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NUMERICAL ANALYSIS 
 
Mathematical modeling of physical/biological problems generally gives rise to 
ordinary or partial differential equations or an integral equation or in terms of a set of 
such equation. A number of these problems can be solved exactly by mathematical 
analysis but most of them cannot be solved exactly. Thus, a need arises to devise 
numerical methods to solve these problems. These methods for solution of 
mathematical methods may give rise to a system of algebraic equations or a non-linear 
equation or system of non-linear equations. The numerical solution of these systems 
of equations is quantitative in nature but when interpreted give qualitative results and 
are very useful. Numerical analysis deals with the development and analysis of the 
numerical methods. We are offering this course of numerical analysis to students 
entering the Bachelor’s Degree Programme as an elective subject. 
 
It was in the year 1624 that the English mathematician, Henry Briggs used a 
numerical procedure to construct his celebrated table of logarithms. The interpolation 
problem was first taken up by Briggs but was solved by the 17th century 
mathematicians and physicists, Sir Isaac Newton and James Gregory. Later on, other 
problems were considered and solved by more and more efficient methods. In recent 
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years the invention and development of electronic calculators/computers have strongly 
influenced the development of numerical analysis. 
 
This course assumes the knowledge of the course MTH 112, MTH 122. They are 
prerequisite for this course. Number of results from linear algebra are also used in this 
course. These results have been stated wherever required. For details of these results 
our linear algebra course MTH 121 may be referred. This course is divided into 4 
blocks. The first block, deals with the problem of finding approximate roots of a non-
linear equation in one unknown. We have started the block with a recall of four 
important theorems from calculus which are referred to throughout the course. After 
introducing the concept of ‘error’ that arise due to approximations, we have discussed 
two basic approximation methods namely, bisection and fixed point iteration methods 
and two commonly used methods, namely. secant and Newton-Raphson methods. In 
Block 2, we have considered the problem of finding the solution of system of linear 
equations. We have discussed both direct and iterative methods of solving system of 
linear equations. 
 
Block 3 deals with the theory of interpolation. Here, we are concerned only with 
polynomial interpolation. The existence and uniqueness of interpolating polynomials 
are discussed. Several form of interpolating polynomials like Lagrange’s and 
Newton’s divided difference forms with error terms are discussed. This block 
concludes with a discussion on Newton’s forward and backward difference form. 
 
In Block 4, using interpolating polynomials we have obtained numerical 
differentiation and integration formulae together with their error terms. After a brief 
introduction to difference equations the numerical solution of the first order ordinary 
differential equation is dealt with. More precisely, Taylor series, Euler’s and second 
order Runge Kutta methods are derived with error terms for the solution of differential 
equations. 
 
Each block consists 4 units. All the concepts given in the units are followed by a 
number of examples well as exercises. These will help you get a better grasp of the 
techniques discussed in this course. We have used a scientific calculator for doing 
computations throughout the course. While attempting the exercises given in the units, 
you would also need a calculator which is available at your study centre. The 
solutions/answers to the exercises in a unit are given at the end of the unit. We suggest 
that you look at them only after attempting the exercises. A list of symbols and 
notations are also given in for your reference. 
 
You ma like to look up some more books on the subject and try to solve some 
exercises given in them. This will help you get a better grasp of the techniques 
discussed in this course. We are giving you a list of titles which will be available in 
your study centre for reference purposes. 
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Some useful books 
 
Wrede, R.C. and Spegel M. (2002). Schaum’s and Problems of Advanced Calculus. 

McGraw – Hill N.Y. 
 
Keisler, H.J. (2005). Elementary Calculus. An Infinitesimal Approach. 559 Nathan 
Abbott, Stanford, California, USA 
 
NOTATION AND SYMBOLS 
 
Î  belong to 
É  contains 
< (£ ) less than (less than or equal to) 
>(³ ) greater than (greater than or equal to) 
R set of real numbers 
C set of complex numbers 
n! n(n-1) ... 3. 2. 1 (n factorial) 
[   ] closed interval 
]   [ open interval 
|x| absolute value of a number x 
i.e. that is 

n

i

j 1

a
=

å  a1 + a2 + ... + an 

x® a x tends to a 

x a
lim f(x)

®
 limit of f(x) as x tends to a 

Pn(x) nth degree polynomial 
f'(x) derivative of f(x) with respect to x 
»  approximately equal to 
a  alpha 
b  beta 

g  gama 

e  epilson 
p  pi 
å  capital sigma 

z  zeta 
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BLOCK INTRODUCTION 
 
This is the first of the four blocks which you will be studying in the Numerical 
Analysis course. In this block we shall be dealing with the problem of finding 
approximate roots of a non-linear equation in one unknown. In the Elementary 
Algebra course you have studied some methods for solving polynomial equations of 
degree up to and including four. In this block we shall introduce you to some 
numerical methods for finding solutions of equation. These methods are applicable to 
polynomial and transcendental equations. 
 
This block consists of four units. In Unit 1, we begin with a recall of our important 
theorems from calculus which are referred to throughout the course. We then 
introduce you to the concept of ‘error’ that arise due to approximation. In Unit 2, we 
shall discuss two types of errors that are common in numerical approximation 
methods, namely, bisection method and fixed point iteration method. Each of these 
methods involve a process that is repeated until an answer or required accuracy is 
achieved. These methods are known as iteration methods. We shall also discuss two 
accurate methods, namely, secant and Newton-Raphson methods in Unit 3. Unit 4, 
which is the last unit of this block, deals with the solutions of the most well-known 
class of equations, the polynomial equations. For finding the roots of polynomial 
equations we shall discuss Birge-Vieta and Graeffe’s root squaring methods. 
 
As already mentioned in the course introduction, we shall be using a scientific 
calculator for doing computations throughout the block. While attempting the 
exercises given in this block, you would also need a calculator which is available at 
your centre. We therefore suggest you to go through the instructions manual, supplied 
with the calculator, before using it. 
 
Lastly we remind you to through the solved examples carefully, and to attempt all 
exercises in each unit. This will help you to gain some practice over various methods 
discussed in this block. 
 
1.0 INTRODUCTION 
 

The study of numerical analysis involves concepts from various branches of 
mathematics including calculus. In this unit, we shall briefly review certain important 
theorems in calculus which are essential for the development and understanding of 
numerical methods. You are already familiar with some fundamental theorems about 
continuous functions from your calculus course. Here we shall review three theorems 
given in that course, namely, intermediate value theorem, Rolle’s Theorem and 
Lagrange’s mean value theorem. Then we state another important theorem in calculus 
due to B. Taylor and illustrate the theorem through various examples. 
 
Most of the numerical methods give answers that are approximation to the desired 
solutions. In this situation, it is important to measure the accuracy of the approximate 
solution compared to the actual solution. To find the accuracy we must have an idea of 
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the possible errors that can arise in computational procedures. In this unit we shall 
introduce you to different forms of errors which are common in numerical 
computations. 
 
The basic ideas and result that we have illustrated in this unit will be used often 
throughout this course. So we suggest you go through this unit very carefully. 
 
2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 
 apply 

o Intermediate value theorem 
o Rolle’s Theorem 
o Lagrange’s mean value theorem 
o Taylor’s theorem 

 define the term ‘error’ in approximation 
 distinguish between rounded-off error and truncation error and calculate these 

errors as the situation demands. 
 
3.0 MAIN CONTENT 
 
3.1 Three Fundamental Theorems 
 
In this section we shall discuss three fundamental theorems, namely, intermediate 
value theorem, Rolle’s Theorem and Lagrange’s mean value theorem. All these 
theorems give properties of continuous functions defined on a closed interval [a, b]. 
we shall not prove them here, but we shall illustrate their utility with various 
examples. Let us take up these theorems one by one. 
 
3.1.1 Intermediate Value Theorem 
 
The intermediate value theorem says that a function that is continuous on a closed 
interval [a, b] takes on every intermediate value i.e., every value lying between f(a) 
and f(b) if f(a) ¹  f(b). 
 
Formally, we can state the theorem a follows: 
 
Theorem 1: let f be a function defined on a closed interval [a, b]. let c be a number 
lying between f(a) and f(b) (i.e. f(a) < c < f(b) if f(a) < f(b) or f(b) < c < f(a) if f(b) < 
f(a)). Then there exists at least one point x0 Î  [a, b] such that f(x0) = c. 
 
The following figure (Fig. 1) may help you to visualise the theorem more easily. It 
gives the graph of a function f. 
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In this figure f(a) < f(b). the condition f(a) < c < f(b) implies that the points (a, f(a)) 
and (b, f(b)) lie on opposite sides of the line y = c. This, together with the fact that f is 
continuous, implies that the graph crosses the line y = c at some point. In Fig. 1 you 
see that the graph crosses the line y = c at (x0, c). 
 
The importance of this theorem is as follows: If we have a continuous function f 
defined on a closed interval [a, b], then the theorem guarantees the existence of a 
solution of the equation f(x) = c, where c is as in Theorem 1. However, it does not say 
what the solution is. We shall illustrate this point with an example. 
 

Example 1: Find the value of x in 0 £  x £  
2

p
 for which sin (x) = 

1

2
. 

 

Solution: You know that the function f(x) = sin x is continuous on 








2
,0

P
. Since f(0) = 

0 and f( )2

p
 = 1, we have f(0) < 

1

2
 < f( )2

p
. Thus, f satisfies all the conditions of 

Theorem 1. Therefore, there exists at least one value of x, say x0 such that sin (x0) = 
1

2

, that is, the theorem guarantees that there exists a point x0 such that sin (x0) = 
1

2
. Let 

us try to find this point from the graph of sin x in (see Fig. 2). 

O     x0     b      x a 
f(a) 

y=c 

f(b) 

Y 

Fig. 1 

Y 

O p /6     p /2         x 

y=sin x 

Fig. 2 
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From the figure, you can see that the line x = 
1

2
 cuts the graph at the point ( )1

,
6 2

p
. 

Hence there exists a point x0 = 
6

p
 in 









2
,0

P
 such that sin ((x0) = 

1

2
. 

 
Let us consider another example. 
 
Example 2: Show that the equation 2x3 + x2 – x + 1 = 5 has a solution in the interval 
[1, 2]. 
 
Solution: Let f(x) = 2x3 + x2 – x + 1. Since f is a polynomial in x, f is continuous in 
[1, 2]. Also f(1) = 3, f(2) = 19 and 15 lies between f(1) and f(2). Thus f satisfied all 
conditions of Theorem 1. Therefore, there exists a number x0 between 1 and 2 such 
that f(x0) = 5. That is, the equation 2x3 + x2 – x + 1 = 5 has solution in the interval [1, 
2]. 
 
Thus we saw that the theorem enables us in establishing the existence of the solutions 
of certain equations of the type f(x) = 0 without actually solving them. In other words, 
if you want to find an interval in which a solution (or root) of f(x) = 0 exists, then find 
two numbers a, b such that f(a) f(b) < 0. Theorem 1, then states that the solution lies in 
]a, b[. We shall need some other numerical methods for finding the actual solution. 
We shall study the problem of finding solution of the equation f(x) = 0 more 
elaborately in Unit 2. 
 
Let us now discuss another important theorem in calculus. 
 
3.1.2 Rolle’s Theorem 
 
In this section we shall review the Rolle’s Theorem. The theorem is named after the 
seventeenth century French mathematician Michel Rolle (1652 – 1719). 
 
Theorem 2 (Rolle’s Theorem): Let f be a continuous function defined on [a, b] and 
differentiable on ]a, b[. If f(a) = f(b), then there exists a number x0 in ]a, b[ such that 
f’(x0) = 0. 
Geometrically, we can interpret the theorem easily. You know that since f is 
continuous, the graph of f is a smooth curve (see Fig. 3). 
 
 
 
 
 
 
 
 
 
 

Y 

(a, f(a)) (b, f(b)) 

Q 

R 
a x0 b X 

P 

Fig. 3 
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You have already seen in your calculus course that the derivative f’(x0) at some point 
x0 gives the slope of the tangent at (x0, f(x0)) to the curve y = f(x). Therefore the 
theorem states that if the end values f(a) and f(b) are equal, then there exists a point x0 
in ]a, b[ such that the slope of the tangent at the point P(x0, f(x0)) is zero, that is, the 
tangent is parallel to x-axis at the point (see Fig. 3). In fact we can have more than one 
point at which f’(x) = 0 as shown in Fig. 3. This shows that the number x0 in Theorem 
2 may not be unique. 
 
The following example give an application of Rolle’s Theorem. 
 
Example 3:Use Rolle’s Theorem to show that there is a solution of the equation cot x 

= x in [0, 
2

π
]. 

 
Solution: Here we have to solve the equation cot x – x = 0. We rewrite cot x – x as 

xsin

xsinxxcos
. Solving the equation 

xsin

xsinxxcos
 = 0 in    [0, 

2

π
] is sme as solving the 

equation cos x – x sin x = 0. now we shall see whether we can find a function f which 
satisfies the conditions of Rolle’s Theorem and for which f’(x) = cos x – x sin x. Our 
experience in differentiation suggests that we try f(x) = x cos x. this function f is 

continuous in ]0, 
2

π
[, differentiable in [0, 

2

π
] and the derivative        f’(x) = cos x – x 

sin x. Also f (0) = 0 = f (
2

π
). Thus f satisfies all the requirements of Rolle’s Theorem. 

Hence, there exists a point x0 in [a, b] such that f’(x0) = cos x0 – x0 sin x0 = 0. This 

shows that a solution to the equation cot x – x = 0 exists in [0, 
2

π
]. 

 
 
Now, let us look at Fig. 3 carefully. We see that the line joining (a, f(a)) and (b, f(b)) 
is parallel to the tangent at (x0, f(x0)). Does this property hold when f(a) ≠ f(b) also? In 
other words, does there exists a point x0 in ]a, b[ such that the tangent at (x0, f(x0)) is 
parallel to the line joining     (a, f(a)) and (a, f(b))? The answer to this question is the 
content of the well-known theorem. “Lagrange’s mean value theorem”, which we 
discuss next. 
 
3.1.3 Lagrange’s Mean Value Theorem 
 
This theorem was first proved by the French mathematician Count Joseph Louis 
Lagrange (1736 – 1813). 
 
Theorem 3: Let f be a continuous function defined on [a, b] and differentiable in ]a, 
b[. Then there exists a number x0 in [a, b] such that 
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f'(x0) = 
a-b

)a(f-)b(f
        (1) 

 
geometrically we can interpret this theorem as given in Fig. 4. 
 
 
 
 
 
 
 
 
 
In this figure you can see that the straight line connecting the end points (a, f(a)) and 
(b, f(b)) of the graph is parallel to some tangent to the curve at an intermediate point. 
 
You may be wondering why this theorem is called ‘mean value theorem’. This is 
because of the following physical interpretation. 
 
Suppose f(t) denotes the position of an object at time t. Then the average (mean) 
velocity during the interval [a, b] is given by 
 

a-b

)a(f-)b(f
 

 
Now Theorem 3 states that this mean velocity during an interval [a, b] is equal to the 
velocity f’(x0) at some instant x0 in [a, b]. 
 
We shall illustrate the theorem with an example. 
 

Example 4: Apply the mean value theorem to the function f(x) = x  in [0, 2] (see 
Fig. 5). 
 
 
 
 
 
 
 
 

Solution: We first note that the function f(x) = x  is continuous on [0, 2] and 

differentiable in [0, 2] and f’(x) = 
x2

1
. 

 

Therefore by Theorem 3, there exists a point x0 in ]0, 2[ such the 
 

Y 

O X a      x0              b 

(a, f(a)) 

(b, f(b)) 
(x0, f(x0)) 

Fig. 4 

Y 

O X   1/2      1           2 

(2, 2 ) 

(y = x  

) 

Fig. 5: Graph of f(x) = x  

1 
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f(2) = 2  and f(0) = f’(x0)  (2 – 0) 
 

Now f(2) = 2  and f(0) = 0 and f’(x0) = 
0x2

1
. 

 
Therefore we have 

2  = 
0x

1
 

i.e. 
0x

1
 = 

2

1
 and x0 = 

2

1
. 

 

Thus we get that the line joing the end points (0, 0) and (2, 2 ) of the graph of f is 

parallel to the tangent to the curve at the point (
2

1
,

2

1
). 

 
We shall consider one more example. 
 
Example 5: Consider the function f(x) = (x – 1) (x – 2) (x – 3) in [0, 4]. Find a point 
x0 in ]0, 4[ such that 
 

f'(x0) = 
0-4

f(0))4(f -
. 

 
Solution: We rewrite the function f(x) as 
 
f(x) = (x – 1) (x – 2) (x – 3) = x3 – 6x2 + 11x – 6 
 
we know that f(x) is continuous on [0, 4], since f is a polynomial in x. Also the 
derivative 
 
f’(x) = 3x2 – 12x = 11 
 
exists in ]0, 4[. Thus f satisfies all conditions of the mean value theorem. Therefore, 
there exists a point x0 in [0, 4] such that 
 

f’(x0) = 
0-4

f(0))4(f -
 

i.e., 3x 2
0  - 12x0 + 11 = 

04

6+6

-
 = 3 

i.e., 3x 2
0  - 12x0 + 8 = 0 

 
This is a quadratic equation in x0. The roots of this equation are 
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8

32+6
 and 

8

326-
 

 

Taking 3  = 1.732, we see that there are twp values for x0 lying in the interval [0, 4]. 
 
The above example shows that the number x0 in Theorem 3 may not be unique. Again, 
as we mentioned in the case of theorems 1 and 2, the mean value theorem guarantees 
the existence of a point only. 
 
So far we have used the mean value theorem to show the existence of appoint 
satisfying Eqn. 1. Next we shall consider an example which shows another application 
of mean value theorem. 
 

Example 6: Find an approximate value of 3 26  using the mean value theorem. 
 

Solution: Consider the function f(x) = x1/3. Then f(26) = 3 26 . The number nearest to 

26 for which the cube root is known is 27, i.e., f(27) = 3 27  = 3. Now we shall apply 
the mean value theorem to the function f(x) = x1/3 in the interval [26, 27]. The function 
f is continuous in       [26, 27] and the derivative is 
 

f'(x) = 3/2x3

1
 

 
 

Therefore, there exists a point x0 between 26 and 27 such that 
 

3 27  - 3 26  = 3/2
0x3

1
 (27 – 26) 

i.e., 3 26  = 3 - 3/2
0x3

1
       (2) 

 

Since x0 is  close to 27, we approximate 3/2
0x3

1
 by 3/2)27(3

1
, i.e.; 

      3/2
0x3

1
≈

27

1
 

Substituting this value in Eqn. (2) we get 
 

3 26  = 3 - 
27

1
 = 2.963. 

 
Note that in writing the value of we have rounded off the number after three decimal 

places. Using the calculator we find that the exact value of 3 26  is 2.9624961. 
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We have given this example just to illustrate the usefulness of the theorem. The mean 
value theorem has got many other applications which you will come across in later 
units. 
 
Now we shall discuss another theorem in calculus. 
 
3.2 Taylor's Theorem 
 
You are already familiar with the name of the English mathematician Brook Taylor 
(1685 – 1731) from your calculus course. In this section we shall introduce you to a 
well-known theorem due to B. Taylor. Here we shall state the theorem without proof 
and discuss some of its applications. 
 
You are familiar with polynomial equations of the form f(x) = a0 + a1 x + ... + an x

n 
where a0, a1 ....., an are real numbers. We can easily compute the value of a polynomial 
at any point x = a by using the four basic operation of addition, multiplication, 
subtraction and division. On the other hand there are function like ex, cos x. In x etc. 
which occur frequently in all branches of mathematics which cannot be evaluated in 
the same manner. For example, evaluating the function f(x) = cos x at 0.524 is not so 
simple. Now, to evaluate such functions we try to approximate them by polynomials 
which are easier to evaluate. Taylor's theorem gives us a simple method for 
approximating functions f(x) by polynomials. 
Let f(x) be a real-valued function defined on R which is n-times differentiable. 
Consider the function 
 
P1(x) = f(x0) + (x – x0) f’(x0) 
where x0 is any given real number. 
 
Now P1(x) is a polynomial in x of degree 1 and P1(x0) = f(x0) and P’1(x0) = f’(x0). The 
polynomial P1(x) is called the first Taylor polynomial of f(x) at x0. Now consider 
another function 
 

P2(x0) = f(x0) + (x – x0)f’(x0) + 
!2

)xx( 2
0-

f”(x0). 

 
Then P2(x) is a polynomial in x of degree 2 and P2(x0) = f(x0), P’2(x0) = f’(x0) and 
P”2(x0) = f”(x0). P2(x) is called the second Taylor polynomial of f(x) at x0. 
 
Similarly, we can define the rth Taylor polynomial of f(x) at x0 where 1 ≤ r ≤ n. The 
rth Taylor polynomial at x0 is given by 
 

Pr(x) = f(x0) + (x – x0) f’(x0) + … + 
!r

)x(f 0
)n(

(x – x0)
r.   (3) 

 
You can check that Pr(x0) = f(x0), P’r(x0) = f’(x0), …. 
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P )r(
r (x0) = f(r)(x0)  (see E6) 

Let us consider an example. 
 
Example 7: Find the fourth Taylor polynomial of f(x) = In x about x0=1. 
 
Solution: The fourth Taylor polynomial of f(x) is given by 
 

P4(x) = f(1) + (x – 1)f’(1) + 
!2

)1-x( 2

 f”(1) + 
!3

1)-x( 3

f(3)(1) + 
!4

1)-x( 4

f(4)(1). 

 
Now, f(1) = In1 = 0 

f’(x) = 
x

1
; f’(1) = 1 

f”(x) = ( 2x

1
- ); f”(1) = -1 

f(3)(x) = 3x

2
; f(3)(1) = 2 

f(4)(x) = 4x

6-
; f(4)(1) = -6 

Therefore, P4(x) = (x – 1) - 
2

)1-x( 2

 + 
3

1)-x( 3

 - 
4

1)-x( 4

 

 
We are now ready to state the Taylor’s theorem. 
 
Theorem 4 (Taylor’s Theorem): Let f be a real valued function having (n + 1) 
continuous derivatives on ]a, b[ for some n ≥ 0. Let x0 be any point in the interval ]a, 
b[. Then for any x ∈ ]a, b[, we have 
 

f(x) = f(x0) + 
!1

)x-x( 0 f’(x0) + 
!2

)x-x( 0 f(2)(x0) + … 

+ … + 
!n

)x-x( n
0 f(n)(x0) + 

!1+n

)x-x( 1+n
0 fn+1(c).    (4) 

 
where c is point between x0 and x. 
 
The series given in Eqn. (4) is called the nth Taylor’s expansion of f(x) at x0. 
 

We rewrite Eqn. (4) in the form 
 
f(x) = Pn(x) + Rn+1(x)  
 
where Pn(x) is the nth Taylor polynomial of f(x) about x0 and 
 

R )x(
1+n  = 

!1+n

)x-x( 1+n
0  fn+1(c). 
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Rn+1(x) depends on x, x0 and n. Rn+1(x) is called the remainder (or error) of the nth 
Taylor’s expansion after n + 1 terms. 
 
Suppose we put x0 = a and x = a + h where h > 0, in Eqn (4). Then any point between 
a and a + h will be of the form a +/θ h, 0 < θ  < 1. 
 
Therefore, Eqn (4) can be written as 
 

f(a+h) = f(a)+h f’(a)+
!2

h2

 f”(a)+…+
!n

hn

f(n)(a)+
!1+n

h 1+n

f(n+1)(a+ θ h) (5) 

 
Let us now make some remarks on the Taylor’s theorem.  
 
Remark 1: Suppose that the function f(x) in Theorem 4 is a polynomial of degree m. 
Then f(r)(x) = 0 for all r > m. Therefore Rn+1(x) = 0 for all n ≥ m. Thus, in this case, 
the mth Taylor’s expansion of f(x) about x0 will be 

f(x) = f(x0) + 
!1

)x-x( 0 f’(x0) + … + 
!m

)x-x( m
0 f(m)(x0). 

 
Note that the right hand side of the above equation is simply a polynomial in (x – x0). 
 
Therefore, finding Taylor’s expansion of a polynomial function f(x) about x0 is the 
same as expressing f(x) as a polynomial in (x – x0) with coefficients from R. 
 
Remark 2: Suppose we put x0 = a, x = b and n = 0 in Eqn. (4). Then Eqn  
(4) becomes  
 
f(b) = f(a) + f’(c)(b – a) 
 
or equivalently 
 
f(b) – f(a) = f’(c) (b – a) 
 
which is the Lagrange’s mean value theorem. Therefore we can consider the mean 
value theorem as a special case of Taylor’s theorem. 
 
Let us consider some examples. 
 
Example 8: Expand f(x) = x4 – 5x3 + 5x2 + x + 2 in powers of (x – 2). 
 
Solution: The function f(x) is a polynomial in x of degree 4. Hence, derivatives of all 
orders exists and are continuous. Therefore by Taylor’s theorem, the 4th Taylor 
expansion of f(x) about 2 is given by 
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f(x) = f(2) + 
!1

)2-x(
f’(2) + 

!2

)2-x( 2

f”(2) + 
!3

)2-x( 3

f(3)(2) + 
!4

)2-x( 4

 f(4)(2). 

 
Here f(2) = 0 
f’(x) = 4x3 – 15x2 + 10x + 1, f’(2) = -7 
f”(x) = 12x2 – 30x + 10,  f”(2) = -2 
f(3)(x) = 24x – 30,   f(3)(2) = 18 
f(4)(x) = 24,    f(4)(2) = 24 
 
Hence the expansion is 

f(x) = -7(x – 2) - 
!2

)2-x(2 2

 + 
!3

)2-x(18 3

 + 
!4

)2-x(24 4

 

= -7(x – 2) – (x – 2)2 + 3(x – 2)3 + (x – 2)4 
 
Example 9: Find the nth Taylor expansion of 1n (1 + x) about x = 0 for x ∈ [-1, 1]. 
 

Solution: We first note that the point x = 0 lies in the given interval. Further; the 
function f(x) = 1n (1 + x) has continuous derivatives of all orders. The derivatives are 
given by 
 

f’(x) = 
x+1

1
,  f’(0) = 1 

f”(x) = 2)x+1(

1-
, f”(0) = -1 

f(3)(x) = 3

2

)x+1(

!2)1(-
,  f(3)(0) = 2 

 .. . 
.. . 
.. . 

f(n))x) = n

1-n

)x+1(

)!1-n()1(-
, f(n)(0) = (-1)n-1(n – 1)! 

 

Therefore by applying Taylor’s theorem we get that for any x ∈ [-1, 1] 
 

1n (1 + x) = x - 
2

x2

 + 
3

x3

 - 
4

x4

 + … + 
n

x)1(- n1-n

 + 1+n

1+n1-n

)c+1()!1+n(

x!n)1(-
 

where c is a point lying between 0 and x. 
 
Now, let us consider the behaviour of the remainder in a small interval, say, [0, 0.5]. 
then for x in [0, 0.5], we have 
 

|Rn+1(x)| = 1+n

1+nn

)c+1()!1+n(

x!n)1-(
 

where 0 < c < x. 
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Since |x| < 1, |x|n+1 < 1 for any positive integer n. 
 

Also since c > 0, 1+n)c+1(

1
 < 1. Therefore we have 

|Rn+1(x)| < 
1+n

1
 

Now 
1+n

1
 can be made as small as we like by choosing n sufficiently large i.e. 

∞→n
lim

1+n

1
 = 0. This shows that 

∞→n
lim |Rn+1(x)| = 0. 

 
The above example shows that if n is sufficient large, the value of the nth Taylor 
polynomial Pn(x) at any x0 will be approximately equal to the value of the given 
function f(x0). In fact, the remainder Rn+1(x) tell(s) us how close the value Pn(x0) is to 
f(x0). 
 
Now we shall make some general observations about the remainder Rn+1(x) in the 
Taylor’s expansion of a function f(x). 
 

Remark 3: Consider the nth Taylor expansion of f about x0 given by 
f(x) = Pn(x) + Rn+1(x). 
 
Then Rn+1(x) = f(x) - Pn(x). If 

∞→n
lim Rn+1(x) = 0 for some x, then for that x we say that 

we can approximate f(x) by Pn(x) and we write f(x) as the infinite series. 
 

f(x) = f0(x) + f’(x)(x–x0) + 
!2

)x(f 0
)2(

(x – x0)
2 +…+ 

!n

)x(f 0
)n(

(x–x0)
n + … 

 = 
∞

0=n

∑
!n

)x(f 0
)n(

xn 

 
is called Maclaurin’s series. 
 
Remark 4: If the remainder Rn+1(x) satisfies the condition that |Rn+1(x)| < M for some n 
at some fixed point x = a, then M is called the bound of the error at x = a. 
 
In this case we have 
 
|Rn+1(x)| = |f(x) - | < M 
 
That is, f(x) lies in the interval [Pn(x) – M, Pn(x) + M]. 
 

Now if M is considerably small for some n, then this interval becomes very small. In 
this case we say that f(x) is approximately equal to the value of the nth Taylor 
polynomial with error M. Thus the remainder is used to determine a bound for the 
accuracy of the approximation. 
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We shall explain these concepts with an example. 
 

Example 10: Find the 2nd Taylor’s expansion of f(x) = x+1  in [-1, 1] about  x = 0. 
find the bound of the error at x = 0.2. 
 
 

Solution: Since f(x) = x+1 , we have 
 
f(0) = 1 

f’(x) = 
x+12

1
, f(0) = 

2

1
 

f”(x) = -
4

1
 (1 + x)-3/2, f’(0) = -

4

1
 

f(3)(x) = 
8

3
 (1 + x)-5/2, 

 
Applying Taylor’s theorem to f(x), we get 

x+1  = 1 + 
2

1
x - 

8

1
x2 + 

16

1
x3(1 + c)-5/2 

 
where c is a point lying between 0 and x. 
 

The error is given by R3(x) = 
16

x3

(1 + c)-5/2. 

 
When x = 0.2, we have 

R3(0.2) = 2/5

3

)c+1(16

)2.0(
 

Where 0 < c < 0.2. Since c > 0 we have 

2/5)c+1(

1
 < 1. 

 
Hence, 

|R3(0.2)| ≤
16

)2.0( 3

 = (0.5) 10-3 
 

Hence the bound of the error for n = 2 at x = 0.2 is (0.5) 10-3. 
 
There are some functions whose Taylor’s expansion is used very often. We shall list 
their expansion here. 
 

ex = 1 + 
!1

x
 + 

!2

x2

 + … + 
!n

xn

 + 
)!1+n(

x 1+n

ec …    (7) 
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Sin x = x - 
!3

x3

 + 
!5

x5

 + … + 
)!1-n2(

x)1-( 1-n21-n

 + 
)!1+n2(

x)1-( 1-n2n

cos (c)  (8) 

Cos x = 1 - 
!2

x2

 + 
!4

x4

 - … + 
)!n2(

x)1-( n2n

 + 
)!2+n2(

x)1-( 2+n21+n

cos (c).  (9) 

x-1

1
 = 1 + x + x2 + … + xn + 2+n

1+n

c)-1(

x
             (10) 

where c, in each expansion, is as given in Taylor’s theorem. 
 
Now, let us consider some examples that illustrate the use of finding approximate 
values of some functions at certain points using truncated Taylor series. 
 
Example 11: Using Taylor’s expansion for sin x about x = 0, find the approximate 
value of sin 10  with error less than 10-7. 
 
Solution: The nth Taylor’s expansion for sin x given in Eqn. (9) is 

sin x = x - 
!3

x3

 + 
!5

x5

 - … + 
)!1-n2(

x)1-( 1-n21-n

 + 
)!1+n2(

x)1-( 1+n2n

cos (c).           (11) 

 
where x is the angle  measured in radians. 
 
Now, in radian measure , we have 
 

10   = 
18

π
 radians. 

 

Therefore, by putting x = 
18

π
 in Eqn. (11) we get 

 

sin
18

π
 = 

18

π
 - 

!3

1
(
18

π
) 3  + 

!5

1
(
18

π
) 5  + … + Rn+1(

18

π
) 

 

where Rn+1(
18

π
) is the remainder after (n + 1) terms. 

 
Now 

Rn+1(
18

π
) = 

)!1+n2(

)1-( n

(
18

π
) 1+n2 cos c. 

If we approximate sin 
18

π
 by Pn(

18

π
), then the error introduced will be less than 10-7 if 

 

)
18

π
(P-)

18

π
sin( n  = )

18

π
(R 1+n  = ccos)

18

π
(

)!1+n2(

)1-( 1+n2
n

 < 10-7. 
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Maximizing cos c, we require that 
 

)!1+n2(

1
(
18

π
) 1+n2  < 10-7                (12) 

 
Using the calculator, we find that the value of left hand side of Eqn. (12) for various n 
is 
 

n 1 2 3 

Left hand side 89 ×  10-3 13 ×  10-5 99 ×  10-9 

 
From the table we find that the inequality in (12) is satisfied for n = 3. Hence the 
required approximation is 
 

sin (
18

π
) ≈

18

π
 - 

!3

1
(
18

π
) 3  + 

!5

1
(
18

π
) 5  = 0.1745445 

with error less than 1.0 ×  10-7. 
 
Let us now find the approximate value of e using Taylor’s theorem. 
 
Example 12: Using Maclaurin’s series for ex, show that e≈2.71806 with error less 
than 0.001. (Assume that e < 3). 
 
Solution: The Maclaurin’s series for ex is 
 

ex = 1 + 
!1

x
 + 

!2

x2

 + … 

 
Putting x = 1 in the above series, we get 

e = 1 + 1 + 
!2

1
 + 

!3

1
 + … 

 
Now we have to find n for which 
 
|e – Pn(1)| = |Rn+1(1)| < 0.001. 

Now |Rn+1(1)| ≤ec 
)!1+n(

1
 

 
Since we have chosen x0 = 0 and x = 1, the value c lies between 0 and 1 i.e. 0 < c < 1. 
Since ec < c < 3, we get 
 

|Rn+1(1)| ≤ec 
)!1+n(

3
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The bound for Rn+1(1) for different n is given in the following table. 
 

n 1 2 3 4 5 6 

Bounds for Rn+1 1.5 .5 .1 .125 .004 .0006 

 
From this table, we see that 
 
Rn+1 < .001 if n = 6 
 
Thus P6(1) is the desired approximation to e. i.e. 
 

e≈1 + 1 +
2

1
 + 

6

1
 + 

24

1
 + 

120

1
 + 

720

1
 + 

720

1957
 ≈ 2.71806 

 
In numerical analysis we are concerned with developing a sequence of calculations 
that will give a satisfactory answer to a problem. Since this process involves a lot of 
computations, there is a chance for the presence of some errors in these computations. 
In the next section we shall introduce you to the concept of ‘errors’ that arise in 
numerical computations. 
 
3.3 Errors 
 
In this section we shall discuss the concept of an ‘error’. We consider two types of 
errors that are commonly encountered in numerical computations. 
 
You are already familiar with the rounding off a number which has non-terminal 
decimal expansion from your school arithmetic. For example we use 3.1425 for 22/7. 
These rounded off numbers are approximations of the actual values. In any 
computational procedure we make use of these approximate values instead of the true 
values. Let xT denote the true value and xA denote the approximate value. How do we 
measure the goodness of an approximation xA to xT? The simplest measure which 
naturally comes to our mind is the difference between xT and xA. This measure is 
called the ‘error’. Formally, we define error as a quantity which satisfies the identity. 
 
True value xT = Approximate value xA + error. 
 
Now if an ‘error’ in approximation is considered small (according to some criterion), 
then we say that ‘xA is a good approximation to x’. 
 
Let us consider an example. 
 
Example 13: The true value of π  is 3.14159265 … In some mensuration problems the 
value 22/7 is commonly used as an approximation to π . What is the error in this 
approximation? 
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Solution: The true value of π  is 
π  = 3.14159265                 (13) 
Now, we convert 22/7 to decimal form, so that we can find the difference between the 
approximate value and true value. Then the approximate value of π  is 
 

7

22
 = 3.14285714                 (14) 

 
Therefore, 
 
error = True value – approximate value = -0.00126449            (15) 
 
Note that in this case the error is negative. Error can be positive or negative. We shall 
in general be interested in absolute value of the error which is defined as 
 
|error| = |True value – approximate value| 
For example, the absolute Error in Example 13 is 
|error | = |-0.00126449…| = 0.00126… 
 
Sometimes, when the true value is very small we prefer to study the error by 
comparing it with the value. This is known as Relative error and we define this error 
as  
 

|Relative error| = 
valueTrue

valueeapproximat-valueTrue
 

 
In the case of Example 13, 
 

|Relative error| = 
...14159265.3

...00126449.0
 = 0.00040249966… 

 
But note that in certain computations, the true value may to be available. In that case 
we replace the true value by the computed approximate value by the computed 
approximate value in the definition of relative error. 
 
In numerical calculations, you will encounter mainly two types of errors: round-off 
error and truncation error. We shall discuss these errors in the next two subsections 
1.4.1 and 1.4.2 respectively. 
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3.3.1 Round-off Error 
 
Let us look at Example 13 again. You can see that the numbers appearing in Eqn. 
(13), (14) and (15) consists of 8 digits after the decimal point followed by dots. The 
line of dots indicates that the digits continue and we are not able to write all of them. 
That is, these numbers cannot be represented exactly by a terminating decimal 
expansion. Whenever we use much numbers in calculations we have to decide how 
many digits we are going to take into account. For example, consider again the 
approximate value of π . If we approximate π  using 2 digits after the decimal point 
(say), chopping off the other digits, then we have 
 
π  = 3.14 
 
The error in this approximation is 
 
error = 0.00159265                 (16) 
 
If we use 3 digits after the decimal point, then using chopping we have 
π ≈3.141 
 
In this case the error is given by 
 
error = -0.00059265                 (17) 
 
Now suppose we consider the approximate value rounded-off to three decimal places. 
You already know how to round off a number which has non-terminal decimal 
expansion . Then the value of π  rounded-off to 3 digits is 3.142. The error in this case 
is 
 
error = -0.00040734… 
 

which is smaller, in absolute value than 0.00059265…given in Eqn. (17). Therefore in 
general whenever we want to use only a certain number of digits after the decimal 
point, then it is always better to use the value rounded-off to that many digits because 
in this case the error is usually small. The error involved in a process where we use 
rounding-off method is called round-off error. 
 
We now discuss the concept of floating point arithmetic. 
 
In scientific computations a real number x is usually represented in the form 
 
x = ± (. d1 d2 … dn) 10m 
 

where d1 d2 … dn are natural numbers between 0 and 9 and m is an integer called 
exponent. Writing a number in this form is known as floating point representation. We 
denote this representation by fl(x). Such a floating point number is said to be 
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normalized if d1 ≠ 0. To translate a number into floating point representation we 
adopt any of the two methods – rounding and chopping. For example, suppose we 
want to represent the number 537 in the normalized floating point representation with 
n = 1, then we get 
 
fl (537) = .5 ×  103 chopped 
   = .5 ×  103 rounded 
 
In this case we are getting the same representation in rounding and chopping. Now if 
we take n = 2, then we get 
 
fl (537) = .53 ×  103 chopped 
   = .54 ×  103 rounded 
 
In this case, the representations are different. 
 
Now if we take n = 3, then we get 
 
fl (537) = .537 ×  103 chopped 
   = .537 ×  103 rounded 
 
The number n in the floating point representation is called precision. 
 
The difference between the true value of a number x and rounded fl(x) is called round-
off error. From the earlier discussion it is clear that the round-off error decreases when 
precision increases. 
 
Mathematically, we define these concepts as follows: 
 
Definition 2: Let x be a real number and x* be a real number having non-terminal 
decimal expansion, then we say that x* represents x rounded to k decimal places if 
 

|x – x*| ≤ 
2

1
 10-k, where k > 0 is a positive integer. 

 
Next definition gives us a measure by which we can conclude that the round-off error 
occurring in an approximation process is negligible or not. 
 
Definition 3: Let x  be a real number and x* be an approximation to x. Then we say 
that x* is accurate to k decimal places if 
 

2

1
10-(k+1) ≤|x – x*| ≤ 

2

1
10-k                                   (18) 

 

Let us consider an example. 
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Example 14: Find out to how many decimal places the value of 22/7 obtained in 
Example 13 is accurate as an approximation to π  = 3.14159265? 
 
Solution: We have already seen in Example 13 that 
 

7

22
-π = 0.00126449… 

 
Now .0005 < .00126… < 0.005 

or 
2

1
10-3 < .00126… < 

2

1
10-2 

 
Therefore the inequality (18) is satisfied for k = 2. 
 
Hence, by Definition 3, we conclude that the approximation is accurate to 2 decimal 
places. 
 
Now we make an important remark. 
 
Remark 5: Round-off errors can create serious difficulties in lengthy computations. 
Suppose we have a problem which involves a long calculation. In the course of these 
computations many rounding errors (some positive, and some negative) may occur in 
a number of ways. At the end of the calculations these errors will get accumulated and 
we don’t know the magnitude of this error. Theoretically it can be large. But, in reality 
some of these errors (between positive and negative errors) may get cancelled so that 
the accumulated error will be much smaller. 
 
Let us now define another type of error called Truncation error. 
 
3.3.2 Truncation Error 
 
We shall first illustrate this error with a simple example. In Sec. 1.3. we have already 
discussed how to find approximate value of a certain function f(x) for a given value of 
x using Taylor’s series expression. Let 
 

f(x) = 
∞

0=n

∑an (x – x0)
n 

 
denote the Taylor’s series of f(x) about x0. In practical situations, we cannot, in 
general, find the sum of an infinite number of terms. So we must stop after a finite 
number of terms, say N.  
 
This means that we are taking 
 

f(x) = 
N

0=n

∑  (x – x0)
n 
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and ignoring the rest of the terms, that is, 
∞

1+N=n

∑  an (x – x0)
n 

 
There is an error involved in this truncating process which arises from the terms which 
we exclude. This error is called the ‘truncation error’. We denote this error by T E. 
Thus we have 
 

T E = f(x) - 
N

0=n

∑an (x – x0)
n 

∞

1+N=n

∑  an (x – x0)
n 

 
You already know how to calculate this error from Sec. 1.3. There we saw that using 
Taylor’s theorem we can estimate the error (or remainder) involved in a truncation 
process in some cases. 
 
Let’s see what happen if we apply Taylor’s theorem to the function f(x) about the 
point x0 = 0. We assume that f satisfies all conditions of Taylor’s theorem. Then we 
have 
 

f(x) = 
N

0=n

∑an x
n + 

!1+N

x 1+N

fN+1(c)               (19) 

where an = 
!n

)0(f )n(

 and 0 < c < x. 

 

now, suppose that we want to approximate f(x) by 
N

0=n

∑  an x
n. 

 

Then Eqn. (19) tells us that the truncation error in approximating f(x) by 
N

0=n

∑  an x
n is 

given by 
 

T E = RN+1(x) = 
!1+N

x 1+N

 fN+1(c)                (20) 

 
Theoretically we can use this formula for truncation error for any sufficiently 
differentiable function. But practically it is not easy to calculate the nth derivative of 
many functions. Because of the complexity in differentiation of such functions, it is 
better to obtain indirectly their Taylor polynomials by using one of the standard 
expansions we have listed in Sec. 1.3. 
 

For example consider the function f(x) = e
2x . It is difficult to calculate the nth 

derivative of this function. Therefore, for convenience, we obtain Taylor’s expansion 

of e
2x using Taylor’s expansion of ey by putting y = x2. We shall illustrate this in the 

following example. 
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Example 15: Calculate a bound for the truncation error in approximation e
2x  by 

 

e
2x ≈1 + x2 + 

!2

x4

 + 
!3

x6

 + 
!4

x8

 for x ∈ ]-1, 1[. 

 

Solution: Put u = x2. Then e
2x = eu. Now we apply the Taylor’s theorem to function 

f(u) = eu about u = 0. Then, we have 
 

eu = 1 + u + 
!2

u2

 + 
!3

u3

 + 
!4

u4

 + R5(u) where 

 

R5(u) = 
!5

ue 5c

 

 
And 0 < c < u. Since |x| < 1, u = x2 < 1 i.e. c < 1. Therefore, ec < e < 3. Thus 

|R5(u)| ≤ 
!5

x3 10

 < 
!5

3
 = 

40

1
 = .025  

 

Hence the truncation error in approximating e
2x by the above expression is less than 

25 ×  10-1. 

 
If the absolute value of the TE is less, then we say that he approximation is good. 
 
Now, in practical situations we should be able to find out the value of n for which the 
summation ∑an x

n gives a good approximation to f(x). For this we always specify the 

accuracy (or error bound) required in advance. Then we find n using formula (20) 
such that the absolute error |Rn+1(x)| is less than the specified accuracy. This gives the 
approximation within the prescribed accuracy.  
 
Let us consider an example. 
 
Example 16: Find an approximate value of the integral 
 

1

0
∫ e

2x dx 

with an error less than 0.025 
 
Solution: In Example 15 we observed that 

e
2x ≈1 + 

!1

x2

 + 
!2

x4

 + 
!3

x6

 + 
!4

x8

 

with TE = 
!5

xe 102x

dx. 
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Now we use this approximation to calculate the integral. We have 
 
1

0
∫ e

2x dx ≈ 
1

0
∫(1 + x2 + 

!2

x4

 + 
!3

x6

 + 
!4

x8

)dx                       (20) 

with the truncation error 
 

TE = 
1

0


!5

xe 102x

dx. 

 
We have 

|TE| 
1

0


!5

|x|e 102x

≤ 
!5

3
 = .25 ×  10-1 

 
Integrating the right hand side of (21), we get 
 
1

0
 e

2x ≈ 
1

0
  (1 + x2 + 

!2

x4

 + 
!3

x6

 + 
!4

x8

)dx = 

1

0

9753

!4×9

x
+

!3×7

x
+

!2×5

x
+

3

x
+x  

= 

1

0

9753

216

x
+

42

x
+

10

x
+

3

x
+x  

= 1 + 
2

1
 + 

10

1
 + 

40

1
 + 

216

1
 

= 0.0048 
 
Here is an important remark. 
 
Remark: The magnitude of the truncation error could be reduced within any 
prescribed accuracy by retaining sufficient large number of terms.  
Likewise the magnitude of the round-off error could be reduced by retaining 
additional digits. 
 
You can now try the following self assessment exercises. 
 
 

SELF ASSESSMENT EXERCISE 
 
i Calculate a bound for the truncation error in approximation f(x) = sin x by 

 sin x ≈1 - 
!3

x3

 + 
!5

x5

 + 
!7

x7

 where -1 ≤ x ≤ 1. 

ii Using the approximation in (a), calculate an approximate value of the integral 

 
1

0
  

x

xsin
dx 

 with an error 10-4. 
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SELF ASSESSMENT EXERCISE 

 
i Calculate the truncation error in approximating 

 e
2x- by 1 – x2 + 

2

x4

, -1 ≤ x ≤ 1. 

ii Using the approximation in (a) calculate an approximate value of 
1

0
 e

2x- dx 

within an error bound of 10-7. 
 
4.0 CONCLUSION 
 
We end this unit by summarizing what we have learnt in this unit. 
 
5.0 SUMMARY 
 
In this unit we have: 
 recalled three important theorems in calculus, namely  
 

i) Intermediate value theorem 
ii) Rolle’s Theorem 
iii) Lagrange’s mean value theorem 

 State Taylor’s theorem and demonstrated it with the help of examples. 
The nth Taylor’s expansion: 

f(x) = f(x0) + 
!1

)xx( 0  f’(x0) + 
!2

)xx( 2
0  f(2)(x0) + … 

… + 
!n

)xx( n
0  f(n)(x0) + 

)!1+n(

)xx( 1+n
0  f(n+1)(c) 

 Defined the term ‘error’ occurring in numerical computations. 
 Discussed two types of errors namely 

i) Round-off error: Error occurring in computations where we use 
rounding off method to represent a number is called round-off error. 

ii) Truncation error: Error occurring in computations where we use 
truncation process to represent the sum of an infinite number of terms. 

 Explained how Taylor’s theorem is used to calculate the truncation error. 
 
6.0 TUTOR-MARKED ASSIGNMENT  
 
i Show that the following equations have a solution in the interval given 

alongside. 
ii Using Rolle’s Theorem show that there is a solution to the equation tan x – 1 + 

x = 0 in ]0, 1[. 

iii Let f(x) = 
3

1
x3 + 2x. Find a number x0 in ]0, 3[ such that 
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 f'(x0) = 
03

)0(f)3(f

-

-
 

iv Find all numbers x0 in the interval ]-2, 1[ for which the tangent to the graph of 
f(x) = x3 + 4 is parallel to the line joining the end points (-2, f(-2)) and (1, f(1)). 

v. Show that Rolle’s Theorem is a special case of mean value theorem. 
vi. If Pr denotes the rth Taylor polynomial as given y Eqn (3), then show that 

Pr(x0) = f(x0), P’r(x0) = f’(x0), .... P
)r(

r (x0) = f(r)(x0). 

vii. Obtain the third Taylor polynomial of f(x) = ex about x = 0. 

viii. Obtain the nth Taylor expansion of the function f(x) = 
x+1

1
 in ]-

2

1
, 1[ about x0 

= 0. 

ix. Does f(x) = x  have a Taylor series expansion about x = 0? Justify your 
answer. 

x. Obtain the 8th Taylor expansion of the function f(x) = cos x in [-
4

π
, 

4

π
] about x0 

= 0. Obtain a bound for the error R9(x). 

xi. Using Maclaurin’s expansion for cos x, find the approximate value of cos 
4

π
 

with the error bound 10-5. 
xii. How large should n be chosen in Maclaurin’s expansion for ex to have |ex – 

Pn(x)| ≤ 10-5,  -1 ≤ x ≤ 1. 
xiii. In some approximation problems where graphic methods are used, the value 

133

355
 is used as an approximation to  

π  = 3.14159265….To how many decimal places the value 
133

355
 is accurate as 

an approximation to π? 
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UNIT 2 ITERATION METHODS FOR LOCATING ROOT 
 
CONTENTS 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 

3.1 Initial Approximation to a Root 
 3.1.1 Tabulation Method 
 3.1.2 Graphical Method 
3.2 Bisection Method 

 3.3 Fixed Point Iteration Method 
4.0 Conclusion 
5.0 Summary 
6.0 Tutor Marked Assignment 
7.0 References/Further Readings 
 
1.0 INTRODUCTION 
 

We often come across equation of the form x4 + 3x2 + 2x + 1 = 0 or 
ex = x – 2 or tanh x = x etc. Finding one or more values of x which satisfy these 
equations is one of the important problems in Mathematics. From your elementary 
algebra course, you are already familiar with some methods of solving equations of 
degrees 1, 2, 3 and 4. equations of degree 1, 2, 3 and 4 are called linear, quadratic, 
cubic and biquadratic respectively. There you might have realized that it is very 
difficult to use the methods available for solving cubic and biquadratic equations. In 
fact no formula exists for solving equations of degree n ≥5. In these cases we take 
recourse to approximate methods for the determination of the solution of equations of 
the form. 
 
f(x) = 0         (1) 
 

The  problem of finding approximate values of roots of polynomial equations of 
higher degree was initiated by Chinese mathematicians. The methods of solution in 
various forms appeared in the 13th century work che’ in kiu-shoo. The first 
noteworthy work in this direction was done in Euope by the English mathematician 
Fibonacci. Later in the year 1600 Vieta and Isaac Newton made significant 
contribution to the theory. 
 
In this unit as well as in the next two units we shall discuss some numerical methods 
which gives an approximate solution of an equation f(x) = 0. We can classify the 
methods of solution into two types namely (i) Direct methods and (ii) Iteration 
methods.  
Direct methods produce solution by in finite number of steps whereas iteration 
methods give an approximate solution by repeated application of a numerical process. 
You will find later that for using iteration methods we have to start with an 
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approximate solution. Iteration methods improve this approximate solution. We shall 
begin this unit by first discussing methods which enable us to determine an initial 
approximate solution and then discuss iteration methods to refine this approximate 
solution. 
 
2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 
 find an initial approximation of the root using (1) tabulation method (2) 

graphical method 
 use bisection method for finding approximate roots 
 use fixed point iteration method for finding approximate roots. 
 
3.0 MAIN BODY 
 

3.1 Initial Approximation to a Root 
 
You know that in many problems of engineering and physical sciences you come 
across equations in one variable of the form f(x) = 0. 
 
For example, in Physical, the pressure-volume-temperature relationship of real gases 
can be described by the equation 
 

PV = RT +
V

β
 + 2V

r
 + 3V

s
       (2) 

 
where P, V, T are pressure, volume and temperature respectively. R, β , r, s are 

constants. We can rewrite Eqn. (2) as 
 
PV4 – RTV3 - β V3 – rV – s = 0      (3) 

 
Therefore the problem of finding the specific volume of a gas at a given temperature 
and pressure reduces to solving the biquadratic equation Eqn. (3) for the unknown 
variable V. 
 
Consider another example in life sciences, the study of genetic problem of 
recombination of chromosomes can be described in the form 
 
p(1 – p) = p2 – p + k – 0, 
 

where p stands for the recombination fraction with the limitation 0 ≤p ≤ 
2

1
 and (1 – 

p) stands for the non-recombination fraction. The problem of finding the 
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recombination fraction of a gene reduces to the problem of finding roots of the 
quadratic equation p2 – p + k = 0. 
 
In these problems we are concerned with finding value (or values) of the unknown 
variable x that satisfies the equation f(x) = 0. the function f(x) may be a polynomial of 
the form 
 
f(x) = a0 + a1 x +... + an xn 
 
or it may be a combination of polynomials, trigonometric, exponential or logarithmic 
functions. By a root of this equation we mean a number x0 such that f(x0) = 0. The root 
is also called a zero of f(x). 
 
If f(x) is linear, then Eqn. (1) is of the form ax + b = 0, a ≠0 and it has only one root 

given by x = -
a

b
. Any equation which is not linear is called a non-equation. In this unit 

we shall discuss some methods for finding roots of the equation f(x) = 0 where f(x) is 
a non linear function. You are already familiar with various methods for calculating 
roots of quadratic, cubic and biquadratic equations. But there is no such formula for 
solving polynomial equations of degree more than 4 or even for a simple equation like 
 
x – cos x = 0 
 
Here we shall discuss some of the numerical approximation methods. These methods 
involve two steps: 
 
 Step 1: To find an initial approximation of a root. 
 Step 2: To improve this approximation to get a more accurate value. 
 
We first consider step 1. Finding an initial approximation to a root means locating (or 
estimating) a root of an equation approximately. There are two ways for achieving 
this-tabulation mehod and graphical method. 
 
Let us start with Tabulation method. 
 
 

3.1.1 Tabulation Method 
 
This method is based on the intermediate value theorem (IV Theorem), (see Theorem 
1, Unit 1). Let us try to understand the various steps involved in the method through 
an example. 
 
Suppose we want to find a root of the equation 
 

2x – log10x = 7 
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We first compute value of f(x) = 2x – log10x – 7 for different value of x, say x = 1, 2, 3 
and 4. 
 

When x = 1, we have f(1) = 2 – log101 – 7 = -5 
 
Similarly, we have 
 
f(2) = 4 – log102 – 7 = -3.301 
 

(Note that log102 is computed using a scientific calculator.) 
 

f(3) = 6 – log102 – 7 = -1.477 
f(4) = 8 – log104 – 7 = -0.3977 
 
These values are given in the following table: 
 

Table 1 
x 1 2 3 4 

f(x) -5 -3.301 -1.477 0.397 

 
We find that f(3) is negative and f(4) is positive. Now we apply IV Theorem to the 
function f(x) = 2x – log10x – 7 in the interval I1 = [3, 4]. Since f(3) and f(4) are of 
opposite signs, by IV theorem there exists a number x0 lying between 3 and 4 such 
that f(x0) = 0. That is, a root of the function lies in the interval ]3, 4[. Note that this 
root is positive. 
 
Let us now repeat the above computations for some values of x lying in ]3, 4[ say x = 
3.5, 3.7 and 3.8. In the following table we report the values of f(x). 
 

Table 2 
x 3.5 3.7 3.8 

f(x) -0.544 -0.168 0.0202 

 
We find that f(3.7) are of opposite signs. By applying IV theorem again to f(x) in the 
interval I2 = [3.7, 3.8], we find that the root of f(x) lies in the interval ]3.7, 3.8[. Note 
that this interval is smaller than the previous interval. We call this interval a 
refinement of the previous interval. Let us repeat the above procedure once again for 
the interval I2. In Table 3 we give the values of f(x) for some x between 3.7 and 3.8. 
 

Table 3 
x 3.75 3.78 3.79 

f(x) -0.074 -0.017 -0.00137 

 
Table 3 shows that the root lies within the interval ]3.78, 3.79[ and this interval is 
much smaller compared to the original interval ]3, 4[. The procedure is terminated by 



MTH 213                                                                                                                                                 MODULE 3  

187 
 

taking any value of x between 3. 78 and 3.79 as an approximate value of the root of 
the equation f(x) = 2x – log10x – 7 = 0. 
 
The method illustrated above is known as Tabulation method. Let us write the steps 
involved in the method. 
 
Step 1: Select some numbers x1, x2, ...., xn and calculate f(x1) and f(x2), ...., f(xn). If 
f(xi) = 0 for some i, then xi is a root of the equation. If none of the xis are zero, then 
proceed to step 2. 
 
Step 2: Find values xi and xi+1 such that f(xi) f(xi+1) < 0. Rename xi = a1 and xi+1 = b1. 
Then by the IV Theorem a root lies in between a1 and b1. Test for all values of f(xj), j 
= 1, 2, ...., n and determine other intervals, if any, in which some more roots may lie. 
 
Step 3: Repeat Step 1 by taking some numbers between a1 and b1. Again, if f(xj) = 0 
for some xj between a1 then we have found the root xj. Otherwise, continue step 2. 
 
Continue the step 1, 2, 3 till we get a sufficiently small interval]a, b[ in which the root 
lies. Then any value between ]a, b[ can be chosen as an initial approximation to the 
root. You may have noticed that the test values xj, j = 1, 2, ...., n chosen are dependent 
on the nature of the function f(x). 
 
We can always gather some information regarding the root either from the physical 
problem in which the equation f(x) = 0 occur, or it is specified in the problem. For 
example, we may ask for the smallest positive root or a root closest to a given number 
etc. 
 
For a better understanding of the method let us consider one more example. 
Example 1: Find the approximate value of the real root of the equation 
 
2x – 3 sin x – 5 = 0. 
 
Solution: Let f(x) = 2x – 3 sin x – 5. 
 
Since f(-x) = -2x + 3 sin x – 5 < 0 for x > 0, the function f(x) is negative for all 
negative real numbers x. Therefore the function has no negative real root. Hence the 
roots of this equation must lie in [0, ∞[. Now following step 1, we compute values of 
f(x), for x = 0, 1, 2, 3, 4, .... 
 
We have 
 
f(0) = -5.0, 
f(1) = 2 – 3 sin 1 – 5 = 5.5224 
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using the calculator. Note that x is in radians. The values f(0), f(1), f(2) and f(3) are 
given in Table 4. 
 

Table 4 
x 0 1 2 3 

f(x) -5.0 -5.51224 -3.7278 0.5766 

 
Now we follow step 2. From the table we find that f(2) and f(3) are of opposite signs. 
Therefore a root lies between 2 and 3. Now, to get a more refined interval, we 
evaluate f(x) for some values between 2 and 3. The values are given in Table 5. 
 

Table 5 
x 2 2.5 2.8 2.9 

f(x) -3.7278 -1.7954 -0.4049 0.0822 

 
This table of values shows that f(2.8) and f(2.9) are of opposite signs and hence the 
root lies between 2.8 and 2.9. We repeat the process once again for the interval [2.8, 
2.9] by taking some values as given in Table 6. 
 

Table 6 
x 2.8 2.85 2.88 2.89 

f(x) -0.4049 -1.1624 -0.0159 0.0232 

 
From Table 6 we find that the root lies between 2.88 and 2.89. This interval is small, 
therefore we take any value between 2.88 and 2.89 as an initial approximation of the 
root. Since f(2.88) is near to zero than f(2.89), we can take any number near to 2.88 as 
an initial approximation to the root. 
 
You might have realized that the tabulation method is a lengthy process for finding an 
initial approximation of a root. However, since only a rough approximation to the root 
is required, we normally use only one application of the tabulation method. In the next 
sub-section we shall discuss the graphical method. 
 
3.1.2 Graphical Method 
 
In this method, we draw the approximate graph of y = f(x). The points where the curve 
cuts the x-axis are taken as the required approximate values of the roots of the 
equation f(x) = 0. Let us consider an example. 
 
Example 2: Find an approximate value of a root of the biquadractic equation 
 
x4 + 4x3 + 4x2 – 2 = 0 
using graphical method. 
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Solution: We first sketch the fourth degree polynomial f(x) = x4 + 4x3 + 4x2 – 2. This 
graph is given in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
The figure shows that the graph cuts the x-axis at two points -2.55 and 0.55, 
approximately. Hence -2.55 and 0.55 are taken as the approximate roots of the 
equation 
 
x4 + 4x3 + 4x2 – 2 = 0 
 
Now go back for a moment to Unit 1 and see Example 1 in Sec. 1.2. There we applied 

graphical method to find the roots of the equation sin x = 
2

1
. 

 

Let us consider another example. 
 
Example 3: Find the approximate value of a root of 
 
x2 – ex = 0 
 
using graphical method. 
 

Solution: First thing to do is to draw the graph of the function f(x) = x2 – ex. It is not 
easy to graph this function. Now if we split the function as 
 
f(x) = f1(x) – f2(x) 
 

where f1(x) = x2 and f2(x) = ex, then we can easily draw the graphs of the functions 
f1(x) and f2(x). The graphs are given in fig. 2. 
 
The figure shows that the two curves y = x2 and y = ex intersect at some point P. From 
the figure, we find that the approximate point of intersection of the two curves is -0.7. 
Thus we 
 
 
 
 
 
 

Y 

X O 
-1 

-2.55 -0.55 

-2 

Fig. 1: Graph of f(x) = + 4x3 + 4x2 – 2 

Y 
3- 

2- 

-2           -1    P        O            1         2    X 

y=ex 

y=x2 

Fig. 2: Graphs of f1(x) = x2 and f2(x) = ex. 
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have f1(-0.7) – f2(-0.7), and therefore f(-0.7) = f1(-0.7) – f2(-0.7) ≈ 0. Hence -0.7 is an 
approximate value of the root of the equation f(x) = 0. 
 
From the above example we observe the following: Suppose we want to apply the 
graphic method for finding an approximate root of f(x) = 0. Then we may try to 
simply the method by splitting the equation as 
 
f(x) = f1(x) – f2(x) = 0       (4) 
 
where the graphs of f1(x) and f2(x) are easy to draw. From Eqn. (4), we have f1(x) = 
f2(x). The x-coordinate of the point at which the two curves y1 = f1(x) and y2 = f2(x) 
intersect gives an approximate value of the root of the equation f(x) = 0. Note that we 
are interested only in the x-coordinate, we don’t have to worry about the point of 
intersection of the curves. 
 
Often we can split the function f(x) in the form (4) in a number of ways. But we 
should choose that form which involves minimum calculations and the graphs of f1(x) 
and f2(x) are easy to draw. We illustrate this point in the following example. 
 
Example 4: Find an approximate value of the positive real root of 3x – cos x – 1 = 0 
using graphic method. 
Solution: Since it is easy to plot 3x – 1 and cosx, we rewrite the equation as 3x – 1 = 
cos x. The graphs of y = f1(x) = 3x – 1 and y = f2(x) = cos x are given in Figure 3. 
 
 
 
 
 
 
 
 
 
 
It is clear from the figure that the x-coordinate of the point of intersection is 
approximately 0.6. Hence x = 0.6 is an approximate value of the root of the equation 
3x – cos x – 1 = 0. 
 
We now make a remark. 
 

Remark 1: You should take some care while choosing the scale for graphing. A 
magnification of the scale may improve the accuracy of the approximate value. 
 
We have discussed two methods, namely, tabulation method and graphical method 
which help us in finding an initial approximation to a root. But these two methods 
give only a rough approximation to a root. Now to obtain more accurate results, we 
need to improve these crude approximations. In the tabulation method we found that 

Y 

1.0 

.8- 

.6- 

.4- 

.2- 

O .2     .4     .6     .8     1.0       X   

y1=3x-1 

y2=cosx 

Fig. 3: Graphs of f1(x) = 3x – 1 and f2(x) cos x 
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one way of improving the process is refining the intervals within which a root lies. A 
modification of this method is known as bisection method. In the next section we 
discuss this method. 
 
3.2 Bisection Method 
 
In the beginning of the previous section we have mentioned that there are two steps 
involved in finding an approximate solution. The first step has already been discussed. 
In this section we consider the second step which deals with refining an initial 
approximation to a root. 
 
Once we know an interval in which a root lies, there are several procedures to refine 
it. The bisection method is one of the basic methods among them. We repeat the steps 
1, 2, 3 of the tabulation method given in subsection 3.3.1 in a modified form. For 
convenience we write the method as an algorithm. 
Suppose that we are given a continuous function f(x) defined on [a, b] and we want to 
find the roots of the equation f(x) = 0 by bisection method. We described the 
procedure in the following steps: 
 
Step 1: Find points x1, x2 in the interval [a, b] such that f(x1). f(x2) < 0. That is, those 
points x1 and x2 for which f(x1) and f(x2) are of opposite signs-(see Step 1 subsection 
3.3.1). This process is called “finding an initial bisecting interval”. Then IV theorem a 
root lies in the interval ]x1, x2[. 
 

Step 2: Find the middle point c of the interval ]x1, x2[ i.e., c = 
2

x+x 21 . If f(c) = 0, then 

c is the required root of the equation and we can stop the procedure. Otherwise we go 
to Step 3. 
 
Step 3: Find out if 
 
f(x1) f(c) < 0 
 
If it holds, then the root lies in ]x1, c[. Otherwise the root lies in ]c, x2[ (see Fig 4). 
Thus in either case we have found an interval half as wide as the original interval that 
contains the root. 
 
 
 
 
 
 
 
 
 
 

(x1, f(x1)) 

(c, f(c)) 
(x2, f(x2)) 

y = f(x) 

r 

x1 c x2 

(x1, f(x1)) 

(c, f(c)) 

(x2, f(x2)) 

y = f(x) 

r x1 c x2 

Fig. 4: The decision process for the bisection method 
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Step 4: Repeat Step 2 and 3 with the new interval. This process either gives you the 
root or an interval having width ¼ of the original interval ]x1, x2[ which contains the 
required root. 
 
Step 5: Repeat this procedure until the interval width is as small as we desire. Each 
bisection halves the length of the preceding interval. After N steps, the original 
interval length will be reduced by a factor 1/2N. 
 
Now we shall see how this method helps in refining the initial intervals in some of the 
problems we have done in subsection 2.2.1. 
 
Example 5: Consider the equation 2x – log10x – 7 lies in [3.78, 3.79]. Apply bisection 
method to find an approximate root of the equation correct to three decimal places. 
 
Solution: Let f(x) = 2x – log10x – 7. From Table 2 in subsection 3.3.1, we find that 
f(3.78) = -0.01749 and f(3.79) = 0.00136. Thus s root lies in the interval ]3.78, 3.79[. 
 
Then we find the middle point of the interval ]3.78, 3.79[. The middle point is c = 
(3.78 + 3.79)/2 = 3.785 and f(c) = f3.785) = -0.0806 ≠ 0. Now, we check the 
condition in Step 3. Since f(3.78) f(3.785) > 0, the root does not lie in the interval 
[3.78. 3.78]. Hence the root lies in the interval [3.785, 3.9]. We have to refine this 
interval further to get better approximation. Further bisection are shown in the 
following Table. 
 

Table 7 
Number of Bisection Bisected value xi f(xi) Improved Interval 

1 
2 
3 
4 
5 

3.785 
3.7875 
3.78875 

3.789375 
3.7890625 

-0.00806 
-3.3525×10-3 
9.9594×10-4 
1.824×10-4 
-4.068×10-4 

]3.785, 3.79[ 
]3.7875, 3.79[ 

]3.78875, 3.79[ 
]3.78875, 3.789375[ 
]3.78906, 3.7989375[ 

 
The table shows that the improved interval after 5 bisections is [3.78906, 3.789375]. 
The width of this interval in 3.789375 - 3.78906 = 0.000315. If we stop further 
bisections, the maximum absolute error would be 0.000315. The approximate root can 
therefore be taken as (3.78906 - 3.789375)/2 = 3.789218. Hence the desired 
approximate value of the root rounded off to three decimal places is 3.789. 
 
Example 6: Apply bisection method to find an approximation to the positive root of 
the equation. 
 
2x – 3 sin x – 5 = 0 
 
rounded off to three decimal places. 
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Solution: Let f(x) = 2x – 3 sin x – 5. 
 
In Example 1, we had shown that a positive root lies in the interval [2.8, 2.9]. Now we 
apply bisection method to this interval. The results are given in the following table. 
 
 

Table 8 
Number of Bisection Bisected value xi f(xi) Improved Interval 

1 
2 
3 
4 
5 
6 
7 
8 

2.85 
2.875 

2.8875 
2.88125 
2.884375 

2.8828125 
2.8835938 
2.8832031 

-0.1624 
-0.0403 
0.02089 

-9.735×10-3 
5.57781×10-3 
-2.0795×10-3 
1.7489×10-3 
-1.6539×10-4 

]2.85, 2.79[ 
]2.875, 2.79[ 

]2.875, 2.8875[ 
]2.88125, 2.8875[ 

]2.88125, 2.884375[ 
]2.8828125, 2.884375[ 
]2.8828125, 2.8835938[ 
]2.8832031, 2.8835938[ 

 
After we bisection the width of the interval is 2.8835938 - 2.8832031 =  
0.0003907. Hence, the maximum possible absolute error to the root is 0.0003907. 
Therefore the required approximation to the root is 2.883. 
 
Now let us make some remarks. 
 
Remark 2: While applying bisection method we must be careful to check that f(x) is 

continuous. For example, we may come across functions like f(x) = 
1-x

1
. If we 

consider the interval [.5, 1.5], then f(.5) f(1.5) < 0. In this case we may be tempted to 
use bisection method. But we cannot use the method here because f(x) is not defined 
at the middle point x = 1. We can overcome these difficulties by taking f(x) to be 
continuous throughout the initial bisecting interval. (Note that if f(x) is continuous by 
IV theorem f(x) assumes all values between the intervals.) 
 
Therefore you should always examine the continuity of the function in the initial 
interval before attempting the bisection method. 
 
Remark 3: It may happen that a function has more than one root in an interval. The 
bisection method helps us in determining one root only. We can determine the other 
roots by properly choosing the initial intervals. 
 
While applying bisection method we repeatedly apply steps 2, 3, 4 and 5. You recall 
that in the introduction we classified such a method as an Iteration method. As we 
mentioned in the beginning of Sec. 3.1, a numerical process starts with an initial 
approximation and iteration improves this approximation until we get the desired 
accurate value of the root. 
 
Let us consider another iteration method now. 
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3.3 Fixed Point Iteration Method 
 
The bisection method we have described earlier depends on our ability to find an 
interval in which the root lies. The task of finding such intervals is difficult in certain 
situations. In such cases we try an alternate method called Fixed Point Iteration 
Method. We shall discuss the advantage of this method later. 
 
The first step in this method is to rewrite the equation f(x) = 0 as 
 
x = g(x)         (5) 
 
For example consider the equation x2 – 2x – 8 = 0. We can write it as 
 

x = 8+x2          (6) 

x = 
x

8+x2
         (7) 

x = 
2

8-x2

         (8) 

 
We can choose the form (5) in several ways. Since f(x) = 0 is the same s x = g(x), 
finding a root of f(x) = 0 is the same as finding a root of x = g(x) i.e., a fixed point of 
g(x). Each such g(x) given in (6), (7) or (8) is called an iteration function for solving 
f(x) = 0. 
 
Once an iteration function is chosen, our next step is to take a point x0 close to the root 
as the initial approximation of the root. 
 
Starting with x0, we find the first approximation x1 as 
 
x1 = g(x0) 
 
Then we find the next approximation as 
 
x2 = g(x1) 
 
Similarly we find the successive approximation x2, x3, x4 ... as 
 
x3 = g(x2) 
x4 = g(x3) 
. . 
. . 
. . 
xn+1 = g(xn) 
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Each computation of the type xn+1 = g(xn) is called an iteration. Now, two questions 
arise (i) when do we stop these iterations? (ii) Does this procedure always give the 
required solution? 
 
To ensure this we make the following assumptions on g(x): 
 
Assumption* 
The derivative g’(x) of g(x) exists g’(x) is continuous and satisfies |g’(x)| < 1 in an 
interval containing x0. (That would mean that we require |g’(x)| < 1 at all iterates xi.) 
 
The iteration is usually stopped whenever |xi+1| is less than the accuracy required. 
 
In Unit 3 you will prove that if g(x) satisfies the above conditions, then there exists a 
unique point α  such that g( α ) = α  and the sequence of iterates approach α , provided 
that the initial approximation is close to the point α . 
 
Now we shall illustrate this method with the following example. 
 
Example 7: Find an approximate root of the equation 
 
x2 – 2x – 8 = 0 
using fixed point iteration method, starting with x0 = 5. Stop the iteration whenever 
 
|xi+1 – xi| < 0.001. 
 
Solution: Let f(x) = x2 – 2x – 8. We saw that the equation f(x) = 0 can be written in 
three forms (6), (7) and (8). We shall take up the three forms one by one. 
 
Case 1: Suppose we consider form (5). In this form the equation is written as 
 
x = (2x + 8)1/2 
 
Here g(x) = (2x + 8)1/2. Let’s see whether Assumption (*) is satisfied for this g(x). We 
have 
 

g’(x) = 2/1)8+x2(

1
 

 
Then |g’(x)| < 1 whenever (2x + 8)1/2 > 1. For any positive real number x, we see that 
the inequality (2x + 8)1/2 > 1 is satisfied. Therefore, we consider any interval on the 
positive side of  x-axis. Since the starting point is x0 = 5, we may consider the interval 
at I = [3, 6]. This contains the point 5. Now, g(x) satisfies the condition that g’(x) 
exists on I, g’(x) is continuous on I and |g’(x)| < 1 for every x in the interval [3, 6]. 
Now we apply fixed point iteration method to g(x). 
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We get 

x1 = g(5) = 18  = 4.243 
x2 = g(4.243) = 4.060 
x3 = 4.015 
x4 = 4.004 
x5 = 4.001 
x6 = 4.000. 
 
Since |x6 – x5| = |-0.001| = 0.001, we conclude that an approximate value of a root of 
f(x) = 0 is 4. 
 
Case 2: Let us consider the second form, 
 

x = 
x

8+x2
 

 

Here g(x) = 
x

8+x2
 and g’(x) = 2x

8-
. The |g’(x)| < 1 for any real number x ≥ 3. Hence 

g(x) satisfies Assumption (*) in the interval [3, 6]. Now we leave is as an exercise for 
you to complete the computations (See TMA 6). 
 

Case 3: Here we have x = 
2

8-x2

. Then g(x) = 
2

8-x2

 and g’(x) = x. In this case |g’(x)| 

< 1 only if |x| < 1 i.e. if x lies in the interval ]-1, 1[. But this interval does not contain 
5. Therefore g(x) does not satisfy the Assumption (*) in any interval containing the 
initial approximation. Hence, the iteration method cannot provide approximation to 
the desired root. 
 
Note: This example may appear artificial to you. You are right because in this case we 
have got a formula for calculating the root. This example is taken to illustrate the 
method in a simple way. 
 
Let us consider another example. 
 
Example 8: Use fixed point iteration procedure to find an approximate root of 2x = 3 
sin x – 5 = 0 starting with the point x0 = 2.8. Stop the iteration whenever |xi+1 + xi| < 
10-5. 
 
Solution: We can rewrite the equation in the form, 
 

x = 
2

3
 sin x + 

2

5
. 

 

Here g(x) = 
2

3
 sin x + 

2

5
 and g’(x) = 

2

3
 cos x. 
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Now at x0 = 2.8, we have 
 
|g’(2.8)| = 1.413 
which is greater than 1. Thus g(x) does not satisfy Assumption (*) and therefore in 
this form the iteration method fails. 
 
Let us now rewrite the equation in another form. We write 
 

x = x - 
3cosx-2

5-3sinx-x2
 

 

Then g(x) = x - 
3cosx-2

5-3sinx-x2
 

 
You may wonder how did we get this form. Note that here g(x) is of the form g(x) = x 

- 
)x('f

)x(f
. You will find later that the above equation is the iterated formula for another 

popular iteration method. 
 

Then g’(x) = 1 - 2x)3cos-(2

x3sin5)+x3sin-(2x-x)3cos-2()x3cos-2(
 

= 23cosx)-2(

5+x3sin-x2
3 sin x 

 
At x0 = 2.8 |g’(x0)| = 0.0669315 (or 0.02174691) < 1 
 
Therefore g(x) satisfies the Assumption (*). Using the initial approximation as x0 = 
2.8, we get the successive approximation as 
 
x1 = 2.8839015 
x2 = 2.8832369 
x3 = 2.8832369 
 
Since |x2 – x3| < 10-5 we stop the iteration here and conclude that 2.88323 is an 
approximate value of the root. 
 
Next we shall use another form 
 

x = sin-1 
3

5-2x
 

 

Here g(x) = sin-1  
3

5-2x
 and g’(x) = 

25)-(2x-9

2
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At x0 = 2.8, g’(x0) = 0.6804 < 1. In fact, we can check that in any small interval 
containing 2.8 |g’(x)| < 1. Thus g(x) satisfies the Assumption (*). Applying the 
iteration method, we have 
 

x1 = sin-1 
3

5-)8.2(2
 = 0.201358 

 
We find that there are two values which satisfy the above equation. One value is 
0.201358 and the other is π  - 0.201358 = 2.940235. In situations, we take a value 
close to the initial approximation. In this case the value close to the initial 
approximation is 2.940235. Therefore we take this value as the starting point of the 
next approximation. 
 
x1 = 2.940235 
 
Next we calculate 
 

x2 = sin-1 
3

5-)940235.2(2
 

= 0.297876 or 2.843717 
 
Continuing like this, it needed 17 iteration to obtain the value x17 = 2.88323, which we 
got from the previous form. This means that in this form the convergence is very slow. 
 
From examples 7 and 8, we learn that if we choose the form x = g(x) properly, then 
we can get the approximate root provided that the initial approximation is sufficiently 
close to the root. The initial approximation is usually given in the problem or we can 
find using the IV theorem. 
 
Now we shall make a remark here 
 
 

Remark: The Assumption (*) we have given for an iteration function, is a stronger 
assumption. In actual practice there are a variety of assumptions which the iteration 
function g(x) must satisfy to ensure that the iterations approach the root. But, to use 
those assumptions you would require a lot of practice in the application of techniques 
in mathematical analysis. In this course, we will be restricting ourselves to functions 
that satisfies Assumption (*). If you would like to know about the other assumptions, 
you may refer to ‘Elementary Numerical Analysis’ by Samuel D Conte and Carl de 
Boor. 

 
4.0 CONCLUSION 
 
Let us now briefly recall what we have done in this unit. 
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5.0 SUMMARY 
 
In this unit we have covered the following points: 
 
 We have seen that the methods for finding an approximate solution of an 

equation involve two steps: 
i) Find an initial approximation to a root. 
ii) Improve the initial approximation to get a more accurate value of the 

root. 
 We have described the following iteration methods for improving an initial 

approximation of a root. 
i) Bisection method 
ii) Fixed point iteration method. 

 
6.0 TUTOR-MARKED ASSIGNMENT (TMA) 
 

i. Find an initial approximation to a root of the equation 3x - xsin+1  = 0 using 
tabulation method. 

ii. Find a initial approximation to a positive root of the equation 2x – tan x = 0 
using tabulation method. 

iii. Find the approximate location of the roots of the following equations in the 
regions given using graphic method. 
a. f(x) = e-x – x = 0, in 0 ≤ x ≤ 1 
b. f(x) = e-0.4x – 0.4x – 9 = 0, in 0 < x ≤ 7 

iv. Starting with the interval [a0, b0], apply bisection method to be the following 
equations and find an interval of width 0.05 that contains a solution of the 
equations 
a. ex – 2 – x = 0, [a0, b0] = [1.0, 1.8] 
b. 1n x – 5 + x = 0, [a0, b0] = [3.2, 4.0] 

v. Using bisection method find an approximate root of the equation x3 – x – 4 = 0 
in the interval ]1, 2[ to two places of decimal. 

vi. Apply fixed point iteration method to the form x =
x

8+x2
 starting with x0 = 5 to 

obtain a root of x2 – 2x – 8 = 0. 
vii. a)  Apply fixed point iteration method to the following  

equations with the initial approximation given alongside. In each case 
find an approximate root rounded off to 4 decimal places. 

6.1 x = -45 + 
x

2
 x0 = 20. 

6.2 x = 
2

1
 + sin x, x0 = 1. 

b) Compute the exact roots of the equation x2 + 45x – 2 = 0 using quadratic 
formula and compare with the approximate root obtained in (a) (i). 
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UNIT 3 CHORD METHOD FOR FINDING ROOTS 
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 3.3 Convergence Criterion 
4.0 Conclusion 
5.0 Summary 
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7.0 References/Further Readings 
 
1.0 INTRODUCTION 
 
In the last unit we introduced you to two iteration methods for finding roots of an 
equation f(x) = 0. There we have shown that a root of the equation f(x) = 0 can be 
obtained by writing the equation in the form x = g(x). Using this form we generate a 
sequence of approximations xi+1 = g(xi) for i = 0, 1, 2, ... We had also mentioned there 
that the success of the iteration methods depends upon the form of g(x) and the initial 
approximation x0. In this unit, we shall discuss two iteration methods: regula-falsi and 
Newton-Raphson methods. These methods produce results faster than bisection 
method. The first two sections of this unit deal with derivations and the use of these 
two methods. You will be able to appreciate these iteration methods better if you can 
compare the efficiency of these methods. With this in view we introduce the concept 
of convergence criterion which helps us to check the efficiency of each method. Sec. 
3.3 is devoted to the study of rate of convergence of different iterative methods. 
 
2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 
 apply regula-falsi and secant methods for finding roots 
 apply Newton-Raphson method for finding roots 
 define ‘order of convergence’ of an iterative scheme 
 obtain the order of convergence of the following four methods: 

 bisection method 
 fixed point iteration method 
 secant method 
 Newton-Raphson method 
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3.0 MAIN BODY 
 

3.1 Regula-Falsi Method (or Method of False Position) 
 

In this section we shall discuss the ‘regula-falsi method’. The Latin word ‘Regula 
Falsi’ means rule of falsehood. It does not mean that rule is a false statement. But it 
conveys that the roots that we get according to the rule are approximate roots and not 
necessarily exact roots. The method is also known as the method of false position. 
This method is similar to the bisection method you have learnt in Unit 3. 
 

The bisection method for finding approximate roots has a draw back that it makes use 
of only the signs of f(a) and f(b). It does not use the values f(a), f(b) in the 
computations. For example, if f(a) = 700 and f(b) = -0.1, then by the bisection method 
the first approximate value of a root of f(x) is the mid value x0 of the interval ]a, b[. 
But at x0, f(x0) is nowhere near 0. Therefore in this case it makes more sense to take a 
value near to -0.1 than the middle value as the approximation to the root. This 
drawback is to some extent overcome by the regula-falsi method. We shall first 
describe the method geometrically. 
 

Suppose we want to find a root of the equation f(x) = 0 where f(x) is a continuous 
function. As in the bisection method, we first find an interval ]a, b[ such that f(a) f(b) 
< 0. Let us look at the graph of f(x) given in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
The condition f(a) f(b) < 0 means that the points (a, f(a)) and (b, f(b)) lie on the 
opposite sides of the x-axis. Let bus consider the line joining (a, f(a)) and (b, f(b)). 
This line crosses the x-axis at some point (c, 0) [see Fig. 1]. Then we take the x-
coordinate of that point as the first approximation. If f(c) = 0, then x = c is the 
required root. If f(a) f(c) < 0, then the root lies in ]a, c[ (see Fig. 1 (a)). In this case the 
graph of y = f(x) is concave near the root r). Otherwise, if f(a) f(c) > 0, the root lies in 
]c, b[ (see Fig. 1 (b)). In this case the graph of y = f(x) is convex near the root. Having 
fixed the interval in which the roots lies, we repeat the above procedure. 
 

Let us now write the above procedure in the mathematical form. Recall the formula 
for the line joining two points in the Cartesian plane. The line joining (a, f(a)) and (b, 
f(b)) is given by 
 

y – f(a) = 
a-b

f(a)-)b(f
(x – a) 

r 

a c b 

L (c,f(c)) 

y=f(x) 
(b,f(b)) 

(a,f(a)) 

r 

a c b 

L 

(c,f(c)) 

y=f(x) 

(b,f(b)) 

(a,f(a)) 

Fig 1: Regula-Falsi 
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We can rewrite this in the form 
 

f(a)-)b(f

)a(f-y
 = 

a-b

a-x
        (1) 

 

Since the straight line intersects the x-axis at (c, 0), he point (c, 0) lies on the straight 
line. Putting x = c, y = 0 in Eqn. (1), we get 
 

f(a)-)b(f

)a(f-
 = 

a-b

a-c
 

i.e. 
a-b

c
 - 

a-b

a
 = 

f(a)-)b(f

)a(f-
 

 

Thus c = a 
f(a)-)b(f

)a(f
 (b – a).      (2) 

 
This expression for c gives an approximate value of a root of f(x). Simplifying (2), we 
can also write as 
 

f(a)-)b(f

)a(fb-af(b)
 

 

Now, examine the sign of f(c) and decide in which interval ]a, c[ or ]c, b[, the root 
lies. We thus obtain a new interval such that f(x) is of opposite signs at the end points 
of this interval. By repeating this process, we get a sequence of intervals ]a, b[, ]a, a1[, 
]a, a2[, ... as shown in Fig. 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
We stop the process when either of the following holds. 
 
i) The interval containing the zero of f(x) is of sufficiently small length or 
ii) The difference between two successive approximation is negligible. 
 
 
 

O 

Y 

X a a2 a1 b 

(a, f(a)) 

(b, f(b)) 

Fig. 2 
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In the iteration format, the method is usually written as 
 

x2 = 
)x(f-)f(x

)x(fx-)x(fx

01

0110  

 
where ]x0, x1[ is the interval in which the root lies. 
 
We now summarise this method in the algorithm form. This will enable you to solve 
problems easily. 
 

 Step 1: Find numbers x0 and x1 such that f(x0) f(x1) < 0, using the tabulation 
method. 

 Step 2: Set x2 = 
)x(f-)f(x

)x(fx-)x(fx

01

0110 . This gives the first approximation. 

 Step 3: If f(x2) = 0 then x2 is the required root. If f(x2) ≠0 and f(x0) f(x2) < 0, 
then the next approximation lies in ]x0, x2[. Otherwise it lies in ]x2, x1[. 

 Step 4: Repeat the process till the magnitude of the difference between two 
successive iterated values xi and xi+1 is less than the accuracy required. (Note 
that |xi+1 – xi| gives the error after ith iteration). 

 
Let us now understand these steps through an example. 
 
Example 1: It is known that the equation x3 + 7x2 + 9 = 0 has a root between -8 and -
7. Use the regula-falsi method to obtain the root rounded off to 3 decimal places. Stop 
the iteration when |xi+1 – xi| < 10-4. 
 
Solution: For convenience we rewrite the given function f(x) as 
 
f(x) = x3 + 7x2 + 9 
= x2(x + 7) + 9 
 
Since we are given that x0 = -8 and x1 = -7, we do not have to use Step 1. Now to get 
the first approximation, we apply the formula in Step 2. 
 
Since, f(x0) = f(-8) = -55 and f(x1) = f(-7) = 9 we obtain 
 

x2 = 
55+9

(-7)(-5)--8)9(
 = -7.1406 

 

Therefore our first approximation is -7.1406. 
 
To find the next approximation we calculate f(x2) with the signs of f(x0) and f(x1). We 
can see that f(x0) and f(x2) are of opposite signs. Therefore a root lies in the interval ]-
8, -7.1406[. We apply the formula again by renaming the end points of the interval as 
x1 = -8, x2 = -7.1406. Then we get the second approximation as 
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x3 = 
55+1.862856

f(-8)7.1406+f(-7.1406)8-
 = -7.168174. 

 
We repeat this process using  Step 2 and 3 given above. The iterated values are given 
in the following table. 
 

Table 1 
Number of iterations Interval Iterated Values xi The function value f(xi) 

1 
2 
3 
4 
5 
6 

]-8,-7[ 
]-8,-7.1406[ 

]-8,-7.168174[ 
]-8,-7.1735649[ 
]-8,-7.1745906[ 
]-8, -7.1747855[ 

-7.1406 
-7.168174 
-7.1735649 
-7.1745906 
-7.1747855 
-7.1748226 

1.862856 
0.3587607 
0.0683443 
0.012994 
0.00246959 
0.00046978 

 
From the able, we see that the absolute value of the difference between the 5th and 6th 
iterated values is |7.1748226 – 7.1747855| = .0000371. Therefore we stop the iteration 
here. Further, the values of f(x) at 6th iterated value is .00046978 = 4.6978 × 10-4 
which is close to zero. Hence we conclude that -7.175 is an approximate root of  
x3 + 7x2 + 9 = 0 
Rounded off to three decimal places. 
 
You note that in regula-falsi method, at each stage we find an interval ]x0, x1[ which 
contains a root and then apply iteration formula (3). This procedure has a 
disadvantage. To overcome this, regula-falsi method is modified. The modified 
method is known as secant method. In this method we choose x0 and x1 as any two 
approximations of the root. The Interval ]x0, x1[ need not contain the root. Then we 
supply formula (3) with x0, x1, f(x0) and f(x1). 
 
The iterations are now defined as: 
 

x2 = 
)x(f-)f(x

)x(fx-)x(fx

1

0110  

x3 = 
)x(f-)f(x

)x(fx-)x(fx

12

1221  

................................. 

................................. 

xn+1 = 
)x(f-)f(x

)x(fx-)x(fx

1-nn

1-nnn1-n        (4) 

 
Note: Geometrically, in secant Method, we replace the graph of f(x) in the interval ]xn, 
xn+1[ by a straight line joining two points (xn, f(xn+1), (xn+1), f(xn+1)) on the curve and 
take the point of intersection with x-axis as the approximate value of the root. Any 
line joining two points on the curve is called a secant line. That is why this method is 
known as secant method. (see Fig. 3). 
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Let us solve an example. 
 
Example 2: Determine an approximate root of the equation 
 
cos x – x ex = 0 
 
using 
i) secant method starting with the two initial approximations as x0 = 1 and x1 = 1 
 and 
ii) regula-falsi method. 

(This example was considered in the book ‘Numerical methods for scientific 
and engineering computation’ by M. K. Jain, S. R. K. Iyengar and R. K. Jain). 

 
Solution: Let f(x) = cos x - x ex. 
 
Then f(0) = 1 and f(1) = cos 1 – e = -2.177979523. Now we apply formula (4) with x0 
= 0 and x1 = 1. Then 
 

x2 = 
)x(f-)f(x

)x(fx-)x(fx

01

0110  = 
1-32.17797952-

(-1)1+23(-217797950
 

 

= 
1-32.17797952-

1-
 = 

33.17797952

1
 = 0.3146653378. 

 
Therefore the first iterated value is 0.3146653378. to get the 2nd iterated value, we 
apply formula (4) with x1 = 1, x2 = 0.3144653378. Now f(1) = -2.177979523 and f(0. 
3144653378) = 0.519871175. 
 
Therefore 
  

x3 = 
)x(f-)f(x

)x(fx-)x(fx

12

1221  

 

O X x0 x3 x2 

(x1, f(x1)) 

Fig. 3 

(x0, f(x0)) 

x1 
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= 
32.17797952+50.51987117

79523)78(-2.17790.31466533-175)1(0.519871
 

 
= 0.4467281466 
 
We continue this process. The iterated values are tabulated in the following table.  
 

Table 2: Secant Method 
 
 

 
 
 
 
 
 
 
From the table we find that the iterated values for 7th and 8th iterations are the same. 
Also the value of the function at the 8th iteration is closed to zero. Therefore we 
conclude that 0.5177573637 is an approximate root of the equation.  
 
ii) To apply regula-falsi method, let us first note that f(0) f(1) < 0. Therefore a root 

lies in the interval [0, 1]. Now we apply formula (3) with x0 = 0 and x1 = 1. 
then the first approximation is 

 

x 2 = 
1-32.17797952-

(-1)1+23(-217797950
 

 
     = 0.3146653378 

 
You may have noticed that we have already calculated the expression on the right 
hand side of the above equation in part (i). 
 
Now f(x2) = 0.51987 > 0. This shows that the root lies in the interval ]0.3146653378, 
1[. To get the second approximation, we compute 
 

x3 = 
3378)f(0.314665-)1(f

53378)1f(0.31466-)1(f3146653378.0
 = 0.4467281446 

 
which is same as x3 obtained in (i). We find f(x2) = 0.203545 > 0. Hence the root lies 
in [0.4467281446, 1]. To get the third approximation, we calculate 
 

x4 = 
)4467281446.0f(-)1(f

)4467281446.01f(-)1(f4467281446.0
 

 

Number of iterations Iterated Values xi f(xi) 
1 
2 
3 
4 
5 
6 
7 
8 

0.3146653378 
0.4467281466 
0.5317058606 
0.5169044676 
0.5177474653 
0.5177573708 
0.5177573637 
0.5177573637 

0.519871 
0.203545 
-0.0429311 
.00259276 
0.00003011 
-0.215132 ×  10-7 
0.178663 ×  10-12 
0.222045 ×  10-15 
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The above expression on the right hand side is different from the expression for x4 in 
part (i). This is because when we use regula-falsi method, at each stage, we have to 
check the condition f(x1) f(xi-1) < 0. 
 
The computed values of the rest of the approximations are given in Table 3. 
 
 

Table 3: Regula-Falsi Method 
 

No. Interval Iterated value xi f(xi) 

1 
2 
3 
4 
5 
6 
7 

[0, 1[ 
].04467281446, 1[ 
]0.4940153366, 1[ 
]0.5099461404, 1[ 
]0.5152010099, 1[ 
]0.5176683450, 1[ 
]0.5177478783, 1[ 

0.3146653378 
0.4467281446 
0.4940153366 
0.5099461404 
0.5152010099 
0.5177478783 
0.5177573636 

0.519871 
0.203545 

0.708023 ×  10-1 
0.236077 ×  10-1 
0.776011 ×  10-2 
0.288554 ×  10-4 
0.396288 ×  10-9 

 
From the table, we observe that we have to perform 20 iterations using regula-falsi 
method to get the approximate value of the root 0.5177573637 which we obtained by 
secant method after 8 iterations. Note that the end point 1 is fixed in all iterations 
given in the table. 
 
Next we shall discuss another iteration method. 
 
3.2 Newton-Raphson Method 
 

This method is one of the most useful methods for finding roots of an algebraic 
equation. 
 
Suppose that we want to find an approximate root of the equation f(x) = 0. If f(x) is 
continuous, then we can apply either bisection method or regula-falsi method to find 
approximate roots. Now if f(x) and f’(x) are continuous, then we can use a new 
iteration method called Newton-Raphson method. You will learn that this method 
gives the result more faster than the bisection or regula-falsi methods. The underlying 
idea of the method is due to mathematician Isac Newton. But the method as now used 
is due to the mathematician Raphson. 
 

Let  us begin with an equation f(x) = 0 where f(x) and f’(x) and are continuous. Let x0 
be an initial approximation and assume that x0 is close to the exact root α  and f’(x) ≠
0. Let α  = x0 + h where h is a small quantity in magnitude. Hence f( α ) = f(x0 + h) = 0. 
 

Now we expand f(x0 + h) using Taylor’s theorem. Note that f(x) satisfies all the 
requirements of Taylor's theorem. Therefore, we get 

 

f(x0 + h) = f(x0) + hf’(x0) + ... = 0 
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Neglecting the terms containing h2 and higher powers we get 
 
f(x0) + hf’(x0) = 0. 
 

Then, h = 
)x('f

)f(x-

0

0  

 
This gives a new approximation to α  as 

x1 = x0 + h = x0 - 
)x('f

)f(x-

0

0  

 

Now the iteration can be defined by 

x1 = x0 - 
)x('f

)f(x

0

0  

x2 = x1 - 
)x('f

)f(x

1

1  

xn = xn-1 - 
)x('f

)f(x

1-n

1-n         (5) 

 
Eqn. (5) is called the Newton-Raphson formula. Before solving some examples we 
shall explain this method geometrically. 
 
Geometrical Interpretation of Newton-Raphson Method 
 
Let the graph of the function y = f(x) be as shown in Fig. 4. 
 
 
 
 
 
 
 
 
 
 
If x0 is an initial approximation to the root, then the corresponding point on the graph 
is P(x0, f(x0)). We draw a tangent to the curve at P. Let it intersect the x-axis at T. (see 
Fig. 4). Let x1 be the x-coordinate of T. Let S( α , 0) denote the point on the x-axis 
where the curve cuts the x-axis. We know that α  is a root of the equation f(x) = 0. We 
take x1 as the new approximation which may be closer to α  than x0. Now let us find 
the tangent at P(x0, f(x0)). The slope of the tangent at P(x0, f(x0)) is given by f’(x0). 
Therefore by the point-slope form of the expression for a tangent to a curve, we can 
write 
 

y – f(x0) = f’(x0) (x1 – x0)  
 

T T1 (x0, 0) X 

P (x0, f(x0) 

Y 

Fig. 4 Newton-Raphson Method 
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This tangent passes through the point T(x1, 0) (see fig. 4). Therefore we get 
 
0 – f(x0) = f’(x0) (x1 – x0) 
 
i.e. x1 f’(x0) = x0f’(x0) – f(x0) 

i.e. x1 = x0 – 
)x('f

)f(x

0

0   

 
This is the first iterated value. To get the second iterated value we again consider a 
tangent at a point P(x1, f(x1)) on the curve (see Fig. 4) and repeat the process. Then we 
get a point T1(x2, 0) on the x-axis. From the figure, we observe that T1 is more closer 
to S(α , 0) than T. therefore after each iteration the approximation is coming closet and 
closer to the actual root. In practice we do not know the actual root of a given 
function. 
 
Let us now take up some examples. 
 
Example 3: Find the smallest positive root of 
 
2x – tan x = 0 
 
by Newton-Raphson method, correct to 5 decimal places. 
 
Solution: Let f(x) = 2x – tan x. Then f(x) is a continuous function and f’(x) = 2 – 
sec2x is also a continuous function. Recall that the given equation has already 
appeared in an exercise in Unit 2 (see TMA in Unit 2). From that exercise we know 
that an initial approximation to the positive root of the equations is x = 1. Now we 
apply the Newton-Raphson iterated formula. 
 

x1 = xi-1 - 
)x('f

)f(x

i

i , i = 1, 2, 3 .... 

 
Here x0 = 1. Then f(x0) = f(1) = 2 – tan 1 = 0.4425922 
 
f'(x0) = f’(1) = 2 – sec21 = 2 – (1 + tan21) 
         = 1 - tan21 
         = -1.425519 
 

Therefore x1 = 1 - 
1.425519-

4425922.0
 

  = 1.31048 
 
 

For i = 2, we get 
x3 = 1.17605 
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x4 = 1.165926 
x5 = 1.165562 
x6 = 1.165561 
 
Now x5 and x6 are correct to five decimal places. Hence we stop the iteration process 
here. The root correct to 5 decimal places is 1.16556. 
 
Next we shall consider an application of Newton-Raphson formula. We know that 
finding the square root of a number is not easy unless we use a calculator. Calculators 
use some algorithm to obtain such an algorithm for calculating square roots. Let’s 
consider an example. 
 

Example 4: Find an approximate value of 2  using the Newton-Raphson formula. 
 

Solution: Let x = 2 . Then we have x2 = 2 i.e. x2 – 2 = 0. Hence we need to find the 
positive root of the equation x2 – 2 = 0. Let 
 
f(x) = x2 – 2. 
 
Then f(x) satisfies all the conditions for applying Newton-Raphson method. We 
choose x0 = 1 as the initial approximation to the root. This is because we know that 

2  lies between 1  and 4  and therefore we can assume that the root will be close 
to 1. 
 
Now we compute the iterated values. 
 
The iteration formula is 

xi = xi-1 - 
1-i

2
1-i

2x

2-x
 

= 
2

1
 xi-1 + 

1-ix

2
 

 
Putting i = 1, 2, 3 ….. we get 
 

x1 = 
2

1
 x0 + 

0x

2
 = 1.5 

x2 = 
2

1
 1.5 + 

1.5

2
 = 1.4166667 

x3 = 
2

1
1.4166667 + 

1.416667

2
 

= 1.41242157 
Similarly 
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x4 = 1.4142136 
x5 = 1.4142136 
 

Thus the value of 2  correct to seven decimal places is 1.4142136. Now you can 
check this value with the calculator. 
 
Note 1: The method used in the above example is applicable for finding square root of 
nay positive real number. For example suppose we want to find an approximate value 

of A  where A is a positive real number. Then we consider the equation x2 – A = 0. 
The iterated formula in this case is 
 

xi = 
2

1
 xi-1 + 

1-ix

A
 

 
This formula involves only the basic arithmetic operations +, -, ×  and ÷ . 
 
Note 2: From examples (3) and (4), we find that Newton-Raphson method gives the 
root very fast. One reason for this is that the derivative |f’(x)| is large compared to 

|f(x)| for any x = xi. The quantity 
)x('f

)x(f
 which is the difference between two iterated 

values is small in this case. In general we can say that if |f’(xi)| is large compared to 
|f(xi)|, then we can obtain the desired root very fast by this method. 
 
The Newton-Raphson method has some limitations. In the following remarks we 
mention some of the difficulties. 
 
Remark 1: Suppose f’(xi) is zero in a neighbourhood of the root, then it may happen 
that f’(xi) = 0 for some xi. In this case we cannot apply Newton-Raphson formula, 
since division by zero is not allowed. 
 
Remark 2: Another difficulty is that it may happen that f’(x) is zero only at the roots. 
This happens in either of the situations. 
 
i) f(x) has multiple root at α . Recall that a polynomial function f(x) has a 

multiple root α  of order N if we can write 
 

f(x) = ( x - α )N h(x) 
where h(x) is a function such that h( α )≠ 0. For a general function f(x), this 
means f( α ) = 0 = f’( α ) = ... = fN-1( α ) and fN( α )≠0. 

ii) f(x) has a stationary point (point of maximum of minimum) point at the root 
[recall from your calculus course that if f’(x) = 0 at some point x then x is 
called a stationary point]. 
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In such cases some modifications to the Newton-Raphson method are necessary to get 
an accurate result. We shall not discuss the modifications here as they are beyond the 
scope of this course. 
 
You can try some exercise now. Whenever needed, should use a calculator for 
computation. 
 
In the next section we shall discuss a criterion using which we can check the 
efficiency of an iteration process. 
 
3.3 Convergence Criterion 
 
In this section we shall introduce a new concept called ‘convergence criterion’ related 
to an iteration process. This criterion gives us an idea of how much successive 
iteration has to be carried out to obtain the root to the desired accuracy. We begin with 
a definition. 
 
Definition 1: Let x0, x1 …..xn …. be the successive approximation of an iteration 
process. We denote the sequence of these approximation as { }∞

0=nnx . We say that 

{ }∞
0=nnx converges to a root α  with order p ≥ 1 if 

 
|xn+1 - α | ≤λ |xn - α |P       (6) 
 
for some number λ  > 0. p is called the order of convergence and λ  is called the 
asymptotic error constant. 
 
For each i. we denote by iε  = xi - α . Then the above inequality be written as 
 

| 1+iε | ≤λ | iε |P         (7) 
 

This inequality shows the relationship between the errors in successive 
approximations. For example, suppose p = 2 and | iε |≈10-2 for some i. then we can 

expect that | 1+iε |≈λ 10-4. Thus if p is large, the iteration converges rapidly. When p 

takes the integer values 1, 2, 3 then we say that the convergences are linear, quadratic 
and cubic respectively. In the case of linear convergence (i.e. p =1). Then we require 
that λ  < 1. In this case we can write (6) as 
 
|xn+1 - α | ≤λ |xn - α | for all n ≥0      (8) 
 
In this condition is satisfied for an iteration process then we say that the iteration 
process converges linearly. 
 

Setting n = 0 in the inequality (8), we get 
 

|x1 - α | ≤λ |x0 - α | 
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For n = 1, we get 
 
|x2 - α | ≤λ |x1 - α |≤ 2λ |x0 - α | 
 
Similarly for n = 2, we get 
 
|x3 - α | ≤λ |x2 - α |≤ 2λ |x1 - α |≤ 3λ |x0 - α | 
 
Using induction on n, we get that 
 
|xn - α |≤ nλ |x0 - α | for n ≥0      (9) 
 
If either of the inequality (8) or (9) is satisfied, then we conclude that { }∞

0=nnx  

converges to the root. 
 
Now we shall find the order of convergence of the iteration methods which you have 
studied so far. 
 
Let us first consider bisection method. 
 
Convergence of bisection method 
Suppose that we apply the bisection method on the interval [a0, b0] for the equation 
f(x) = 0. In this method you have seen that we construct intervals [a0, b0] ⊃ [a1, b1] ⊃ 
[a2, b2] ⊃ … each of which contains the required root of the given equation. 
 

Recall that in each step the interval width is reduced by 
2

1
 i.e. 

 

b1 – a1 = 
2

a-b 00  

b2 = a2 = 
2

a-b 11  = 2
00

2

a-b
 

.  . 

.  . 

.  . 

and bn – an = n
00

2

a-b
                 (10) 

We know that the equation f(x) = 0 has a root in [a0, b0]. Let α  be the root of the 

equation. Then α  lies in all intervals [ai, bi], i = 0, 1, 2, .… For any n, let cn = 
2

b-a nn  

denote the middle point of the interval [an, bn]. Then c0, c1, c2, … are taken as 

successive approximations to the root α . Let’s check the inequality (8) for { }∞
0=nnc  

converges to the rootα . Hence we can say the bisection method always converges. 
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For practical purposes, we should be able to decide at what stage we can stop the 
iteration to have an acceptably good approximate value of α . The number of iterations 
required to achieve a given accuracy for the bisection method can be obtained. 
Suppose that we want an approximate solution within an error bound of 10-M (Recall 
that you have studied error bounds in Unit 1, Sec. 3.4). Taking logarithms on both 
sides of Eqn. (10), we find that the number of iteration required, say n, is 
approximately given by 
 

n = int  
2In

In10-)a-b(In -M
00                  (11) 

 
where the symbol ‘int’ stands for the integral part of the number in the bracket and ]a0, 
b0[ is the initial interval in which a root lies. 
 
Let us work out an example. 
 
Example 5: Suppose that the bisection method is used to find a zero of f(x) in the 
interval [0, 1]. How many times this interval be bisected to guarantee that we have an 
approximate root with absolute error less than or equal to 10-5. 
 
Solution: Let n denote the required number. To calculate n, we apply the formula in 
Eqn. (11) with b0 = 1, a0 = 0 and M = 5. 
 
Then 
 

n = int 
2In

In10-1In -5

 

 
Using a calculator, we find 
 

n = int 
69314718.0

51292547.11
 

= int [16.60964047] = 17 
 
The following table gives the minimum number of iterations required to find an 
approximate root in the interval ]0, 1[ for various acceptable errors. 
 

  E       10-2         10-3          10-4          10-5         10-6          10-7 
  n         7            10            14            17           20            24 

 
This table shows that for getting an approximate value with an absolute error bounded 
by 10-5, we have to perform 17 iterations. Thus even though the bisection method is 
simple to use, it requires a large number of iterations to obtain a reasonably good 
approximate root. This is one of the disadvantages of thee bisection method. 
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Note: The formula given in Eqn. (11) shows that, given an acceptable error, the 
number of iterations depends upon the initial interval and thereby depends upon the 
initial approximation of the root and not directly on the values of f(x) at these 
approximations. 
 
Next we shall obtain the convergence criteria for the secant method. 
 
Convergence criteria for Secant Method 
 
Let f(x) = 0 be the given equation. Let α  denote a simple root of the equation f(x) = 0. 
Then we have f’( α )≠0. The iteration scheme for the secant method is 
 

xi+1 = xi - 
)f(x-)x(f

x-x

1-ii

1-ii                 (12) 

 
For each i, set iε = xi - α . Then xi + α . Substituting in Eqn. (12) we get 

 

1+iε + α  = iε + α  - 
)α+εf(-)α+εf(

ε-ε

1+ii

1-ii  f( iε + α ) 

1+iε = iε  - 
)α+εf(-)α+εf(

ε-ε

1-ii

1-ii  f( iε + α )              (13) 

 
Now we expand f( iε + α ) and f( iε - α ) using Taylor's theorem about the point x = α . 

We get f( iε + α) = f( α ) + 
1

)α('f
iε  + 

2

)α("f
 2

iε  + ... 

i.e. f( iε + α) = f’( α )  iε  + 
)α('f2

)α("f 2
iε  + ...                         (14) 

since f’( α ) = 0.  
 
Similarly, 

f( 1-iε  + α ) = f’( α )  1-iε + 
)α('f2

)α("f 2
1-iε  + ...              (15) 

 

Therefore f( iε +α ) - f( 1-iε  + α ) = f’( α )   iε  - 1-iε  + ( 2
iε  - 2

iε )
)α('f2

)α("f
 + ... 

= f’( α ) ( iε  - 1-iε ) 1 + ( iε  + 1-iε )
)α('f2

)α("f
 + ...             (16) 

 
Substituting Eqn. (14) and Eqn. (13), we get 
 

1+iε  = iε  - iε  + 
2

1 2
iε

)α('f

)α("f
 + ...  1 + 

2

1
( iε  + 1-iε )

)α('f

)α("f
 + ... 1-  
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= iε  - iε  + 
2

1 2
iε

)α('f

)α("f
 + ...  1 - 

2

1
( iε  + 1-iε )

)α('f

)α("f
 + ...  

= iε  -  iε  + 
2

1

)α('f

)α("f
( 2

iε  - 2
iε  - iε 1-iε ) + ...  

 

By neglecting the terms involving iε 2
1-iε  + 2

iε '

1-i
ε  the above expression, we get 

 

1+iε ≈ iε 1-iε
)α('f2

)α("f
                (17) 

 
This relationship between the errors is called the error equation. Note that this 
relationship holds only if α  is a simple root. Now using Eqn. (17) we will find a 
number p and λ  such that 
 

1+iε  = λ p
iε  i = 0, 1, 2, ...                (18) 

 
Setting i = j – 1, we obtain 
 

jε  = λ p
1-jε  

or 

iε  = λ p
1-iε  

 
Taking pth root on both sides, we get 
 

p/1
iε  = p/1λ 1-iε  

i.e. 1-iε  = p/1-λ p/1
iε                  (19) 

 
Combining Eqns. (17) and (18). We get 
 

λ p
iε  = iε 1-iε

)α('f2

)α("f
 

 
Substituting the expression for 1-iε  from Eqn. (19) in the above expression we get 

 

λ p
iε ≈

)α('f2

)α("f
iε p/1-λ p/1

iε  

i.e. λ p
iε ≈

)α('f2

)α("f p/1-λ p/1+1
iε                 (20) 

 
Equating the powers of iε on both sides of Eqn. (20) we get 
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p = 1 + 
p

1
 or p2 – p – 1 = 0. 

 
This is a quadratic equation in p. The roots are given by 
 

p = 
2

5+1
 ≈1.618.  

 
Now, to get the number λ , we equate the constant terms on both sides of Eqn. (20). 
Then we get 
 

λ  = 

p+1/P

)α('f2

)α("f
 

 
Hence the order of convergence of the secant method is p = 1.62 and the asymptotic 

error constant is 

p+1/P

)α('f2

)α("f
 

 
Example 6: The following are the five successive iterations obtained by secant 
method to find the root α  = -2 of the equation x3 – 3x + 2 = 0. 
 
x1 = -2.6, x2 =  -2.4, x3 = -2.106598985. 
x4 =  -2.022641412 and x5 = -2.000022537. 
 

Compute the asymptotic error constant and show that 5ε ≈
3

2
4ε . 

 
Solution: Let f(x) = x3 – 3x + 2 
 
Then 
f'(x) = 3x2 – 3, f’(-2) = 9 
f”(x) = 6x, f(-2) = -12 
 

Therefore λ  = 
618.

18
12

-  

= 
618.

3
2

-  = -0.778351205 

 

Now 

5ε  = | x5 - α  | = | -2.000022537 + 2 

= 0.000022537 
and  

4ε  = | -2.022641412 + 2 | = 0.022641412. 
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Then λ 4ε  = 0.778351205 × 2.022641412 

= 0.000021246 
≈0.00002253 
 
Hence we get that λ 4ε  ≈ 5ε  

 
Convergence criterion for fixed point iteration method 
Recall that in this method we write the equation in the form 
 
x = g(x) 
 
Let α  denote a root of the equation. Let x0 be an initial approximation to the root. The 
iteration formula is 
 
xi+1 = g(xi), i = 0, 1, 2, ...                (21) 
 
We assume that g’(x) exists and is continuous and | g’(x) | < 1 in an interval 
containing the root α . We also assume that x0, x1, .... lie in this interval. 
 
Since g’(x) is continuous near the root and | g’(x) | < 1, there exists an interval ] α  - h, 
α  + h[, where h > 0, such that | g’(x) | ≤ k for some k, where 0 < k < 1. 
 
Since α  is a root of the equation, we have 
 
 
α  = g( α ).                  (22) 
 
Subtracting (22) from (21) we get 
 
xi+1 - α  = g(xi) = g( α ) 
 
Now the function g(x) is continuous in the interval ]xi, α [ and g’(x) exists in this 
interval. Hence g(x) satisfies all the conditions of the mean value theorem [see Unit 
1]. Then, by the mean value theorem there exists a ξ  between xi and α  such that 

 
| xi+1 - α | ≤ | g(xi) – g( α ) | ≤ | g’( ξ ) | | (xi - α | 

 
Note that ξ  lies in ]α  - h, α  + h[ and therefore | g’( ξ ) | < k and hence 

| xi+1 - α | ≤ | xi - α | 
 
Setting i = 0, 1, 2, ..., n we get 
| x1 - α | ≤ k | x0 - α | 
| x2 - α | ≤ k | x1 - α |≤ k2 | x0 - α | 
 . . 

. . 
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. . 
| xn - α | ≤kn | x0 - α | 
 
This shows that the sequence of approximation | xi | converges to α  provided that the 
initial approximation is close to the root. 
 
We summarise the result obtained for this iteration process in the following Theorem. 
 
Theorem 1: If g(x) and g’(x) are continuous in an interval about a root α  of the 
equation x = g(x), and if | g’(x) | < 1 for all x in the interval, then the successive 
approximations x1, x2, ... given by 
 
xi = g(xi-1), i = 1, 2, 3, ... 
converges to the root α  provided that the initial approximation x0 is chosen in the 
above interval. 
 
We shall now discuss the order of convergence of this method. From the previous 
discussions we have the result. 
 
| xi+1 - α | ≤g’( ξ ) | (xi - α ) | 

 
Note that ξ  is dependent on each xi. Now we wish to determine the constant λ  and p 

independent of xi such that 
 
| xi+1 - α | ≤ c | (xi - α ) |P 
 
Note that as the approximations xi get closer to the root α , g’( ξ ) approaches a 

constant value g’( α ). Therefore, in the limiting case, as i →∞,the approximation 
satisfy the relation 
 
| xi+1 - α | ≤g’( α ) | (xi - α ) | 
 

Therefore, we conclude that if g’(α )≠0, then the convergence of the method is linear. 
 
If g’( α ) = 0, then we have  
 

i+1- α  = g(xi) -α  
= g(xi - α ) + α  - α  

= g(α ) + (xi - α ) g’(α ) +
2

)αx( 2
i g”( ξ ) - α  

= 
2

)αx( 2
i  g”( ξ ) 

since g( α ) = α  and g’(α ) = 0 and ξ  lies between xi and α . 
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Therefore, in the limiting case we have 
 

| xi+1 - α | ≤
2

1
 | g”( α ) | | (xi - α ) |2 

Hence, if f’( α ) = 0 and g’( α )≠0, then this iteration method is of order 2. 
 
Example 7: Suppose α  and β  are the roots of the equation x2 + ax + b = 0. Consider a 

rearrangement of this equation as 
 

x = -
x

)b+ax(
 

 

Show that the iteration xi+1 = -
i

i

x

)b+ax(
 will converge near x = α  when |α | > | β | 

 

Solution: The iteration are given by 
 

xi+1 = g(xi) = -
i

i

x

)b+ax(
, i = 0, 1, 2,... 

 
By Theorem 1, these iterations converge to α  if |g’(x) | < 1 near α  i.e. if |g’(x) | = 

2x

b
-  < 1. Note that g’(x) is continuous near α . If the iterations converge to x = α , 

then we require |g’(x) | = 2α

b
-  < 1. 

 

Thus | b | < | α  |2 
i.e. | α  |2 > | b |.                           (23) 
 
Now you recall from your elementary algebra course that if α  and β  are the roots, 

then 
 
α  + β  = -a and α β  = b 

Therefore | b | = |α | | β |. Substituting in Eqn. (23), we get 

| α |2 > | b | = | α | | β |. 

 
Hence |α | > |β | 
 

Finally, we shall discuss the convergence of the Newton-Raphson method. 
 
Convergence of Newton-Raphson Method 
 
Newton-Raphson iteration formula is given by 

xi+1 = xi - 
)x('f

)x(f

i

i                  (24) 
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To obtain the order of the method we proceed as in the secant method. We assume 
that α  is a simple root of f(x) = 0. Let 
 
xi - α  = iε , i = 0, 1, 2,... 

 
Then we have 

1+iε  + α  = iε  + α  - 
)α+ε('f

)α+ε(f

i

i  

i.e. 1+iε  = 
)α+ε(f'

)α+εf(-)α+ε('fε

i

iii  

 
Now we expand f( iε  + α ) and f’( iε  + α ), using Taylor's theorem about the point α . 

We have 
 

{ }[

{ }]
...+)α("fε+)α("fε+)α('f

...+)α("f+)α('fε)αf(-
=ε

...+)α("f+)α("fε+α('fε

2

1i

i

1+i

ii

2
ε

2
ε

2
1

2
1

 

 
But f( α ) = 0 and f’( α )≠0. Therefore 
 

1+iε  = [ ] [ ]1-

...++1
)α("f

1
...+α"f )α('f

)α("fi2
1 ε

2
ε

 

[ ][ ]...+-1...+α"f
)α('f

1
= )α('f

)α("fi2
1 ε

2
ε

 

 
Hence, by neglecting higher powers of iε , we get 

1+iε ≈
)α('f2

)α("f
2
iε  

 

This shows that the errors satisfy Eqn. (6) with p = and λ  = 
)α('f2

)α("f
. Hence, Newton-

Raphson method is of order 2. That is at each step, the error is proportional to the 
square of the previous error. 
 
Now, we shall discuss an alternate method for showing that the order is 2. Note that 
we can write (24) in the form x = g(x) where 
 

g(x) = x 
)x('f

)x(f
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g’(x) = 
dx

d [ ]f(x)
f(x)

-x  = 1 - 

[ ]

[ ]2

2

(x)f'

(x)f(x)f"-)x('f

 

= [ ]2
)x('f

)x("f)x(f
 

 

Now, g’( α ) = [ ]2
)α('f

)α("f)α(f
= 0, since f( α ) = 0 and f’( α )≠0. 

 
Hence by the conclusion drawn just above Example 7, the method is of order 2. Note 
that this is true only if α  is a simple root. If α  is a multiple root i.e. if g’(α ) = 0, then 
the convergence is not quadratic, but only linear. We shall not prove this result, but we 
shall illustrate this with an example. 
 
Let us consider an example. 
Example 8: Let f(x) = (x – 2)4 = 0. Starting with the initial approximation x0 = 2.1, 
compute the iterations x1, x2, x3 and x4 using Newton-Raphson method. Is the 
sequence conveying quadratically or linearly? 
 
Solution: The given function has multiple roots at x = 2 and is of order 4. 
Newton-Raphson iteration formula for the given equation is 

xi+1 = xi - 3

i

4

i

2)-4(x

2)-x(
= xi - 4

1
(xi – 2) 

= 
4

1
(3xi – 2)                  (25) 

 
Starting with x0 = 2.1, the iteration are given by 
 

x1 = 
4

1
(6.3 + 2) = 

2

3.8
 = 2.075 

 
Similarly, 
x2 = 2.05625 
x3 = 2.0421875 
x4 = 2.031640625 
 
Now 0ε = x0 – 2 = 0.1, iε = x1 -2 = 0.075, 2ε  = 0.05625, 3ε  = 0.0421875, 4ε  = 

0.031640625. 
 
Then 

iε  = .075 = 
4

3
 ×  0.1 = 

4

3
0ε  
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and 

2ε  = 
4

3
iε  

3ε  = 
4

3
2ε  

4ε  = 
4

3
3ε  

 

Thus the convergence is linear in this case. The error is reduced by a factor of 
4

3
 with 

each iteration. This result can also be obtained directly from Eqn. (25). 
 
 
4.0 CONCLUSION 
 
5.0 SUMMARY 
 
In this unit we have 
 
 described the following methods for finding a root of an equation f(x) = 0 

i) Regula-Falsi method: 
The formula is 

c = 
f(a)-)b(f

f(a)b-)b(fa
 

where ]a, b[ is an interval such that f(a) f(b) < 0. 
ii) Secant method: 

The iteration formula is 

xi+1 = 
)f(x-)x(f

)x(fx-)x(fx

1-ii

1-iii1-i  i = 0, 1, 2,.... 

where x0 and x1 are any two given approximation of the root. 
iii) Newton-Raphson method: 

The iteration formula is 

xi+1 = xi - )x('f

)x(f

i

i , i = 0, 1, 2, ... 

where x0 is an initial approximation to the root. 
 introduced the concept called convergence criterion of an iteration process. 
 discussed the convergence of the following iterative methods 

i) Bisection method. 
ii) Fixed point iteration method. 
iii) Secant method. 
iv) Newton-Raphson method. 
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6.0 TUTOR-MARKED ASSIGNMENT (TMA) 
 
i. Obtain an approximate root for the following equations rounded off to three 

decimal places, using regula-falsi method 
a. x log10x – 1.2 = 0 
b. x sin x – 1 = 0 

ii. Use secant method to find an approximate root to the equation x2 – 2x + 1 = 0, 
rounded off to 5 decimal places, starting with x0 = 2.6 and x1 = 2.5. Compare 

the result with the exact root 1 + 2 . 
 
iii. Find an approximate root of the cubic equation x3 + x2 + 3x – 3 = 0 using  

a. i) regula-falsi method, correct to three decimal places. 
 

ii) secant method starting with a = 1, b = 2, rounded-off to three 
decimal places. 

 
b. compare the results obtained by (i) and (ii) in part (a). 

iv. Starting with x0 = 0 find an approximate root of the equation x3 – 4x + 1 = 0, 
rounded off to five decimal places using Newton-Raphson method. 

v. The motion of a planet in the orbit is governed by an equation of the form y = x 

– e sin x where e stands for the eccentricity. Let y = 1 and e = 
2

1
. Then find a 

approximate root of 2x – 2 – sin x = 0 in the interval [0, π ] with error less than 
10-5. Start with x0 = 1.5. 

vi. Using Newton-Raphson square root algorithm, find the following roots within 
an accuracy of 10-4. 
i) 81/2 starting with x0 = 3 
ii) 911/2 starting with x0 = 10 

vii. Can Newton-Raphson iteration method be used to solve the equation x1/3 = 0? 
Give reasons for your answer. 

viii. For the problem given in Example 5, Unit 2, find the number n of bisection 
required to have an approximate root with absolute error less than or equal to 
10-7. 

ix. For the equation given in Example 7, show that the iteration xi+1 = 
a+x

b

i

 will 

converge to the root x = α , when |α | < |β |. 
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1.0 INTRODUCTION 
 
In the last two units we discussed methods for finding approximate roots of the 
equation f(x) = 0. In this unit we restrict our attention to polynomial equations. Recall 
that a polynomial equation is an equation of the form f(x) = 0 where f(x) is a 
polynomial in x. Polynomial equation arise very frequently in all branches of science 
especially in physical applications. For example, the stability of electrical of 
mechanical systems is related to the real part of one of the complex roots of a certain 
polynomial equation. Thus there is a need to find all roots, real and complex, of a 
polynomial equation. The four iteration methods, we have discussed so far, applies to 
polynomial equations also. But you have seen that all those methods are time 
consuming. Thus it is necessary to find some efficient methods for obtaining roots of 
polynomial equations. 
 
The sixteenth century French mathematician Francois Vieta was the pioneer to 
develop methods for finding approximate roots of polynomial equations. Later, 
several other methods were developed for solving polynomial equations. In this unit 
we shall discuss two simple methods: Birge-Vieta’s and Graeffe’s root squaring 
methods. To apply these methods we should have some prior knowledge of location 
and nature of roots of a polynomial equation. You are already familiar with some 
results regarding location and nature of roots from the elementary algebra course. We 
shall begin this unit by listing some of the important result about the roots of 
polynomial equations. 
 
2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 

 apply the following methods for finding approximate roots of polynomial 
equations 
o Birge-Vieta method 
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o Graeffe’s root squaring method 
 list the advantages of the above methods over the methods discussed in the 

earlier units. 
 
3.0 MAIN BODY 
 
3.1 Some Results on Roots of Polynomial Equations 
 
The main contribution in the study of polynomial equations due to the French 
mathematician Rene Descarte’s. The results appeared in the third part of his famous 
paper ‘La geometric’ which means ‘The geometry’. 
 
Consider a polynomial equation of degree n 
 
p(x) = anx

n + an-1x
n-1 + ... +a1x + a0      (1) 

 
where a0, a1, .... an are real numbers and an ≠ 0. You know that the roots of a 
polynomial equation need not be real numbers, it can be complex numbers, that is 
numbers of the form z = a + ib where a and b are real numbers. The following  results 
are basic  to the study of roots of polynomial equations. 
 
Theorem 1: (Fundamental Theorem of Algebra): Let p(x) be a polynomial of degree n 
≥ 1 given by Eqn. (1). Then p(x) = 0 has at least one root: that is there exists a 

number α ∈ C such that p( α ) = 0. In fact p(x) has n complex roots which may not be 
distinct. 
 
Theorem 2: Let p(x) be a polynomial of degree n and α  is a real number. Then 
 

p(x) = (x - α ) q0(x) + r0      (2) 
 
for some polynomial q0(x) of degree n – 1 and some constant number r0 . q0(x) and r0 
are called the quotient polynomial and the remainder respectively. 
 
In particular, if α  is a root of the equation p(x) = 0, then r0 = 0: that is (x - α ) divides 
p(x). 
 
Then we get 
 p(x) = (x - α ) q0(x) 
 
How do we determine q0(x) and r0? We can find them by the method of synthetic 
division of a polynomial p(x). Let us now discuss the synthetic division procedure. 
 
Consider the polynomial p(x) as given in Eqn. (1) 
 

p(x) = anx
n + an-1x

n-1 + ... +a1x + a0   
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Dividing p(x) by x - α  we get 
 
p(x) = q0(x) (x - α ) + r0       (3) 
 
where q0(x) is a polynomial of degree n – 1 and r0 is a constant. 
 
Let q0(x) be represented as 
 
q0(x) = bnx

n-1 + bn-1x
n-2 + ... + b2x + b1 

 
(Note that for convenience we are denoting the coefficient by b1, ..., bn instead of b0, 
b1, .... bn-1). Set b0 = r0. Substituting the expressions for q0(x) and r0 in Eqn. (3) we get 
 
p(x) = (x - α ) (bnx

n-1 + bn-1x
n-2 + ... + b2x + b1) + b0   (4) 

 
Now, to find b0, b1 ..... bn we simplify the right hand side of Eqn. (4) and compare the 
coefficients of xi, i = 0, 1, .... n on both sides. Note that p( α ) = b0. Comparing the 
coefficient we get 
 
Coefficient of xn : an = bn bn = an 
Coefficient of xn-1 : an-1 = bn-1 - α bn, bn-1 = an-1 + α bn 

. 
   . 
   . 
Coefficient of xk : ak – bk - α bk+1, bk = ak + α bk+1 
   . 
   . 
   . 
Coefficient of x0 : a0 = b0 - α ,   b0 = a0 + α b1 
 
It is easy to perform the calculations if we write the coefficient of p(x) on a line and 
perform the calculation bk = ak + α bk+1 below ak as given in the table below. 
 

Table 1: Horner’s table for synthetic division procedure 
α     an         an-1         an-2          ...           ak            ...           a2              a1              a0 

                       bα n       bα n-1       ...          bα k+1           ...           bα 3         bα 2          bα 1 

   bn         bn-1        bn-2                         bk                          b2             b1      b0=p0( α ) 

 
We shall illustrate this procedure with an example. 
 
Example 1: Divide the polynomial 
 
p(x) = x5 – 6x4 + 8x3 + 8x2 + 4x – 40 
by x – 3 by the synthetic division method and find the remainder. 
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Solution: Here p(x) is a polynomial of degree 5. If a5, a4, a3, a2, a1, a0 are the 
coefficients of p(x), then the Horner’s table in this case is 
 

Table 2 
  a5         a4         a3          a2            a1            a0 

  1         -6          8           8             4           -40 
 
              3         -9          -3            15           57 

  1         -3         -1           5            19           17 
  b5        b4         b3          b2            b1            b1 

 
Hence the quotient polynomial q0(x) is 
 
q0(x) = x4 – 3x3 – x2 + 5x + 19 
and the remainder is r0 = b0 = 17. thus we have p(3) = b =17. 
 
Theorem 3: Suppose that z = a + ib is a root of the polynomial equation p(x) = 0. 
Then the conjugate of z, namely z , = a – ib is also a root of the  equation p(x) = 0, i.e. 
complex roots occur in pairs. 
 
We denote by p(-x) the polynomial obtained by replacing x by –x in p(x). We next 
give an important Theorem due to Rene Descarte. 
 
Theorem 4: (Descarte’s Rule of signs): A polynomial equation p(x) = 0 cannot have 
more positive roots than the number of changes in sign of its coefficients. Similarly 
p(x) = 0 cannot have more negative roots than the number of changes in sign of the 
coefficients of p(-x). 
 
For example, let us consider the polynomial equation 
 

p(x) = x4 – 15x2 + 7x – 11 = 0 
= 1x4 – 15x2 + 7x – 11 = 0 
 
We count the changes in the sign of the coefficients. Going from left to right there are 
changes between 1 and -15, between -15 and 7 and between 7 and -11. The total 
number of changes is 3 and hence it can have at most 3 positive roots. Now we 
consider 
 
p(-x) = (-x)4 – 15(-x)2 + 7(-x) – 11 = 0 
= x4 – 15x2 – 7x – 11 
 
Here there is only one change between 1 and -15 and hence the equation cannot have 
more than one negative root. 
 

We now give another theorem which helps us in locating the real roots. 
Theorem 5: Let p(x) = 0 be a polynomial equation of degree n ≥ 1. Let a and b be 
two real numbers with a < b. Suppose further that p(a) ≠ 0 and p(b) ≠ 0. Then, 
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i) if p(a) and p(b) have opposite signs, the equation p(x) = 0 has an odd number 
of roots between a and b. 

ii) if p(a) and p(b) have like signs, then p(x) = 0 either has no root or an even 
number of roots between a and b. 

 
Note: In this theorem multiplicity of the root is taken into consideration i.e. if a is a 
root of multiplicity k it has to be counted k times. 
 
As a corollary of Theorem 5, we have the following results. 
 
a. Corollary 1: An equation of odd degree with real coefficients has at least one 

real root whose sign is opposite to that of the last term. 
b. Corollary 2: An equation of even degree whose constant term has the sign 

opposite to that of the leading coefficient, has at least two real roots one 
positive and the other negative. 

c. Corollary 3: the result given in Theorem 5(i) is the generalization of the 
Intermediate value theorem. 

 
The relationship between roots and coefficients of a polynomial equation is given 
below. 
 
Theorem 6: Let 1α , 2α , ....., nα  be a roots (n ≥ 1) of the polynomial equation 

 
p(x) = anx

n + an-1x
n-1 + ... + a1x + a0 = 0 

Then 1α  + 2α  + ... + nα  = 
n

1-n

a

a-
 

1α 2α  + 2α 3α  + ... + 1-nα nα  = 
n

2-n

a

a
 

............................................ 

............................................ 

1α 2α ... nα = (-1)n

n

0

a

a
 

 
In the next section we shall discuss one of the simple methods for solving polynomial 
equations. 
 
3.2 Birge-Vieta Method 
 
We shall now discuss the Birge-Vieta method for finding the real roots of a 
polynomial equation. This method is based on an original method due to two English 
mathematicians Birge-Vieta. This method is a modified form of Newton-Raphson 
method. 
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Consider now, a polynomial equation of degree n, say 
pn(x) = anx

n + ... + a1x + a0 = 0.      (5) 
 
Let x0 be an initial approximation to the root α . The Newton-Raphson iterated 
formula for improving this approximation is 

xi = xi-1 - )x('p

)x(p

1-in

1-in
, i = 1, 2, ...      (6) 

 
To apply this formula we should be able to evaluate both pn(x) and p’n(xi) at any xi. 
The most natural way is to evaluate 
 

pn(xi) = anx
n

i  + an-1x
n-1 + ... + a2x

2

i  + a1xi + a0 

p’n(xi) = n anx
1-n

i  + (n - 1)an-1x
2-n

i  + ... + 2a2xi + a1 

 
However, this is the most inefficient way of polynomial because of the amount of 
computations involved and also due to the possible growth of round off errors. Thus 
there is a need to look for some efficient method for evaluating pn(xi) and p’n(xi). 
 
Let us consider the evaluation of pn(xi) and p’n(xi) at x0 using Horner’s method as 
discussed in the previous section. 
 
We have 
 
pn(xi) = (x – x0) qn-1(x) + r0       (7) 
 
where 
qn-1(x) = bnx

n-1 + bn-2x
n-2 + … + b2x + b1 

 
and b0 = pn(x0) = r0        (8) 
 
We have already discussed in the previous section how to find b1, I = 1, 2, …, n. 
 

Next we shall find the derivative p’n(x0) using Horner’s method. We divide qn-1(x) by 
(x – x0) using Horner’s method. That is, we write 
 
qn-1(x) = (x – x0) qn-2(x) + r1 
qn-1(x) = cnx

n-2 + cn-1x
n-3 + … + c3x + c2. 

 
Comparing the coefficients, we get ci as given in the following table 

Table 3 
 
      
 
 
As observed in Sec. 1, we have 

x0 
   bn               bn-1         ...           bk            ...           b2               b1 

                     x0cn         ...           x0ck+1           ...           x0c3           x0c 2           

    cn=bn         cn-1                          ck                         c2               c1 
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c1 = qn-1(x0)         (9) 
 
Now, from Eqn. (7) and (8), we have 
pn(x) = (x – x0) qn-1(x) + pn(x0)               (10) 
 
Differentiating both sides of Eqn. (10) w.r.t.x, we get 
p’n(x) = qn-1(x) + (x – x0) q’n-1(x)               (11) 
 
Putting x = x0 in Eqn. (11), we get 
p’n(x0) = qn-1(x0)                 (12) 
 
Comparing (9) and (12), we get 
p’n(x0) = qn-1(x0) = c1     
 
Hence the Newton-Raphson method (Eqn. (6)) simplies to 

xi = xi-1 - 
1

0

c

b
                  (13) 

 
We summarise the evaluation of bi and ci in the following table 
 

 
Table 4 

 
Let us 

consider an example. 
 
Example 2: Evaluate p’(3) for the polynomial 
p(x) = x5 – 6x4 + 8x3 + 8x2 + 4x – 40. 
 
Solution: Here the coefficients are a0 = -40, a1 = 4, a2 = 8, a3 = 8, a4 = -6 and a5 = 1. 
To compute b0, we form the following table. 
 

Table 5 
3     1           -6             8              8              4             -40 

                  3            -9             -3             15             57 
3     1           -3            -1              5             19             

                  3             0              -3              6 
17=p(3)=b0 

 

    1            0            -1              2 25 = p’(3)=c1 

 
Therefore p’(3) = 25 
 

x0 
   an               an-1        ...              ak           ...            a2               a1              a0 
                     x0bn        ...           x0bk+1           ...           x0b3           x0b 2         x0b 1 

x0 

   an=bn         bn-1                          bk                          b2               b1 b0=pn(x0) 

                     x0cn        ...           x0ck+1           ...           x0c3           x0c2          

 cn=bn           cn-1                           ck                          c2               c1=p’n(x0) 
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Now we shall illustrate why this method is more efficient than the direct method. Let 
us consider an example. Suppose we want to evaluate the polynomial 
 

p(x) = -8x5 + 7x4 – 6x3 + 5x2 – 4x + 3 
for any given x. 
 
When we evaluate by direct method, we compute each power of x by multiplying with 
x the preceding power of x as 
 
x3 = x(x2), x4 = x(x3) etc. 
 
Thus each term ck takes two multiplications for k > 1. Then the total number of 
multiplications involved in the evaluation pf p(x) is 1 + 2 + 2 + 2 + 2 = 9. 
 
When we use Horner’s method the total number of multiplications in 5. The number 
of additions in both cases are the same. This shows that less computation is involved 
while using Horner’s method and therapy reduces the error in computation. 
 
Let us now solve some problems using Birge-Vieta method. 
 
Example 3: Use Birge-Vieta method to find all the positive real roots, rounded off to 
three decimal places of the equation 
 
x4 + 7x3 + 24x2 + x – 15 = 0 
 
Stop the iteration whenever | xi+1 – xi | < 0.0001 
 
Solution: We first note that the given equation 
 

p4(x) = x4 + 7x3 + 24x2 + x – 15 = 0 
is of degree 4. Therefore, by Theorem 1, this equation has 4 roots. Since there is only 
one change of sign in the coefficients of this equation, Descarte’s rule of signs (see 
Theorem 4), states that the equation can have at most one positive real root. 
 
Now let us examine whether the equation has a positive real root. 
 
Since p4(0) = -15 and p4(1) = 19, by Intermediate value theorem, the equation has a 
root lying in ]0, 1[. 
 
We take x0 = 0.5 as the initial approximation to the root. The first iteration is given by 
 

x1 = x0 - )x('p

)x(p

04

04
 

= 0.5 - 
)5.0('p

)5.0(p

4

4
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Now we evaluate p4(0.5) and p’4(0.5) using Horner’s method. The results are given in 
the following table. 
 

Table 6 

0.5 
   1             7              24                 1                -15 
                0.5           3.75          13.875         7.4375 

0.5 
   1           7.5          27.75           14.875 -75625=p4(0.5) 

                0.5            4.00           15.875 
    1           8.0          31.75     30.750 = p’4(0.5) 

 

Therefore x1 = 0.5 - 
30.75
7.5625-

 = 0.7459 

 
The second iteration is given by 

x2 = x1 - 
)x('p

)x(p

14

14
 = 0.7459 - 

)7459.0('p

)7459.0(p

4

4
 

 
Uisng synthetic division, we form the following table of values 
 

Table 7 
 

 
 

 
 

Therefore x2 = 0.7459 - 
1469.50

3132.2
 = 0.6998 

 
Third iteration is given by 

x3 = x2 - 
)6998.0('p

)6998.0(p

4

4
 

Table 8 
 
 
 
 
 

x3 = 0.6998 - 
2429.46

0905.0
 = 0.6978 

 
For the fourth iteration we have 
 

x4 = x3 - 
)6978.0('p

)6978.0(p

4

4
 

0.7459 
   1               7                     24                 1                   -15 
                0.7459           5.7777          22.2119         17.3138 

0.7459 
   1           7.7459          29.7777         23.2119 2.3138 
                0.7459          6.3340336                                26.935717 

    1           8.4918          36.111701   50.146879 

0.6998 
   1               7                     24                 1                   -15 
                0.6998           5.3881          20.5649         15.0905 

0.6998 
   1           7.6998          29.3881         21.5649 0.0905 
                 .6998          5.8778            24.6780 

    1           8.3996          35.2659   46.2429 
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Table 9 

 
 
 
 
 

x4 = 0.6978 - 
0789.46

0005.0
 = 0.6978 

 
Since x3 and x4 are the same, we get | x4 – x3 | < 0.0001 and therefore we stop the 
iteration here. Hence the approximate value of the root rounded off to three decimal 
places is 0.698. 
Next we shall illustrate how Birge-Vieta’s method helps us to find all real roots of a 
polynomial equation. 
 
Consider Eqn. (4) 
 
p(x) = (x - α ) (bnx

n-1 + bn-1x
n-2 + ... + b2x + b1) + b0 

 
If α  is a root of the equation p(x) = 0, then p(x) is exactly divisible by x - α , that is, 
b0 = 0. In finding the approximations to the root by the Birge-Vieta method, we find 
that b0 approaches zero (b0 →0) as xi approaches α  (xi → α ). Hence, if xn is taken as 
the final approximation, to the root satisfying the criterion | xn – xn-1 | < ε , then to this 
approximation, the required quotient is 
 
qn-1(x) = bnx

n-1 + bn-1x
n-2 + ... + b1 

 
where b’1 are obtained by using xn and the Horner’s method. This polynomial is called 
the deflated polynomial or reduced polynomial. The next root is now obtained using 
qn-1(x) and not pn(x). Continuing this process, we can successively reduce the degree 
of the polynomial and find one real root at a time. 
 
Let us consider an example. 
 
Example 4: Find all the roots of the polynomial equation p3(x) = x3 + x – 3 = 0 
rounded off to three decimal places. Stop the iteration whenever |xi+1 – xi| < 0.0001. 
 
Solution: The equation p3(x) = 0 has three root. Since there is only one change in the 
sign of the coefficients, by Decarts’ rule of signs the equation can have at most one 
positive real root. The equation has no negative real root since p3(-x) = 0 has no 
change of sign of coefficients. Since p3(x) = 0 is of odd degree it has at least one real 
root. Hence the given equation x3 + x – 3 = 0 has one positive real root and a complex 
pair. Since p(1) = -1 and p(2) = 7, by intermediate value theorem the equation has a  
 

0.6978 
   1               7                     24                     1                   -15 
               0.6978         5.3715248          20.495459        14.999525 

0.6978 
   1           7.6978        29.3715248        21.495459 0.0905 
                 .6978          5.8584497         24.583476 

    1           8.3956         35.229975    46.078926 
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real root lying in the interval ]1, 2[. Let us find the real root using Birge-Vieta 
Method. Let the initial approximation be 1.1. 
 
First iteration 

Table 10 
 
 
 
 
 
 

Therefore x1 = 1.1 - 
4.63
0.569-

 = 1.22289 

 
Similarly, we obtain 
 
x2 = 1.21347 
x3 = 1.21341 
 
Since | x2 – x3 | < 0.0001, we stop the iteration here. Hence the required value of the 
root is 1.213, rounded off to three decimal places. Next let us obtain the deflated 
polynomial of p3(x). To get the deflated polynomial of, we have to find the 
polynomial q2(x) by using the final approximation x3 = 1.213 (see Table 11). 
 

Table 11 
 
 
 
 
Note that p3(1.213) = -0.0022. That is, the magnitude of the error in satisfying p3(x3) = 
0 is 0.0022. 
We find q2(x) = x2 + 1.213x + 2.4714 = 0 
 
This is a quadratic equation and its roots are given by 
 

x = 
2

2.4714×4-(1.213)±1.213- 2

 

= 
2

2.9009i±1.213-
 

= 0. 6065 ± 1.4505 i 
 
Hence the three roots of the equation rounded off to three deciml places are 1.213, 
0.6065 + 1.4505 i and -0.6065 – 1.4505 i. 
 

1.1 
   1               0                     14                    -3  
                  1.1                   1.21                2.431  

1.1 
   1             1.1                   2.21  0.0905 
                  1.1                   2.42  

    1             2.2                4.63 

1.213 
   1               0                     1                    -3  
                1.213             1.4714             2.9978 

    1             1.213           2.4714  -0.0022 
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Remark: We now know that we can determine all the real roots of a polynomial 
equation using deflated polynomials. This procedure reduces the amount of 
computations also. But this method has certain limitations. The computations using 
deflated polynomial can cause unexpected errors. If the roots are determined only 
approximately, the coefficients of the deflated polynomials will contain some errors 
due to rounding off. Therefore we can expect loss of accuracy in the remaining roots. 
There are some ways of minimizing this error. We shall not be going into the details 
of these refinements. 
 
 
3.3 Graeffe’s Root Squaring Method 
 
In the last section we have discussed a method for finding real roots of polynomial 
equations. Here we shall discuss a direct method for solving polynomial equations. 
This method was developed independently by three mathematicians Dandelin, 
Lobachesky and Graeffe. But Graeffe’s name is usually associated with this method. 
The advantage of this method is that it finds all roots of a polynomial equation 
simultaneously: the roots may be real and distinct, real and equal (multiple) or 
complex roots. 
 
The underlying idea of the method is based on the following fact: Suppose 1β , 2β , ...., 

nβ  are the n real and distinct roots of a polynomial equation of degree n such that they 

are widely separated, that is, 
 
| 1β | >> | 2β | >> | 3β | >> ... >> | nβ | 

 
where >> stands for ‘much greater than’. Then we can obtain the roots approximately 
from the coefficients of the polynomial equation as follows: 
 
Let the polynomial equation whose roots are 1β , 2β , ...., nβ  be 

 
a0 + a1x + a2x

2 + ... + anx
n = 0, an ≠ 0. 

 
Using the relations between the roots and the coefficients of the polynomial as given 
in Sec. 4.2, we get 
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n

0n

n21

n

3-n

n1-n2-n321

n

2-n

n1-n3121

n

1-n

n21

a

a
)1-(=β...ββ

........................................

a

a
-=βββ+...+βββ

a

a
=ββ+...+ββ+β,β

a

a
-=β+...+β+β

               (14) 

 
Since | 1β | >> | 2β | >> | 3β | >> ... >> | nβ |, we have from (14) the approximations 

 

n

0n

n21

n

3-n

321

n

2-n

21

n

1-n

1

a

a
)1-(≈β...ββ

...

...

a

a
-≈βββ

a

a
≈ββ

a

a
-≈β

                          (15) 

 
These approximations can be simplified as 
 

1

0

n

2-n

3-n

1-n

n

2-n

1-n

n

3-n

3

1-n

2-n

1-n

n

n

2-n

2

n

1-n

1

a

a
|≈β|

.

.

.

a

a
=

a

a

a

a

a

a
-|≈β|

a

a
≈

a

a

a

a
|≈β|

a

a
-|≈β|

               (16) 

 

So the problem now is to find from the given polynomial equation, a polynomial 
equation whose roots are widely separated. This can be done by the method which we 
shall describe now. 
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In the present course we shall discuss the application of the method to a polynomial 
equation whose roots are real and distinct. 
 

Let 1α , 2α , ...., nα  be the n real and distinct roots of the polynomial equation of 

degree n given by 
 
a0 + a1x + a2x

2 + ... + anx
n = 0.               (17) 

 
where a0, a1, a2, ..., an-1, an are real numbers and an ≠ 0. We rewrite Eqn. (17) by 
collecting all even terms on one side and all odd terms on the other side, i.e. 
 
a0 + a2x

2 + a4x
4 + ... = -( a1x + a3x

3 + a5x
5 + ...)             (18) 

 
Squaring both sides of Eqn. (18), we get 
 
(a0 + a2x

2 + a4x
4 + ...)2 = (a1x + a3x

3 + a5x
5 + ...)2 

 
Now we expand both the right and left sides and simplify by collecting the 
coefficients. We get 
 

a 2

0  - (a 2

1  - 2a0a2)x
2 + (a 2

2  - 2a1a3 + 2a0a4)x
4 – 

(a 2

3  - 2a2a4 + 2a1a5 - 2a0a6)x
6 + ... + (-1)n a 2

n x2n = 0                      (19) 

 
Putting x2 = -y in Eqn. (19), we obtain a new equation gien by 
 
b0 + b1y + b2y

2 + ... + bn = 0               (20) 
 
where 

b0 = a 2

0  

b1 = a 2

1  - 2a0a2 

b2 = a 2

2  - 2a1a3 + 2a0a4 

bn = a 2

n  

 
The following table helps us to compute the coefficients b0, b1, ..., bn of Eqn. (20) 
directly from Eqn. (17). 
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Table 12 
           a0                           a1                               a2                            a3...                                            an 

           a
2
0                          a

2
1                              a

2
2                           a

2
3                             a

2
n  

           0                         -2a0a2                          -2a1a3                     -2a2a4                           0                  
0                             0                             -2a0a4                      -2a1a5                           0                            
0                             0                                0                           -2a0a6                          0             
.                              .                                  .                              .                                .                                      
.                              .                                  .                              .                                .                                        
.                              .                                  .                              .                                .                         

          b0                           b1                               b2                           b3...                            bn 

 
To form Table 12 we first write the coefficients a0, a1, a2, ...., an as the first row. Then 
we form (n + 1) columns as follows. 
 
The terms in each column alternate in sign starting with a positive sign. The first term 
in each column is the square of the coefficients ak, k = 0, 1, 2, ..., n. The second term 
in each column is twice the product of the nearest neghbouring coefficients, if there 
are nay with negative sign: otherwise put it as zero. For example, the second term in 
the first column is zero and second term in the second column is -2a0 a2. Likewise the 
second term of the (k + 1)th column is 2ak-1 ak+1. The third term in the (k + 1)th 
column is twice the product of the next neighbouring coefficients ak-2 and ak+2, if there 
are nay, otherwise put it as zero. This procedure is continued until there are no 
coefficients available to form the cross products. Then we add all the term in each 
column. The sum gives the coefficients bk for k = 0, 1, 2, ..., n which are listed as the 
last term in each column. Since the substitution x2 = -y is used, it is easy to see that if 

α 1, α 2, ..., α n are the n roots of Eqn. (17), then - 2

1α , 2

2α , ..., 2

nα  are the roots of Eqn. 

(20). 
 
Thus, starting with a given polynomial equation, we obtained another polynomial 
equation whose roots are the squares of the roots of the original equation with 
negative sign. 
 
We repeat the procedure for Eqn. (20) and obtain another equation 
 
c0 + c1x + ... + cnx

n = 0. 
Whose roots are the squares of the roots of Eqn. (20) with a negative sign i.e. they are 
fourth powers of the roots of the original equation with a negative sign. Let this 
procedure be repeated n times. Then, we obtain an equation 
 
q0 + q1x + ... + qnx

n = 0                          (21) 
whose roots 1γ , 2γ , ...., nγ  are given by 

iγ  =, i = 0, 1, 2, ..., n.                          (22) 

 
Now, since all the roots of Eqn. (17) are real and distinct, we have 
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| 1α | > | 2α | > ..........> | nα | 

 

Hence | 1γ | = |
m2

1α | = 
n

1-n

q

q
 

| 2γ | = |
m2

2α | = 
1-n

2-n

q

q
 

.    .       . 

.    .       . 

.    .       . 

| nγ |= |
m2

nα | = 
1

0

q

q
 

 
The magnitude of the roots of the original equations are therefore given by 

| 1α | = 
m2

n

1-n

q

q
 

| 2α | = 
m2

1-n

2-n

q

q
 

. 

. 

. 

| nα | = 
m2

1

0

q

q
 

 
This gives the magnitude of the roots. To determine the sign of the roots, we substitute 
these approximations in the original equation and verify whether positive or negative 
value satisfies it. 
 
We shall now illustrate this method with an example. 
 
Example 5: Find the roots of the cubic equation x3 – 15x2 + 62x – 72 = 0 by Graeffe’s 
method using three squaring. 
 
Solution: Let P3(x) = x3 – 15x2 + 62x – 72 = 0. 
 
The equation has no negative real roots. Let us now apply the root squaring method 
successively. The get the following results: 
 
First Squaring 
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Table 13 
 

       a0                       a1                       a2                          a3 
      -72                     62                     -15                          1 

    a
2
0  =5184             a

2
1 =3844             a

2
2 =225                  a

2
3 =1                    

       0                    -2a0a2=-2160        -2a1a3=-124              0 
      5184                      1684                       101                       1 
         b0                           b1                          b2                        b3 

 
Therefore the new equation is 
 
x3 + 101x2 + 168x + 5184 = 0. 
 
Applying the squaring method to the new equation we get the following results. 
 
 

Second Squaring 
Table 14 

        5184                      1684                       101                       1 

    26873856               2835856                  10201                     1 
            0                     -1047168                 -3368                     0 

    26873856               1788688                   6833                      1 

 
Thus the new equation is 
x3 + 6833x2 + 1788688x + 26873856 = 0. 
 
For the third squaring, we have the following results. 
 
Third Squaring 

Table 15 
      26873856                   1788688                           6833                      1 

   7.2220414 × 1014       3.1994048× 1012         46689889                     1 
                0                     -3672581× 1012           -3577376                     0 

   7.2220414 × 1014       2.83214× 1012              43112513                    1 
             q0                                 q1                               q2                        q3 

 
Hence the new equation is 
 

x3 + 43112513x2 + (2.83214 ×  1012)x + (7.2220414 × 1014) = 0 
 
After three squaring, the roots 1γ , 2γ , and 3γ  of this equation are given by 

| 1γ | = 
3

2

q

q
 = 43112513 

| 2γ | = 
2

1

q

q
 = 

43112513
10×83214.2 12
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| 3γ | = 
1

0

q

q
 = 

12

14

10×83214.2

10×22204.7
 

 
Hence, the roots  

| 1α | = 8 443112513  = 9.0017 

 

| 2α | = 8
12

43112513
10×83214.2

 = 4.0011 

 

| 3α | = 8
12

14

10×83214.2

10×22204.7
 = 1.9990 

 
Since the equation has no negative real roots, all the roots are positive. Hence the 
roots can be taken as 9.0017, 4.0011 and 1.9990. If the approximations are rounded to 
2 decimal places, we have the roots as 9, 4 and 2. Alternately, we can substitute the 
approximate roots in the given equation and find their sign. 
 
4.0 CONCLUSION 
 
We have seen that Graeffe’s root squaring method obtain all real roots simultaneously. 
There is considerable saving in time also. The method can be extended to find 
multiple and complex roots also. However the method is not efficient to find these 
roots. We shall not discuss these extensions. 
 
We shall end this block by summarizing what we have covered in this unit. 
 

5.0 SUMMARY 
 
In this unit we have: 
 
 discussed the following methods for finding approximate roots of polynomial 

equations. 
i) Birge-Vieta method. 
ii) Graeffe’s root squaring method. 

 Mentioned the advantage and disadvantages of the above methods. 
 

6.0 TUTOR-MARKED ASSIGMENT (TMA) 
 
i Find the quotient and the remainder when 2x3 – 5x2 + 3x –1 is divided by x – 2. 

ii. Using synthetic division check whether 0α  = 3 is a root of the polynomial 

equation x4 + x3 – 13x2 – x + 12 = 0 and find the quotient polynomial. 
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iii. How many negative roots does the equation 3x7 + 5x5 + 4x3 + 10x – 6 = 0 
have? Also determine the number of positive roots, if any. 

iv. Show that the biquadratic equation 
 p(x) = x4 + x3 – 2x2 + 4x – 24 = 0 has at least two real roots one positive and 

the other negative. 
v. Using synthetic division, show that 2 is a simple root of the equation 

p(x) = x4 – 2x3 – 7x2 + 8x + 12 = 0. 
vi. Evaluate p(0.5) and p’(0.5) for 

p(x) = -8x5 + 7x4 – 6x3 + 5x2 – 4x + 3 
vii. Find an approximation to one of the roots of the equation 

p(x) = 2x4 – 3x2 + 3x – 4 = 0 
using Birge-Vieta method starting with the initial approximation x0 = -2. Stop 
the iteration whenever | xi+1 – xi | < 0.4 ×  10-2. 

viii. Find all the roots of the equation x3 – 2x – 5 = 0 using Birge-Vieta method. 
ix. Find the real root rounded off to two decimal places of the equation x4 – 4x3 – 

3x + 23 = 0 lying in the interval ]2, 3[ by Birge-Vieta method. 
x. Determine all roots of the following equations by Graeffe’s root squaring 

method using three squaring. 
i) x3 + 6x2 – 36x + 40 = 0 
ii) x3 – 2x2 – 5x + 6 = 0 
iii) x3 – 5x2 – 17x + 20 = 0 
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