (1)

22 , a (1)

23 ,a (1)

32 , a (1)

33 , b (1)

2 , b (1)

3 , a (2)

33 , a (2)

3  are given by 

Eqns. (10) and (12). 
 

Definition: The diagonal elements a11, a (1)

22  and a (2)

33  which are used as divisors are 

called pivots. 
 
You might have observed here that for a linear system of order 3, the elimination was 
performed in 3 – 1 = 2 stages. In general for a system of n equations given by Eqns. 
(2) the elimination is performed in (n – 1) stages. At the ith stage of elimination, we 
eliminate xi, starting from (i + 1)th row upto the nth row. Sometimes, it may happen 
that the elimination process stops in less than (n – 1) stages. But this is possible only 
when no equations containing the unknowns are left or when the coefficients of all the 
unknowns in remaining equations become zero. Thus if the process stops at the rth 
stage of elimination then we get a derived system of the form 
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a11x1 + a12x2 + ... + a1nxn = b1 

a (1)

22 x2 + ... + a (1)

2n xn = b (1)

2  

. 

. 

.                   (16) 

a (r 1)

rr

- xr + ... + a (r 1)

rn

- xn = b (r 1)

r

-  

           0 = b (r 1)

r 1

-

+  

.         . 

.         . 

.         . 

0 = b (r 1)

n

-

  

Where r   n and a11¹  0, a (1)

22 ¹  0, ...., a (r 1)

rr

- ¹  0. 

 
In the solution of system of linear equations we can thus expect two different 
situations 
 

1) r = n 
2) r < n. 

 
Let us now illustrate these situations through examples. 
 
Example 5: Solve the system of equations 
 
  4x1 + x2 + x3 = 4 
 x1 + 4x2 – 2x3 = 4 
-x1 + 2x2 – 4x3 = 2 
 
using Gauss elimination method 
 
Solution: Here we have 
 

[A|b] = 





















2

4

4

421

241

114

R2 - 
1

4
 R1, R3 + 

1

4
 R1 

 

= 
















3

3

4

4/154/90

4/94/150

114

  R3 - 
3

5
 R2 
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= 




















5/6

3

4

5/1200

4/94/150

114

 

 
using back substitution method, we get 
 
x3 = -1/2; x2 = 1/2; x1 = 1 
 

Also, det (A) = 4 *
15

4
*

( 12)

5

-
 = -36 

 
Thus in this case we observe that r = n = 3 and the given system of equations has a 
unique solution. Also the coefficient matrix A in this case is nonsingular. Let us look 
at another example. 
 
Example 6: Solve the system of equations 
 
  3x1 + 2x2 + x3 = 3 
    2x1 + x2 + x3 = 0 
6x1 + 2x2 + 4x3 = 6 
 
using Gauss elimination method. Does the solution exist? 
 
Solution: We have 
 

[A|b] =

















6

0

3

426

112

123

 R2 - 
2

3
 R1, R3 – 2R1 

 

= 






















0

2

3

220

3/13/10

123

  R3 – 6R2 

 

=   


















12

2

3

000

3/13/10

123

 

 

In this case you can see that r < n and elements b1, b
(1)

2  and b (2)

3  are all non-zero. 
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Since we cannot determine x3 from the last equation, the system has no solution. In 
such a situation we say that the equations are inconsistent. Also note that det (A) = 0 
i.e., the coefficient matrix is singular. 
 
We now consider a situation in which not all b’s are non-zero. 
 
Example 7: Solve the system of equations 
 
16x1 + 22x2 + 4x3 = -2 
    4x1 – 3x2 + 2x3 = 9 
12x1 + 25x2 + 2x3 = -11 
 
using gauss elimination method. 
 
Solution: In this case we have 

[A|b] = 























11

9

2

22512

234

4226

 R2 - 
1

4
 R1, R3 - 

3

4
 R1 

 

= 
























2/19

2/19

2

12/170

12/170

4226

 R3 + R2 

 

=  














 



0

2/19

2

000

12/170

4226

 

 

Now in this case r < n and elements b1, b
(1)

2  are non-zero, but b (2)

3  is zero. Also the last 

equation is satisfied for any value of x3. Thus, we get 
 
x3 = any value 
 

x2 = -
2

17
 (

19

2
 - x3) 

 

x1 = 
1

16
 (-2 – 22x2 – 4x3) 

 
Hence the system of equations has infinitely many solutions. 
 
Note that in this case also det(A) = 0. 
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The conclusions derived from Examples 4, 5 and 6 are true for any system of linear 
equations. We now summarize these conclusions as follows: 
 
i) If r = n, then the system of Eqns. (2) has a unique solution which can be 

obtained using the back substitution method. Moreover, the coefficient matrix 
A in this case is nonsingular. 

ii) If  r< n and all the elements b (r 1)

r 1

-

+ , b (r 1)

r 2

-

+ , ...., b (r 1)

n

-  are zero then the system has 

no solution. In this case we say that the system of equations inconsistent. 

iii) If r < n and all the elements b (r 1)

r 1

-

+ , b (r 1)

r 2

-

+ , ....., b (r 1)

n

- , if present, are zero, then the 

system has infinite number of solutions. In this case the system has only r 
linearly independent rows. 

 
In both the cases (ii) and (iii), the matrix A is singular. 
 
Now we estimate the number of operations (multiplication and division) in the Gauss 
elimination method for a system of n linear equations in n unknowns as follows: 
 
No. of divisions 
1st step of elimination (n – 1) divisions 
2nd step of elimination (n – 2) divisions 
 
(n – 1)th step of elimination 1 divisions 
\  Total number of divisions = ( n – 1) + (n – 2) + ..... + 1 

       = å (n – 1) = 
n(n 1)

2

-
 

 

No. of multiplications 
1st step of elimination n(n – 1) multiplications 
2nd stepof elimination(n – 1) (n – 2) multiplications 
(n – 1)th step of elimination 2.1 multiplications 
\  Total number of multiplications = n(n – 1) + (n – 1) (n – 1) + .... + 2.1 
      = å n(n – 1) 

= å n2 - å n 

= 
n(n 1)(2n 1)

6

+ +
 - 

n(n 1)

2

+
 

= 
1

3
n(n + 1) (n – 1) 

 
Also the back substitution adds n divisions (one division at each step) and the numbers 
of multiplications added are 
(n – 1)th equation 1 multiplication 
(n – 2)th equation 2 multiplication 
 
1st equation ( n – 1) multiplication 
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\  Total multiplications = å (n – 1) = 
n(n 1)

2

-
 

Total operation added by back substitution = 
n(n 1)

2

-
 + n = 

n(n 1)

2

+
 

You can verify these results for n = 3 from Eqns. (9) and (11). 
 
Thus to find the solution vector x using the Gauss elimination method, we need 
 

M = 
n(n 1)

2

-
 + 

1

3
n(n2 – 1) + 

n

2
(n + 1) 

= 
n

6
[2n2 + 6n – 2] 

= 
3

n

6
 + n2 - 

n

3
 

operations. For large n, we may say the total number of operations needed is 
1

3
n3 

(approximately). Thus, we find that Gauss elimination method needs much lesser 
number of operations compared to the Cramer’s rule. 
 
It is clear from above that you can apply Gauss elimination method to a system of 
equations of any order. However, what happens if one of the diagonal elements i.e., 
the pivots in the triangularization process vanishes? Then the method will fail. In such 
situations we modify the Gauss elimination method and this procedure is called 
pivoting. 
 
Pivoting 
 

In the elimination procedure the pivots a11, a
(1)

22 , ..., a (n 1)

nn

-  are used as divisors. If at any 

stage of the elimination one of these pivots say a (i 1)

ii

- , (a (0)

11  = a11), vanishes then the 

elimination procedure cannot be continued further (see Example 8). Also, it may 

happen that the pivot a (i 1)

ii

- , though not zero, may be very small in magnitude 

compared to the remaining elements in the ith column. Using a small number as a 
divisor may lead to the growth of the round-off error. In such cases the multipliers 

(e.g. 
( i 2)

i 1,i

( i 1)

ii

a

a

-

-

-

-
, 

( i 3)

i 2,i

( i 1)

ii

a

a

-

-

-

-
) will be larger than one in magnitude. The use of large multiplier 

will lead to magnification of error both during the elimination phase and during the 
back substitution phase of the solution.  
To avoid this we rearrange the remaining rows (ith row upto nth row) so as to obtain a 
non-vanishing pivot or to make it the largest element in magnitude in that column. 
The strategy is called pivoting (see Example 9). The pivoting is of the two types; 
partial pivoting and complete pivoting. 
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Partial Pivoting 
 
In the first stage of elimination, the first column is searched for the largest element in 
magnitude and this largest element is then brought at the position of the pivot by 
interchanging the first row with the row having the largest element in magnitude in the 
first column. In the second stage of elimination, the second column is searched for the 
largest element in magnitude among the (n – 1) elements leaving the first element and 
then this largest element in magnitude is brought at the position of the second pivot by 
interchanging the second row with the row having the largest element in the second 
column. This searching and interchanging of rows is repeated in all the n – 1 stages of 
the elimination. Thus we have the following algorithm to find the pivot. 
 
For i = 1, 2, ....., n, find j such that 
 

( i 1)

jia - = 
k

max ( i 1)

kia - , i ≤ k≤  n, 

and interchange rows i and j. 
 
Complete Pivoting 
 
In the first stage of elimination, we search the entire matrix A for the largest element 
in magnitude and bring it at the position of the pivot. In the second stage of 
elimination we search the square matrix of order n – 1 (leaving the first row and the 
first column) for the largest element in magnitude and bring it to the position of 
second pivot and so on. This requires at every stage of elimination not only the 
interchanging of rows but also interchanging of columns. Complete pivoting is much 
more complicated and is not often used. 
 
In this unit, by pivoting we shall mean only partial pivoting. 
 
Let us now understand the pivoting procedure through examples. 
 
Example 8: Solve the system of equations 
 
x1 + x2 + x3 = 6 
3x1 + 3x2 + 4x3 = 20 
2x1 + x2 + 3x3 = 13 
using Gauss elimination method with partial pivoting. 
 
Solution: let us first attempt to solve the system without pivoting. We have 
 

[A|b] =

















13

20

6

312

433

111

 R2 – 3R1, R3 – 2R1 
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=  
















 1

2

6

110

100

111

 

 
Note that in the above matrix the second pivot has the value zero and the elimination 
procedure cannot be continued further unless, pivoting is used. 
 
Let us now use the partial pivoting. In the first column 3 is the largest element. 
Interchanging the rows 1 and 2, we have 
 

[A|b] = 

















13

6

20

312

111

433

R2 - 
1

3
 R1, R3 - 

2

3
 R1 

 

= 
























3/1

3/2

20

3/110

3/100

433

 

 
In the second column, 1 is the largest element in magnitude leaving the first element. 
Interchanging the second and third rows we have 
 

[A|b] = 
























3/2

3/1

20

3/100

3/110

433

 

 
You may observe here that the resultant matrix is in triangular form and no further 
elimination is required. Using back substitution method, we obtain the solution 
 
x3 = 2, x2 = 1, x1 = 3. 
 
Let us consider another example. 
 
Example 9: Solve the system of equations 
 
0.0003 x1 + 1.566 x2 = 1.569 
0.3454 x1 – 0.436 x2 = 3.018               (17) 
 
using Gauss elimination method with and pivoting. Assume that the numbers in 
arithmetic calculations are rounded to four significant digits. The solution of the 
system (17) is x1 = 10, x2 = 1. 
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Solution: Without Pivoting 
 

m21 = - 21

11

a

a
 = -

0.3454

0.0003
 = -1151.0  (rounded to four places) 

a (1)

22  = -0.436 – 1.566 ´  1151 

= -0.436 – 1802.0 – 1802.436 
= -1802.0 

b (1)

2  = 3.018 – 1.569 ´  1151.0 

= 3.018 – 1806.0 
= -1803.0 

 
Thus, we get the system of equations 
 

0.0003 x1 + 1.566 x2 = 1.569 
   - 1802.0 x2 = -1803.0 

 

which gives 
 

x2 = 
1803.0

1802.0
 = 1.001 

x1 = 
1.569 1.566 1.001

0.0003

- ´
 = 

1.569 1.568

0.0003

-
 

= 3.333 
 

which is highly inaccurate compared to the exact solution. 
 
We interchange the first and second equations in (17) and get 
 
0.3454 x1 – 0.436 x2 = 3.018 
0.0003 x1 + 1.566 x2 = 1.569 
 
we obtain 
 

m21 = - 21

11

a

a
 = -0.0009 

a
(1)

22  = 1.566 – 0.0009 ´  (0.436) 

1.566 – 0.0004 
= 1.566 

b (1)

2  = 1.569 – 3.018 ´  (0.0009) 

= 1.569 - -.0027 
= 1.566 

 
Thus, we get the system of equations 
 

0.3454 x1 – 0.436 x2 = 3.018 
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         1.566 x2 = 1.566 
 
which gives 
 
x2 = i 

x1 = 
3.018 0.436

0.3454

+
 = 

3.454

0.3454
 = 10 

 
which is the exact solution. 
 
We now make the following two remarks about pivoting. 
 
Remark: If the matrix A is diagonally dominant i.e., 

iia ³ 



n

j
i

iia

1
1

, then no pivoting is needed. See Example 5 in which A is diagonally 

dominant. 
 
Remark: If exact arithmetic is used throughout the computation, pivoting is not 
necessary unless the pivot vanishes. However, if computation is carried upto a fixed 
number of digits, we get accurate results if pivoting is used. 
 
There is another convenient way of carrying out the pivoting procedure. Instead of 
physically interchanging the equations all the time, the n original equations and the 
various changes made in them can be recorded in a systematic way. Here we use an n 
´  (n + 1) working array or matrix which we call W and is same as our augmented 
matrix [A|b]. Whenever some unknown is eliminated from an equation, the changed 
coefficients and right side for this equation are calculated and stored in the working 
array W in place of the previous coefficients and right side. Also, we use an n-vector 
which we call p = (pi) to keep track of which equations have already been used as 
pivotal equation (and therefore should not be changed any further) and which 
equations are still to be modified. Initially, the ith entry pipf p contains the integer i, i 
= 1, ........, n and working array W is of the form 
 

W = (wij) =























nnnnn

n

n

b

b

b

aaa

aaa

aaa

2

1

21

22221

11211

 

 
Further, one has to be careful in the selection of the pivotal equation for each step. For 
each step the pivotal equation must be selected on the basis of the current state of the 
system under consideration i.e. without foreknowledge of the effect of the i = 1, ......, 
n, where di is the number 
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di = max |aij| 
 
1 ≤ j≤  n 

 
At the beginning of say kth step of elimination, e pick as pivotal equation that one 
from the available n – k, which has the absolutely largest coefficient of xk relative to 
the size of the equation. This means that the integer j is selected between k and n for 
which 
 

jk

j

p

p

w

d
³ ik

i

w

d
, " i = pk, .....,pn 

 
We can also store the multipliers in the working array W instead of storing zeros. That 
is, if pi is the first pivotal equation and we use the multipliers mpi,1, i = 2, ....., n to 
eliminate x1 from the remaining (n – 1) positions of the first column then in the first 
column we can store the multipliers mpi,1, i = 2, ....., n, instead of storing zeros. 
 
Let us now solve the following system of linear equations by scaled partial pivoting 
by storing the multipliers and maintaining pivotal vector. 
 
Example 10: Solve the following system of linear equations with pivoting 
 

x1 – x2 + 3x3 = 3 
2x1 + x2 + 4x3 = 7 
3x1 + 5x2 – 2x3 = 6 
 
Solution: Here the working matrix is 
 

W =





















6253

7412

3311

  p = [p1, p2, p3]
T = [1, 2, 3]T 

and d1 = 3, d2 = 4and d3 = 5. 
 
Note that d’s will not change in the successive steps. 
 

Step 1: Now p1,1

1

w

d
 = 

1

3
p2,1

2

w

d
 = 

2

4
= 

1

2
, p 3,1

3

w

d
 = 

3

5
. 

 

Since 
3

5
>

1

2
, 

1

3
, 

Hence, p1 = 3, p2 = 2 and p3 = 1. 

We use the third equation to eliminate x1 from first and second equations and store 
corresponding multipliers instead of storing zeros in the working matrix. 
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The multipliers are mpi,1 = i,1

i ,1

p

p

w

w
, i = 2, 3 

Therefore, m2,1 = 2 ,1

1,1

p

p

w

w
 =

2,1

3,1

w

w
 = 

2

3
 

and m1,1 = 3,1

1,1

p

p

w

w
 = 

1,1

3,1

w

w
 = 

1

3
 

 
After the first step the working matrix is transformed to 

 

W(1) =

 
 

  





















6253

33/163/73/2

13/113/83/1

  p = (p1, p2, p3)
T = (3, 2, 1)T 

 

Step 2: 
2,2p

2

w

dp
 = 

2,2

2

w

d
 = 

7 / 3

4
 = 

7

12
 

 
3,2p

3

w

dp
 = 

1,2

1

w

d
 = 

8 / 3

3
 = 

8

9
 

 

Now 
8

9
>

7

12
 so that we have p = (p1, p2, p3)

T = (3, 2, 1)T. 

 

Multiplier is m
i.2p = i,2

2,2

p

p

w

w
, i = 3 

 

Þ  m
3.2p = i,2

2,2

p

p

w

w
 = 

7 / 3

8 / 3

-

-
= 

7

8
. 

 
That is, we use the first equation as pivotal equation to eliminate x2 from second 
equation and also we store the multiplier. After the second step, we have the following 
working matrix. 
 

W(2) =



























6253
8

17

24

51

8

7

3

2

1
3

11

3

8

3

1

 p = [3, 1, 2]T 

 
In the working matrix the circled numbers denote multipliers and squared ones denote 
pivotal elements. Rearranging the equations (i.e., 3rd equation becomes the first 
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equation, 1st becomes the 2nd and 2nd becomes the third) we get the reduced upper 
triangular system which can be solved by back substitution. 
 
3x1 + 5x2 – 2x3 = 6 

-
8

3
x2 + 

11

3
 x3 = 1 

51

24
x3 = 

17

8
 

 
By back substitution, we get x1 = 1, x2 = 1 and x3 = 1. 
 
We now make the following two remarks. 
 
Remark: We do not interchange rows in Step 1 and 2, instead we maintain a pivotal 
vector and use it at the end to get upper triangular system. 
 
Remark: We store multipliers in the working matrix so that we can easily solve Ax = 
c, once we have solved Ax = b. This will be explained to you in detail in Unit 2 when 
we discuss the method of obtaining inverse of a matrix A. 
 
We shall now describe the triangularization method which is also a direct method for 
the solution of system of equations. 
In this method the matrix of coefficients of the linear system being solved is factored 
into the product of two triangular matrices. This method is frequently used to solve a 
large system of equations. We shall discuss the method in the next section. 
 
3.5 LU Decomposition Method 
 

Let us consider the system of Eqns. (2), where A is a non-singular matrix. We first 
write the matrix A as the product of a lower triangular matrix L and an upper 
triangular matrix U in the form 
 
A = LU 
or in matrix form we write                (18) 
 























nnnn

n

n

aaa

aaa

aaa

21

22221

11211

=













































nn

n

n

nnnn u

uu

uuu

lll

ll

l

00

00

00

222

11211

21

2221

11

    (19) 

 
The left side matrix A has n2 elements, whereas L and U have 1 + 2 + ... + n = n(n + 
1)/2 elements each. Thus, we have n2 + n unknowns in L and U which are to be 
determined. On comparing the corresponding elements on two sides in Eqn. (19), we 
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get n2 equations in n2 + n unknowns and hence n unknowns are determined. Thus, we 
get a solution in terms of these n unknowns i.e., we get a n parameter family of 
solutions. In order to obtain a unique solution we either take all the diagonal elements 
of L as 1, or all the diagonal elements of U as 1. 
 
For uij = 1, i = 1, 2, ...., n, the method is called the Crout LU decomposition method. 
For 1ii = 1, i = 1, 2, ...., n we have Doolittle LU decomposition method. Usually 
Crout’s LU decomposition method is used unless it is specifically mentioned. We 
shall now explain the method for n = 3 with uii = 1, i = 1, 2, 3. We have 
 

















333231

232221

131211

aaa

aaa

aaa

 =

















333231

2221

11

0

0

lll

ll

ol

















100

10

1

23

1312

u

uu

 

 
or 
 

















333231

232221

131211

aaa

aaa

aaa

=





















332332133132123131

2322232122222121

1311121111

lulullull

ulullull

ulull

 

 
On comparing the elements of the first column, we obtain 
 
111 = a11, 121 = a21, 131 = a31                (20) 
i.e., the first column of L is determined. 
 
On comparing the remaining elements of the first row, we get 
 
111u12 = a12; 111u13 = a13 

 
which gives 
 
u12 = a12/111; u13 = a13/111                (21) 
 
Hence the first row of U is determined 
 
On comparing the elements of the second column, we get 
 
121u12 + 122 = a22 
131u12 + 132 = a32 
 
which gives 
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












12313232

12212222

ulal

ulal
        (22) 

 
Now the second column of L is determined. 
 
On comparing the elements of the second row, we get 
 
121u13 +122u23 = a23 
 
which gives u23 = (a23 – 121 u13)/122                        (23) 
 
and the second row of U is determined. 
 
On comparing the elements of the third column, we get 
 
131u13 + 132u23 + 133 = a33 

 
which gives 133 = a33 – 131u13 – 132u23     (24) 
You must have observed that in this method, we alternate between getting a column of 
L and a row of U in that order. If instead of uii = 1 1, 2, ...., n, we take 1ii = 1, i = 1, 2, 
...., n, then we alternative between getting a row of U and  a column of L in that order. 
 
Thus, it is clear from Eqns. (20) – (24) that we can determine all the elements of L and U 
provided the nonsingular matrix A is such that 
 

a11¹  0, 








2221

1211

aa

aa
¹  0. 

 
Similarly, for the general system of Eqns. (2), we obtain the elements of L and U using the 
relations 
 

1ij = aij - 




1

1

j

i

1ikukj, i ³  j 

uij = (aij - 




1

1

j

i

1ikukj)/1ii, i³  j 

uii = 1 
Also, det (A) = 111122 ....., 1nn. 
 
Thus w can say that every nonsingular matrix A can be written as the product of a 
lower triangular matrix and an upper triangular matrix if all principal minors of A are 
nonsingular, i.e., if 
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a11¹  0, 








2221

1211

aa

aa
¹  0, 

333231

232221

131211

aaa

aaa

aaa

¹  0, .....|A| ¹  0. 

 
Once we have obtained the elements of the matrices L and U, we write the system of 
equations 
 
A x = b                    (25) 
 
in the form 
 
L U x = b                    (26) 
 
The system (26) may be further written as the following two systems 
 
U x = y                    (27) 
L y = b                    (28) 
 
 

Now, we first solve the system (28), i.e., 
 
L y = b, 
 
using the forward substitution method to obtain the solution vector y. Then using this 
y, we solve the system (27), i.e., 
 
U x = y, 
using the backward substitution method to obtain the solution vector x. 
 
The number of operations for this method remains the same as that in the Gauss-
elimination method. 
 
We now illustrate this method through an example. 
 
Example 11: Use the LU decomposition method to solve the system of equations 
x1 + x2 + x3 = 1 
4x1 + 3x2 – x3 = 6 
3x1 + 5x2 + 3x3 = 4 
Solution: Using 1ii = 1, i = 1, 2, 3, we have 
 



















353

134

111

= 

















1

01

001

3231

21

ll

l

















33

2322

311211

00

0

u

uu

uuu
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=





















3323321331223212311131

2313212212211121

131211

uululululul

uuluulul

uuu

 

 
On comparing the elements of row and column alternatively, on both sides, we obtain 
first row  : u11 = 1,   u12 = 1, u13 = 1 
first column  : 121 = 4,   131 = 3 
second row  : u22 - -1,   u23 = -5 
second column : 132 = -2 
third row  : u33 = -10 
 
Thus, we have 

L = 

















 123

014

001

 U = 





















1000

510

111

 

 
 
Now from the system 
 
L y = b 
 
or  

















 123

014

001

















3

2

1

y

y

y

 = 

















4

6

1

 

 
we get 
 
y1 = 1, y2 = 2, y3 = 5 
 
and from the system 
 
U x = y 
or  





















1000

510

111

















3

2

1

x

x

x

 = 

















5

2

1

 

we get 
x3 = -1/2, x2 = 1/2, x1 = 1. 
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4.0 CONCLUSION 
 

As in the summary 
 
 

5.0 SUMMARY 
 

In this unit we have covered the following: 
 

a) For a system of n equations 
 Ax = b (see Eqn. (2)) 

in n unknowns, where A is n ´ n non-singular matrix, the methods of finding 
the solution vector x may be broadly classified into two types: (1) direct 
methods and (ii) iterative methods 

b) Direct methods produce the exact solution in a finite number of steps provided 
there are no round-off errors. Cramer’s rule is one such method. This method 
gives the solution vector as 

 xi = id

d
 i = 1, 2, ..., n 

 where d = |A| and di is the determinant pf the matrix obtained from A by 
replacing the ith column of A by the column vector b. Total number of 
operations required for Cramer’s rule in solving a system of n equations are 
M = (n + 1) (n – 1)n! + n 
Since the number M increases very rapidly, Cramer’s rule is not used for n > 4. 

c) For larger systems, direct methods becomes more efficient if the coefficient 
matrix A is in one of the forms D (diagonal), L (lower triangular) or U (upper 
triangular). 

d) Gauss elimination method is another direct method for solving large systems (n 
> 4). In this method the coefficient matrix A is reduced to the form U by using 
the elementary row operations. The solution vector x is then obtained by using 
the back substitution method. For large n, the total numbers of operations 

required in Gauss elimination method are 
1

3
n3 (approximately). 

e) In Gauss elimination method if at any stage of the elimination any of the pivots 
vanishes or become small in magnitude, elimination procedure cannot be 
continued further. In such cases pivoting is used to obtain the solution vector x. 

f) Every non-singular matrix A can be written as the product of a lower triangular 
matrix and an upper triangular matrix, by the LU decomposition method, if all 
the principal minors of A are non-singular. Thus, LU decomposition method, 
which is a modification of the Gauss elimination method can be used to obtain 
the solution vector x. 

 

6.0 TUTOR-MARKED ASSIGNMENT (TMA) 
 

i If A =

























1312

2101

1012

2023

  calculate det (A). 
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ii Solve the system of equations 
3x1 + 5x2          =8 
-x1 + 2x2 – x3   = 0 
3x1 – 6x2 + 4x3 = 1 
using Cramer’s rule. 

iii Solve the system of equations 
x1 + 2x2 – 3x3 + x4 = -5 
          x2 + 3x3 + x4 = 6 
2x1 + 3x2 + x3 + x4 = 4 
  x1           + x3 + x4 = 1 
using Cramer’s rule. 

 
iv Solve the system of equations 

x1    = 1 
2x1 = x2   = 1 
3x1 – x2 – 2x3   = 0 
4x1 + x2 – 3x3 + x4  = 3 
5x1 – 2x2 – x3 – 2x4 + x5 = 1 
using forward substitution method. 

v Solve the system of equations 
x1 – 2x2 + 3x3 – 4x4 + 5x5 = 3 
         x2 – 2x3 + 3x4 – 4x5 = -2 
                  x3 – 2x4 + 3x5 = 2 
                           x4 – 2x5 = -1 
                                     x5 = 1 
using backward substitution method. 

vi Use Gauss elimination method to solve the system of equations 
   x1 + 2x2 + x3 = 3 
3x1 – 2x2 – 4x3 = -2 
  2x1 + 3x2 – x3 = -6 

vii Solve the system of equations 
  

 

















 

1101

1132

1310

1321



















4

3

2

1

x

x

x

x

= 



















1

4

6

5

 

viii Use Gauss elimination method to solve the system of equations 
 

 























































5

4

3

2

1

21000

12100

01210

00121

00012

x

x

x

x

x

= 























1

0

0

0

1
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ix Solve the system of equations 
 0.729x + 0.81y + 0.9z = 0.6867 

x + y + z = 0.8338 
1.331x + 1.21y + 1.1z = 1.000 
using gauss eliminating method with and without pivoting. Round off the 
numbers in arithmetic calculations to four significant digits. The exact solution 
of the system rounded to four significant digit is 
x = 0.2245, y = 0.2814  z = 0.3279 

x. Use the LU decomposition method with uii = 1, i = 1, 2, 3 to solve the system 
of equations given in Example 11. 

xi Use the LU decomposition method with 1ii = 1, i = 1, 2, 3 to solve the system 
of equations given in TMA Question 4 no. 1. 

xii Use L U decomposition method to solve the system of equations given in TMA 
Question 4 no. 3. 
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UNIT 2  INVERSE OF A SQUARE MATRIX 
 
CONTENTS 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 

3.1 The Method of Adjoints 
3.2 The Gauss-Jordan Reduction Method 
3.3 LU Decomposition Method 

4.0 Conclusion 
5.0 Summary 
6.0 Tutor-Marked Assignment 
7.0 References/Further Readings 
 
1.0 INTRODUCTION 
 
In the previous unit, you have studied the Gauss elimination and LU decomposition 
methods for solving systems of algebraic equations A x = , when A is a n ´
nnonsingular matrix. Matrix inversion is another problem associated with the problem 
of finding solutions of a linear system. If the inverse matrix A-1 of the coefficient 
matrix A is known then the solution vector x can be obtained from x = A-1b. In genral, 
inversion of matrices for solving system of equations should be avoided whenever 
possible. This is because, it involves greater amount of work and also it is difficult to 
obtain the inverse accurately in many problems. However, there are two cases in 
which the explicit computation of the inverse is desirable. Firstly, when several 
systems equations, having the same coefficient matrix A but different right hand side 
b, have to b e solved. Then computations are reduced if we first find the inverse 
matrix and then find the solution. Secondly, when the elements of A-1 themselves have 
some special physical significance. For instance, in the statistical treatment of the 
fitting of a function to observational data by the method of least squares, the elements 
of A-1 give information about the kind and magnitude of errors in the data. 
 
In this unit, we shall study a few important methods for finding the inverse of a 
nonsingular square matrix. 
 
2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 

 obtain the inverse by adjoint method for n < 4 
 obtain the inverse by the Gauss-Jordan and LU decomposition methods 
 obtain the solution of a system of linear equations using the inverse method. 
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3.0 MAIN CONTENTS 
 
3.1 The Method of Adjoints 
 
You already know that the transpose of the matrix of the cofactors of elements of A is 
called the adjoint matrix and is denoted by adj(A). 
 
Formally, we have the following definition. 
 
Definition: The transpose of the cofactor matrix Ac of A is called the adjoint of A and 
is written a adj(A). 
 
adj(A) = (Ac)T 
 
The inverse of a matrix can be calculated using the adjoint of a matrix. 
 
E obtain the inverse matrix A-1 of A from 

A-1 = 
1

det(A)
adj(A)        (1) 

This method of finding the inverse of a matrix is called the method of adjoints. 
 
Note that det(A) in Eqn. (1) must not be zero and therefore the matrix A must be 
nonsingular. 
 
We shall not be going into the details of the method here. We shall only illustrate it 
through examples. 
 
Example 1: Find A-1 for the matrix 
 

A =  

















134

120

185

 

 
and solve the system of equations 
A x = b         (2) 
for 
 

i) b =   

















3

1

2

  ii) b =

















0

0

1

iii) b = 

















3

2

1

 

Solution: Since det (A) = -1 ¹  0, the inverse of A exists. We obtain the cofactor matrix Ac 
from A by replacing each element of A by its cofactor as follows: 
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Ac = 























1056

17911

845

 

 

\ adj(A) = (Ac)T = 



















10178

594

6115

 

 

Now A-1 = 
1

det (A)
adj(A) 

\ A-1 = - = 



















10178

594

6115

 = 





















10178

594

6115

 

 
Also the solution of the given system of equations are 
 

i) x = A-1b =  





















10178

594

6115

















3

1

2

 = 

















3

2

3

 

 

ii) x = A-1b = 





















10178

594

6115

















0

0

1

 =  

















8

4

5

 

 

iii) x = A-1b = 





















10178

594

6115

















3

2

1

 = 

















12

7

9

 

 
We now take up an example in which the given matrix A is lower triangular and we 
shall show that its inverse is also a lower triangular matrix. 
 
 

Example 2: Find A-1 for the matrix 
 

A = 

















654

032

001

 

 
Solution: We have 
det(A) = 18 ¹  0. Thus A-1 exists. 
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Now 

Ac = 





















300

560

21218

 

 

\  A-1 = 
c T

(A )

adj(A)
 = 

1

18
















 352

0612

0018

= 

















 6/118/59/1

03/13/2

001

 

 
Thus, A-1 is again a lower triangular matrix. Similarly, we can illustrate that the 
inverse of an upper triangular matrix is again upper triangular. 
 
Example 3: Find A-1 for the matrix 
 

A = 

















600

540

321

 

 
Solution: Since, det(A) = 24 ¹  0, A-1 exists. 
 
We obtain 
 

Ac = 

















 452

0612

0024

 

 

\  A-1 = 
1

24




















400

560

21224

= 





















6/100

24/54/10

12/12/11

 

which is again an upper triangular matrix. 
 
The method of adjoints provides a systematic procedure to obtain the inverse of a 
given matrix and for solving systems of linear equations. To obtain the inverse of an n 
´ n matrix, using this method, we need to evaluate one determinant of order n, n 
determinants each of order n – 1 and perform n2 divisions. In addition, if this method 
is used for solving a linear system we also need matrix multiplication. The number of 
operations (multiplications and divisions) needed, for using this method, increases 
very rapidly as n increases. For this reason, this method is not used when n > 4. 
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For large n, there are methods which are efficient and are frequently used for finding 
the inverse of a matrix and solving linear systems. We shall now discuss these 
methods. 
 
3.2 The Gauss-Jordan Reduction Method 
 
This method is a variation of the Gauss elimination method. In the Gauss elimination 
method, using elementary row operations, we transform the matrix A to an upper 
triangular matrix U and obtain the solution by using back substitution method. In 
Gauss-Jordan reduction not only the elements below the diagonal but also the 
elements above the diagonal of A are made zero at the same time. In other words, we 
transform the matrix A to a diagonal matrix D. This diagonal matrix may then be 
reduced to an identity matrix by dividing each row by its pivot element. 
 
Alternately, the diagonal elements can also be made unity at the same time when the 
reduction is performed. This transforms thecoefficient matrix into an identity matrix. 
Thus, on completion of the Gauss-Jordan method, we have 
 
[A|b] [I|d]         (3) 
 
The solution is then given by 
xi = di, i = 1, 2, ......, n       (4) 
 
In this method also, we use elementary row operations that are used in the Gauss 
elimination method. We apply these operations both below and above the diagonal in 
order to reduce all the off-diagonal elements of the matrix to zero. Pivoting can be 
used to make the pivot non-zero or make it the largest element in magnitude in that 
column as discussed. We illustrate the method through an example. 
 
Example 4: Solve the system of equations 
 
x1 + x2 + x3 =1 
4x1 + 3x2 – x3 = 6 
3x1 + 5x2 + 3x3 = 4 
 
using Gauss-Jordan method with pivoting. 
 
Solution: We have 
 

[A|b] = 



















4

6

1

353

134

111

(interchanging first and second row) 
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»














 

4

1

6

353

111

134

 R2 - 
1

4
 R1, R3 - 

3

4
 R1 

 

»






















2/1

2/1

6

4/154/110

4/54/10

134

(interchanging second and third row) 

 

»






















2/1

2/1

6

4/54/10

4/15`4/110

134

R3 – 1/11 R2, R1 - 
12

11
 R2 

 

»






















11/5

2/1

11/72

11/1000

4/154/110

11/5604

 R1 + 
56

10
R3, R2 - 

33

8
R3 

 

»
















11/5

8/11

4

11/1000

04/110

004

 R1/4 (divide first row by 4),

    2

4
R (divide sec ond row by 11/ 4),

11
  

 3

11
R (divide third row by 10 / 11).

10
 

»
















 2/1

2/1

1

100

010

001

 

which is the desired form. 
Thus, we obtain 

x1 = 1, x2 = 
1

2
, x3 = -

1

2
. 

 
The method can be easily extended to a general system of n equations. Just as we 
calculated the number of operations needed for Gauss elimination method in the same 
way you can verify that the total number of operations needed for this method is M = 

1

2
 n3 + 

2
n

2
 + n. 

 

Clearly this method requires more number of operations compared to the Gauss 
elimination method. We therefore, do not use this method generally for solving system  
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of equations but is very commonly used for finding the inverse matrix. This is done by 
augmenting the matrix A by the identity matrix I of the order same as that of A. Using 
elementary row operations on the augmented matrix [A|I] we reduce the matrix A to 
the form I and in the process the matrix I is transformed to A-1 
 
That is 
[A|I]   [I|A_1]        (5) 
 
We now illustrate the method through examples. 
 
Example 5: Find the inverse of the matrix 
 

A = 





















121

132

213

 

using the Gauss-Jordan method. 
 
Solution: We have 
 

[A|I] = 





















100

010

001

121

132

213

R/3

 

 

»




















100

010

003/1

121

132

3/23/11

R – 2R, R - R

 

 

»
























103/1

013/2

003/1

3/13.70

3/73/110

3/23/11

 3R/11

 

 

»




















 103/1

011/311/2

003/1

3/13/70

11/710

3/23/11

R1 - 
1

3
R2, R3 + 

7

3
R2 

 

»




















111/711/1

011/311/2

011/111/3

11/2000

11/710

11/501
11

20
R3 
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»




















20/1120/720/1

011/311/2

011/111/3

000

11/710

11/501

R1 - 
5

11
R3, R2 - 

7

11
R3 

 

»






















20/1120/720/1

20/720/120/3

4/14/14/1

100

010

001

 

 
Thus, we obtain 
 

A-1 = 























20/1120/720/1

20/720/120/3

4/14/14/1

 

 
Example 6: Find the inverse of the matrix 
 

A = 























3/55172/71

0301

002/11

0002

 

using the Gauss-Jordan method 
 
Solution: Here we have 
 

[A|I] = 

























1000

0100

0010

0001

3/55172/71

0302

002/11

0002

1

2
R1 

 

»

























1000

0100

0010

0002/1

3/55172/71

0302

002/11

0001

  
  R2 – R1, R3 – 2R1, R4 – R1 
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»































1002/1

0101

0012/1

0002/1

3/55172/70

0300

002/10

0001

2R2 

 

»































1002/1

0101

0021

0002/1

3/55172/70

0300

0010

0001

R4 + 
7

2
R2 

 

»































1074

0101

0021

0002/1

3/551700

0300

0010

0001

( )3

1
R

3
-  

 

»



























 1074

03/103/1

0021

0002/1

3/551700

0100

0010

0001

( )4

1
R

17
-  

 

»



























 17/1017/717/4

03/103/1

0021

0002/1

3/551700

0100

0010

0001

  

R4–R3 

 

»



























 17/13/117/751/5

03/103/1

0021

0002/1

51/55000

0100

0010

0001

( )4

51
R

55
-  

 

»



























55/355/1755/2111/1

03/103/1

0021

0002/1

1000

0100

0010

0001
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Hence 

A-1 = 

























55/355/1755/2111/1

03/103/1

0021

0002/1

 
 
is the inverse of the given lower triangular matrix. 
 
Let us now consider the problem of finding the inverse of an upper triangular matrix. 
 
Example 7: Find the inverse of the matrix 
 

A = 





















1000

3/2100

1410

2/122/31

 

 
 
using the Gauss-Jordan method. 
 

[A|I] =  























1000

0100

0010

0001

1000

3/2100

1410

2/122/31

R1 - 
3

2
R2 

 

»



















 





1000

0100

0010

002/31

1000

3/2100

1410

1801

R1 – 8R3, R2 + 4R3 

 

»



















 

1000

0100

0410

082/31

1000

3/2100

3/11010

3/19001

 

  R1 + 
19

3
R4, R2 - 

11

3
R4, R3 - 

2

3
R4 
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»



























1000

3/2100

3/11410

3/1982/31

1000

0100

0010

0001

 

 
Hence 
 

A-1 = 

























1000

3/2100

3/11410

3/1982/31

 
 

which is the inverse of the given upper triangular matrix. 
 

Note that in Example 2, 3, 6 and 7, the inverse of a lower/upper triangular matrix is 
again a lower/upper triangular matrix. There is another method of finding the inverse 
of a matrix A which uses the pivoting strategy. Recall that in Sec. 3.4 of Unit 1, for 
the solution of system of linear algebraic equation Ax = b, we showed you how the 
multipliers mp,i,k’s can be stored in working array W during the process of elimination. 
The main advantage of storing these multipliers is that if we have already solved the 
linear system of equations Ax = b or order n, by the elimination method and we want 
to solve the system Ax = c with the same coefficient matrix A, only the right side 
being different, then we do not have to go through the entire elimination process 
again. Since we have saved in the working matrix W all the multipliers used and also 
have saved the p vector, we have only to repeat the operations on the right hand side 
to obtain β, such that Ux = β  is equaivalent to Ax = c. 

 
In order to understand the calculations necessary to derive β , from c consider the 
changes made in the right side b during the elimination process. Let k be an integer 
between 1 and n, and assume that the ith equation was used as pivotal equation during 
step k of the elimination process. Then i = pk. initially, the right side of equation i is 
just bi. 

 
If k > 1, then after Step 1, the right side is 

b (1)

i  = bi – mi1 b 1p  

 
If k > 2, then  after Step 2, the right side is 

b (2)

i  = b (1)

i  = mi2 b 2

(1)

p  

= bi – mi1 bp1 – mi2 b 2

(1)

p  
 

In the same manner, we have the right side of equation i = pk as 

b (k 1)

i

-  = bi – mi1 bp1 – mi2 b 2

(1)

p - ..... - mi,k-1 b k 1

(k 2)

p -

-     (6) 
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Replacing i by pk in Eqn. (6), we get 

b
k

(k 1)

p

-  = b
kp - m

k '1p bp1 - m k ' 2p b
2

(1)

p - .... - m
k ' k 1p -

b
k 1

(k 2)

p -

-     (7) 

k = 1, 2, ....., n. 
 

Also, since jb% = b
j

( j 1)

p

- , j = 1, 2, ...., n, we can rewrite Eqn. (7) as 

kb%  = 
kpb% - m

k ,1p 1b% - m
k ,2p 2b%- ..... - m

k.k 1p - k 1b -
%     (8) 

     k = 1, ...., n. 
 

Eqn. (8) can then be used to calculate the entries of b%. But since the multipliers mij’s 
are stored in entries wij’s of the working matrix W, we can also write Eqn. (8) in the 
form 
 

kb%  = 
kpb%  - 

k 1

j 1

-

=
å Wpkj jb%, k = 1, ...., n      (9) 

 
Hence, if we just know the final content of the first n columns of W and the pivoting 
strategy p then we can calculate the solution x of Ax = b by using the back 
substitution method and writing 
 

xk = 
k

kk

n

k p j j
j k 1

p

b W x

W
= +

- å%

, k = n, n – 1 , ....., 1             (10) 

The vector x = [x1 x2 ....... xn]
T will then be the solution of Ax = b. 

 
For finding the inverse of an n ´ n matrix A, we use the above algorithm. We first 
calculate the final contents of the n columns of the working matrix W and the pivoting 
vector p and then solve each of the n systems 
Ax = ej, j = 1, ......., n                (11) 
 
where e1 = [1   0 ...... 0]T, e2 = [0   1   0 ..... 0]T, ......., en = [0   0 ...... 1]T, with the help 
of Eqn. (9) and (10). Then for each j = 1, ......, n the solution of system of system (11) 
will be the corresponding column of the inverse matrix A-1. The following example 
will help you to understand the above procedure. 
 
Example 8: Find the inverse of the matrix 
 

A = 















 

211

012

121

 

using partial pivoting. 
 
Solution: Initially p = [p1, p2, p3]

T = [1, 2, 3]T and the working matrix is 
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W(0) = 















 

211

012

121

 

Now d1 = 2, d2 = 2, d3 = 2. 
 

Step 1: 1,1p

1

| W |

d
= 

1

2
, 2,1p

2

| W |

d
 = 

2

2
 = 1, 3,1p

3

| W |

d
 = 

1

2
 

 1 >
1

2
, 

1

2
\  p1 = 2, p2 = 1, p3 = 3 

 
We use the second equation to eliminate x1 from first and third equations and store 
corresponding multipliers instead of storing zeros in the working matrix. The 
multipliers are 
 

m
i,1p = 

i,1

i,1

p

p

w

w
, i = 2, 3 

\  m
2,1p = m11 = 2,1

1,1

p

p

w

w
 = 

1

2
 

    m
3,1p = m31 = 3,1

1,1

p

p

w

w
 = -

1

2
 

we get the following working matrix 
 
 

 

W(1) = 















 

22/32/1

012

12/32/1

, p = (2, 1, 3)T 

 

Step 2: 
2,2p

2

w

dp
 = 

1,2p

1

w

d
 = 

3 / 2

2
 = 

3

4
 

3,2p

3

w

dp
 = 

3,2p

3

w

d
 = 

3 / 2

2
 = 

3

4
 

 

Since 
3

4
 = 

3

4
 so we take p = (2, 1, 3)T 

 

Now m
i,2p = i,2

2,2

p

p

w

w
, i = 3 

 
 

\  m
3,2p = m32 = 3,2

1,2

p

p

w

w
 = 

3 / 2

3 / 2
 = 1 
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We use the first equation as pivotal equation to eliminate x2 from the third equation 
and also store the multipliers. After the second step we have the following working 
matrix 
 

W(2) = 















 

312/1

012

12/32/1

, p = (2, 1, 3)T 

 
Now in this case, w(2) is our final working matrix with pivoting strategy p = (2, 1, 3)T 
 
Note that circled ones denote multipliers and squared ones denote pivot elements in 
the working matrices. 
 
To find the inverse of the given matrix A, we have to solve 
 
Ax = e1 = [b1 b2 b3]

T 
Ax = e2 = [b1 b2 b3]

T 
Ax = e3 = [b1 b2 b3]

T 
where e1 = [1 0 0]T, e2 = [0 1 0]T, e3 = [0 0 1]T 
 
First we solve the system Ax = e1 and consider 
 
 















 

312/1

012

12/32/1

















x

x

x

=

















0

0

1

, p = (2, 1, 3)T                         (12) 

 
Using Eqn. (9), we get 

with p1 = 2, 1b% = b2 = 0 

with p2 = 1, 2b%  = b1 – w11 1b%  

= 1- 0
2

1






 

= 1 

with p3 = 3, 3b% = b3 – w31 1b%  - w32 2b%  

= 0- 






2

1
.0-1.1=-1 

 
Using Eqn. (10), we then get the following system of equations 
3x3 = -1 
3

2
x2 – x3 = 1 

2x1 + x2 = 0 
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which gives x3 = -
1

3
, x2 = 

4

9
 and x1 = -

2

9
 

 

i.e., vector x = 
T










3

1

9

4
.

2

1
 is the solution of system (12). 

 
Remember that the solution of system (12) constitutes the first column of the inverse 
matrix A-1. 
 
In the same way we solve the system of equations Ax = e2 and Ax = e3, or 
 















 

312/1

012

12/32/1

















3

2

1

x

x

x

=

















0

1

0

, p = (2, 1, 3)T              (13) 

 
and 
 















 

312/1

012

12/32/1

















3

2

1

x

x

x

=

















1

0

0

, p = (2, 1, 3)T              (14) 

 
Using Eqns (9) and (10), we obtain the solution of system (13) as 

x = 
T










3

1

9

1
.

9

5
 which is the second column of A-1 and the solution of system (14), i.e., 

x = 
T










3

1

9

1
.

9

5
 as the third column of A-1 

 

Hence A-1 = 





















3/13/13/1

9/29/19/4

9/19/59/2

 

 

You may recall that in Sec. 3.5 of Unit 1 we discussed the LU decomposition method. 
Using this method we can factorise any non-singular square matrix A into the product 
of a lower triangular matrix L and upper triangular matrixU. That is, we can write 
 
A = LU.             ...  (15) 
 
In the next section we shall discuss how form (15) can be used to find the inverse of 
non-singular square matrices. 
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3.3 L U Decomposition Method  
 

Let us consider Eqn. (15) and take the inverse on both the sides. If we use the fact that 
the inverse of the product of matrices is the product of their inverses takes in reverse 
order, then we obtain 
 
A-1 = (L U)-1 = U-1 L-1                (16) 
 
We can now find the inverse of U and L separately and obtain the inverse matrix A-1 
from Eqn. (16). 
 
Remark: It may appear to you that finding an inverse of a matrix by this method is a 
lengthy process. But, in practice, this method is very useful because of the fact that 
here we deal with triangular matrices and triangular matrices are easily invertible. It 
involves only forward and backward substitutions. 
 
Let us now consider an example to understand how the method works. 
 
Example 9: Find the inverse of the matrix 
 

A = 





















121

132

213

 

using LU decomposition method. 
 
Solution: We write, 
 

A = 





















121

132

213

 = LU =  

















111

011

001

















100

10

1

u

uu

                    (17) 

 
Comparing the coefficients on both sides of Eqn. (17), we obtain 
 
111 = 3, 121 = 2, 131 = 1 (multiplying the rows of L by the first column of U) 

111u12 = 1, u12 = 
1

3
 (multiplying the rows of L by the 

111u13 = 2, u13 = 2/3 second and third column of U) 
 
The second column of L is obtained from 

121u12 + 122 = a22, 122 = -3 - 
2

3
 = -

11

3
 

131u12 + 132 = a32, 132 = -2 - 
1

3
 = -

7

3
 

u23 is obtained from 
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121u13 + 122u23 = a23, u23 = 
1 2(2 / 3)

11/ 3

- -

-
 = 

7

11
 

133 is obtained from 

131u13 + 132u23 + 133 = 1, 133 = 
20

11
 

 
Thus we have 
 

L =  





















11/203/71

03/112

003

and U = 

















100

11/710

3/23/11

 

 
Now since L is a lower triangular matrix L-1 is also a lower triangular 
matrix. Let us assume that 
 

L-1 = 

















111

011

001

 

 
Using the identity LL-1, we have 
 

LL-1=  





















11/203/71

03/112

003



















111

03/112

003

















111

011

001

= 

















100

010

001

 

 
comparing the coefficients, we get 
 

'

111  = 
1

3
, 

'

221  = -
3

11
, 

'

331  = 
11

20
 

 
Also, 

2 
'

111  - 
11

3
'

211  = 0, 
'

211  = 
6

33
 = 

2

11
 

 
'

111  - 
7

3
'

211  + 
20

11
'

311  = 
1

20
 

 

-
7

3
'

221  + 
20

11
'

321  = 0, 
'

321  = -
7

20
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\  L-1 = 





















20/1120/720/1

011/311/2

003/1

 

 
Similarly, since U is an upper triangular matrix, U-1 is also upper triangular matrix. 
Using UU-1 = I, we obtain by backward substitution. 
 

U = 

















100

11/710

3/23/11

and U-1 = 





















100

11/710

11/53/11

 

 
Therefore, we have from Eqn. (16) 
 

A-1 = U-1 L-1 =   





















100

11/710

11/53/11





















20/1120/720/1

011/311/2

003/1

 

            = 























20/1120/720/1

20/720/120/3

4/14/14/1

 

 
4.0 CONCLUSION 
 
We now end this unit by giving a summary of what we have covered init. 
 
5.0 SUMMARY 
 

In this unit we have covered the following: 
a) Using the method of adjoints, the inverse of a given non-singular matrix A can 

be obtained from 
  

 A-1 = 
1

det (A)
adj(A)     (see Eqn. (1)) 

 

Since the number of operations in the adjoint method to find the inverse of n ´
nnon-singular matrix A increases rapidly as n increases, the method is not 
generally used for n > 4. 

 
b) For large n, the Gauss-Jordan reduction method, which is an extension of the 

Gauss elimination method can be used for finding the inverse matrix and solve 
the linear systems. 
Ax = b      (see Eqn. (2)) 
using the Gauss-Jordan method. 
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a) the solution of system of Eqns (2) can be obtained by using elementary 
now operations 

 [A|b] 
reduced to

¾ ¾ ¾ ¾ ¾ ®  [I|d] 
 
b) the inverse matrix A-1 can be obtained by using elementary row 

operations [A|I] 
reduced to

¾ ¾ ¾ ¾ ¾ ® [I|A-1] 
 
c) For large n, another useful method of finding the inverse matrix A-1 is LU 

decomposition method. Using this method any non-singular matrix A is first 
decomposed into the product of a lower triangular matrix L and an upper 
triangular matrixU. That is 

 
 A = LU 
 U-1 and L-1 can be obtained by backward and forward substitutions. Then the 

inverse can be found from 
 A-1 = U-1 L-1 
 
6.0 TUTOR-MARKED ASSIGNMENT 
 
i Solve the system of equations 
 3x1 + x2 + 2x3 = 3 
 2x1 – x2 – x3 = 1 
 x1 – 2x2 + x3 = -4 
 using the method of adjoints. 
 
ii Solve the system of equations 
 

 























4121

1132

1021

1432



















4

3

2

1

X

X

X

X

= 



















5

1

2

3

 

  
using the method of adjoints. 

 
iii. Verify that the total number of operations needed for Gauss-Jordan reduction 

methods is 
1

2
 n3 + 

2
n

2
 + n. 

iv In example 6 and 7 verify that 
 A A-1 = A-1 A = I. 
 

v Solve the system of equation 
 x1 + 2x2 + x3 = 0 
 2x1 + 2x2 + 3x3 = 3 
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 -x1 – 3x2 = 2 
 using the Gauss-Jordan method with pivoting. 
 
vi Find the inverse of the matrix 

 A = 



























2100

1210

0121

0012

 

 using the Gauss-Jordan method. 
 
vii Find the inverse of the matrix 
 

 A = 

















134

120

185

 

 using the LU decomposition method. 
 
viii Find the inverse of the matrix 
 

 A = 





















121

112

213

 

 
Using the LU decomposition method. 
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UNIT 3 ITERATIVE METHODS 
 
CONTENTS 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 

3.1 The General Iteration Methods 
3.2 The Jaccobi’s Iteration Method 
3.3 The Gauss-Seidel Iteration Method 

4.0 Conclusion 
5.0 Summary 
6.0 Tutor Marked Assignment 
7.0 References/Further Readings 
 
1.0 INTRODUCTION 
 
In the previous two units, you have studied direct methods for solving linear system of 
equations Ax = b, A being n ´ n non-singular matrix. Direct methods provide the 
exact solution in a finite number of steps provided exact arithmetic is used and there is 
no round-off error. Also, direct methods are generally used when the matrix A is 
dense or filled, that is, there are few zero elements, and the order of the matrix is not 
very large say n < 50. 
 
Iterative methods, on the other hand, start with an initial approximation and by 
applying a suitably chosen algorithm, lead to successively better approximations. 
Even if the process converges, it would give only an approximate solution. These 
methods are generally used when the matrix A is sparse and the order of the matrix A 
is very large say n > 50. Sparse matrices have very few non-zero elements. In most 
cases these non-zero elements lie on or near the main diagonal giving rise to tri-
diagonal, five diagonal or band matrix systems. It may be noted that there are no fixed 
rules to decide when to use direct methods and when to use iterative methods. 
However, when the coefficient matrix is sparse or large, the use of iterative methods is 
ideally suited to find the solution which take advantage of the sparse nature of the 
matrix involved. 
 
In this we shall discuss two iterative methods, namely, Jacobi iteration and Gauss-
Seidel iteration methods which are frequently used for solving linear system of 
equations. 
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2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 
 

 obtain the solution of system of linear equations, Ax = b, when the matrix A is 
large or sparse, by using the iterative method viz; Jacobi method or the Gauss-
Seidel method 

 tell whether these iterative methods converges or not 
 obtain the rate of convergence and the approximate number of iterations 

needed for the required accuracy of these iterative methods. 
 

3.0 MAIN CONTENT 
 
3.1 The General Iteration Method 
 

In iteration methods as we have already mentioned, we start with some initial 
approximate solution vector x(0) an generate a sequence of approximation {x(k)} which 
converge to the exact solution vector x as k® ¥ . If the method is convergent, each 
iteration produces a better approximation to the exact solution. We repeat the 
iterations till the required accuracy is obtained. Therefore, in an iterative method the 
amount of computation depends on the desired accuracy whereas in direct methods the 
amount of computation is fixed. The number of iterations needed to obtain the desired 
accuracy also depends on the initial approximation, closer the initial approximation to 
the exact solution, faster will be the convergence. 
 

Consider the system of equations 
Ax = b              ... (1) 

where A is an n´ n non-singular matrix. 
 
Writing the system in expanded form, we get 
 
a11x1 + a12x2 + ...... a1nxn = b1 
a21x1 + a22x2 + ...... a2nxn = b2      (2) 
.............................................. 
an1x1 + an2x2 + ...... + annxn = bn 
 
We assume that the diagonal coefficients aii ¹  0, (i = 1, ....., n). If some of aii = 0, then 
we arrange the equations so that this condition holds. We then rewrite system (2) as 
 

x1 = -
11

1

a
(a12x2 + a13x3 + .... + a1nxn) + 1

11

b

a
 

x2 = -
22

1

a
(a21x1 + a23x3 + .... + a2nxn) + 2

22

b

a
    (3) 

 

xn = -
nn

1

a
(an1x1 + an2x2 + .... + ann-1xn-1) + n

nn

b

a
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In matrix form, system (3) can be written as 
x = Hx + c 
where 
 

H =























0

0

0

1,21

22
2

22
23

22
21

11
1

11
13

11
12

ann
nan

ann
an

ann
an

a
na

a
a

a
a

a
na

a
a

a
a

       (4) 

and the elements of c are ci = i

ii

b

a
(i = 1, 2, ..., n) 

To solve system (3) we make an initial guess x(0) of the solution vector and substitute 
into the r.h.s. of Eqn. (3). The solution of Eqn. (3) will then yield a vector x(1), which 
hopefully is a better approximation to the solution than x(0). We then substitute x(1) 
into the r.h.s. of Eqn. (3) and get another approximation, x(2). We continue in this 
manner until the successive iterations x(k) have converged to the required number of 
significant figures. 
 

In general we can write the iteration method for solving the linear system of Eqns. (1) 
in the form 
 
x(k+1) = Hx(k) + c, k = 0, 1......      (5) 
 
where x(k) and x(k+1) are the approximations to the solution vector x at the kth and the 
(k + 1)th iterations respectively. H is called the iteration matrix and depends on A. c is 
a column vector and depends on both A and b. The matrix H is generally a constant 
matrix. 
 

When the method (5) is convergent, then 
( k)

k
lim x

® ¥
= (k 1)

k
lim x +

® ¥
 = x 

and we obtain from Eqn. (5) 
x = Hx + c         (6) 
If we define the error vector at the kth iteration as 

(k)Î  = x(k) – x         (7) 
then subtracting Eqn. (6) from Eqn. (5), we obtain 

(k 1)+Î  = H 
(k)Î         (8) 

Thus, we get from Eqn. (8) 
 

(k)
Î  = H 

(k 1)-
Î  = H2 (k 2)-

Î = ... = Hk (0)
Î      (9) 

 

where
(0)

Î  is the error in the initial approximate vector. Thus, for the convergence of 
the iterative method, we must have 
 

( k)

k
lim

® ¥
Î  = 0 

independent of 
(0)Î . 
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Before we discuss the above convergence criteria, let us recall the following 
definitions from linear algebra. 
Definition: For a square matrix A of order n, and a number l  the value of l  for 
which the vector equation Ax = l x has non-trivial solution x ¹  0, is called an 
eigenvalue or characteristic value of the matrix A. 
 
Definition: The largest eigenvalue in magnitude of A is called the spectral radius of A 
ad is denoted by p(A). 
 
The eigenvalues of the matrix A are obtained from the characteristic equation 
det(A - l I) = 0 
which is an nth degree polynomial in l . The roots of this polynomial l 1, l 2, ......., l

n are the eigenvalues of A. Therefore, we have 
 
r (A) = 

i
max | l i|                 (10) 

 

We now state a theorem on the convergence of the iterative methods. 
 
Theorem 1: An iteration method of the form (5) is convergent for arbitrary initial 
approximate vector x(0) if and only if r (H) < 1. 

 
We shall not be proving this theorem here as its proof makes use of advanced 
concepts from linear algebra and is beyond the scope of this course. 
 
We define the rate of convergence as follows: 
 

Definition: The number n  = -log10 r (H) is called the rate of convergence of an 

iteration method. 
 
Obviously, smaller the value of r (H), larger is the value of n . 

 
Definition: The method is said to have converged to m significant digits if 

i
max |Î i

(k)| 

‚  10-m, that is, largest element in magnitude, of the error vector Î
(k)‚  10-m. Also the 

number of iterations k that will be needed to make 
i

max |Î i
(k)| ‚  10-mis given by 

k = 
m

n
                  (11) 

 

Therefore, the number of iterations that are required to achieved the desired accuracy 
depends on n . For a method having higher rate of convergence, lesser number of 
iterations will be needed for a fixed accuracy and fixed initial approximation. 
 
There is another convergence criterion for iterative methods which is based on the 
norm of a matrix. 
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The norm of a square matrix A of order n can be defined in the same way as we define 
the norm of an n-vector by comparing the size of Ax with the size of x (an n-vector) as 
follows: 
 

i) ||A||2 = max 2

2

Ax
x

 

 based on the Euclidean vector norm, ||x||2 = 2 2 2

1 2 n| x | | x | ... | x |+ + +  

and 
 

ii) ||A|| ¥  = max
Ax
x

¥

¥

, based on the maximum vector norm, ||x|| ¥ = 
1 i n
max

£ £
|xi|. 

 In (i) and (ii) above the maximum is taken over all (non zero) n-vector. The 
most commonly used norms is the maximum norm ||A|| ¥ , as it is easier to 

calculate. It can be calculated in any of the following two ways: 
 
 ||A|| ¥  = 

x
max

i
å |aik| (maximum absolute column-sum) 

 or 
 ||A|| ¥  = 

i
max

k
å |aik| (maximum absolute row sum) 

 
The norm of a matrix is a non-negative number which in addition to the property 
||AB||‚ ||A|| ||B|| 
 
satisfies all the properties of a vector norm, viz., 
 
 

a) ||A|| ƒ  0 and ||A|| = 0 if A = 0 
 

b) ||a A|| = |a | ||A||, for all numbers a . 
 
c) ||A + B|| ‚  ||A|| + ||B|| 

where A and B are square matrices of order n. 
 
We no state a theorem which gives the convergence criterion for iterative methods in 
terms of the norm of a matrix. 
 
Theorem 2: The iteration method of the form (5) for the solution of system (1) 
converges to the exact solution for any initial vector, if ||H||<1. 
 

Also note that 
||H|| ƒ r (H). 

 
This ca be easily proved by considering the eignevalue problem Ax = l x. 
 

Then ||A|| = || l x|| = | l | ||x|| 
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or | l | ||x|| = ||Ax|| ‚  ||A|| ||x|| 
i.e., | l | ‚  ||A|| since ||x|| ¹  0 
 
Since this results is true for all eignevalue, we have 
r (A) ‚  ||A||. 

 
The criterion given in Theorem 2 is only a sufficient condition, it is not necessary. 
Therefore, for a system of equations for which the matrix H is such that either 

i
max

n

k 1=
å |hik| < 1, the iteration always converges, but if the condition is violated it is not 

necessary that the iteration diverges. 
 
There is another sufficient condition for convergence as follows: 
 
Theorem 3: If the matrix A is strictly diagonally dominant that is, 
 

|aii| >
j 1
j i

n

=
¹

å |aij|, i = 1, 2, ......, n. 

Then the iteration method (5) converges for nay initial approximation x10. If no better 
initial approximation is known, we generally take  
x(0) = 0. 
We shall mostly use the criterion given in Theorem 1, which is both necessary and 
sufficient. 
 
For using the iteration method (5), we need the matrix H and the vector c which 
depend on the matrix A and the vector b. the well-known iteration methods are based 
on the splitting of the matrix A in the form 
 
A = D + L + U                 (12) 
where D is the diagonal matrix, L and U are respectively the lower and upper 
triangular matrices with zero diagonal elements. Based on the splitting (12), we now 
discuss two iteration methods of the form (5). 
 
3.2 The Jacobi’s Iteration Method 
 
We write the system of Eqn. (1) in the form (2), viz., 
a11x1 + a12x2 + ... + a1nxn = b1 
a21x1 + a22x2 + ... + a2nxn = b2 
.   .  . . 
.   .  . . 
.   .  . . 
an1x1 + an2x2 + ... + annxn = bn 
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We assume that a11, a22, ..... ann are pivot elements and aii ¹ 0, i = 1, 2, ...., n. if any of 
the pivots is zero, we can interchange the equations to obtain non-zero pivots (partial 
pivoting). 
 
Note that, A being a non-singular matrix, it is possible for us to make all the pivots 
non-zero. It is only when the matrix A is singular that even complete pivoting may not 
lead to all the non-zero pivots. 
 
We rewrite system (2) in the form (3) and define the Jacobi iteration method as 
 

x (k 1)

1

+  = -
11

1

a
(a12x

(k)

2  + a13x
(k)

3  + ... +  a1nx
(k)

n -b1) 

x (k 1)

2

+  = -
22

1

a
(a21x

(k)

2  + a23x
(k)

3  + ... +  a2nx
(k)

n -b2) 

. 

. 

. 

x (k 1)

n

+  = -
ii

1

a
(an1x

(k)

i  + an2x
(k)

2  + ... +  an,n-1x
(k)

n 1- -bn) 

or x (k 1)

i

+  = -
ii

1

a
, )...(

)(

11,

)(

22

)(

1 bnxaxaxa
k

nnn

k

n

k

in              (13) 

 
The method (13) can be put in the matrix form as 





































)1(
1

)1(
1

)1(
1

k

k

k

x

x

x

 = -







































ann

a

a

1

...

22

1

11

1

0...

....

....0

...0

21

212

112

nn

n

n

aa

aa

aa





































)(

)(
2

)(
1

k
n

k

k

x

x

x

 -





































nb

b

b

2

1

r 

 
x(k+1) = -D-1 (L + U) x(k) + D-1b, k = 0, 1, ....             (14) 
 
where 
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D = 

















nna

a

a

..........0

0..........0

0..........0

22

11

, L = 























 0

00

0..........0

0..........00

1,21

3231

21

nnnn aaa

aa

a

 

 

and U = 

























0..........000

..........

00

..........0

,1

223

11312

nn

n

n

a

aa

aaa

 

 
The method (14) is for the form (5), where 
 
H = -D-1 (L + U) and c = D-1b 
 
For computation purpose, we obtain the solution vector x(k+1) at the (k + 1)th iteration, 
element by element using Eqn. (13). For large n, we rarely use the method in its 
matrix form as given by Eqn. (14). 
 
In this method in the (k + 1)th iteration we use the values, obtained at the kth iteration 

viz., x
(k)

1 , x
(k)

2 , ...., x
(k)

n  on the right hand side of Eqn. (13) and obtain the solution 

vector x(k+1). We then replace the entire vector x(k) on the right side of Eqn. (13) by 
x(k+1) to obtain the solution at the next iteration. In other words each of the equations is 
simultaneously changed by using the most recent set of x-values. It is for this reason 
this method is also known as the method of simultaneous displacements. 
 
Let us now solve a few examples for better understanding of the method and its 
convergence. 
Example 1: Perform four iterations of the Jacobi method for solving the system of 
equations 
 





















411

151

118

















3

2

1

x

x

x

  = 

















7

16

1

     (15) 

with x(0) = 0, the exact solution is x = [-1 -4 -3]T. 
 
Solution: The Jacobi method when applied to the system of Eqns. (15) becomes 
 

x (k 1)

1

+  = 
1

8
[x (k)

2  + x (k)

3  - 1] 
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x (k 1)

2

+  = 
1

5
[x (k)

1  + x (k)

3  - 16]                (16) 

x (k 1)

3

+  = 
1

4
[x (k)

1  + x (k)

2  - 7], k = 0, 1, .... 

 
Starting with x(0) = [0 0 0]T, we obtain form Eqns. (16), the following results: 
k = 0 

x (1)

1  = 
1

8
[0 + 0 – 1] = -0.125 

x (1)

2  = 
1

5
[0 + 0 – 16] = -3.2 

x (1)

3  = 
1

4
[0 + 0 – 7] = -1.75 

 
k = 1 

x (2)

1  = 
1

8
[-3.2 – 1.75 – 1] = -0.7438 

x (2)

2  = 
1

5
[-0.125 – 1.75 – 16] = 3.5750 

x (2)

3  = 
1

4
[-0.125 – 3.2 – 7] = -2.5813 

 
k = 2 

x (3)

1  = 
1

8
[-3.5750 – 2.5813 – 1] = -0.8945 

x (3)

2  = 
1

5
[-0.7438 – 2.5813 – 16] = -3.8650 

x (3)

3  = 
1

4
[-0.7438 – 3.5750 – 7] = 2.8297 

k = 3 

x (4)

1  = 
1

8
[-3.8650 – 2.8297 – 1] = 0.9618 

x
(4)

2  = 
1

5
[-0.8945 – 2.8297 – 16] = -3.9448             (17) 

x (4)

3  = 
1

4
[-0.8945 – 3.8650 – 7] = -2.9399 

 
Thus, after four iterations we get the solution as given in Eqns (17). We find that after 
iteration, we get better approximation to the exact solution. 
 
Example 2: Jacobi method is used to solve the system of equations 
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





















512

184

114

















3

2

1

x

x

x

 = 

















15

21

7

               (18) 

 
Determine the rate of convergence of the method and the number of iterations needed 

to make 
i

max | (k)

iÎ | ‚  10-2 

 
Perform these number of iteration starting with initial approximation x(0) = [1 2 2]T 
and compare the result with the exact solution [2, 4 3]T 
 
Solution: The Jacobi method when applied to the system of Eqns. (18), gives the 
iteration matrix 

 

H = -

























0

0

1

1
00

0
1

0

00
1

3231

2321

1312

33

22

11

aa

aa

aa

a

a

a

 

 

= -

























012

104

110

5

1
00

0
8

1
0

00
4

1

 

= 





















05/15/2

8/102/1

4/14/10

 

 
The eignevalues of the matrix H are the roots of the characteristic equation. 
 
det (H - l I) = 0 
 
Now 
 

det (H - l I) = 























15/15/2

8/112/1

4/14/11

 = 
3

l  - 
3

80
 = 0 

 
All the three eigenvalues of the matrix H are equal and they are equal to 
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l  = 0.3347 
 
The spectral radius is 
 
r (H) = 0.3347                 (19) 

 
We obtain the rate of convergence as 
 
n  = -log10(0.3347) = 0.4753 
 
The number of iterations needed for the required accuracy is given by 
 

k = 
2

n
»  5                  (20) 

 
The Jacobi method when applied to the system of Eqns. (18) becomes 
 

x(k+1) = 





















05/15/2

8/102/1

4/14/10

 x(k) + 

















3

8/21

4/7

, k = 0, 1, ...            (21) 

starting with the initial approximation x(0) = [1 2 2]T, we get from Eqn. (21) 
 
x(1) = [1.75 3.375 3.0]T 
x(2) = [1.8437 3.875 3.025]T 
x(3) = [1.9625 3.925 2.9625]T 
x(4) = [1.9906 3.9766 3.0000]T 
x(5) = [1.9941 3.9953 3.0009]T 
 
which is the result after five iterations. Thus, you can see that result obtained after five 
iterations is quite close to the exact solution [2 4 3]T 
 
Example 3: Perform four iterations of the Jacobi method for solving the system of 
equations 
 



























2100

1210

0121

0012



















4

3

2

1

x

x

x

x

 = 



















1

0

0

1

    (22) 

 
With x(0) = [0.5   0.5   0.5   0.5]T. What can you say about the solution obtained if the 
exact solution is x = [1  1  1  1]T? 
 
Solution: The Jacobi method when applied to the system of Eqns. (22) becomes 
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x
(k 1)

1

+
 = 

1

2
[1 + x

(k)

2 ] 

x (k 1)

2

+  = 
1

2
 [x (k)

1  + x (k)

3 ]       

x (k 1)

3

+  = 
1

2
 [x (k)

2  + x (k)

4 ]                (23) 

x (k 1)

4

+  = 
1

2
 [1 + x (k)

3 ], k = 0, 1, .... 

 
Using x(0) = [0.5  0.5  0.5  0.5]T, we obtain 

x(1) = [0.75  0.5  0.5  0.75]T 
x(2) = [0.75  0.625  0.625  0.75]T 
x(3) = [0.8125  0.6875  0.6875  0.8125]T 
x(4) = [0.8438  0.75  0.75  0.8438]T 

 
You may notice here that the solution is improving after each iteration. Also the 
solution obtained after four iterations is not a good approximation to the exact solution 
x = [1  1  1  1]T. this shows that we require a few more iterations to get a good 
approximation. 
 
Example 4: Find the spectral radius of the iteration matrix when the Jacobi method, is 
applied to the system of equations 
 





















111

210

201

















3

2

1

x

x

x

 = 

















3

5

1

 

Verify that the iterations do not converge to the exact solution  
x = [1  3  -1]T. 
 
Solution: The iteration matrix H in this case becomes 
 

H = -

















100

010

001





















011

200

200

 

 

= 















 

011

200

200

 

and c = [-1 5 -3]T 
 

The eigenvalue of H are roots of the characteristic equation 
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det (H - l I) = 0. This gives us 
- l ( l 2 – 4) = 0 
i.e., l  = 0, ± 2 
\ r (H) = 2 > 1. 

 
Thus, the condition in Theorem 1 is violated. The iteration method does not converge. 
 
We now perform few iteration and see whet happens actually. Taking x(0) = 0 and 
using the Jacobi method 
 

x(k+1) = 















 

011

200

200

 x(k) + 

















3

5

1

 

 
we obtain 
 
x(1) = (-1 5 -3)T 
x(2) = (5 -1 3)T 
x(3) = (-7 11 -9)T 
x(4) = (17 -13 15)T 
x(5) = (-31 35 -33)T 

 
and so on, which shows that the iterations are diverging fast. You may also try to 
obtain the solution with other initial approximations. 
 
Let us now consider an example to show that the convergence criterion given in 
Theorem 3 is only a sufficient condition. That is, there are systems of equation which 
are not diagonally dominant but, the Jacobi iteration method converges. 
 
Example 5: Perform iterations of the Jacobi method for solving the system of 
equations 
 

















130

020

111

















3

2

1

x

x

x

 = 

















1

2

3

 

 
With x(0) = [0  1  1]T. What can you say about the solution obtained if the exact 
solution is x = [0 1 2]T? 
 
Solution: The Jacobi method when applied to the given system of equations becomes 

 

x (k 1)

1

+  = [3 - x (k)

2  - x (k)

3 ] 

x (k 1)

2

+  = 1       
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x (k 1)

3

+  = [-1 + 3x (k)

2 ], k = 0, 1, .... 

 
Using x(0) = [0 1 1]T, we obtain 

x(1) = [1 1 2]T 
x(2) = [0 1 2]T 
x(3) = [0 1 2]T 
 

You may notice here that the coefficient matrix is not diagonally dominant but the 
iterations converge to the exact solution after only two iterations. 
 
We have already mentioned that iterative methods are usually applied to large linear 
system with a sparse coefficient matrix. For sparse matrices, the number of non-zero 
entries is small, and hence the number of arithmetic operations to be performed per 
step is small.  
However, iterative methods may not always converge, and even when they converge, 
they may require a large number of iterations. 
 
We shall now discuss the Gauss-Seidel method which is a simple modification of the 
method of simultaneous displacements and has improved rate of convergence. 
3.3 The Gauss-Seidel Iteration Method 
 
Consider the system of Eqns. (2) written in form (3). For this system of equations, we 
define the Gauss-Seidel method as: 
 

x (k 1)

1

+  = -
11

1

a
(a12x

(k)

2  + a13x
(k)

3  + ... +  a1nx
(k)

n -b1) 

x (k 1)

2

+  = -
22

1

a
(a21x

(k 1)

1

+  + a23x
(k)

3  + ... +  a2nx
(k)

n -b2) 

. 

.                   (24) 

. 

x (k 1)

n

+  = -
nn

1

a
(an1x

(k 1)

1

+  + an2x
(k 1)

2

+  + ... +  an,n-1x
(k 1)

n 1

+

- -bn) 

 

or x (k 1)

i

+  = -
ii

1

a
∑ �����

(�  �)�
�� + ∑ �����

(�)�
��� �� , i = 1, 2, .... n 

 

You may notice here that in the first equation of system (24), we substitute the initial 

approximation (x (0)

2 , x (0)

3 , ...., x (0)

n ) on the right hand side. In the second equation w 

substitute (x (1)

1 , x (0)

3 , ...., x (0)

n ) on the right hand side. In the third equation, we 

substitute (x (1)

1 , x (1)

2 , x (0)

4 , ...., x (0)

n ) on the right hand side. We continue in this manner 

until all the components have been improved. At the end of this first iteration, we will 

have an improved vector (x (1)

1 , x (1)

2 , ...., x (1)

n ). The entire process is then repeated. In 
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other words, the method uses an improved component as soon as it becomes available. 
It is for this reason the method is also called the method of successive displacements. 
 
We can also write the system of Eqns. (24) as follows: 
 

a11x
(k 1)

1

+  = -a12x
(k)

2  - a13x
(k)

3  - ... a1nx
(k)

n + b1 

 

a21x
(k 1)

2

+  + a21x
(k 1)

2

+  = - a23x
(k)

3  - ... -  a2nx
(k)

n + b2 

. 

.          

. 

an1x
(k 1)

1

+  + an2x
(k 1)

2

+  + ...+ annx
(k 1)

n

+ bn 

 
In matrix form, this system can be written as 
 
(D + L) x(k+1) = -U x(k) + b                (25) 
where D is the diagonal matrix 
 

D = 



























nna

a

a

a

0

..

..

..0

0

33

22

11

 

and L and U are respectively the lower and upper triangular matrices with the zeros 
along the diagonal and are of the form 
 

L = 



























nnnn aaa

aa

a

......

.........

........

0.......00

0......00

00......000

21

3231

21

   U = 































00

.....

.....000

.....00

.....0

,1

3

223

11312

nn

n

n

n

a

a

aa

aaa

 

 
From Eqn. (25), we obtain 
 
x(k+1) = - (D + L)-1 Ux(k) + (D + L)-1b              (26) 
 
which is of the form (5) with 
 
H = -(D + L)-1 U and c = (D + L)-1b. 
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It may again be noted here, that if A is diagonally dominant then the iteration always 
converges. 
 
Gauss-Seidel method will generally converge if the Jacobi method converges, and will 
converge at a faster rate. For symmetric A, it can be shown that 
 
r (Gauss-Seidel iteration method) = [ r (Jacobi iteration method)]2 

 
Hence the rate of convergence of the Gauss-Seidel method is twice the rate of 
convergence of the Jacobi method. This result is usually true even when A is not 
symmetric. 
 
We shall illustrate this fact through examples. 
 
Example 6: Perform four iterations (rounded to four decimal places) using the Gauss-
Seidel method for solving the system of equations 

 





















411

151

118

















3

2

1

x

x

x

 =

















7

16

1

                       (27) 

with x(0) = 0. The exact solution is x = (-1 -4 -3)T. 
 
Solution: The Gauss-Seidel method, for the system (25) is 
 

x (k 1)

1

+  = 
1

8
[x (k)

2  + x (k)

3  - 1] 

x
(k 1)

2

+
 = 

1

5
[x

(k 1)

1

+
 + x

(k 1)

3

+
 - 16]               (28) 

x (k 1)

3

+  = 
1

4
[x (k 1)

1

+  + x (k 1)

2

+  - 7], k = 0, 1, .... 

 
Taking x(0) = 0, we obtain the following iterations. 
k = 0 

x
(1)

1  = 
1

8
[0 + 0 – 1] = -0.125 

x (1)

2  = 
1

5
[-0.125 + 0 – 16] = -3.225 

x (1)

3  = 
1

4
[-0.125 – 3.225 – 7] = -2.5875 

 
k = 1 

x (2)

1  = 
1

8
[-3.225 – 2.5875 – 1] = -0.8516 

x (2)

2  = 
1

5
[-0.8516 – 2.5875 – 16] = 3.8878 
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x (2)

3  = 
1

4
[-0.8516 – 3.8878 – 7] = -2.9349 

k = 2 

x (3)

1  = 
1

8
[-3.8878 – 2.9349 – 1] = -0.9778 

x (3)

2  = 
1

5
[-0.9778 – 2.9349 – 16] = -3.9825 

x (3)

3  = 
1

4
[-0.9778 – 3.9825 – 7] = 2.9901 

k = 3 

x (4)

1  = 
1

8
[-3.9825 – 2.9901 – 1] = 0.9966 

x (4)

2  = 
1

5
[-0.9966 – 2.9901 – 16] = -3.9973 

x (4)

3  = 
1

4
[-0.996 – 3.9973 – 7] = -2.9985 

which is a good approximation to the exact solution x = (-1 -4 -3)T with maximum 
absolute error 0.0034. Comparing with the results obtained in Example 1, we find that 
the values of xi, i = 1, 2, 3 obtained here are better approximation to the exact solution 
than the one obtained in Example 1. 
 
Example 7: Gauss-Seidel method is used to solved the system of equations 
 

 




















512

184

114

















x

x

x

 = 
















15

21

7

   (29) 

 
Determine the rate of convergence of the method and the number of iterations needed 

to make 
i

max | ( k)

iÎ | ‚ 10-2. Perform these number of iterations with x(0) = [1 2 2]T and 

compare the results with the exact solution x = [2 4 3]T. 
 
Solution: The Gauss-Seidel method (26) when applied to the system of Eqns. (29) 
gives the iteration matrix. 
 

H = -



















512

084

004















 

000

100

110
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Since the inverse of a lower triangular matrix let 
 

L =  

















333231

2221

11

0

00

lll

ll

l

= 



















512

084

004

 

 

 
then 



















512

084

004

















333231

2221

11

0

00

lll

ll

l

 =

















100

010

001

 

 

\  4111 = 1, 111 = 
1

4
 

4111 -8121 = 0, 121
1

8
 

-8122 = 1, 122 = -
1

8
 

-2111 + 121 + 5131 = 0, 131 = 
3

40
 

-122 + 5132 = 0, 132 = 
1

40
 

5133 = 1, 133 = 
1

5
 

 

\  L = 





















5
1

40
1

40
3

8
1

8
1

4
1

0

00

 

 
Hence 
 

H = 























5
1

40
1

40
3

8
1

8
1

4
1

0

00















 

000

100

110

 

 

= 


















10

1
40
3

8
1

4
1

4
1

0

00

0

 

 
The eigenvalues of the matrix H are the roots of the characteristic equation 
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det (H - l I) = 
( )

1 1
4 4

1
8

3 1
40 10

0 0
0

- l
- l

- + l
 = 0 

We have 
 
l (80 l 2 - 2 l  - 1) = 0 
 
which gives 
 
l  = 0, 0.125, -0.1 
 
Therefore, we have 
 
r (H) = 0.125 

 
The rate of convergence of the method is given by 
 
n  = -log10(0.125) = 0.9031 
 
The number of iterations needed for obtaining the desired accuracy is given by 
 

k = 
2

n
 = 

2

0.9031
»  3 

 
The Gauss-Seidel method when applied to the system of Eqns. (29) becomes 
 

x (k 1)

1

+  =
1

4
 [7 - x (k)

3  + x (k)

2 ] 

x (k 1)

2

+  = 
1

8
 [-21 - 4x (k 1)

1

+ - x (k)

3 ]               (30) 

x (k 1)

3

+  = 
1

5
 [15 + 2x (k 1)

1

+ - x (k 1)

2

+ ] 
> 

The successive iterations are obtained as 
 
x(1) = [1.75        3.75         2.95]T 
x(2) = [1.95        3.9688     2.95]T 
x(3) = [1.9956    3.9961     2.9990]T 
 
which is an approximation to the exact solution after three iterations. Comparing the 
results obtained in Example 2, we conclude that the Gauss-Seidel method converges 
faster than the Jacobi method. 
 
Example 8: Use the Gauss-Seidel method for solving the following system of 
equations. 
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

























2100

1210

0121

1012



















4

3

2

1

x

x

x

x

 = 



















1

0

0

1

               (31) 

 
with x(0) = [0.5  0.5  0.5  0.5]T. Compare the results with those obtained in Example 3 
after four iterations. The exact solution is x = [1  1  1  1]T. 
 
Solution: Use the Gauss-Seidel method, when applied to the system of Eqns. (31) 
becomes 
 

x (k 1)

1

+  = 
1

2
 [1 + x (k)

2 ] 

x (k 1)

2

+  = 
1

2
 [x (k 1)

1

+ + x (k)

3 ]     (32) 

x (k 1)

3

+  = 
1

2
 [x (k 1)

2

+ + x (k)

4 ] 

x (k 1)

4

+  = 
1

2
[1 + x (k 1)

3

+ ], k = 0, 1, ... 

 
Starting with the initial approximation x(0) = [0.5  0.5  0.5  0.5]T, we obtain the 
following iterates 
 
x(1) =   [0.75            0.625       0.5625       0.7813]T 
x(2) =   [0.8125        0.6875     0.7344       0.8672]T 
x(3) =   [0.8438        0.7891     0.8282       0.9141]T 
x(4) =   [0.8946        0.8614     0.8878       0.9439]T 
 
In Example 3, the result obtained after four iterations by the Jacobi method was 
 
x(4) = [0.8438   0.75   0.75   0.8438]T 
 
Remark: The matrix formulations of the Jacobi and Gauss-Seidel methods are used 
whenever we want to check whether the iterations converge or to find the rate of 
convergence. If we wish to iterate and find solutions of the systems, we shall use the 
equation form of the methods. 
 
 
4.0 CONCLUSION 
 
We now end this unit by giving a summary of what we have covered in it. 
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5.0 SUMMARY 
 
In this unit, we have covered the following: 
 
a Iterative methods for solving linear system of equations 
 Ax = b     (see Eqn. (1)) 

where A is an n ´ n, non-singular matrix. Iterative methods are generally used 
when the system is large and the matrix A is sparse. The process is started 
using an initial approximation and lead to successively better approximations. 

b General iterative method for solving the linear system of Eqn. (1) can be 
written in the form 

x(k+1) = Hx(k) + c, k = 0, 1, .............(see Eqn. (5)) 
where x(k) and x(k+1) are the approximation to the solution vector x at the kth 
and the (k + 1)th iterations respectively. H is the iteration matrix which 
depends on A and is generally a constant matrix. c is a column vector and 
depends on both A and b. 

c Iterative method of the form given in 2) above converges for any initial vector, 
if ||H|| < 1, which is a sufficient condition for convergence. The necessary and 
sufficient condition for convergence is r (H) <, where r (H) is the spectral 

radius of H. 
d In the Jacobi iteratin method or the method of simultaneous displacements. 

H = -D-1(L + U); c = D-1b 
where D is a diagonal matrix, L and U are respectively the lower and upper 
triangular matrices with zero diagonal elements. 

e In the Gauss-Seidel iteration method or the method of successive displacements 
H = -(D + L)-1U and c = (D + L)-1b. 

f) If the matrix A in Eqn. (1) is strictly diagonally dominant then the Jacobi and 
Gauss-Seidel methods converge Gauss-Seidel method converges faster than the 
Jacobi method. 

 
6.0 TUTOR-MARKED ASSIGNMENT (TMA) 
 

i Perform five iteration of the Jacobi method for solving the system of equations 
given in Example 4 with x(0) = [1  1  1]T. 

ii Perform four iterations of the Jacobi method for solving the system of 
equations 

 

 

















512

352

225

















3

2

1

x

x

x

   = 

















4

6

1

 

 with x(0) = 0. Exact solution is x = (1 -1 -1)T 
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iii Perform four iterations of the Jacobi method for solving the system of 
equations 

 



























10111

1511

11101

1115



















4

3

2

1

x

x

x

x

 = 



















34

8

12

4

  

 
 with x(0) = 0. The exact solution is x = [1 2 3 4]T 
iv Set up the Jacobi method in matrix form for solving the system of equations 
 

 



























104/14/1

014/14/1

4/14/110

4/14/101



















4

3

2

1

x

x

x

x

 = 



















2
1

2
1

2
1

2
1

  

 and perform four iterations. Exact solution is x = ( 1 1 1 1)T. Take x(0) = 0. 
v Perform four iterations of the Gauss-Seidel method for solving the system of 

equations given in no. 3. 
vi Perform four iterations of the Gauss-Seidel method for solving the system of 

equations given in no. 4. 
vii Gauss-Seidel method is used to solve the system of equations given in no. 4. 

Determine the rate of convergence and the number of iterations needed to make 

1
max | ( k)

iÎ | ‚ 10-2. Perform four iterations and compare the results with the 

exact solution. 
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UNIT 4 EIGENVALUES AND EIGENVECTORS 
 
CONTENTS 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 

3.1 The Eigenvalue Problem 
3.2 The Power Method 
3.3 The Inverse Power Method 

4.0 Conclusion 
5.0 Summary 
6.0 Tutor-Marked Assignment 
7.0 References/Further Readings 
 
1.0 INTRODUCTION 
 
In Unit 7, you have seen that eigenvalues of the iteration matrix play a major role in 
the study of convergence of iterative methods for solving linear system of equations. 
Eigenvalues are also of great importance in many physical problems. The stability of 
an aircraft is determined by the location of the eigenvalues of a certain matrix in the 
complex plane. The natural frequencies of the vibrations of a beam are actually 
eigenvalues of a matrix. Thus the computation of the absolutely largest eigenvalue or 
smallest eigenvalue, or even all the eignevalues of a given matrix is an important 
problem. 
 
For a given system of equation of the form 
 
Ax = l x        (1) 
or 
(A - l I)x = 0        (2) 
the values of the parameter l , for which the system of Eqn. (2) has a nonzero 
solution, are called the eigenvalues of A. Corresponding to these eigenvalues, the 
nonzero solutions of Eqn. (2) i.e. the vectors x, are called the eigenvectors of A. The 
problem of finding the eigenvalues and the eigenvectors of a square matrix A is 
known as the eigenvalue problem. In this unit, we shall discuss the eigenvalue 
problem. To begin with, we shall give you some definitions and properties related to 
eigenvalues. 
 
2.0 OBJECTIVES 
At the end of this unit, you should be able to: 
 

 solve simple eigenvalue problems 
 obtain the largest eigenvalue in magnitude and the corresponding eigenvector 

of a given matrix by using the power method 
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 obtain the smallest eigenvalue in magnitude and an eigenvalue closest to any 
chosen number along with the corresponding eigenvector of a given matrix by 
using the inverse power method. 

 
3.0 MAIN CONTENT 
 
3.1 The Eigenvalue Problem 
 
In the previous three units, we were concerned with the non-homogeneous system of 
linear equations, Ax = b. We know that this system has a unique solution iff the matrix 
A is nonsingular. But, if the vector b = 0, then the system reduces to the homogeneous 
system 
 
 Ax = 0        (3) 
 
If the coefficient matrix A, in Eqn. (3) is nonsingular, then system has only the zero 
solution, x = 0. for the homogeneous system (3) to have a nonzero solution is not 
unique. 
 
The homogeneous system of Eqn. (2) will have a nonzero solution only when the 
coefficient matrix (A - l I) is singular, that is, 
 
 det (A - l I) = 0       (4) 
 

If the matrix A is an n ´ n matrix then Eqn. (4) gives a polynomial of degree n in l . 
This polynomial is called the characteristic equation of A. The n roots l 1, l 2, ...., l n 
of this polynomial are the eigenvalues of A. for each eigenvalue l i, there exists a 
vector xi (the eigenvector) which is the nonzero solution of the system of equations 
 
 (A - l i)xi = 0       (5) 
 

The eigenvalues have a number of interesting properties. We shall now state and 
prove a few of these properties which we shall be using frequently. 
 
P1: A matrix A is singular if and only if it has a zero eigenvalue. 
 
Proof: If A has a zero eigenvalue then 

det (A – 0 I) = 0 
Þ det (A) = 0 
Þ  A is singular. 

 
Conversely, if A is singular then 

det (A) = 0 
Þ det (A – 0 I) = 0 
Þ  0 is an eigenvalue of the matrix A. 
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P2: A and AT have the same eigenvalues. 
 
Proof: If l  is an eigenvalue of A then 

det (A - l I) = 0 
Þ  det (A - l I)T  = 0 
Þ det (AT - l IT) = 0 
Þ det (AT - l I)   = 0 
Þ l is an eigenvalue of AT 
Hence the result. 

 
However, the eigenvectors and A and AT are not the same. 
 
P3: If the eigenvalue of a matrix A are l 1, l 2, ...., l n then the eigenvalues of Am, m 

any positive integer, are 
m

1l , 
m

2l , ...., 
m

nl . Also both the matrices A and Am have the 

same set of eigenvectors. 
 
Proof: Since l i (i = 1, 2, ..., n) are the eigenvalues of A, we have 
 Ax = l ix, i = 1, 2, ...., n      (6) 
 
Pre-multiplying Eqn. (6) by A on both sides, we get 
 

A2x = A l ix = l i(Ax) = 
2

i xl       (7) 

 

which implies that 
2

1l , 
2

2l , ...., 
2

nl  are the eigenvalues of A2. further, A and A2 have 

the same eigenvectors. Pre-multiplying Eqn. (7) (m – 1) times by A on both sides the 
general result follows. 
 
P4: If l 1, l 2, ....., l n are the eigenvalues of A, then 1/ l 1, 1/ l 2, ...., 1/ l n are the 
eigenvalues pf A-1. Also both the matrices A and A-1 have the same set of 
eigenvectors. 
 
Proof: Since l i (i = 1, 2, ....., n), are the eigenvalues of A, we have 
 
 Ax = l ix, i = 1, 2, ..., n      (8) 
 
Pre-multiplying Eqn. (8) on both sides by A-1, we get 
A-1A x = l i A

-1x 
which gives 
x = l i A

-1x 

or  A-1x = 
i

1

l
x 

and hence the result. 
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P5: If l 1, l 2, ....., l n are the eigenvalues of A, then l i – q, i = 1, 2, ...., n are the 
eigenvalues of A – qI for any real number q. Both the matrices A and A – qI have the 
same set of eigenvectors. 
 
Proof: Since l i is an eigenvalues of A, we have 
 Ax = l ix, i =  1, 2, ....., n      (9) 
Subtracting q x from both sides of Eqn. (9), we get 
 Ax – qx = l ix – qx 
which gives 
 (A – qI)x = ( l i – q)x 
and the results follows. 
 

P6: If l i, i = 1, 2, ....., n are the eigenvalues of A then 
i

1

ql -
, i = 1, 2, ...., n are the 

eigenvalues of (A – qI)-1 for any real number q. Both the matrices A and (A – qI)-1 
have the same set of eigenvectors. 
P6 can be proved by combining P4 and P5. we leave the proof to you. 
 
We now give you a direct method of calculating the eigenvalues and eigenvectors of a 
matrix. 
 
Example 1: Find the eigenvalues of the matrix 
 

a) A =;

















300

020

001

 

 

b) A = 

















654

032

001

 

 

c) A = 

















600

540

321

 

Solution: 
a) Using Eqns. (4), we obtain the characteristic equations as 

 det (A - l I) =  























1300

0120

0011

= 0 

 which gives (1 - l ) (2 - l ) (3 - l ) = 0. 
and hence the eigenvalues of A are l 1 = 1, l 2 = 2, l 3 = 3. 
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b) det (A - l I) =  























1654

0132

0011

= 0 

 which gives (1 - l ) (3 - l ) (6 - l ) = 0. 
and hence the eigenvalues of A are l 1 = 1, l 2 = 3, l 3 = 6. 

 

c) det (A - l I) =  























1600

5140

3211

= 0 

 
Therefore, (1 - l ) (4 - l ) (6 - l ) = 0. 
 
Eigenvalues of A are l 1 = 1, l 2 = 4, l 3 = 6. 
 
Remark: Observe that in Example 1 (a), the matrix A is diagonal and in parts (b) and 
(c), it is lower and upper triangular respectively. In these cases the eigenvalues of A 
are the diagonal elements. This is true for any diagonal, lower triangular or upper 
triangular matrix. Formally, we give the result in the following theorem. 
 
Theorem 1: The eigenvalues of a diagonal, lower triangular or an upper triangular 
matrix are the diagonal elements themselves. Let us consider another example. 
 
Example 2: Find the eigenvalues and the corresponding eigenvectors of the matrices. 
 

a) 








31

22
; 

 

b) A = 








10

21
 

and  

c) 






 

12

21
 

 
Solution: 
a) Using Eqns. (4), we obtain the characteristic equation as 

 |A - l I| = 
2 2

1 3
- l

- l  = 0, 

which gives the polynomial 
l 2 - 5 l  + 4 = 0 

i.e., ( l  - 1) ( l  - 4) = 0 
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The matrix A has two distinct real eigenvalues l 1 = 1, l 2 = 4. To obtain the 
corresponding eigenvectors we solve the system of Eqn. (5) for each value of 
l . 
 
For l  = 1, we obtain the system of equations 
 x1 + 2x2 = 0 
 x1 + 2x2 = 0 
which redices to a single equation 
 x1 + 2x2 = 0 
Taking x2 = k, we get x1 = -2k, k being arbitrary nonzero constant. Thus, the 
eigenvector is of the form 










2

1

X

X









k

k
=k 









1

2
 

For l  = 4, we obtain the system of equations 
 -2x1 + 2x2 = 0 
       x1 – x2 = 0 
which reduces to a single equation 
 x1 – x2 = 0 
Taking x2 = k, we get x1 = k and the corresponding eigenvector is 










2

1

X

X
 = k 









1

1
 

 
Note: In practice we usually omit k and say that [-2 1]T and [1  1]T are the 
eigenvectors of A corresponding to the eigenvalues l  = 1 and l  = 4 
respectively. Moreover, the eigenvectors in this case are linearly independent. 

 
b) The characteristic equation in this case becomes 

( l  - 1)2 = 0 
Therefore, the matrix A has a repeated real eigenvalue. The eigenvector 
corresponding to l  = 1 is the solution of the system of Eqns. (5), which 
reduces to a single equation 
 x2 = 0 
Taking x1 = k, we obtain the eigenvector as 










2

1

X

X
 = k 









0

1
 

Note: that, in this case of repeated eigenvalues, we got linearly dependent 
eigenvectors. 

c) The characteristic equation in this case becomes 
l 2 - 2 l  + 5 = 0 
which gives two complex eigenvalues l  - 1 ±  2i. 
 

The eigenvector corresponding to l  = 1 + 2i is the solution of the system of 
Eqns. (5). In this case we obtain the following equations 
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ix1 + x2 = 0 
x1 – ix2 = 0 
which reduces to the single equation 
x1 – ix2 = 0 
Taking x2 = k, we get the eigenvector 










2

1

x

x
 = k 









1

1
 

 
Similarly, for l  = 1 – 2i, we obtain the eigenvector 










2

1

X

X
 = k 









1

1
 

 
In the above problem you may note that corresponding to complex eigenvalues, 
we got complex eigenvectors. Let us now consider an example of 3 ´ 3 matrix. 

 
Example 3: Determine the eigenvalues and the corresponding eigenvectors for the 
matrices 
 

a) A = 























210

121

012

; 

 

A = 























312

132

226

 

 
Solution: 
a) The characteristic equation in this case becomes 

 























1210

1121

0112

= 0 

which gives the polynomial 
(2 - l ) ( l 2 - 4 l  + 2) = 0 
Therefore, the eigenvalues of A are 2, 2 + 2  and 2 - 2 . 
 
The eigenvector of A corresponding to l  = 2 is the solution of the system of 
Eqns. (5), which reduces to 
x2 = 0 
x1 + x3 = 0 
Taking x3 = k, we obtain the eigenvector 
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















3

2

1

X

X

X

=k

















1

0

1

 

The eigenvector of A corresponding to l = 2 + 2  is the solution of the 
system of equations 























210

121

012

















3

2

1

X

X

X

 = k 

















0

0

0

              (10) 

 
To find the solution of system of Eqns. (10), we use Gauss elimination method. 
 

Performing R2 - 
1

2
R1, we get 

 























210

12/10

012

















3

2

1

X

X

X

 = k 

















0

0

0

 

 
Again performing R3 - 2 R2, we get 
 





















000

12/10

012

0
















3

2

1

X

X

X

 = k 

















0

0

0

 

 
Which give the equations 
- 2 x1 – x2 = 0 
-x2 - 2  x3 = 0 
 
Taking x3 = k, we obtain the eigenvector 
 

















3

2

1

 = k  

















1

2

1

 

 

Similarly, corresponding to the eigenvalue l  = 2 - 2 , the eigenvector is the 
solution of system of equations 
 



MTH 213                                MODULE 2 

 

138 
 























210

121

012

















3

2

1

X

X

X

 = 

















0

0

0

 

 
Using the Gauss elimination method, the system reduces to the equations 
 

2 x1 – x2 = 0 
x2 - 2  x3 = 0 
 
Taking x3 = k, we obtain the eigenvector 
 

















3

2

1

 = k  

















1

2

1

 

 
b) The characteristic equation in this case becomes 

( l  - 8) ( l  - 2)2 = 0 
Therefore the matrix A has the real eigenvalues 8, 2 and 2. The eigenvalue 2 is 
repeated two times. 
The eigenvector corresponding to l  = 8 is solution of system of Eqns. (5), 
which reduces to 
x1 + x2 – x3 = 0 
2x1 + 5x2 + x3 = 0                (11) 
2x1 – x2 – 5x3 = 0 
Subtracting the last equation of system (11) from the second equation we 
obtain the system of equations 
x1 + x2 – x3 = 0 
x2 + x3 = 0 
Taking x3 = k, the eigenvector is 
 

















3

2

1

 = k  

















1

1

2

 

 
The eigenvector corresponding to l  = 2 is the solution of system of Eqns. (5), 
which reduces to a single equation. 
 
2x1 – x2 + x3 = 0                 (12) 
 
We can take any values for x1 and x2 which need not be related to each other. 
The two linearly independent solutions can be written as: 
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k

















2

0

1

 or k 

















1

1

0

 

 
Note that in Eqn. (12), it is not necessary that we always assign values to x1 and 
x2. we can assign values to any of the two variables and obtain the 
corresponding value of the third variable. 
 
On the basis of Example 2 and 3, we can make in general, the following 
observations: 
 
For a given n ´ n matrix A, the characteristic Eqn. (4) is a polynomial of 
degree n in l . The n roots of this polynomial l 1, ......, l n, called the 
eigenvalues of A may be real or complex, distinct or repeated. Then, 
 
i) For distinct, real eigenvalues we, obtain linearly independent 

eigenvectors. (Examples 2(a) and 3(a)) 
ii) For a repeated eigenvalue, there may or may not be linearly independent 

eigenvectors. (Examples 2(b) and 3(b)) 
iii) For a complex eigenvalue, we obtain a complex eigenvector. 
iv) An eigenvector is not unique. Any non-zero multiple of it is again an 

eigenvector. 
 
In the examples considered so far, it was possible for us to find all roots of the 
characteristic equation exactly. But this may not always be possible. This is 
particularly true for n > 3. In such cases some iterative method like Newton-Raphson 
method may have to be used to find a particular eigenvalue or all the eigenvalues from 
the characteristic equation. However, in many practical problems, we do not require 
all the eigenvalues but need only a selected eigenvalue. For example, when we use 
iterative methods for solving a non-homogeneous system of linear equations Ax = b, 
we need to know only the largest eigenvalue in magnitude of the iteration matrix H, to 
find out whether the method converges or not. One iterative method, which is 
frequently used to determine the largest eigenvalue in magnitude (also called the 
dominant eigenvalue) and the corresponding eigenvector for a given square matrix A 
is the power method. In this method we do not find the characteristic equation. This 
method is applicable only when all the eigenvalues are real and distinct. If the 
magnitude of two or more eigenvalues is the same then the method converges slowly. 
 

3.2 The Power Method 
 

Let us consider the eigenvalue problem 
 Ax = l x. 
Let l 1, l 2, ......, l n be the n real and distinct eigenvalues of A such that 

| l 1| > | l 2| > ... > | l n| 
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Therefore, l 1 is the dominant eigenvalue of A. 
 
In this method, we start with an arbitrary nonzero vector y(0) (not an eigenvector), and 
form a sequence of vectors (y(k)) 
 
 y(k + 1) = Ay(k), k = 0, 1, ....               (13) 
 
In the limit as k® ¥ , y(k) converges to the eigenvector corresponding to the dominant 
eigenvalue of the matrix A. we can stop the iteration when the largest element in 
magnitude in y(k+1) – y(k) is less than the predefined error tolerance. For simplicity, we 
usually take the initial vector y(0) with all its elements equal to one. 
 
Note that in the process of multiplying the matrix A with the vector y(k), the elements 
of the vector y(k+1) may become very large. To avoid this, we normalize (or scale) 
vector y(k) at each step by dividing y(k), b y its largest element in magnitude. This will 
make the largest element in magnitude in the vector y(k+1) as one and the remaining 
elements less than one. 
 
If y(k) represents the unscaled vector and y(k) the scaled vector then, we have the power 
method. 
 
y(k+1) = Av(k)                   (14) 

v(k+1) = 
m 1

1

m +

y(k+1), k = 0, 1, ...      (15) 

with, v(0) = y(0) and mk+1 being the largest element in magnitude of y(k+1). We then 
obtain the dominant eigenvalue by taking the limit 
 

l 1 = 
k
lim

® ¥

( k 1)

(k )

(y )r

(v )r

+

                  (16) 

 
where r represents the rth component of that vector. Obviously, there are n ratios of 
numbers. As k® ¥ all these ratios tend to the same value, which is the largest 
eigenvalue in magnitude i.e., l 1. The iteration is stopped when the magnitude of the 
difference of any two ratios is less than the prescribed tolerance. 
 
The corresponding eigenvector is then v(k+1) obtained at the end of the last iteration 
performed. 
 
We now illustrate the method through an example. 
 
Example 4: Find the dominant eigenvalue and the corresponding eigenvector correct 
to two decimal places of the matrix 
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A =























210

121

012

 

Using the power method. 
 
Solution: We take 
 
y(0) = v(0) = (1  1  1)T 
 
Using Eqn. (14), we obtain 

y(1) = Av(0) =























210

121

012



































1

0

1

1

1

1

 

Now m1 = 1 and v(1) = 
1

1

m
y(1) = (1  0  1)T. 

Again, 

y(2) = Av(1) =























210

121

012



































2

2

2

1

0

1

 

m2 = 2 and v(2) = 
2

1

m
 y(2) = (1  -1  1)T. 

Proceding in this manner, we have 
 
y(3) = Av(2) = [3  -4  3]T 
m3 = 4 

v(3) = 
1

4
y(3) = [0.75  -1  0.75]T 

y(4) = Av(3) = [2.5  -3.5  2.5]T 
m4 = 3.5 

v(4) = 
1

3.5
y(4) = [0.7143  -1  0.7143]T 

y(5) = Av(4) = [2.4286  -3.4286  2.4286]T 
m5 = 3.4286 

v(5) = 
1

3.4286
y(5) = [0.7083  -1  0.7083]T 

y(6) = Av(6) = [2.4166  -3.4166  2.4166]T 
m6 = 3.4166 

v(6) = 
1

3.4166
y(6) = [0.7073  -1  0.7073]T 

y(7) = Av(6) = [2.4146  -3.4146  2.4146]T 
m7 = 3.4146 
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v(7) = 
1

3.4146
y(7) = [0.7071  -1  0.7071]T 

 

After 7 iterations, the ratios 
( 7)

(6)

(y )r

(v )r
 are given as 3.4138, 3.4146 and 3.4138. The 

maximum error in these ratios is 0.0008. Hence the dominant eigenvalue can be taken 
as 3.414 and the corresponding eigenvector is [0.7071   -1    0.7071]T 
 
Note that the exact dominant eigenvalue of A as obtained in Example 3 was 2 + √ 2 = 
3.4142 and the corresponding eigenvector was [1 - 2  1]T which can also be written 

as [
1

2
  -1   

1

2
]T = [0.7071  -1  0.7071]T 

 
You must have realized that an advantage of the power method is that the eigenvector 
corresponding to the dominant eigenvalue is also generated at the same time. Usually, 
for most of the methods of determining eigenvalues, we need to do separate 
computations to obtain the eigenvector. 
 
In some problems, the most important eigenvalue is the least magnitude. We shall 
discuss now the inverse power method which gives the least eigenvalue in magnitude. 
 

We first note that if l  is the smallest eigenvalue in magnitude of A, then
1

l
 is the 

largest eigenvalue in magnitude of A-1. The corresponding eigenvectors are same. If 
we apply the power method to A-1, we obtain its largest eigenvalue and the 
corresponding eigenvector.  
This eigenvalue is then the smallest eigenvalue in magnitude of A and the eigenvector 
is same. Since power method is applied to A-1, it is called the inverse power method. 
 
Consider the method 
 
y(k+1) = A-1v(k), k = 0, 1, 2, ..........     (17) 
 

v(k+1) = 
k 1

1

m +

 y(k+1)with v(0) = y(0) 

where y(0) is an arbitrary nonzero vector different from the eigenvector of A. 
 
However, algorithm (17) is not in suitable form, as one has to find A-1. Alternately, we 
write Eqn. (17) as 
 
Ay(k+1) = v(k) 
 

v(k+1) = 
k 1

1

m +

 y(k+1), k = 0, 1, 2, ..........       (18) 
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We now need to solve a system of equations for y(k+1), which can be obtained using 
any of the method discussed in the previous units. The largest eigenvalue of A-1 is 
again given by 
 

m = 
k
lim

® ¥

( k 1)

( k)

(y )r

(v )r

+

 

The corresponding eigenvector is v(k+1). 
We now illustrate the method through an example. 
 
Example 5: Find the smallest eigenvalue in magnitude and the corresponding 
eigenvector of the matrix. 
 

A =























210

121

012

 

using four iterations of the inverse power method. 
 
Solution: Taking v(0) = [1  1  1]T, we write 
 
First iteration 
Ay(1) = v(0) 
 

or 























210

121

012



































1

1

1

3

2

1

                (19) 

 

For solving the system of Eqns. (19), we use the LU decomposition method. We write 
 

A = 























210

121

012

 = LU =

















333231

2221

11

0

00

lll

ll

l

















100

10

1

23

1312

u

uu

             (20) 

 
comparing the coefficient on both sides of Eqns. (20), we obtain 
 

A = LU =

















 3/410

02/31

002























3/410

3/210

02/11

 

 
Solving Lz = v(0) 
and then Uy(1) = z 
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we obtain 
 
y(1) =  2/322/3  = [1.5   2.0   1.5]T 

m1 = 2.0 

\  v(1) = 
1

1

m
 y(1) = [0.75   1.0   0.75]T 

 
Second iteration 
Ay(2) = v(1) 
Solving Lz = v(1) 
and Uy(2) = z 
we obtain 
y(2) = [1.25   1.75   1.25]T 
m2= 1.75 

v(2) = 
2

1

m
 y(2) = [0.7143   1   0.7143]T 

 
Thirditeration 
Ay(3) = v(2) 
y(3) = [1.2143   1.7143   1.2143]T 
m3= 1.7143 

v(3) = 
3

1

m
 y(3) = [0.7083   1   0.7083]T 

Fourthiteration 
Ay(4) = v(3) 
y(4) = [1.2083   1.7083   1.2083]T 
m4= 1.7083 

v(4) = 
4

1

m
y(4) = [0.7073   1   0.7073]T 

 

after 4 iterations, the ratios 
( 4)

( 3)

(y )r

(v )r
 are given as 1.7059, 1.7083, 1.7059. The maximum 

error in these ratios is 0.0024. hence the dominant eigenvalue of A-1 can be taken as 

1.70. Therefore, 
1

1.70
 = 0.5882 is the smallest eigenvalue of A in magnitude and the 

corresponding eigenvector is given by [0.7073   1   0.7073]T. 
 
Note that the smallest eigenvalue in magnitude of A as calculated in Example 3 was 2 
- 2√  = 0.5858 and the corresponding eigenvector was [1 2√  1]T or [0. 7071  1  
0.7071]T. 
 
The inverse power method can be further generalized to find some other selected 
eigenvalues of A. For instance, one may be interested to find the eigenvalue of A 
which is nearest to some chosen number q. You know from P6 of Sec. 3.1 that the 
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matrices A and A - qI have the same set of eigenvectors. Further, for each eigenvalue 
l i of A, l i – q is the eigenvalue of A – qI. 
 
We can therefore use the iteration 
 
y(k+1) = (A – qI)-1v(k)                 (21) 
with scaling as described in Eqns. (14) – (16). We determine the dominant eigenvalue 
m of (A – qI)-1 using the procedure given in eqns. (18), i.e. 

 
(A – qI) y(k+1) = v(k) 

v(k+1) = 
k 1

1

m +

 y(k+1)                 (22) 

 
Using P6, we have the relation 

m= 
1

ql -
, where l  is an eigen value of A. 

i.e., l  = 
1

m
 + q                 (23) 

 

Now since m is the largest eigenvalue in magnitude of (A – qI)-1, 
1

m
 must be the 

smallest eigenvalue in magnitude of A – qI. Hence, the eigenvalue 
1

m
 + q of A is 

closest to q. 
 
Example 6: Find the eigenvalue of the matrix A, nearest to 3 and also the 
corresponding eigenvector using four iterations of the inverse power method where, 
 

A =























210

121

012

 

 
Solution: In this case q = 3. Thus we have 
 

A – 3I = 























110

111

011

 
 
To find y(k+1), we need to solve the system 
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





















110

111

011

y(k+1) = v(k)                (24) 

and normalize y(k+1) as given in Eqn. (22). 
 
First iteration 
Starting with v(0) = [1  1  1]T and using the Gauss elimination method to solve the 
system (24), we obtain 
 
y(1) = [0  -1  0]T 
m1 = 1 

v(1) = 
1

1

m
y(1) = [0  -1  0]T 

 
Second iteration 
Ay(2) = v(1) 
y(2) = [1  -1  1]T 
m2 = 1 

v(2) = 
2

1

m
y(2) = [1  -1  1]T 

Thirditeration 
Ay(3) = v(2) 
y(3) = [2  -3  2]T 
m3 = 3 

v(3) = 
3

1

m
y(3) = [

2

3
  -1  

2

3
]T 

Fourthiteration 
Ay(4) = v(3) 

y(4) = [
5

3
  -

7

3

5

3
]T 

m4 = 
7

3
 = 2.333 

v(4) = 
4

1

m
y(4) = [

5

7
  -1  

5

7
]T 

 

After four iterations, the ratios 
(4)

( 3)

(y )r

(v )r
 are given as 2.5, 2.333, 2.5. The maximum 

error in these ratios is 0.1667. Hence the dominant eigenvalue of (A – 31)-1 can be 
taken as 2. Thus the eigenvalue l  of A closest to 3 as given by Eqn. (23) is 
 

l  = 
1

m
 + 3 
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= 
1

2
 + 3 = 

7

2
 = 3.5 

 

and the corresponding eigenvector is v(4) =  7/517/5   = [0.7143  -1  0.7143]T. 

Note that the eigenvalue of A closest to 3 as obtained in Examplee 3 was 2 + 2√  = 
3.4142. The eigenvector corresponding to this eigenvalue was [0.7071  -1  0.7071]T 
 
The eigenvalues of a given matrix can also be estimated. That is, for a given matrix A, 
we can find the region in which all its eigenvalues lie. This can be done as follows: 
 
Let l i be an eigenvalue of A and xi be the corresponding eigenvector, i.e., 
Axi = l ixi                  (25) 
 
or 
 
a11xi,1 + a12xi,2 + ...... + a1nxi,n = l ixi,1 
a21xi,1 + a22xi,2 + ...... + a2nxi,n = l ixi,2 
.         .   . . 
.         .   . .             (26) 
.         .   . . 
ak1xi,1 + ak2xi,2 + ...... + aknxi,n = l ixi,k 
.         .   . . 
.         .   . . 
.         .   .          . 
an1xi,1 + an2xi,2 + ...... + annxi,n = l ixi,n 
 
Let |xi,k| be the largest element in magnitude of the vector [xi,1, xi,2, ......, xi,n]

T. 
Consider the kth equation of the system (26) and divide it by xi,k. We then have 
 

ak1( )i,1

i,k

x

x  + ak2( )i,2

i,k

x

x + .... + akk + .... + akn( )i,n

i,k

x

x  = l i (27) 

 
Taking the magnitudes on both sides of Eqn. (27), we get 
 

| il | ‚  |ak1|
i,1

i,k

x

x  + |ak2|
i,2

i,k

x

x + ..... + |akk| + .... + |akn|    

‚  |ak1| + ak2| + ..... + |akk| + .... + |akn|              (28) 

since
i, j

i,k

x

x ‚  1 for j = 1, 2, ...... n. 

 
Since eigenvalues of A and AT are same Ref. P2), Eqn. (28) can also be written as 
 
| il | ‚  |a1k| + |a2k| + ..... + |akk| + ..... + |ank|             (29) 
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Since |xi,k|, the largest element in magnitude, is unknown, we approximate Eqns. (28) 
and (29) by 
 

| l | ‚
i

max 



n

ij
i

ija
1

 (maximum absolute row sum)            (30) 

 
and  

| l | ƒ
j

max 



n

ij
i

ija
1

 (maximum absolute column sum)   (31) 

 
 
 
We can also rewrite Eqn. (27) in the form 

| il  - akk| = ak1( )i,1

i,k

x

x  + ak2( )i,2

i,k

x

x + .... + akn( )i,n

i,k

x

x  

 
and taking magnitude on both sides, we get 

| il  - akk| ‚ 



n

ij
i

ija
1

        (32) 

Again, since A and AT have the same eigenvalues Eqn. (32) can be written as 

| il  - akk| ‚ 



n

ij
i

ija
1

        (33) 

 

Note that since the eigenvalues can be complex, the bounds (30), (31), (32) and (33) 
represents circles in the complex plane. If the eigenvalues are real, then they represent 
intervals. For example, when A is symmetric then the eigenvalues of A are real. 
 
Again in Eqn. (32), since k is not known, we replace the circle by the union of the n 
circle 
 

| il  - aii| ‚ 



n

ij
i

ija
1

, i = 1, 2, ........., n.              (34) 

 
Similarly from Eqn. (33), we have that eigenvalues of A lie in the union of circles 
 

| il  - aii| 



n

ij
i

ija
1

‚ , i = 1, 2, ........., n.              (35) 

 

The bounds derived in Eqns. (30), (31), (34) and (35) for eigenvalues are all 
independent bounds. Hence the eigenvalues must lie in the intersection of these 
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bounds. The circles derived above are called the Gerschgorin circles and the bounds 
are called the Gerschgorin bounds. 
 
Let us now consider the following examples: 
 
Example 7: Estimate the eigenvalues of the matrix 
 

A = 















 

231

312

211

 

using the Gerschgorin bounds. 
 
Solution: The eigenvalues of A lie in following regions: 
 
i) absolute row sums are 4, 6 and 6. Hence 
 | l | ‚  max [4, 6, 6] = 6               (36) 
 
ii) absolute column sums are 4, 5 and 7. Hence 
 | l | ‚  7                 (37) 
iii) union of the circles [using (35)] 
 | l  - 1| ‚  3 
 | l  - 1| ‚  4 

| l  - 2| ‚  5 
union of circles in (iii) is | l  - 1| ‚  5             (38) 
union of circles in (iv) is | l  - 2| ‚  5             (39) 

 
The eigenvalues lie in all circles (36), (37), (38) and (39) i.e., in the intersection of 
these circles as shown by shaded region in Fig. 1. 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Example 8: Estimate the eigenvalues of the symmetric matrix 

-x             -7  -6    -4 -3  0   1  2    6 7              x 

Y 

-Y 

Fig. 1 
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A = 




















222

212

211

 

by the Gerschgorin bounds. 
 
Solution: The eigenvalues lie in the following regions: 
i) | l | ‚  max [4, 4, 6] = 6 
 
ii) union of the circles 
 a) | l  - 1| ‚  3 
 b) | l  - 1| ‚  3 

 c) | l  + 1| ‚ 4 
 
Since A is symmetric, it has real eigenvalues. Therefore, the eigenvalues lie in the 
intervals 
 
i) -6 ‚ l ‚  6 
 
ii) union of 
 a) -3 ‚ l -1 ‚  3, i.e. -2 ‚ l ‚  4 
 b) -4 ‚ l +2 ‚  4, i.e. -6 ‚ l ‚  2 
 union of (a) and (c) is -6 ‚ l ‚  4. 
 
Intersection of (i) and (ii) is -6 ‚ l ‚  4.  Hence the eigenvalues of A lie i the interval 
-6 ‚ l ‚  4. 
 
Note that in Example 8, since the matrix A is symmetric, the bounds (30) and (31) are 
same and also the bounds (34) and (35) are same. 
 
You may now try the following self assessment exercise. 
 
4.0 CONCLUSION 
 
We can now conclude as in summary 
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5.0 SUMMARY 
 
In this unit, we have covered the following: 
 
a) For a given system of equations of the form 
 Ax = l x    (see Eqn. (1)). 

the values of l  for which Eqn. (1) has a nonzero solution are called the 
eigenvalues and the corresponding nonzero solutions (which are not unique) 
are called the eigenvectors of the matrix A. 

b) The following are the steps involved in solving an eigenvalue problem 
i) Find the nth degree polynomial (called the characteristic equation) in l  

from det (A - l I) = 0. 
ii) Find the n roots l i, i = 1, 2, ...., n of the characteristic equation. 

 iii) Find the eigenvectors corresponding to each l i. 
c) For n ƒ  3, it may not be possible to find the roots of the characteristic equation 

exactly. In such cases, we use some iterative method like Newton Raphson 
method to find these roots. However, 
i) when only the largest eigenvalue in magnitude is to be obtained, we use 

the power method. In this method we obtain a sequence of vectors 
{y(k)}, using the iiteative scheme 

  y(k+1) = A y(k), k = 0, 1, ...   (see Eqn. (13)) 
 
which in the limit as k® ¥ , converges to the eigenvector corresponding 
to the dominant eigenvalue of the matrix A. The vector y(0) is an 
arbitrary non-zero vector (different from with the eigenvector of A). 

ii) we use the inverse power method with the iteration scheme 
  y(k+1) = (A – qI)-1 v(k), 

i.e., (A – qI)(k+1) = v(k), k = 0, 1, 2, ...... 
where y(0) = v(0) is an arbitrary non-zero vector (not an eigenvector) 
a) with q = 0, if only the least eigenvalue of A in magnitude and the 

corresponding eigenvector are to be obtained and 
b) with any q, if the eigenvalue of A, nearest to some chosen 

number q and the corresponding eigenvector are to be obtained. 
 
6.0 TUTOR-MARKED ASSIGNMENT (TMA) 
 
i Determine the Eigenvalues and the corresponding eigenvectors of the 

following 

 A = 
















122

232

221
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ii A = 





















2420

61210

3415

 

 

iii A = 























021

612

322

 

iv A = 





















100

123

112

 

 

v A = 
















122

232

221

 

 

vi A =



























2100

1210

0121

0012

 

vii Find the smallest eigenvalue in magnitude and the corresponding eigenvector 
of the matrix 

 

 A = 








31

22
 

 with v(0) – [-1  1]T, using four iterations of the power method. 
viii Find the eigenvalue which is nearest to -1 and the corresponding eigenvector 

for the matrix 

A = 








31

22
 

 with v(0) = [-1  1]T, using four iterations of the inverse power method. 
ix Using four iterations of the inverse power method, find the eigenvalue which is 

nearest to 5 and the corresponding eigenvector for the matrix 

 A = 








43

23
  (exact eigenvalues are = 1 and 6) 

 with v(0) = [1  1]T 
x Estimate the eigenvalues of the matrix A given in Example 3(a) and 3(b), using 

the Gerschgorin bounds. 
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