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1.0  INTRODUCTION 
 

In this unit we first discuss some ideas concerning sets and functions. These concepts 

are fundamental to the study of any branch of mathematics, in particular, algebra. 

 

In MTH 131, we discuss some elementary number theory. The primary aims of this 

section, is to discuss some few facts that we will need in the rest of the course. We 

also hope to: 

 

Give you a glimpse of the elegance of number theory.  It is this elegance that led the 

mathematician Gauss to call number theory the „queen of mathematics‟. 

 

We would like to repeat that this unit consists of very basic ideas that will be used 

throughout the course. So go through it carefully. 
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2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 use various operations on sets 

 define Cartesian products of sets 

 check if a relation is an equivalence relation or not, and find equivalence 

classes 

 define and use different kinds of functions 

 state  the principle of induction 

 use the division algorithm and unique prime factorisation theorem. 

 

3.0 MAIN CONTENT 
 

3.1  Sets  
 

You must have used the word „set‟ off and on in your conversations to describe any 

collection.  In mathematics the term set is used to describe any well defined collection 

of objects, that is, every set should be so described that given any object it should be 

clear whether the given object belongs to the set or not. 

 

For instance, the collection N of all natural numbers is well defined, and hence is a 

set.  But the collection of all rich people is not a set, because there is no way of 

deciding whether a human is rich or not.  

 

If S is set, an object a in the collection S is called an element of S. This fact is 

expressed in symbols as a S (read as “a is in S” or “a belongs to S”). If a is not in S, 

we write a S.   For example, 3 R the set of real numbers. But. 1  R. 

 

Elementary Group Theory 

 

A set with no element in it is called the empty set, and is denoted by the Greek   

(phi). For example, the set of all natural numbers less than 1 is . 

 

There are usually two way of describing a non-empty set: 

 

(1) Roster method, and (2) set builder method.  

 

Roster Method 

 

In this method, we list all the elements of the set: within braces. For instance, the 

collection of all positive divisors of 48 contains 1, 2, 3, 4, 6, 8, 12, 16, 24 and 48 as its 

elements. So this set may be written as '{1, 2, 3, 4, 6, 8, 12, 16, 24, 48}. 
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In this description of a set, the following two conventions are followed: 

 

Convection 1 

 

The order in which the elements of the set are listed is not important. 

 

Convention 2 

 

No element is written more than once, that is, every element must be written exactly 

once.  

 

For example, consider the set S of all integers between 
2

1
and 4

4

1
.  Obviously, these 

integers are 2, 3 and 4.  So we may write S = (2, 3, 4}. 

 

We may also write S = (3, 2, 4}, but we must not write S = (2, 3, 2, 4}. Why? Isn't this 

what Convention 2 says? 

 

The roster method is sometimes used to list the elements of a large set also. In this 

case we may not want to list all the elements of the set. We list a few, enough to give 

an indication of the rest of the elements. For example, the set of integers lying 

between 0 and 100 is {0, 1, 2… 100}, and the set of all integers is  

Z = {0, ,1 ,2 ……}. 

 

Another method that we can use for describing a set is the  

 

Set Builder Method 
 

In this method we first try to find a property which characterises, the elements of the 

set, that is, a property P which all the elements of the set possess. Then we describe 

the set as: 

 

{x | x has property P}, or as 

 

{x: x has property P}. 

 

This is to be read as “the set all x such that x has property P”.  For example, the set of 

all integers can also be written as 

Z = {x | x is an integer}. 

 

Some other sets that you may be familiar with are 

 

Q, the set of rational numbers =








 0  Z, b b a,
b

a
        . 
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R, the set of real numbers 

 

C, the set of complex numbers = {a+ib   a, b  R}. (Here i = 1 .) 

 

Let us now see what subsets are. 

 

Subsets 

 

Consider the sets A = {1, 3, 4} and B = {1, 4}. Here every element of B is also all 

element of A. in such a case, that is, when every element of a set B is an element of a 

set A, we say that B is a subset of A, and we write this as B   A. 

 

for every set A, A   A. 

 

Also, for any set A,    A. 

 

Now consider the set S = {1, 3, 5, 15} and T = (2, 3, 5, 7}. Is S T? No, because not 

every element of S is in T; for example, 1  S but 1 T. In this case we say that S is 

not a subset of T, and denote it by S   T. 

 

‘ ' denotes ‘there exists’,  Note that if B is not a subset of A, there must be an 

element of B which is not an element of A. In mathematical notation this can be 

written as „ '  x   B such that x  A‟. 

 

We can now say that two sets A and B are equal (i.e., have precisely the same 

elements) if and only if A B and B   A. 

 

Sets and Functions 

 

Try the following exercise now. 

 

SELF ASSESSMENT EXERCISE 1 

 

Which of the following statements are true? 

 

(a)  N   Z,  (b)  Z   N,  (c)  {0}   {1, 2, 3},  (d)  {2, 4, 6}   {2, 4, 8}. 

 

Let us now look at some operations on sets.  We will briefly discuss the operations of 

union, intersection and complementation on sets.  

 

Union 

 

If A and B are subsets of a set S, we can collect the elements of both to get a new set. 

This is called their union. Formally, we define the union of A and B to be the set of 

those elements of S which are in A or in B.  
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We denote the union of A and B by:  

 

A U B.  Thus, 

A U B =     B    A  or  xx    S       x    

 

For example, if A = {1, 2} and B = {4, 6, 7}, then A U B = {1, 2, 4, 6, 7}. 

 

Again, if A = (1, 2, 3, 4] and B= (2, 4, 6, 8), A U B= (1, 2, 3, 4, 6, 8).  Observe that 2 

and 4 are in both A and B, but when we write A U B, we write these elements only 

once, in accordance with Convention 2 given earlier.  

 

Can you see that, for any set A, A   A = A? 

 

Try the following exercise now. While trying it remember that to show that A   B 

you need to show that x  A    x  B 

 

SELF ASSESSMENT EXERCISE 2 

 

Let A, B, C, be subsets of a set Such that A   C and B   C. 

 

Then show that: 

 

a. A   B   C 

b. A   B = B   A 

c. A   = A 

 

Now will extend the definition of union to define the union of more than two sets. 

 

If A1, A2, A3……… Ak are k subsets of a set S, then their union A1A2  …..Ak is 

the set of elements which belong to at least one of these sets. That is, 

A1A2……. Ak = {x  S   x  Ai for some i = 1, 2…… k). 

 

The expression A1A2…..Ak is often abbreviated to .A
i

k

1i

  

If  is a collection of subsets of a set S, then we can define the union of all members 

of  by 


A
A

      A some  A  forx       

Now let us look at another way of obtaining a new set from two or more given sets. 

 

Intersection 

 

If A and B are two subsets of a set S, we can collect the elements that are common to 

both A and B. We call this set the intersection of A and B (denoted by A   B, So, 
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A   B =  BxandA S   x x        

 

Thus, if P= {1, 2, 3, 4} and Q= {2, 4, 6, 8}, then PQ= {2, 4}. 

 

Can you see that, for any set A, A A = A? 

 

Now suppose A = {1, 2} and B = (4, 6, 7). Then what is A B? We observe that, in 

this case A and B have no common elements, and so A   B = , the empty set. 

 

When the intersection of two sets is   , we say that the two sets are disjoint (or 

mutually disjoint).  For example, the sets {1, 4} and {0, 5, 7, 14} are disjoint. 

 

Try this exercise now. 

 

SELF ASSESSMENT EXERCISE 3 

 

Let A and B be subsets of a set S.  Show that  

 

a. A   B = B   A 

b. A B  A   B = A 

c. A     

 

Elementary Group Theory 

 

The definition of intersection can be extended to any number of sets.  

 

Thus, the intersection of k subsets A1, A2…… Ak of a set S is 

A1A2  …….Ak = , .......k2, 1  for each iA S   x x 
i

  . 

 

We can shorten the expression A1A2  …….Ak to .
1

i

k

i

A


  

 

In general, if  is a collection of subsets of a set S, then we can define the 

intersection of all the members of by 


A
A

  AxSx{      }A   

 

In the following exercise we give important properties of unions and intersections of 

sets. 

 

SELF ASSESSMENT EXERCISE 4 

 

For any subsets, A, B, C of a set S, show that  

 

a. (A   B)   C = A   (B   C) 
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b. (A B)   C = A   (B   C) 

c. A   (B   C) = (AB) (AC) 

d. A   (B   C) = (A   B)   (A   C) 

 

SELF ASSESSMENT EXERCISE 5 

 

State whether the following are true or false.  If false, give a counter-example. 
  

a. If A   B and B   C, then A   C 

b. If A   B and B   A, then A and B are disjoint 

c. A    A U B 

d. If A U B =  , then A = B =  . 
 

Apart from the operations of unions and intersections, there is another operation on 

sets, namely, the operation of taking differences. 

 

Differences 
 

Consider the sets A = {1, 2, 3} and B = {2, 3, 4}. Now the set of all elements of A that 

are not in B is {1}. We call this set the difference A\B. Similarly, the difference B \ A 

is the set of elements of B that are not in A, that is, {4}. Thus, for any two subsets „A 

and B of a set S, }.BxandAxXx{        

 

When we are working with elements and subsets of a single set X, we say that the set 

X is the universal set. Suppose X is the universal set and A   X.  Then the set of all 

elements of X which are not in A is called the complement of A and is denoted by 

A cA  or X \ A. 

Thus, 

 
cA  = }.AxXx{      

 

For example, if X = {a, b, p, q, r} and A = {a. p, q}, then cA  = { b , r}. 

 

Try the following exercise now. 

 

SELF ASSESSMENT EXERCISE 6 

 

Why are the following statements true? 
 

a.  A and cA are disjoint, i.e., A  cA  =   

b.  A U cA  = X, where X is the universal set. 

c. ( cA )
c
 = A. 

 

And now we discuss one of the most important constructions in set theory. 
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3.2 Cartesian Products 
 

An interesting set that can be formed from two given sets is their Cartesian product, 

named after a French philosopher and mathematician Rene Descartes (1596 -1650).  

He also invented the Cartesian coordinate system. 

 

Let A and B be two sets. Consider the pair (a, b), in which the first element is from A 

and the second from B. Then (a, b) is called an ordered pair. In an ordered pair in 

order in which the two elements are written is important. Thus, (a, b) and (b, a) are 

different ordered pairs. Two ordered pairs (a, b) and (c, d) are called equal, or the 

same, if a = c and b = d. 

 

Definition 

 

The Cartesian product A x B, of the sets A and B, is the set of all possible ordered 

pairs (a, b), where a .Bb,A    

 

For example, if A = {1, 2,2 3} and B = {4, 6}, then A X B = { (1, 4), (1, 6), (2, 4), (2, 

6), (3, 4), (3, 6)}. 

 

Also note that 

B x A = {(4, 1), (4, 2), (4, 3), (6, 1), (6, 2), (6, 3)} and A x B ≠ B x A. 

 

Let us make some remarks about the Cartesian product here. 

Remarks:  

 

i. A x B =   if A =   or B = . 
 

ii. If A has m elements and B has n elements, then A x B has mn elements. B x A 

also has mn elements. But the elements of B x A need not be the same as the 

elements of A x B, as you have just seen.  

 

We can also define the Cartesian product of more than two sets in a similar way. Thus, 

if A1, A2, A3 …..... An are n sets, we can define their Cartesian product as 

A1 x A2 x…… xAn = {(a1, a2 …… an)   a1  A1 ……..an  An}. 

 

For example, if R is the set of all real numbers, then 

 

R x R = {(a1, a2)   a1,  R, a2  R} 

R x R x R = {(a1, a2, a3)   ai,  R; i = 1, 2, 3}, and so on.  It is customary to write 

R
2
 for R x R and R

n
 for R x ……… x R (in n times). 

 

Now, you know that every point in a plane has two coordinates, x and y. Also, every 

ordered pair (x, y) of real numbers defines the coordinates of a point in the plane. So, 

we can say that R
2 

represents a plane. In fact, R
2
 is the Cartesian product of the x-axis 
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and the y-axis.  In the same way R
3
 represents three-dimensional space, and R

n
 

represents n-dimensional space, for any n 1. Note that R represents a line. 

 

Try the following exercises now. 

 

SELF ASSESSMENT EXERCISE 7 

 

If A = {2, 5} B = {2, 3}, find A x B, B x A and A x A. 

 

SELF ASSESSMENT EXERCISE 8 

 

If A x B = {(7, 2), (7, 3), (7, 4), (2, 2), (2, 4)}, determine A and B. 

 

SELF ASSESSMENT EXERCISE 9 

 

Prove that (A   B) x C = (A x C)   (B x C) and (A   B) x C == (A x C)   (B x C). 

 

Let us now look at certain subsets of Cartesian products. 

 

3.3 Relations 
 

You are already familiar with the concept of a relationship between people. For 

example, a parent-child relationship exists between A and B if and only if A is a 

parent of B or B is a parent of A. 

 

In mathematics, relation R on a set S is a relationship between the elements of S.  If a 

 S is related to b  S by means of relation, we write a R b or (a, b)  R S x S. 

And this is exactly how we define a relation on a set. 

 

Definition 

 

A relation R defined on a set S is a subset of S x S. 

 

For example, if N is the set of natural and R is the relation‟ is a multiple of‟ then 15 R 

5, but not 5 R 15.  That is, (15, 5)  R but (5, 15)  R.  Here R   N x N. 

 

Again, if Q is the set of all rational numbers and R is the relation „is greater than‟, 

then 3 R 2 (because 3> 2). 

 

The following exercise deals with relations. 
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SELF ASSESSMENT EXERCISE 10 
 

Let N be the set of all natural numbers and R the relation {(a, a
2
) a  N}.  State 

whether the following are true or false: 

 

a. 2 R 3,  b. 3 R 9,  c. 9 R 3. 

 

We now look at some particular kinds of relations. 

 

Definition 

 

A relation R defined on a set S is said to be 

 

i. reflexive if we have aRa  a  S. 

ii. symmetric if aRb  bRa  a , b  S. 

iii. transitive if aRb and bRc  aRc  a, b, c  S. 

 

To get used to these concepts, consider the following examples.  

 

Example 1 

 

Consider the relation R on Z given by „aRb iff and only if a> b‟.   Determine whether 

R is reflexive, symmetric and transitive.  

 

Solution 

 

Since a > a is not true, aRa is not true. Hence, R is not reflexive.  

 

If a > b, then certainly b > a is not true.  That is, aRb does not imply bRa.  Hence, it is 

symmetric, 

 

Since a > b and b > c implies a > c, we find that aRb, bRc implies aRc. Thus, R is 

transitive. 

 

Example 2 

 

Let S be a non-empty set. Let  (S) denote the set of all S, i.e.,  (S) = {A : A   S}. 

We call  (S) the power set of S. 

 

Define the relation R on  (S) by 

R= {(A, B)    A, B   (S) and A   B}. 

 

Check whether R is reflexive, symmetric or transitive. 
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Solution 

 

Since A   A V A   (S), R is reflexive. 

 

If A   B, B need not be contained in A. (In fact, A   Band B   A   A = B.)  

Thus, R is not symmetric. 

 

If A Band B   C, then A   C V A, B, C  (S). Thus, R is transitive. 

 

You may like to try the following exercises now.  

 

SELF ASSESSMENT EXERCISE 11 

 

The relation R   N x N is defined by (a, b), R if 5 divides (a -b).  Is R Reflexive? 

Symmetric? Transitive? , 

 

 

 

 

SELF ASSESSMENT EXERCISE 12 

 

Give examples to show why the relation in Self-Assessment Exercise l0 is not 

reflexive, symmetric or transitive. 

 

The relationship in Self-Assessment Exercise 11 is reflexive, symmetric and 

transitive.  Such a relation is called an equivalence relation. 

 

A very important property of an equivalence relation on a set S is that it divides S into 

a number of mutually disjoint subsets, that is, it partitions S. Let us see how this 

happens. 

 

Let R be an equivalence relation on the set S. Let a  S. Then the set {b  S  aRb} is 

called the equivalence class of a in S. It is just the set of elements in S which are 

related to a. We denote it by [a]. 

 

For instance, what is the equivalence class of 1 for R given in Self- Assessment 

Exercise 11? 

 

This is 

 

[1] = {n  | 1Rn, n  N} 

= { n | n  N and 5 divides 1-n} 

= { n | n  N and 5 divides n-1} 

= {1, 6, 11, 16, 21 ...}, 
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[2] = { n | n  N and 5 divides n-2} 

= {2, 7, 12, 17, 22,}, 

[3] = {3, 8, 13, 18, 23 ...}, 

[4] = {4, 9, 14, 19, 24,}, 

[5] = {5, 10, 15, 20, 25 ...}, 

[6] = {1, 6, 11, 16, 21 ...}, 

[7] = {2, 7, 12, 17, 22 ...}, 

 

Note that 
 

i. [1] and [6] are not disjoint. In fact, [1] = [6]. Similarly, [2] = [7], and so on. 

ii N = [1]  [2]   [3]   [4]   [5], and the sets on the right hand side are 

mutually disjoint. 
 

We will prove these observations in general in the following theorem. 

 

Theorem 1 
 

Let R be an equivalence relation on a set S. For a   S, let [a] denote the equivalence 

class of a. then 
 

a. a  [a], 

b. b  [a]  [a] = [b], 

c. S = 
Sa

 [a] 

d. if a, b  S, then [a]  [b] =   or [a] = [b]. 

 

Proof:   a. Since R is an equivalence relation, it is reflexive. 

 

 aRa V a  S,  a  [a]. 

 

b. Firstly, assume that b  [a]. We will show that [a]   [b] and [b]   [a].  For 

this, let x  [a].  Then  xRa. 

 

We also know that aRb. Thus, by transitivity of R, we have xRb, i.e., x  [b].  [a] 

  [b].   

 

We can similarly show that [b]   [a]. 

 [a] = [b]. 

 

Conversely, assume that [a] = [b].  Then b  [b].   b  [a]. 

 

c. Since [a]   S V a  S, 
Sa

  [a]   S (see Self Assessment Exercise 2). 
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Conversely, let x  S.  Then  [x], x    [x] by (a) above. [x] is one of the sets in the 

collection whose union is
Sa

  [a].  

Hence, x = 
Sa

  [a]. So, S   
Sa

  [a]. 

Thus, S   
Sa

  [a] and 
Sa

 [a]   S, proving (c). 

 

d. Suppose [a]   [b]  .  Let x   [a]   [b]. 

  

Then x  [a] and x  [b] 

 [x] = [a] and [x] = [b], by (b) above 

 [a] = [b]. 

 

Note that in Theorem 1, distinct sets on the right hand side of (c) are mutually disjoint 

because of (d). Therefore, (c) expresses S as a union of mutually disjoint subsets of S; 

that is we have a partition of S into equivalence classes. 
 

Let us look at some more examples of partitioning a set into equivalence classes. 
 

Examples 3 

 

Let S be the set of straight lines in R x R. Consider the relation on S given by „L1 R L2 

if L1 = L2 or L1 is parallel to L2‟. Show that R is an equivalence relation. What are the 

equivalence classes in S? 

 

Solution 
 

R is reflexive, symmetric and transitive. Thus, R is an equivalence relation. 
 

Now, take any line L1 (see Fig. 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y 

X 

L 

O 

L1 

Fig. 1: The equivalence class of L1 
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Let L be the line through (0, 0) and parallel to L1. Then L [L1]. Thus, [L] = [L1]. In 

this way the distinct through (0, 0) give distinct equivalence classes into which S is 

partitioned. Each equivalence class [L] consists of all the lines in the planes that are 

parallel to L. 

 

Now for a nice self assessment exercise! 

 

SELF ASSESSMENT EXERCISE 13 

 

Show that „aRb if and only if |a| = |b|‟ is an equivalence relation on Z. what are [0] and 

[1]? 

 

In the next section we will briefly discuss a concept that you may be familiar with 

namely, functions. 

 

3.4 Functions 
 

Recall that a function f from a non-empty set A to a non-empty set B is a rule which 

associates with every element of A exactly on element of B. This is written as f: A  

B. If f associates with a  A, the element b of B, we write f(a) = b. A is called the 

domain of f, and the set f(A) = {f(a) | a  A} is called the range of f. The range of f is 

a subset of B, i.e., f(A)   B. B is called the codomain of f. 

 

Note that 

 

i. For each element of A, we associate some element of B. 

 

ii. For each element of A, we associate only one element of B. 

 

iii Two or more elements of A could be associated with the same element of B. 

 

For example, let A = {1, 2, 3}, B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Define f: A  B by 

f(1) = 1, f(2) = 4, f(3) = 9. Then f is a function with domain A and range {1, 4, 9}. In 

this case we can also write f(x) = x
2
 fro each x  A or f: A  B: f(x) = x

2
.  We will 

often use this notation for defining any function. 

 

If we define g: A  B by g(1) = 1, g(2) = 1, g(3) = 4, then g is also a function. The 

domain of g remains the same, namely, A. but the range of g is {1, 4}. 

 

Remark 

 

We can also consider a function f: A  B to be the subset {(a, f(a)) | a  A} of A x B. 

 

Now let us look at functions with special properties. 
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Definition 

 

A function f: A  B is called one-to-one (or injective) if f associates different 

elements of A with different elements of B, i.e., if a1, a2   A and a1 ≠ a2, then f(a1) ≠ 

f(a2). In other words, f is 1 - 1 if f(a1) = f(a2)  a1 = a2. 

 

In the examples given above, the function f is one-to-one. The function g is not one-

one because 1 and 2 are distinct elements of A, but g(1) = g(2). 

 

Now consider another example of sets and functions. 

 

Let A = {1, 2, 3}, B = {p, q, r}. Let f: A  B be defined by f(1) = q, f(2) = r, f(3) = p. 

then f is a function. Here the range of f = B = codomain of f. This is an example of an 

onto function, as you shall see. 

 

Definition 

 

A function f: A  B is called onto (or surjective) if the range of f is B, i.e., if, for 

each b  B, there is an a  A such that f (a) = b. In other words, f is onto if f(A) = B. 

 

For another important example of a surjective function, consider two non-empty sets 

A and B. we define the function 1: A x B  A: 1 ((a, b)) = a. 1 is called the 

projection of A x B onto A. You can see that the range of 1 is the whole of A. 

Therefore, 1 is onto. Similarly, 2: A x B  B: 2 ((a, b)) = b, the projection of A x B 

onto B, is a surjective function. 

 

If a function is both one-to-one and onto, it is called bijective, or a bijection. You will 

be using this type of function heavily in Block 2 of this course. 

 

Consider the following example that you will use again and again. 

 

Example 4 

 

Let A be any set. The function IA: A  A: IA(a) = a is called the identity function on 

A. Show that IA is bijective. 

 

Solution 

 

For any a  A, IA(a) = a. Thus, the range of IA is the whole of A. That is, IA is onto. 

 

IA is also: because if a1, a2,  A such that a1 ≠ a2, then IA (a1) ≠ IA(a2). 

 

Thus, IA is bijective. 
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If f: A  B is a bijection, then we also say that the sets A and B are equivalent.  Any 

set which is equivalent to the set {1, 2, 3……... n}, for some n  N, is called a finite 

set. A set that is not finite is called an infinite set. 

 

Convention  
 

The empty set f  is assumed to be finite. 

Try the following self assessment exercise now. 

 

SELF ASSESSMENT EXERCISE 14 

 

Let f: N  N be defined by f(n) = n + 5. Prove that f is one-to-one but not onto. 

 

SELF ASSESSMENT EXERCISE 15 

 

Let f: Z  Z be defined by f(n) = n + 5. Prove that f is both one-one and onto. 

 

The next exercise deals with a function that you will often come across, namely, the 

constant function f: A  B: f(a) = c, where c is a fixed element of B. 

 

SELF ASSESSMENT EXERCISE 16 

 

What must X be like for the constant function f: X  {c} to be injective? Is f 

surjective? 

 

Let us now see what the inverse image of a function is. 

 

Definition 

 

Let A and B be two sets and f: A  B be a function. Then, for any subset S of B, the 

inverse image of S under f is the set. 

 

f
-1

(S) = {a  A | f(a)  S}. 
 

For example, 1
AI- (A) = {a  A | IA(a)  A} = A. 

 

Again, for the function f in Self-Assessment Exercise 14, 

f
-1

 ({1, 2, 3}) = {n  N | f(n)  {1, 2, 3}} 

  = {n  N | n+5  {1, 2, 3}} 

  = , the empty set. 

 

But f
-1

 (N) = {6, 7, 8, .....}. 

 

We now give some nice theorems involving the inverse image of a function. 
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Theorem 2 

 

Let f : A  B be a function. Then, 

a) for any subset S of B, f(f
-1

(S))   S. 

b) for any subset X of A, X   f
-1

(f(X)). 

 

Proof 

 

We will prove (a) and you can prove (b) (see Self Assessment Exercise 17).  Let b  

f(f
-1

(S)). Then, by definition,   a  f
-1

(S) such that b = f(a). But a  f
-1

(S)  f(a)  S. 

That is, b  S. Thus, f(f
-1

(S)   S. 

 

The theorem will be proved once you solve Self Assessment Exercise 17. 

 

SELF ASSESSMENT EXERCISE 17 

 

Prove (b) of Theorem 2. 

 

SELF ASSESSMENT EXERCISE 18 

 

Given f: A  B and S, T   B, show that 

 

a. if S   T, then f
-1

(S)   f
-1

(T). 

b. f
-1 

(S  T) = f
-1

(S)  f
-1

(T) 

c. f
-1

 (S  T) = f
-1

(S)  f
-1

(T) 

 

Now let us look at the most important way of producing new functions from given 

ones. 

 

Composition of Functions 

 

If f : A  B and g: C  D are functions and if the range of f is a subset of C, there is 

a natural way of combining g and f to yield a new function  

h: A  D. Let us see how. 

 

For each x  A, h(x) is defined by the formula h(x) = g(f(x)). 

 

Note that f(x) is in the range of f, so that f(x)  C. Therefore, g(f(x)) is defined and is 

an element of D. This function h is called the composition of g and f and is written as 

g f. The domain of g f is A and its codomain is D. In most cases that we will be 

dealing with we will have B = C. Let us look at some examples. 

 

 

 



MTH 211                                                                                  SET THEORY AND ABSTRACT ALGEBRA 

 

 
18 

Example 5 
 

Let f: R  R and g: R  R be defined by f(x) = x
2
 and g(x) = x + 1. What is g f? 

What is f g? 

 

Solution 

 

We observe that the range of f is a subset of R, the domain of g. Therefore, g f is 

defined. By definition, Vx R,g f(x) = g(f(x)) = f(x) + 1 = x
2
 + 1. 

 

Now, let us find f g. Again, it is easy to see that f g is defined.  Vx  R,f g(x) = 

f(g(x)) = (g(x))
2
 = (x + 1)

2
. 

 

So f g and g f are both defined. But g f ≠ f g. 

 

Example 6 

 

Let A = {1, 2, 3}, B = {p, q, r} and C = {x, y}. Let f: A  B be defined by f(1) = p, 

f(2) = p, f(3) = r. Let g: B  C be defined by g(p) = x, g(q) = y, g(r) = y. determine if 

f g and g f can be defined. 

 

Solution 

 

For f g to be defined, it is necessary that the range of g should be a subset of the 

domain of f. In this case the range of g is C and the domain of f is A. As C is not a 

subset of A, f g cannot be defined. 

 

Since the range of f, which is {p, r}, is a subset of B, the domain of g, we see that g f 

is defined. Also g f: A  C is such that 

 

g f(1) = g(f(1)) = g(p) = x, 

g f(2) = g(f(2)) = g(p) = x, 

g f(3) = g(f(3)) = g(r) = y. 

 

In this example note that g is surjective, and so is g f. 

 

Now for an exercise on the composition of functions. 

 

SELF ASSESSMENT EXERCISE 19 

 

In each of the following questions, both f and g are functions from R  R. Define f g 

and g f. 

a. f(x) = 5x, g(x) = x + 5 

b. f(x) = 5x, g(x) = x/5 

c. f(x) = | x |, g(x) = x
2
. 
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We now come to a theorem which shows us that the identity function behaves like the 

number 1  R does for multiplication. That is, if we take the composition of any 

function f with a suitable identity function, we get the same function f. 

 

Theorem 3 

 

Let A be a set. For every function f: A  A, we have f IA = IA f = f. 

 

Proof 

 

Since both f and IA are defined from A to A, both the compositions f IA and IA f are 

defined. Moreover, V x A., 

f IA(x) = f(IA(x)) = f(x), so f IA = f. 

Also, Vx A, IA f(x) = IA(f(x)) = f(x), so IA f = f. 

  

You can try the next self assessment exercise on the lines of this theorem. 

 

SELF ASSESSMENT EXERCISE 20 

 

If A and B are sets and g: B  A, prove that IA g = g and g IB = g. 

 

In the case of  real numbers, you know that given any real number x ≠ 0, y  ≠ 0 such 

that xy = 1. y is called the inverse of x. Similarly, we can define an inverse function 

for a given function. 

 

Definition 
 

Let f: A  B be a given function. If there exists a function g: B  A such that f g = 

IB and g f = IA, then we say that g is the inverse of f, and we write g = f
-1

. 

 

For example, consider f: R  R defined by f(x) = x + 3. If we define g: R R by g(x) 

= x – 3, then f g(x) = f(g(x)) = g(x) + 3 = (x – 3) + 3 = x Vx R. Hence, f g = IR. 

You can also verify that g f = IR. So g = f
-1

. 

 

Note that in this example f adds 3 to x and g does the opposite – it subtracts 3 from x. 

Thus, the key to filling the inverse of a given function is: try to retrieve x from f(x). 

 

For example, let f: R  R be defined by f(x) = 3x + 5. How can we retrieve x from 3x 

+ 5? The answer is “first subtract 5 and then divide by 3”. So, we try g(x) =
x 5

3

-
. And 

we find g f(x) = g(f(x)) = 
f (x ) 5

3

-
 = 

(3x 5) 5

3

+ -
 = x. 

Also, f g(x) = 3(g(x)) = 3 






 

3

)5(x
 + 5 = x. 
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Let‟s see if you‟ve understood the process of extracting the inverse of a function. 

 

SELF ASSESSMENT EXERCISE 21 

What is the inverse of f: R  R: f(x) =
x

3
? 

 

Do all functions have an inverse? No, as the following example shows. 

 

Example 7 

 

Let f: R  R, be the constant function given by f(x) = 1 Vx R.  What is the inverse. 

 

Solution 

 

If f has an inverse g: R  R, we have f g = Ig, i.e. V x R,   f g(x) = x.  

 

Now take x = 5. We should have f g (5) = 5, i.e., f(g(5)) = 5. But f(g(5)) = 1, 

 

Since f(x) = 1 V xR. So we reach a contradiction. Therefore, f has no inverse. 

 

In view of this example, we naturally ask for necessary and sufficient conditions for f 

to have an inverse. The answer is given by the following theorem. 

 

Theorem 4 

 

A function f: A  B has an inverse if and only if f is bijective. 

 

Proof 

 

Firstly, suppose f is bijective. We shall define a function g: B  A and prove that g = 

f
-1

. 

 

Let b  B. Since f is onto, there is some a  A such that f(a) = b. Since f is one-one, 

there is only one such a  A. We take this unique element a of A as g(b). That is, 

given b  B, we define g(b) = a, where f(a) = b. 

 

Note that, since f is onto, B = {f(a) | a  A}. Then, we are simply defining g: B  A 

by g(f(a)) = a. This automatically ensures that g f = IA. 

 

Now, let b  B and g(b) = a. Then f(a) = b, by definition of g. Therefore, f g(b) = 

f(g(b)) = f(a) = b. Hence, f g = IB. 

 

So, f g = IB and g f = IA. This proves that g = f
-1

. 

 

Conversely, suppose f has an inverse and that g = f
-1

. We must prove that f is one-one 

and onto. 
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Suppose f(a1) = f(a2). Then g(f(a1)) = g(f(a2)). 

 g f(a1) = g f(a2) 

 a1 = a2, because g f = IA. 

So, f is one-one. 

 

Next, given b  B, we have fog = IB, so that f g(b) = IB(b) = b, 

i.e., f(g(b)) = b. That is, f is onto. 

 

Hence, the theorem is proved. 
 

Try the following self assessment exercise now. 

 

SELF ASSESSMENT EXERCISE 22 
 

Consider the following functions from R to R. For each determine whether it has an 

inverse and, when the inverse exists, find it. 
 

a. f(x) = x
2 
V x R. 

b. f(x) = 0 V x R. 

c. f(x) = 11x + 7 V x R. 

 

Let us now discuss some elementary number theory. 

 

3.5 Some Number Theory 
 

In this section we will spell out certain factorization properties of integers that we will 

use throughout the course. For this we first need to present the principle of finite 

induction. 

 

3.5.1 Principle of Induction 
 

We will first state an axiom of the integers that we will often use implicitly, namely, 

the well-ordering principle. We start with a definition. 

 

Definition 

 

Let S be a non-empty subset of Z. An element a  S is called a least element (or a 

minimum element) of S if a  b V b  S. For example, n has a least element, namely, 

1. But Z has no least element. In fact, many subsets of Z, like 2Z, {-1, -2, -3, .....}, 

etc., don‟t have least elements. 

 

The following axiom tells us of some sets that have a least element. 

 

Well-ordering Principle: Every non-empty subset of N has a least element. 
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You may be surprised to know that this principle is actually equivalent to the principle 

of finite induction, which we now state. 

 

Theorem 5 

 

 Let S  N such that 

 

i. 1  S, and 

ii. Whenever k  S, then k + 1  S 

Then S = N 

 

This theorem is further equivalent to: 

 

Theorem 6 

 

Let S   N such that 

 

i. 1  S, and 

ii. if m  S V m < k, then k  S. 

then S = N 

 

We will not prove the equivalence of the well-ordering principle and Theorems 5 and 

6 in this course, since the proof is slightly technical. 

 

Let us rewrite Theorem 5 and 6 in the forms that we will normally use. 

 

Theorem 5’: Let P(n) be a statement about a positive integer n such that 

 

i. P(1) is true, and 

ii. if P(k) is true for some k  N, then P(k + 1) is true. 

Then, P(n) is true for all n  N. 

 

Theorem 6‟: Let P(n) be a statement about a positive integer n such that 

 

i. P(1) is true, and 

ii. if P(m) is true for all positive integers m < k, then P(k) is true. 

Then P(n) is true for all n  N. 

 

The equivalence statements given above are very useful for proving a lot of results in 

algebra. As we go along, we will often use the principle of induction in whichever 

form is convenient. Let us look at an example. 

 

Example 8 

Prove that 1
3
 + 2

3
 +.............. + n

3
 = 

2 2n (n 1)

4

+
 for every n  N. 
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Solution 

 

Let Sn = 1
3
 +................. + n

3
, and let P(n) be the statement that  

S =
2 2n (n 1)

4

+
. 

 

Since S1 =
4

2x1 22

, P(1) is true. 

 

Now, suppose P(n – 1) is true, i.e., Sn-1 = 
2 2(n 1) n

4

-
 

 

Then Sn = 1
3
 + ................ + (n – 1)

3
 + n

3
 

= Sn-1 + n
3
 

= 
2 2(n 1) n

4

-
 + n

3
, since P(n – 1) is true. 

= 
2 2n [(n 1) 4n]

4

- +
 

= 
2 2n (n 1)

4

+
 

 

Thus, P(n) is true. 

 

Therefore, by the principle of induction, P(n) is true for all n in N. 

 

Now, use the principle of induction to prove the following property of numbers that 

you must have used time and again. 

 

SELF ASSESSMENT EXERCISE 23 

 

For a, b  R and n  N, prove that (ab)
n
 = a

n
b

n
. 

 

Let us now look at some factorization properties of integers. 

 

3.5.2 Divisibility in Z 
 

One of the fundamental ideas of number theory is the divisibility of integers. 

 

Definition 

 

Let a, b  Z, a ≠ 0. Then, we say that a divides b if there exists an integer c such that 

b = ac. We write this as a | b and say that a is a divisor (or factor) of b, or b is 

divisible by a, or b is a multiple of a. 
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If a does not divide b we write a | b. 

 

We give some properties of divisibility of integers in the following exercise. You can 

prove them very easily. 

 

SELF ASSESSMENT EXERCISE 24 

 

Let a, b, c be non-zero integers. Then 

 

a. a | 0, ± 1 | a, ± a | a. 

b. a | b  ac | bc. 

c. a | b and b | c  a | c. 

d. a | b and b | a  a = ± b. 

e. c | a and c | b  c | (ax + by) V x, y  Z. 

 

We will now give a result, to prove which we use Theorem 5‟. 

 

Theorem 7 

 

(Division Algorithm): Let a, b  Z, b > 0. Then there exists unique integers q, r such 

that a = qb + r, where 0   r < b. 

 

Proof 

 

We will first prove that q and r exist. Then we will show that they are unique. To 

prove their existence, we will consider three different situations: a = 0, a > 0, a < 0. 

 

Case 1  (a = 0) : Take q = 0, r = 0. Then a = qb + r. 

 

Case 2  (a > 0) : Let P(n) be the statement that n = qb + r for some q, r  Z, 0  r < b. 

 

Now let us see if P(1) is true. 

 

If b = 1, we can take q = 1, r = 0, and thus, 1 = 1.1 + 0. 

 

If b ≠ 1, then take q = 0, r = 1, i.e., 1 = 0.b + 1. 

 

So, P(1) is true. 

 

Now suppose P(n - 1) is true, i.e., (n – 1) = q1b + r1 for some q1, r1  Z, 0   r1 < b. But 

then r1   b – 1, i.e., r1 + 1  b. Therefore, 
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n = 







b1rif,0b)1q(

b)1r(if),1r(bq

11

111

  

This shows that P (n) is true. Hence, by theorem 5‟, P(n) is true, for any n  N. That 

is, for a > 0, a = qb + r, q, r  Z, 0  r < b. 

 

Case 3  (a < 0): Here (-a) > 0. Therefore, by Case 2, we can write 

 

(-a) = qb + r‟, 0  r‟ < b 

 

i.e., a = 








b'r0if),'rb(b)1q(

0'rif,b)q(

 

 
 

 

This proves the existence of the integers q, r with the required properties. 

 

Now let q‟, r‟ be in Z such that a = qb + r and a = q‟b + r‟, where 0  r, r‟ < b. Then r 

– r‟ = b(q‟ – q). Thus, b | (r – r‟). But |r – r‟| < b. Hence, r – r‟ = 0, i.e., r = r‟ and q = 

q‟. So we have proved the uniqueness of q and r. 

 

In the expression, a = qb + r, 0   r < b, r is called the remainder obtained when a is 

divided by b. 

 

Let us go back to discussing factors. 

 

Definition 

 

Let a, b  Z. c  Z is called a common divisor of a and b if c | a and c | b. 

 

For example, 2 is a common divisor of 2 and 4. From Self Assessment Exercise 24(a) 

you know that 1 and -1 are common divisors of a and b, for any a, b  Z. Thus, a pair 

of integers does have more than one common divisor. This fact leads us to the 

following definition. 

 

Definition 

 

An integer d is said to be a greatest common divisor (g.c.d in short) of two non-zero 

integers a and b if 

 

i. d | a and d | b, and 

ii. if c | a and c | b, then c | d. 
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Note that if d and d‟ are two g.c.d s of a and b, then (ii) says that d | d‟ and d‟ | d. 

Thus, d = ± d‟ (see Self-Assessment Exercise 24). But then only one of them is 

positive. This unique positive g.c.d. is denoted by (a, b). 

 

We will now show that (a, b) exists for any non-zero integers a and b. You will also 

see how useful the well-ordering principle is. 

 

Theorem 8 

Any two non-zero integers a and b have a g.c.d, and (a, b) = ma + nb, for some m, n  

Z. 

 

Proof 

 

Let S = {xa + yb | x, y  Z, (xa + yb) > 0}. 

 

Since a
2
 + b

2
 > 0, a

2
 + b

2
  S, i.e., S ≠ f . But then, by the well-ordering principle, S 

has a least d  S. Therefore, d > 0. So by the division algorithm we can write 

a = qd + r, 0 < r < d. Thus, 

r = a – qd = a – q(ma + nb) = (1 – qm)a + (-q)b. 

 

Now, if r ≠ 0, then r  S, which contradicts the minimality of d in S. Thus, r = 0, i.e., 

a = qd, i.e., d | a. We can similarly show that d | b. Thus, d is a common divisor of a 

and b. 

 

Now, let c be an integer such that c | a and c | b. 

 

Then a = a1c, b = b1c for some a1, b1  Z. 

 

But then d = ma + nb = ma1c + nb1c. Thus, c | d. So we have shown that d is a g.c.d. In 

fact, it is the unique positive g.c.d. (a, b). 

 

For example, the g.c.d. is 2 and 10 is 2 = 1.2 + 0.10, and the g.c.d. of 2 and 3 is 1 = (-

1) 2+ 1(3). 

 

 Pair of integers whose g.c.d. is 1 have a special name. 

 

Definition 

 

If (a, b) = 1, then the two integers a and b are said to be relatively prime (or co 

prime) to each other. 

 

Using Theorem 8, we can say that a and b are co prime to each other iff there 

exists m, a  Z such that 1 = ma + nb. 

 

The next theorem shows us a nice property of relatively prime numbers. 
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Theorem 9 

 

If a, b  Z, such that (a, b) = 1 and b | ac, then b | c. 

 

Proof 

 

We know that   m, n  Z such that 1 = ma + nb. Then c = c.1 = c(ma +nb) = mac + 

nbc. 

 

Now, b | ac and b | bc.  b | (mac + nbc) (by Self-Assessment Exercise 24(c)). Thus, 

b | c. 

 

Let us now discuss prime factorization. 

 

Definition 

 

A natural number p (≠ 1) is called a prime if its only divisors are 1 and p. If a natural 

number n (≠ 1) is not a prime, then it is called a composite number. 

 

For example, 2 and 3 are prime numbers, while 4 is a composite number. 

 

Note that, if p is a prime number and a  Z such that p |  a, then (p, a) = 1. 

 

Try the following self assessment exercise now. 

 

SELF ASSESSMENT EXERCISE 25 

 

If p is a prime and p | ab, then show that p | a or p | b. 

 

SELF ASSESSMENT EXERCISE 26 

 

If p is a prime and p| a1a2 ...... an, then show that p\ai for some i = 1, ..., n. 

 

Now consider the number 50. We can write 50 = 2 x 5 x 5 as a product of primes. In 

fact we can always express any natural number as a product of primes. This is what 

the unique prime factorization theorem says. 

 

Theorem 10  

 

(Unique Prime Factorisation): Every integer n > 1 can be written as n p1, p2 ............ 

pn, where p1, .........., pn are prime numbers. This representation is unique, except for 

the order in which the prime factors occur. 

 

Proof 
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We will first prove the existence of such a factorization. Let P (n) be the statement 

that n + 1 is a product of primes. P (1) is true, because 2 is a prime number itself. 

 

Now let us assume that P (m) is true for all positive integers m < k. We want to show 

that P (k) is true. If (k + 1) is a prime, P (k) is true. If k + 1 is not a prime, then we can 

write k + 1 = m1m2, where 1 < m1 < k + 1 and 1 < m2 < k + 1. But then P (m1 - 1) and 

P(m2 – 1) are both true. Thus, m1 = p1p2.........pr, m2 = q1 q2 ............ qs, where p1, p2... 

pr, q1, q2, ………, qs are primes. Thus, 

k + 1 = p1p2 … pr q1 q2 …. qs, i.e., P(k) is true. Hence, by Theorem 6‟, P(n) is true for 

every n  N. 

 

Now let us show that the factorisation is unique. 

Let n = p1p2 … pt = q1 q2 …. qs, where 

 

p1, p2 … pt, q1, q2 …. qs, are primes. We will use induction on t. 

 

If t = 1, then p1 = q1 q2 ……., qs. But p1 is a prime. Thus, its only factors are 1 and 

itself. Thus, s = 1 and p1 = q1. 

 

Now suppose t > 1 and the uniqueness holds for a product of t – 1 primes. Now p1 | 

q1q2 …… qs and hence, by Self-Assessment Exercise 26, p1 | q1 for some i. By re-

ordering q1, ….., qs we can assume that p1 | q1. But both p1 and q1 are primes. 

Therefore, p1 = q1 are primes.  

 

Therefore, p1 = q1. But then p2 …… pt = q2 ……. qs. So, by induction, t – 1 = s – 1 

and p2, ……., pt are the same as q2, ……qs in some order. 

 

Hence, we have proved the uniqueness of the factorisation. 

 

The primes that occur in the factorisation of a number may be repeated in the 

factorisation 50 = 2 x 5 x 5. By collecting the same primes together we can give the 

following corollary to Theorem 10. 

 

Corollary: Any natural number n can be uniquely written as n = 1m
1p 2m

2p ...... rm
rp , 

where for i = 1, 2, ........., r, each mi  N and each pi is a prime with 1 < p1 < p2 < …. < 

pr. 

 

As an application of Theorem 10, we give the following important theorem, due to the 

ancient Greek mathematician Euclid. 

 

Theorem 11 

 

There are infinitely many primes. 
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Proof 
 

Assume that the set P of prime numbers is finite, say 

P = {p1, p2, …., pn}. Consider the natural number 

n = (p1p2, ……, pn) + 1 

 

Now, suppose some pi | n. Then pi | (n – p1p2 ……In.. pn), i.e., pi | 1, a contradiction. 

Therefore, no pi divides n. But since n > 1, Theorem 10 says that n must have a prime 

factor. We reach a contradiction. Therefore, the set of primes must be infinite. 

Try the following self assessment exercise now. 

 

SELF ASSESSMENT EXERCISE 27 
 

Prove that p  is rational for any prime p. 

(Hint: Suppose p  is rational. Then p =
a

b
, where a, b  Z and we can assume that 

(a, b) = 1. Now use the properties of prime numbers that we have just discussed.) 

 

Let us now summarise what we have done inn this unit. 
 

4.0 CONCLUSION        
 

In this unit, we have placed emphasis on some properties of sets and subsets. We have 

also defined relations in general and equivalence relations in particular. The 

definitions of functions were also considered. The summary of what we have 

considered in this unit are given below, Please read carefully and master every bit of it 

in order for you to follow the subsequent units. 

 

5.0 SUMMARY 
 

In this unit we have covered the following points. 
 

 Some properties of sets and subsets. 

 The union, intersection, difference and complements of sets.  

 The Cartesian product of sets. 

 Relation in general and equivalence relations in particular. 

 The definition of a function, a 1-1 function, an onto function and a bijective 

function. 

 The composition of functions. 

 The well-ordering principle, which states that every subset of N has a least 

element. 

 The principle of finite induction, which states that : If P(n) is a statement about 

some n  N such that: 
 

- P(1) is true, and 

- if P(k) is true for some k  N, then P(k + 1) is true, 

then P(n) is true for every n  N. 
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 The principle of finite induction can also be stated as: 

If P(n) is a statement about some n  N such that 

- P(1) is true, and 

 

- if P(m) is true for every positive integer m < k, then P(k) is true, 

then P(n) is true for every n  N, 

 

Note that well-ordering principle is equivalent to the principle of finite induction. 

 

 Properties pf divisibility in Z, like the division algorithm and unique prime 

factorisation. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 1 

 

a) T  b) F  c) F  d) T 

 

ANSWER TO SELF ASSESSMENT EXERCISE 2 

 

a. x  A  B  x  A or x  B x  C, since A   C and B   C. 

  

b. x  A  B  x  A or x  B  x  B or x  A x  B  A.  A  B = 

B  A. 

 

c. x  A     x  A or x    x  A, since   has no element. 

 A      A. 

Also, A  A   , since x  A  x  A   . 

A = A    

 

ANSWER TO SELF ASSESSMENT EXERCISE 3 

 

a. You can do it on the lines of Self Assessment Exercise 2(b). 

 

b. x  A  B  x  A and x  B  x  A, since A   B. 

 A  B   A. 

 

Conversely, x  A  x  A and x  B since A   B. 

 x  A  B. 

 A   A  B. 

 A  B = A. 
 

c. Use the fact that     A. 
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ANSWER TO SELF ASSESSMENT EXERCISE 4 
 

a. x  (A  B)  C   x  A  B or x  C 

   x  A or x  B or x  C. 

   x  A or x  B  C 

   x  A  (B  C) 

  (A  B)  C = A  (B  C) 

 

b. Try it on the same lines as (a). 
 

c. B  C   B  A  (B  C)   A  B. 

  

Similarly, A  (B  C)   A  C. 

  A  (B  C)   (A  B)  (A  C) 
  

Conversely, x  (A  B)  (A  C) 

  x  A  B and x  A  C 

  x  A or x  B and x  A or x  C. 

  x  A or x  B  C 

  x  A  (B  C) 

  (A  B)  (A  C)   A  (B  C). 
  

Thus, (c) is proved 
 

d. Try it on the same lines as (c). 
 

ANSWER TO SELF ASSESSMENT EXERCISE 5 
 

a. T 

b. F.  For example, if A = [0, 1] and B = [0, 2], then 

 A B, B   and A   B = (0) ≠ . 

c. F, In fact, for any set A, A B. 

d. T. 

e. T. 
 

ANSWER TO SELF ASSESSMENT EXERCISE 6 
 

a. x  A iff x  A
c
. 

 

b. Since A and A
c
 are subsets of X, A  A

c
   X. 

 Conversely, if x  X and x A, then x A
c
. 

  X   A  A
c
. 

 X = A  A 
c
. 

 

c. x  A  x  A
c
  x  (A

c
)

c
. A = (A

c
)

c
. 
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ANSWER TO SELF ASSESSMENT EXERCISE 7 

 

A x B = {(2, 2), (2, 3), (5, 2), (5, 3)} 

B x A = {(2, 2), (3, 2), (2, 5), (3, 5)} 

A x A = {(2, 2), (2, 5), (5, 2), (5, 5)} 

 

ANSWER TO SELF ASSESSMENT EXERCISE 8 

 

The set of the first coordinates is A. A = {7, 2}. 

The set of the second coordinates is B. B = {2, 3, 4}. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 9 

 

(x, y)  (A  B) x C   x  A  B and y  C 

 x  A or x  B and y  C 

 x  A and y  C or x  B and y  C 

 (x, y)  A x C or (x, y)  B x C 

 (x, y)  (A x C)  (B x C). 

 

You can similarly show that 

 

(A  B) x C = (A x C)  (B x C). 

 

ANSWER TO SELF ASSESSMENT EXERCISE 10 

 

a. F  b. T  c. F 

 

ANSWER TO SELF ASSESSMENT EXERCISE 11 

 

Since 5 divides (a - a) = 0 V a  N, R is reflexive. 

If 5 | (a – b), then 5 | (b – a). , R is symmetric. 

If 5 | (a – b), then 5 | (b – c), then 5 | {(a – b) + (b – c)}, i.e. 

5 | (a – c). , R is transitive. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 12 

 

2 R 2 is false 

(2, 4)  R, but (4, 2)  R. 

(2, 4)  R, (4, 16)  R, but (2, 16)  R. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 13 

 

|a| = |a|  V a  Z , R is reflexive. 

|a| = |b|  |b| = |a| , R is symmetric. 

|a| = |b| and |b| = |c|  |a| = |c|. , R is transitive. 
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, R is an equivalence relation. 

 

[0] = {a  Z | aR0} = {a  Z | |a| = 0} = {0}. 

[1] = {1, -1}. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 14 

 

For n, m  N, f(n) = f(m)  n + 5 = m + 5  n = m. 

, f is 1 – 1. 

Since 1  f(N), f(N) ≠N., f is not surjective. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 15 

 

f is 1 – 1 (as in Self Assessment Exercise 14). 

For any z  Z, f(z – 5) = z. , f is surjective, and hence, bijective. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 16 

 

f(x) = c  V  x  X. 

 

Suppose X has at least two elements, say x and y. Then f(x) = c = f(y), but x ≠ y. That 

is, f is not 1 – 1. Therefore, if f is 1 – 1, then X consists of only one element. 

 

Since f(X) = {c}, f is surjective. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 17 

 

x  X  f(x)  f(X)  x  f
-1

 (f(X))., X   f
-1

 f(X)). 

 

ANSWER TO SELF ASSESSMENT EXERCISE 18 

 

a. x  f
-1

 (S)  f(x)  ST. 

 f(x)  S or f(x)T 

 x  f
-1

 (S) or x f
-1

 (T) 

  f
-1

 (S)   f
-1

 (T). 

 

b. x  f
-1

 (S  T)  f(x)  S  T 

  f(x)  S or f(x)  T 

  x f
-1

 (S) or x  f
-1

 (T) 

  x f
-1

 (S) f
-1

 (T) 

 

c.) Do it on the lines of (b). 
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ANSWER TO SELF ASSESSMENT EXERCISE 19 

 

f g and g f are functions from R to R in all cases. 

 

a. f g (x) = f(x + 5) = 5(x + 5)  V x  R 

g f (x) = g(5x) = 5x + 5 V  x  R. 

 

b. f g (x) = g f (x) = x V x  R. 

 

c. f g (x) = x
2
 = g f (x) V x  R. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 20 

 

Show that IA g(b) = g(b) and g IB(b) = g(b) V b  B. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 21 

 

g : R  R : g(x) = 3x. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 22 

 

a. f is not 1 – 1, since f(1) = f(-1). 

, f
-1

 doesn‟t exist. 

 

b. f is not surjective, since f(R) ≠ R. 

 , f
-1

 doesn‟t exist. 

 

c. f is bijective, , f
-1

 exists. 

f
-1

: R  R : f
-1

(x) = 
x 7

11

-
. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 23 

 

Let P(n) be the statement that (ab)
n
 = a

n
b

n
. 

P(1) is true. Assume that P(n – 1) is true. Then 

(ab)
n
 = (ab)

n-1
 (ab) = (a

n-1
 b

n-1
)ab, since P(n -1) is true. 

= a
n-1

 (b
n-1

a)b 

= a
n-1

 (ab
n-1

)b 

= a
n
b

n
. 

, P(n) is true 

, P(n) is true V n N. 
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ANSWER TO SELF ASSESSMENT EXERCISE 24 

 

a. Since a.0 = 0, a | 0. 

(± 1) (± a) = a. ± 1 | a and ± a | a. 

b. a | b  b = ad, for some d  Z 

 bc = (ac)d, 

 ac | bc 

 

c. b = ad, c = be, for some d, e  Z. 

, c = ade. , a | c. 

 

d. a | b  b = ad,  for some d  Z 

b | a  a = be, for some e  Z. 

, a = ade  de = 1, since a ≠ 0. 

, e = ± 1. , a = ± b. 

 

e. c | a and c | b  a = cd, b = ce for some d, e Z. 

 , for any x, y  Z, ax + by = c(dx + ey). 

 , c | (ax + by). 

 

ANSWER TO SELF ASSESSMENT EXERCISE 25 

 

Suppose p |  a. Then (p, a) = 1. , by Theorem 9, p | b. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 26 

 

Let P(n) be the statement that p | a1 a2 ……… an 

 p | ai for some i = 1, 2, ……….., n. 

P(1) is true. 

 

Suppose P (m – 1) is true. 

 

Now, let p | a1a2 ……… am. Then p | (a1 ………. Am-1)am. 

By Self Assessment Exercise 25, p | (a1 a2 ……… am-1) or p | am. 

, p | ai for some i = 1, ……, m (since P(m – 1) is true). 

, P(m) is true. 

, P(n) is true V n N. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 27 
 

p  = 
a

b
 a

2
 = pb

2
  p | a

2
  p | a, since p is a prime. 
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Let a = pc. Then a
2
 = pb

2
  p

2
c

2
 = pb

2
  pc

2
 = b

2
 

 p | b
2
  p | b. 

, p | (a, b) = 1, a contradiction. 

, p  is irrational. 
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UNIT 2 GROUPS 

 
CONTENTS 

 
1.0 Introduction 

2.0 Objectives 

3.0 Main Content 

3.1 Binary Operations 

3.2 What is a Group? 

 3.3 Properties of Groups 

 3.4 Three Groups 

  3.4.1 Integers modulo n 

  3.4.2 Symmetric Group 

  3.4.3 Complex Numbers 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Readings 
 

1.0 INTRODUCTION 
 

In Unit 1 we have discussed some basic properties of sets and functions. In this unit 

we are going to discuss certain sets with algebraic structures. We call them groups. 
 

The theory of groups is one of the oldest branches of abstract algebra. It has many 

applications in mathematics and in the other sciences. Group theory has helped in 

developing physics, chemistry and computer science. Its own roots go back to the 

work of the eighteenth century mathematicians Lagrange, Ruffini and Galois. 
 

In this unit we start the study of this theory. We define groups and give some 

examples. Then we give details of some properties that the elements of a group 

satisfy. We finally discuss three well known and often used groups. In future units we 

will be developing group theory further. 

 

2.0 OBJECTIVES 

 

At the end of this unit, you should be able to: 
 

 define and give examples of binary operations 

 define and give examples of abelian and non-abelian groups 

 use the cancellation laws and laws of indices for various groups 

 use basic properties of integers modulo n, permutations and complex numbers. 
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3.0 MAIN CONTENT 
 

3.1 Binary Operations 
 

You are familiar with the usual operations of addition and multiplication in R, Q and 

C. The operations are examples of binary operations, a term that we will now define. 

 

Definition 

 

Let S be an non-empty set. Any function*  : S x S  S is called a binary operation 

on S. 

 

So, a binary operation associates a unique element of S to every ordered pair of 

elements of S. 

 

For a binary operation*  on S and (a, b)  S x S, we denote * (a, b) by a* b. 

 

We will use symbols like +, -, x, , ,*  and  to denote binary operations. 

 

Let us look at some examples. 

 

i. + and x are binary operations on Z. In fact, we have +(a, b) = a + b and x (a, b) 

= a ´  b V a, b  Z. We will normally denote a x b by ab. 

 

ii. Let (S) be the set of all subsets of S. Then the operations  and  are binary 

operations on  (S), since A  B and A  B are in  (S) for all subsets A 

and B of S. 

 

iii. Let X be a non-empty set and F(X) be the family of all functions f: X  X. 

Then the composition of functions is a binary operation on F (X), since f g  

F (X) "  f, g  F (X). 

 

We are now in a position to define certain properties that binary operations can have. 

 

Definition 

 

Let *  be a binary operation on a set S. We say that 

 

i. *  is closed on a subset T of S, if a *  b  T V a, b  T. 

 

ii. *  is associative if, for all a, b, c  S, (a, *  b) *  c = a *  (b *  c). 

 

iii. *  is commutative if, for all a, b Î  S, a *  b = b *  a. 
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For example, the operations of addition and multiplication on R are commutative as 

well as associative. But, subtraction is neither commutative nor associative on R. 

Why? Is a – b = b – a or (a – b) –c = a -  (b – c) V a, b, c  R? No, for example, 1 – 2 

≠ 2 – 1 and (1 – 2) -3 ≠ 1 – (2 – 3). Also subtraction is not closed on N   R, because 

1  N, 2  N but 1 – 2  N. 

Note that a binary operation on S is always closed on S, but may not be closed on a 

subset of S. 

 

Try the following self assessment exercise now. 

 

SELF ASSESSMENT EXERCISE 1 

 

For the following binary operations defined on R, determine whether they are 

commutative or associative. Are they closed on N? 

 

1. x   y = x + y – 5 

2. x *  y = 2(x + y) 

3. x  y = 
x y

2

-
 

for all x, y  R. 

 

In calculations you must have often used the fact that a(b + c) = ab + ac and (b + c) a 

= ba + ca V a, b, c  R. This fact says that multiplication distributes over addition in 

R. In general, we have the following definition. 

 

Definition 

 

If  and *  are two binary operations on a set S, we say that *  is distributive over  if 

V a, b, c  S, we have a *  (b  c) = (a *  b)  (a *  c) and (b  c) *  a = (b *  a)  (c *  

a). 

 

For example, let a *  b = 
a b

2

+
  V a, b  R. Then a(b *  c) = a 







 

2

cb
 = 

ab ac

2

+
 = ab 

*  ac, and 

(b *  c)a = 






 

2

cb
a = 

ba ca

2

+
 = ba *  ca V a, b, c  R. 

 

Hence, multiplication is distributive over* . 

 

For another example, go back to Self Assessment Exercise 4 of Unit 1. What does it 

say? It says that the intersection of sets distributes over the union distributes over the 

intersection of sets. 
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Let us now look deeper at some binary operations. You know that, for any a  R, a + 

0 = a, 0 + a = a and a + (-a) = (-a) + a = 0. We say that 0 is the identity element for 

addition and (-a) is the negative or additive inverse of a. In general, we have the 

following definition. 

 

Definition 
 

Let *  be a binary operation on a set S. If there is an element e  S such that V a  S, 

a *  e = a and e *  a = a, then e is called an identity element for* . 
 

For a  S, we say that b  S is an inverse of a, if a *  b = e and b *  a = e. In this case 

we usually write b = a
-1

. 
 

Before discussing examples of identity elements and inverses consider the following 

result. In it we will prove the uniqueness of the identity element for* , and the 

uniqueness of the inverse of an element with respect to* , if it exists. 

 

Theorem 1 

 

Let *  be a binary operation on a set S. Then 

 

a. if *  has an identity element, it must be unique. 

 

b. if *  is associative and s  S has an inverse with respect to * , it must be unique. 
 

Proof 

 

a.  Suppose a and e‟ are both identity elements for* . 

 

Then e = e *  e ' , since e '  is an identity element. 

e = e ' , since e is an identity element. 

That is, e = e ' . Hence, the identity element is unique. 
 

b. Suppose there exist a, b  S such that s *  a = e = a *  s and s *  b = e = b *  s, e 

being the identity element for* . Then 

 a = a *  c = a *  (s *  b) 

 = (a *  s) *  b, since *  is associative. 

 = e *  b = b. 

 

That is, a = b. 

 

Hence, the inverse of s is unique. 

 

This uniqueness theorem allows us to say the identity element and the inverse, 

henceforth. 
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A binary operation may or may not have an identity element. For example, the 

operation of addition on N has no identity element. 

 

Similarly, an element may not have an inverse with respect to a binary operation. For 

example, 2Z has no inverse with respect to multiplication on Z, does it? 

 

Let us consider the following examples now. 

 

Example 1 

 

If the binary operation : R x R  R is defined by a   b = a + b – 1, prove that   

has an identity. If x  R, determine the inverse of x with respect to  , if it exists. 

 

Solution 

 

We are looking for some e  R such that a   e = a = e   a V a  R. So we want e  

R such that a + e – 1 = a V a  R. Obviously, e = 1 will satisfy this. Also, 1   a = a 

Va  R. Hence, 1 is the identity element of . 

 

For x  R, if b is the inverse of x, we should have b   x = 1. 

i.e., b + x – 1 = 1, i.e., b = 2 – x. Indeed, (2 – x)   x = (2 – x) + x – 1 = 1. 

Also, x   (2 – x) = x + 2 – x – 1 = 1. So, x
-1

 = 2 – x. 

 

Example 2 

 

Let S be a non-empty set. Consider (S), the set of all subsets of S. Are and  

commutative or associative operations on (S)? Do identity elements and inverses of 

elements of (S) exist with respect to these operations? 

 

Solution 

 

Since A B = B A and A B = B A V A, B  (S), the operations of union and 

intersection or are associative operations on (S).  Self Assessment Exercise of Unit 

1 also says that both operations are associative. You can see that the empty set   and 

the set are S the identities of the operations of union and intersection, respectively.  

Since S ≠ , there is no B  (S) such that S  B = . In fact, for any A  (S) 

such that A ≠  , A does not have an inverse with respect to union. Similarly, any 

proper subset of S does not have an inverse with respect to intersection. 

 

Try the following self assessment exercise now. 
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SELF ASSESSMENT EXERCISE 2 
 

1. Obtain the identity element, if it exists, for the operations given in Self 

Assessment Exercise 1. 
 

2. For x  R, obtain x
-1

 (if it exists) for each of the operations given in Self 

Assessment Exercise 1. 
 

When the set S under consideration is small, we can represent the way a binary 

operation on S acts by a table. 
 

Operation Table 
 

Let S be a finite set and *  be a binary operation on S. We can represent the binary 

operation by a square table, called an operation table or a Cayley table. The Cayley 

table is named after the famous mathematician Arthur Cayley (1821 – 1895). 
 

To write this table, we first list the elements of S vertically as well as horizontally, in 

the same order. Then we write a *  b in the table at the table at the intersection of the 

row headed by a and the column headed by b. 
 

For example, if S = {-1, 0, 1} and the binary operation is multiplication, denoted by 

then it can be represented by the following table. 

 

 

              -1                  0                 1 

 

-1 

   

       (-1).(-1)            (-1).0          (-1).1 

            =1                    =0              =-1 

 

 

0 

        

        0.(-1)               0.0          (-1).1 

           =0                =0              =0 

 

 

1 

        

        1.(-1)              1.0               1.1 

          =-1               =0                =1 

 

 

Conversely, if we are given a table, we can define a binary operation on S. For 

example, we can define the operation *  on S = {1, 2, 3} by the following table. 

 

*           1                   2                  3 

1          1                   2                  3 

2          3                   1                  2 

3          2                   3                  1 
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From this table we see that, for instance, 1 *  2 = 2 and 2 *  3 = 2. 

 

Now 2 *  1 = 3 and 1 *  2 = 2. 2 *  1 ≠ 1 *  2. That is, *  is not commutative. 

 

Again, (2 *  1) *  3 = 3 *  3 = 1 and 2 *  (1 *  3) = 2. 

 (2 *  1) *  3 ≠ 2 *  (1 *  3). , *  is not associative. 

 

See how much information a mere table can give! 

 

The following exercise will give you some practice in drawing Cayley tables. 

 

SELF ASSESSMENT EXERCISE 3 

 

Draw the operation table for the set (S) (ref. Example 2), where S = {0, 1} and the 

operation in . 

 

Now consider the following definition. 

 

Definition 

 

Let *  be a binary operation on a non-empty set S and let a1, .., ak+1  S. 

 

We define the product a1 *  …… *  ak+1 as follows: 

 

If k = 1, a1 *  a2 is a well defined element in S. 

If a1 *  ……… *  ak is defined, then 

a1 *  …….. *  ak+1 = (a1 *  …….. *  ak)*  ak+1 

We use this definition in the following result. 

 

Theorem 2 

 

Let a1, …….., am+n  be elements in a set S with an associative binary operation* . Then 

(a1 *  …….. *  am) *  (am+1 *  …….. *  am+n) = a1 * ……..*  am+n. 

 

Proof 

 

We use induction on n. That is, we will show that the statement is true for n = 1. 

 

Then, assuming that is true for n – 1, we will prove it for n. 

 

If n = 1, our definition above gives us 

 

(a1 *  …….. *  am) *  *  am+n = a1 * ……..*  am+n. 
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Now, assume that 

 

(a1 *  ……. *  am) * (am+1 *  ….. *  am+n-1) = a1 *  ……. *  am+n-1 

 

Then 

 

(a1 *  ….. *  am) * (am+1 *  ….. *  am+n) 

= (a1 *  ….. *  am) * ((am+1 *  ……. *  am+n-1) *  am+n) 

= ((a1 *  ….. *  am) * (am+1 *  ….. *  am+n-1)) *  am+n, since *  is associative 

= (a1 *  ….. *  am+n-1) *  am+n, by induction 

= (a1 *  ….. *  am+n, by definition. 

 

Hence, the result holds for all n. 

 

We will use Theorem 2 quite often in this course, without explicitly referring to it. 

 

Now that we have discussed binary operations let us talk about groups. 

 

3.2 What is a Group? 
 

In this section we study some basic properties of an algebraic system called a group. 

This algebraic system consists of a set with a binary operation which satisfies certain 

properties that we have defined in Sec. 2.2. Let us see what this system is. 

 

Definition 

 

Let G be a non-empty set and *  be a binary operation on G. We say that the pair 

(G,* ) is a group if 

 

G1) *  is associative, 

G2) G contains an identity element e for* , and 

G3) every element in G has an inverse in G with respect to* . 

 

We will now give some examples of groups. 

 

Example 3 

 

Show that (Z, +) is a group, but (Z,) is not. 

 

Solution 

 

 + is an associative binary operation on Z. the identity element with respect to + is 0, 

and the inverse of any n  Z is (-n). Thus, (Z, +) satisfies G1, G2 and G3. 

 

Therefore, it is a group. 

 



MTH 211                                                                                                                     MODULE 1 
 

45 

 

Now, multiplication in Z is associative and 1 Z is the multiplicative identity. But 

does every element in Z have a multiplicative? No. For instance, 0 and 2 have no 

inverses with respect to ‘.’. Therefore, (Z,.) is not a group. 

 

Note that (Z,.) is a semi group since it satisfies G1. So, there exist semi groups that 

aren‟t groups! 

 

The following self assessment exercise gives you two more examples of groups. 

 

SELF ASSESSMENT EXERCISE 4 

 

Show that (Q, +) and (R, +) are groups. 

 

Actually, to show that (G,* ) is a group it is sufficient to show that *  satisfies the 

following axioms. 

 

G1‟)  *  is associative. 

G2‟)  e  G such that a *  e = a V a  G. 

G3‟)  Given a  G,   b  G such that a *  b = e. 

 

What we are saying is that the two sets of axioms are equivalent. The difference 

between them is the following: 

 

In the first set we need to prove that e is a two-sided identity and that the inverse b of 

any a  G satisfies a *  b = e and b *  a = e. In the second set we only need to prove 

that e is a one-sided identity and that the inverse b of any a  G only satisfies a *  b = 

e. 

 

In fact, these axioms are also equivalent to 

 

G1”)  *  is associative. 

G2”)    e  G such that e *  a = a V a  G. 

G3”) Given a  G   b  G such that b *  a = e. 

 

Clearly, if *  satisfies G1, G2 and G3, then it also satisfies G1‟, G2‟ and G3‟. The 

following theorem tells us that if *  satisfies the second set of axioms, then it satisfies 

the first set too. 

 

Theorem 3 

 

Let (G,* ) satisfy G1‟, G2‟ and G3‟. Then e *  a = a "  a  G. Also, given a  G, if   

b  G such that a *  b = e, then b *  a = e. Thus, (G,* ) satisfies G1, G2 and G3. 

 

To prove this theorem, we need the following result. 
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Lemma 1 
 

Let (G,* ) satisfy G1‟, G2‟ and G3‟. If   a  G such that a *  a = a, then a = e. 

 

Proof 
 

By G3‟ we know that   b  G such that a *  b = e. 
 

Now (a *  a) *  b = a *  b = e. 
 

Also, a * (a *  b) = a *  e = a. Therefore, by G1‟, a = e. 
 

Now we will use this lemma to prove Theorem 3. 

 

Proof to Theorem 3 
 

G1 holds since G1 and G1‟ are the same axioms. We will next prove that G3 is true. 

Let a  G such that a *  b = e. We will show that b *  a = e. Now, 
 

(b *  a) *  (b *  a) = (b *  (a *  b) *  a = (b *  e) *  a = b * a. 

 

Therefore, by Lemma 1, b * a = e. Therefore, G3 is true. 
 

Now we will show that G2 holds. Let a  G. Then by G2‟, for a  G, a *  e = a. since 

G3 holds,   b  G such that a *  b = b *  a = e. Then 

e *  a = (a *  b) *  a = a *  (b *  a) = a *  e = a. 

 

That is, G2 also holds. 

 

Thus, (G, * ) satisfies G1, G2 and G3. 
 

Now consider some more examples of groups. 

 

Example 4 
 

Let G = {±  1, ± i}, i = 1- . Let the binary operation be multiplication. Show that 

(G,×) is a group. 

 

Solution 
 

The table of the operation is 

 

      1           -1            i            -i 

1      1           -1            i            -i 

-1     -1            1           -i             i 

i       i           -i           -1            1 

-i     -i             i            1           -1 
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This table shows us that a.1 = a V a  G. Therefore, 1 is the identity element. It also 

shows us that (G,
.
) satisfies G3‟. Therefore, (G,

.
) is a group. 

 

Note that G = {1, x, x
2
, x

3
}, where x = i. 

From Example 4 you can see how we can use Theorem 3 to decrease the amount of 

checking we have to do while proving that a system is a group. 

Note that the group in Example 4 has only 4 elements, while those in Example 3 and 

Self Assessment Exercise 4 have infinitely many elements. We have the following 

definitions. 

 

Definition 

 

If (G,* ) is a group, where G is a finite set consisting of n elements, then we say that 

(G,* ) is a finite group of order n. If G is an infinite set, then we say that (G,* ) is an 

infinite group. 

 

If *  is a commutative binary operation we say that (G,* ) is a 

commutative group, or an abelian group. Abelian groups are 

named after the gifted young Norwegian mathematician Niels 

Henrik Abel. 
 

Thus, the group in Example 4 is a finite abelian group of order 4. 

The groups in Example 3 and Self Assessment 4 are infinite 

abelian groups. 

 

Now let us look at an example of a non-commutative (or non-abelian) group. Before 

doing this example recalls that an m by n matrix over a set S is a rectangular 

arrangement of elements of S in m rows and n columns. 

 

Example 5 
 

Let G be the set of all 2 x 2 matrices with non-zero determinant. That is, 

 

G = 
















0 R, ad-bc d  a, b, c,

dc

ba
       

    

   
 

 

Consider g with the usual matrix multiplication, i.e., for 

 

A = 








dc

ba

    

   
and P = 









sr

qp

    

   
 in G, A.P = 













dsdr    cqcp

bs br   aq ap 

    
 

 

Show that (G,
.
) is a group. 

Solution 
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First we show that, is a binary operation, that is, A, P G   A.P  G. 
 

Now, 
 

det(A. P) = det A. det P ≠ 0, since det A ≠ 0, det P ≠ 0. 
 

Hence, A.P  G for all A, P in G. 

We also know that matrix multiplication is associative and .
10

01








 

is the multiplicative identity. Now, for A = 








dc

ba

    

   
 in G, the matrix 

 

B = 


























bcad

a

bcad

c
bcad

b

bcad

d

 is such that det B = 
1

ad bc-
 ≠ 0 and AB  

 

= .
10

01








 

 

Thus, B = A
-1

. (Note that we have used the axiom G3‟ here, and not G3.) This shows 

that the act set of all 2 x 2 matrices over R with non-zero determinant forms a group 

under multiplication. Since 

 










43

21
  









01

10
 = 









34

12
 and 










01

10
 









43

21
 = 









21

43
‟ 

 

We see that this group is not commutative. 

 

This group is usually denoted by GL2(R), and is called the general linear group of 

order 2 over R. We will be using this group for examples throughout Blocks 1 and 2. 

 

And now another example of an abelian group. 

 

Example 6 

 

Consider the set of all translation of R
2
, 

T =  Ra,bfixedb)ya,(x(x,y)fR:Rf
a,b

22

a,b
    somefor   

 

Note that each element fa,b in T is represented by a point (a, b) in R
2
. Show that (T, ) 

is a group, where  denotes the composition of functions. 
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Solution 
 

Let us see if  is a binary operation on T. 

 

Now fa,b fc,b(x, y) = fa,b(x + c, y + d) = (x + c + a, y + d + b) 

 = fa+c, b+d(x, y) for any (x, y)  R
2
. 

fa,b fc,d = fa+c, b+d  T. 

Thus,  is a binary operation on T. 

Now, fa,b f0,0 =  fa,bV fa,b  T. 

 

Therefore, f0,0 is the identity element. 

 

Also, fa,b f-a,-b is the inverse of f0,0 V fa,bT. 

 

Thus, (T, ) satisfies G1‟, G2‟ and G3‟, and hence is a group. 

 

Note that fa,b fc,d = fc,d  fa,b V fa,b fc,d  T. Therefore, (T, ) is abelian. 

 

Try the following self assessment exercises now. 

 

SELF ASSESSMENT EXERCISE 5 

 

Let Q
*
, R

*
 and Z

*
 denote the sets of non-zero rationals, reals and integers. Are the 

following statements true? If not, give reasons. 

 

1. (Q
*
, .) is an abelian group. 

2. (R
*
, .) is a finite abelian group. 

3. (Z
*
, .) is a group. 

4. (Q
*
, .), (R

*
, .) and (Z

*
, .) are semigroups. 

 

SELF ASSESSMENT EXERCISE 6 

 

Show that (G, * ) is a non-abelian group, 

where G =  0  a R,  b a, )b,a(  and *  is defined on G by 

(a, b) *  (c, d) = (ac, bc + d). 

 

We will now look at some properties that elements of a group satisfy. 

 

3.3 Properties of Groups 
 

In this section we shall give some elementary results about properties that group 

elements satisfy. But first let us give some notational conventions. 
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Convention 
 

Henceforth, for convenience, we will denote a group (G,* ) by G, if there is no 

danger of confusion. We will also denote a *  b by ab, for a, b G, and say that we 

are multiplying a and b. The letter ‘e’ will continue to denote the group identity. 

 

Now let us prove a simple result. 

 

Theorem 4 
 

Let G be a group. Then 

 

a. (a
-1

)
-1

 = a for every a  G. 

b. (ab)
-1

 = b
-1 

a
-1

 for all a, b  G. 

 

Proof 
 

a.  By the definition of inverse, 

(a
-1

)
-1 

(a
-1

) = e = (a
-1

) (a
-1

)
-1

. 

 

But, a a
-1

 a = c also. Thus, by Theorem 1 (b), (a
-1

)
-1

 = a. 

 

b. For a, bG, abG. Therefore, (ab)
-1

 G and is the unique element satisfying 

(ab) (ab)
-1

 = (ab)
-1

 (ab) = e. 

 

However, (ab) (b
-1 

a
-1

) = ((ab) b
-1

)a
-1

 

= (a (b b
-1

)a
-1

) 

= (a e)a
-1

 

= aa
-1

 

= e 

Similarly, (b
-1 

a
-1

) (ab) = e. 

 

Thus, by uniqueness of the inverse we get (ab)
-1

 = b
-1

 a
-1

. 

Note that, for a group G, (ab)
-1

 = a
-1

 b
-1

 V a, b  G only is abelian. 

 

You know that whenever ba = ca or ab = ac for a, b, c in R
*
, 

we can conclude that b = c. That is, we can cancel a. This fact is true for any group. 

 

Theorem 5 
 

For a, b, c in a group G, 

a. ab = ac  b = c. (This is known as the left cancellation law.) 

b. ba = ca  b = c. (This is known as the right cancellation law.) 

 

Proof 
 

We will prove (a) and leave you to prove (b) (see Self Assessment 7). 
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a. Let ab = ac. Multiplying both sides on the left hand side by a
-1

  G, we get  

a
-1

(ab) = a
-1

(ac) 

  (a
-1

 a)b = (a
-1

a)c 

  eb = ec, e being the identity element. 

  b = c. 

 

Remember that by multiplying we can mean we are performing the operation * . 

 

SELF ASSESSMENT EXERCISE 7 

 

Prove (b) of Theorem 5. 

 

Now use Theorem 5 to solve the following self assessment exercise. 

 

SELF ASSESSMENT EXERCISE 8 

 

If in a group G, there exists an element g such that gx = g for all x  G, then show that 

G = {e}. 

 

We now prove another property of groups. 

 

Theorem 6 

 

For elements a, b in a group G, the equations ax = b and ya = b have unique solutions 

in G. 

 

Proof 

 

We will first show that these linear equations do have solutions in G, and then we will 

show that the solutions are unique. 

 

For a, b  G, consider a
-1

 b  G. We find that a(a
-1

 b) = (aa 
-1

)b = eb = b. Thus, a
-1

 b 

satisfies the equation ax = b, i.e., ax = b has a solution in G. 

But is this the only solution? Suppose x1, x2 are two solutions of ax = b in G. then ax1 

= b = ax2. By the left cancellation law, we get x1 = x2. thus, a
-1

 b is the unique solution 

in G. 

 

Similarly, using the right cancellation law, we can show that ba
-1

 is the unique 

solution of ya = b in G. 

Now we will illustrate the property given in Theorem 6. 
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Example 7 

 

Consider A = 








21

32
, B = 









40

51
 in GL2 (R) (see Example 5). 

Find the solution of AX = B. 

 

Solution 

 

From Theorem 6, we know that X = A
-1

 B. Now, 

 

A
-1

 = 












21

32
 (see Example 5). 

 

 A
-1

 B = 












31

22
 = X. 

 

In the next example we consider an important group. 

 

Example 8 
 

Let S be a non-empty set. Consider (S) (see Example 2) with the binary operation of 

symmetric difference, given by 

A   B = (A \ B)  (B \ A) V A, B  (S). 

 

Show that ((S), ) is an abelian group. What is the unique solution for the equation 

Y  A = B? 

 

Solution 
 

 is an associative binary operation. This can be seen by using the fact that 

A \ B = A  B
c
, (A  B)

c
 = A

c
  B

c
, (A  B)

c
 = A

c
  B

c 
and that  and  are 

commutative and associative.  is also commutative since A  B = B  A V A, B  

(S). 

 

Also,   is the identity element since A    = A V A  (S). 

Further, any element is its own inverse, since A  A =   V A  (S). 

Thus, ( (S), ) is an abelian group. 

 

For A, B in ((S), ) we want to solve Y  A = B. but we know that A is its own 

inverse. So, by Theorem 6, Y = B  A
-1

 = B  A is the unique solution. What we have 

also proved is that (B  A)  A = B for any A, B in (S). 

Try the following self assessment exercise now. 
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SELF ASSESSMENT EXERCISE 9 

 

Consider Z with subtraction as a binary operation. Is (Z, -) a group? Can you obtain a 

solution for a – x = b Va, b  Z? 

 

And now let us discuss repeated multiplication of an element by itself. 

 

Definition 

 

Let G be a group. For a  G, we define 

 

i. a
0
 = e. 

 

ii. a
0
 = a

n-1
.a, if n > 0 

 

iii a
-a

 = (a
-1

)
n
, if n > 0. 

 

n is called the exponent (or index) of the integral power a
n
 of a. 

Thus, by definition a
1
 = a, a

2
 = a.a, a

3
 = a

2
. a, and so on. 

 

Note: When the notation used for the binary operation is addition, a
n
 becomes na. For 

example, for any a  Z, 

 

na = 0 if a = 0, 

na = a + a + … + a (n times) if n > 0; 

na = (-a) + (-a) + … + (-a) (-n times) if n < 0. 

 

Let us now prove some laws of indices for group elements. 

 

Theorem 7 

 

Let G be a group. For a  G and m, n  Z, 

 

a. (a
n
)

-1
 = a

-n
 = (a

-1
)

n
, 

b. a
m

.a
n
 = a

m+n
, 

c. (a
m

)
n
 = a

mn
. 

 

Proof 

 

We prove (a) and (b), and leave the proof of (c) to you (see Self Assessment Exercise 

10). 

 

a. If n = 0, clearly (a
n
)

-1
 = a

-n
 = (a

-1
)

n
, 

Now suppose n > 0. Since aa
-1

 e, we see that 
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e = e
n
 = (aa

-1
)

n
  

= (aa
-1

) (aa
-1

) ....... (aa
-1

) (n times) 

= a
n
 (a

-1
)

n
, since a and a

-1
 commute 

 (a
n
)

-1
 = (a

-1
)

n
. 

Also, (a
-1

)
n
 = a

-n
, by definition. 

 (a
n
)

-1
 = (a

-1
)

n
 = a

-n
 when n > 0. 

If n < 0, then (-n) > 0 and 

(a
n
)

-1
 = [a

-(-n)
]

-1
 

= [(a
-n

)
-1

]
-1

, by the case n > 0 

= a
-n

 

 Also, (a
-1

)
n
 = (a

_1
)

-(-n)
 

= [(a
-1

)
-1

]
-n

, y the case n > 0 

= a
-n

. 

So, in this case too, 

(a
n
)

-1
 = a

-n
 = (a

-1
)

n
. 

 

b. If m = 0 or n = 0, then a
m+n

 = a
m

.a
n
. Suppose m ≠ 0 and n ≠ 0. 

 

We will consider 4 situations. 

 

Case 1 (m > 0 and n > 0): We prove the proposition by induction on n. 

If n = 1, then a
m
.a = a

m+1
, by definition. 

Now assume that a
m

.a
n-1

 = a 

Then, a
m

.a
n
 = a

m
(a

n-1
.a) = (a

m
.a

n-1
) a = a

m+n-1
.a = a

m+n
. Thus, by the principle of 

induction, (a) holds for all m > 0 and n > 0. 

 

Case 2 (m < 0 and n < 0): Then (-m) > 0 and (-n) > 0. Thus, by Case 1, a
-n

.a
-m

 = a
-(n+m)

 

= a
-(m+n)

. Taking inverses of both the sides and using (a), we get, 

a
m+n

 = (a
-n

.a
-m

)
-1

 = (a
-m

)
-1

.(a
-n

)
-1

 = a
m
.a

n
. 

 

Case 3 (m > 0, n < 0 such that m + n  0): Then, by Case 1, a
m+n

.a
-n

 = a
m

. Multiplying 

both sides on the right by a
n
 = (a

-n
)

-1
, we get a

m+n
 = a

m
.a

n
. 

 

Case 4 (m > 0, n < 0 such that m + n < 0): By Case 2, a
-m

.a
m+n

 = a
n
. Multiplying both 

on the left by a
m
 = (a

-m
)

-1
, we get a

m+n
 = a

m
.a

n
. 

 

The cases when m < 0 and n > 0 are similar to Case 3 and 4. Hence, a
m+n

 = a
m
.a

n
 for 

all a  G and m, n  Z. 

 

To finish the proof of this theorem try self assessment exercise 10. 

 

SELF ASSESSMENT EXERCISE 10 

 

Now you can prove (c) of theorem 7. 
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(Hint: Prove, by induction on n, for the case n > 0.  

             Then prove for n < 0.) 

 

We will now study three important groups. 

 

3.4 Three Groups 
 

In this section we shall look at three groups that we will use as examples very often 

throughout this course – the group of integers modulo n, the symmetric group and the 

set of complex numbers. 

 

3.4.1 Integers Modulo n 
 

Consider the set of integers, Z, and n  Z and n  N. Let us define the relation of 

congruence on Z by: a is congruent to b modulo n if n divides a-b. We write this as a 

≡ b (mod n).  For example, 4 ≡ 1 (mod n 3), since 3 | (4 -1). 

 

Similarly, (-5) ≡ 2 mod 7) and 30 ≡ 0 (mod 6). 

 

≡ is an equivalent relation (see Sec. 3.3 of Unit 1), and hence partitions Z into disjoint 

equivalence classes called congruence classes modulo n. We denote the class 

containing r by r . 

 

Thus, r  = {m  Z | m ≡ r(mod n)}. 

 

So an integer m belongs to r  for some r, 0  r <, iff n | (r – m), i.e., iff r – m = kn, for 

some k  Z. 

 

 r  = {r + kn  |  k Î  Z}. 
 

 

 

 

 

Now, if m  a, then the division algorithm says that m = nq + r for some q, r  Z, 0  

r < q. That is, m ≡  r (mod n), for some r 0, …., n – 1.  

 

Therefore, all the congruence classes modulo n are 0 , 1 , ……, n 1- .  

 

Let Zn = { 0 , 1 , 2 , ……., n 1- }. We define the operation + on Zn by a  + b  = a b+ . 

 

Is this operation well defined? To check this, we have to see that if a  = b  and c  = d  

in Zn, then a b+  = c d+ . 

 

+      0             1            2            3  
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Now, a ≡ b (mod n) and c ≡ d (mod n). Hence, there exist integers k1 and k2 such that 

a - b = k1n and c – d = k2n. But then (a + c) – (b + d) =  

(a – b) + (c – d) = (k1 + k2)n. 

 

 a c+  = b d+ . 

 

Thus, + is a binary operation on Zn.  

 

For example, 2  + 2  = 0  in Z4 since 2 + 2 = 4 ≡ 0 (mod 4).  

 

To understand addition in Zn, try the following self assessment exercise. 

 

SELF ASSESSMENT EXERCISE 11 

 

Fill up the following operation table for + on Z4.  

 

Now, let us show that (Zn, +) is a commutative group.  

 

i. a  + b  = a b+  = b a+  = b  + a  V a , b   Zn, i.e., 

 addition is commutative in Zn.  

 

ii. a  + ( b  + c ) = a  + ( b c+ ) = a (b c)+ +  

 = (a b) c+ +  = ( a b+ ) + c  = ( a  + b ) + c  V a , b , c   Zn, 

 i.e., addition is associative in Zn. 

 

iii. a  + 0  = a  = 0  + a  V a   Zn, i.e., 0  is the identity for addition. 

 

iv. For   Zn, n a-   Zn such that a  + n a-  = n  = 0  = n a-  + a . 

 

Thus, every element a  in Zn has an inverse with respect to addition. 

The properties (i) to (iv) show that (Zn, +) is an abelian group. 

 

Try the following self assessment exercise now. 

 

SELF ASSESSMENT EXERCISE 12 

 

Describe the partition of Z determined by the relation „congruence modulo 5‟. 

 

0   

1   

2   

3   
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Actually we can also define multiplication on Zn by a . b  = ab . Then, a b  = b a  V a , 

b   Zn. Also ( a b ) c  = a ( b c ) V a , b , c   Zn. Thus, multiplication in Zn is a 

commutative and associative binary operation. 

 

Zn also has a multiplicative identity, namely, 1 . 

 

But (Zn,.) is not a group. This is because every element of Zn, for example 0  does not 

have a multiplicative inverse. 
 

But, suppose we consider the non-zero elements of Zn, that is, ( nZ* , .) Is this a group? 

For example 4Z*  = { 1 , 2 , 3 } is not a group because . is not even a binary operation 

on 4Z* , since 2 . 2  = 0   4Z* . But ( pZ* ,.). is an abelian group for any prime p. 

 

SELF ASSESSMENT EXERCISE 13 
 

Show that ( 5Z* ,.) is an abelian group. 

 

(Hint: Draw the operation table.) 

 

Let us now discuss the symmetric group. 

 

3.4.2 The Symmetric Group 
 

We will now discuss the symmetric group briefly. In MTH 312 we will discuss this 

group in more detail. 

 

Let X be a non-empty set. We have seen that the composition of functions defines a 

binary operation on the set F(X) of all functions from X to X. This binary operation is 

associative. IX, the identity map, is the identity in F (X). 

 

Now consider the subset S(X) of F (X) given by 

 

S(X) = {f  F (X) | f is bijective}. 

So f  S(X) iff f
-1

: X  X exists. Remember that f f
-1

 = f
-1

f = IX. This also shows 

that f
-1

  S(X). 

 

Thus, o is a binary operation on S(X). 
 

Let us check that (S(X), o) is a group 
 

i. o is associative since (f o g) o h = f(g o h) V f, g, h S(X). 

ii. I x is the identity element because f o I x = I x o f V f  S(X). 

iii. f
-1

 is the inverse of f, for any f  S(X). 
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Thus, (S(X), o) is a group. It is called the symmetric group on X. 

 

If the set X is finite, say X = (1, 2, 3 ……………….,n), then we denote S(X) by Sn, 

and each f Sn is called a permutation on n symbols. 

 

Suppose we want to construct an element f in Sn.  We can start by choosing f(1).  

Now, f(1) can be any one of the n symbols 1, 2, ….,n.  Having chosen f(1), we can 

choose f(2) from the set {1, 2, ….n}\{f(1)}, i.e., in (n – 1) ways.  This is because f is 1 

– 1.  Inductively, after choosing f(i), we can choose f (I + 1) in ( n – I ) ways.  Thus, f 

can be chosen in (1 x 2 x….xn) n 1 ways, i.e., Sn contains an! Elements. 

 

For our convenience, we represent f  Sn by 

 










)n(f...............)2(f)1(f

n..............21
 

 

For example, 








1342

4321
represents the function f: 

  

{1, 2, 3, 4}  {1, 2, 3, 4}:  f(1) = 2, f(2) = 4, f(3) = 3, f(4) = 1.  the elements in the 

top row can be laced in any order as long as the order of the elements in the bottom 

row is changed accordingly. 

 

Thus, 








1324

4312
also represents the same function f. 

 

Try this exercise now. 

 

SELF ASSESSMENT EXERCISE 14 

 

Consider S3, the set of all permutations on 3 symbols. This has 3! (=6) elements.  One 

is the identify function, I.  Another is 








312

321
.  Can you list the other four. 

 

Now, while solving Self Assessment Exercise one of the elements you must have 

obtained is f = 








132

321
. 

 

Here f(1) = 2, f(2) = 3 and f(3) = 1, such a permutation is called a cycle.  In general 

we have the following definition. 
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Definition 

 

We say that f  Sn is a cycle of length r if there are x1……., xr in X = { 1, 2, ….., n} 

such that f(xi) = xi + 1 for 1  i   r – 1, (fxr) and f(t) = t for t xi, …..xr.  In this case f is 

written as (xi …xr), 

For example, by f = (2 4 5 10)  S10 we mean f(2) = 4, f(4) = 5, f(5) = 10, f(10) = 2 

and f(j) = j for j ≠ 2, 4, 5,10. 

 

i.e., f = 








29876105341

10987654321
 

 

f  Sn fixes an element x if f(x) = x.    

 

Note that, in the notation of a cycle, we don‟t mention the elements  that are left fixed 

by the permutation. Similarly, the permutation. 

 










31452

54321
is the cycle ( 1 2 5 3 4) in S5, 

 

Now let us see how we calculate the composition of two permutations.  Consider the 

following example S3, 

 

),4,2(
52341

54321

)2()1()4()3()5(

54321

)5()4()3()2()1(

54321

21435

54321

13452

54321





















































          

          

          

  

 

 

Since 1, 3 and 4 are left fixed. 

 

The following exercises will give you some practice in computing the product of 

elements in Sn. 

 

SELF ASSESSMENT EXERCISE 15 

 

Calculate (1 3)   (1 2) in S3. 
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SELF ASSESSMENT EXERCISE 16 
 

Write the inverses of the following in S3: 

 

a. (1 2) 

b. (1 3 2) 

 

Show that [(1 2)  (1 3 2)]
-1

 ≠ (1 2)
-1 (1 3 2)

-1
.  (This shows that in Theorem 4(b) we 

can‟t write (ab)
-1

 = a
-1

b
-1

.) 

 

And now let us talk of a group that you may be familiar with, without knowing that it 

is a group. j 
 

3.4.3 Complex Numbers 
 

In this sub-section we will show that the set of complex numbers forms a group with 

respect to addition.  Some of you may not be acquainted with some basic properties of 

complex numbers.  We have placed these properties in the appendix to this unit. 

 

Consider the set C of all ordered pairs (x, y) of real numbers, i.e., we take C = R x R. 

 

Define addition (+) and multiplication (.) in C as follows: 

 

(x1, y1) + (x2, y2) = (x1 x2 – y1 + y2) and 

(x1, y1) . (x2, y2) = (x1 x2 – y1 y2, x1 y2 – x2 y1) 

for  (x1,y1) and (x2, y2) in C. 

 

This gives us an algebraic system (C, +,.) called the system of complex numbers.  We 

must remember that two complex numbers (x1, y1) and (x2, y2) are equal iff x1 = x2 and 

y1 = y2. 

 

You can verify that + and, are commutative and associative. 

 

Moreover, 

 

i. (0, )) is the additive identity. 

ii. For (x, y) in C, (-x, -y) s its additive inverse. 

iii. (1, 0) is the multiplicative identity. 

iv. If (x, y) (0, 0) in C, then either x
2
 > 0 or y

2
 > 0. 

 

Hence, x
2
 + y

2
 > 0.  Then 

 

(x, y).  
2222 yx

y
,

yx

x
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         = 
























22222222 yx

x
y

yx

y
x,

yx

)y(
y

yx

x
x                    

 

         =  (1, 0) 

 

Thus, (C, +) is a group and (C*,.) is a group, (as usual, C* denotes the set of non-zero 

complex numbers). 

 

Now let us see what we have covered in this unit. 

 

4.0 CONCLUSION 
 

The study of groups in algebra is a fundamental requirement for any students who 

want to   major in pure mathematics. You are required to pay attention to all the 

details in this unit.    

 

5.0 SUMMARY 
 

In this unit we have 

 

1. discussed various types of binary operations. 

2. defined and give examples of groups. 

3. proved and used the cancellation laws and laws of indices for group elements. 

4. discussed the group of integers modulo n, the symmetric group and the group 

of complex numbers. 

 

We have also provided an appendix in which we list certain basic fact about complex 

numbers. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 1 

 

1. a. x   y = y  x, V x, y Z 

  Therefore,  is commutative 

 

  (x   y)   z = ( x + y – 5)   z = ( x +y – 5) + z - 5 

                      = x + y + z – 10 

                      = x   (y   z) 

Therefore,   is associative. 

 

 is not closed on N since 1   1 N. 

 

b. * is commutative, not associative, closed on N. 

c.  is not commutative, associative or closed on N. 
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ANSWER TO SELF ASSESSMENT EXERCISE 2 

 

a. The identity element with respect to  is 5. 

 Suppose e is the identity element for * 

Then x * e = x  2 (x + e) = x  c = - 
2

x
, which depends on x. Therefore, 

there is no fixed element e in R for which x * e = e * x = x V x  R.  

Therefore, * has no identify element. 

 

b. The inverse of x with respect to   is 10-x.  Since there is no identity for the 

other operations, there is no question of obtaining x
-1

. 
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ANSWER TO SELF ASSESSMENT EXERCISE 3 

 

(S) = {, (0), {1}, (0, 1)} 

 

So, the table is 

 

N  {0} {1} S 

    {1} 

{0}  {0}  {0} 

{1}   {1} {1} 

S  {0} {1} S 

 

ANSWER TO SELF ASSESSMENT EXERCISE 4 

 

Check that both of then satisfy G1, G2 and G3 

 

ANSWER TO SELF ASSESSMENT EXERCISE 5 

 

a. and (d) are true. 

b. R* is an infinite abelian group. 

c. (Z*,.) satisfies G1 and G2, but not G3.  NO integer, apart from +- 1, has a 

multiplicative inverse. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 6 

 

((a, b) * (c, d)) * (e, f) 

=  (ac, bc + d) * (e, f) 

=  (ace, (bc + d) e +f ) 

=  (a, b) * ( (c, d) * (e, f) ) 

 

Thus, * satisfies G1‟. 

 

(a, b) * (1, 0) = (a, b) V (a, b)  G. 

 

Therefore, G3‟ holds. 
 

Therefore, (G, *) is a group. 
 

ANSWER TO SELF ASSESSMENT EXERCISE 7 
 

ba = ca  (ba)a
-1

  (ca)a
-1

  b = c 

 

 

 



MTH 211                                                                                  SET THEORY AND ABSTRACT ALGEBRA 

 

 
64 

ANSWER TO SELF ASSESSMENT EXERCISE 8 

 

Let x  G.  Then gx = g = ge.  So, by Theorem 5, x = e. 

 

 G = {e}, 

 

ANSWER TO SELF ASSESSMENT EXERCISE 9 
 

(Z,-) is not a group since G1 is not satisfied. 

 

For any a, b  Z, a – (a – b) = b.  So, a – x has a solution for any a, b  Z. 

ANSWER TO SELF ASSESSMENT EXERCISE 10 

 

When n = 0, the statement is clearly true. Now, let n > 0.  We will apply induction on 

n.  For n = 1, the statement is true. 

 

Now , let n > 0.  We will apply induction on n.  For n = 1, the statement is true.   

Now, assume that it is true for n – 1, that is, (a
m

)
(n – 1)

 
. 
 = a

m(n – 1)
.  

 

Then, (a
m

)
n
 = (a

m
)

n -1
 + 1 = (a

m
)

(n – 1) . 
 = a

m
, by (b) 

          = a
m(n – 1) . 

a
m
 

          = a
m (n + 1 + 1)

, by (b) 

          =  a
mn

. 

So, (c) is true V n > m  Z. 

 

Now, let n < 0.  Then (-n) > 0. 

 

  (a
m
)

n
  = [(a

m
)

-n
]

-1
, by (a) 

  = [(a
m
)

-n
]

-1
, by the case n > 0 

  = [(a
-mn

)]
 -1

 

  = a
mn

, by (a). 

 

Thus, V m, n  Z, (c) holds. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 11 

 

+ 0  1  2  3  

0  0  1  2  3  

1  1  2  3  0  

2  2  3  0  1  

3  3  0  1  2  
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ANSWER TO SELF ASSESSMENT EXERCISE 12 

 

Z is the disjoint union of the following 5 equivalence classes. 

 

},.........15, 10, 5, 0, 5, 10 {........,0   

....}........., .....11, 6, 1, 4, 9 {........,1   

....}.........,.....12, 7, 2, 3, 8 {........,2   

.....}.............,13, 8, 3, 2, 7 {........,3   

.....}..........,....14, 9, 4, 1, 6 {........,4   

 

ANSWER TO SELF ASSESSMENT EXERCISE 13 

 

The operation table for on Z5 is 

 
. 

1  2  3  4  

1  1  1  3  4  

2  2  4  1  3  

3  3  1  4  2  

4  4  3  2  1  

 

It shows that, is an associative and commutative binary operation of Z*5.  1 is the 

multiplicative identity and every element has an inverse. 

 

Thus, (Z*5,.) is an abelian group.
 

 

ANSWER TO SELF ASSESSMENT EXERCISE 14 

 


































213

321
,

132

321
,

231

321
,

123

321
 

 

ANSWER TO SELF ASSESSMENT EXERCISE 15 

 

f = (1 3), g = (1 2). 

 

Then f o g = 
















312

321

123

321
  

        

     = 








)3(fg)1(fg)2(fg

321
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      = 








)3(r)1(r)2(r

321
 

 

      = )321(
132

321









 

 

ANSWER TO SELF ASSESSMENT EXERCISE 16 

 

a. Let f = (1 2) = .
312

321








f

-1
 = ,

321

312








 

 just interchanging the rows. 

  f
-1

 = (1 2). 

 

b. (1 3 2)
-1

 = (2 3 1). 

Now, (1 2) o (1 3 2) =  








123

321
 

     

 Its inverse is 








321

123
 = (1 3). 

On other hand, 

(1 2)
-1-

 o (1 3 2)
-1-

 o = (1 2) o (1 2 3) = (2 3) ≠ (1 3). 

 

APPENDIX: COMPLEX NUMBERS  
 

Any complex number can be denoted by an ordered pair of real numbers (x, y). In 

fact, the set of complex numbers is 

 

C = { (x, y)  x, y  R }. 

 

Another way of representing (x, y)  C is x + iy, where i = .i . 
 

We call x the real part and y the imaginary part of x + iy. 

 

The two representations agree if we denote (x, 0) by x and (0, 1) by i .On doing so we 

can write 

 

x + iy  = (x, 0) + (0, 1) (y, 0) 

= (x, 0), + (0, y), 

= (x, y), 

and i
2
 = (0, 1) (0,.1) = (-1, 0) = -1. 

 

While working~ with complex numbers, We' will sometimes use the notation x + iy 

and sometimes the fact that the elements of C can be represented by points in R
2
. 
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You can see that 

(x + iy1) + (x2 + iy2) = (x1, y1) + (x2, y2) 

= (x1 + x2, x2 + y2) 

= (x1 + x2) + i(y1 + y2), and 

 

(x1 + iy1) (x2 + iy2) = (x1, y1) + (x2, y2) 

= (x1x2 - y1y2, x1y2) 

= (x1x2) - y1y2) + i(x1y2 + x2y1).), and 

 

Now, given a complex number, we will define its conjugate. 

 

Definition 

 

For a complex number z = x + iy, the complex number x + i (-y) is called the 

conjugate of z. It is also written as x -iy and is denoted by z  . 

 

For z = x + iy, we list the following properties. 

 

i.  z + z  is a real number. In fact, z + z  =.2 x. 

ii.  z 
. 

z  = x
2
 + y

2
, a non-negative real number. 

iii. ,zzzz
2121

  for any z1, z2  C.  This is because 

 )yy(ixx(
2121

  = (x1 + x2) – i(y1 + y2) 

    = (x1 - iy1) + (x2 - iy2) 

    = 
21

zz  . 

iv. ,z.zzz
2121

   for any z1, z2  C. 

 

Let us now see another way of representing complex numbers.  

 

Geometric Representation of Complex Numbers Y 

 

We have seen that a complex number, z = x + iy is represented by the point (x, y) in 

the plane.  If O is the point (0, 0) and P is (x,y) (see Fig.3), then we know that the 

distance OP = 22 yx  .  This is called the modulus (or the absolute value) of the 

complex y number z and is denoted by | z |. Note that 22 yx  = 0 iff x = 0 and y = 0. 

 

Now, let us denote | z | by r and the angle made by OP with the positive x-axis by . 

Then  is called an argument of the non-zero complex: number z.  If  is an 

argument of z, then 0 + 2n is also an argument of z for all n  Z,.  However, there is 

a unique value of these arguments which lies in the interval [-,].  It is called the 

principal argument of x + iy, and is denoted by Arg (x +iy). 
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From fig. 3 you can see that x = r cos, y = r sin that is, z = (rcos, rsin) = r(cos + 

i sin) = re
10

. 

 

This is called the polar form of the complex number (x + iy). 

 

Now, if z1 = ,erzander 21 i

22

i

1


  then 

 .errzz
)(i

2121
21 

  

 

Thus, an argument of z1 z2 = an argument of z1 + an argument of z2. 

 

We can similarly show that if z2 ≠ 0, 

An argument of 
2

1

z

z
= an argument of z1 – an argument of z2. 

In particular, if  is an argument of z (≠ 0), then (-) is an argument of z
-
 

We end by stating one of the important theorems that deals with complex numbers. 

 

De Moivre’s Theorem: If z = r(cos + i sin) and n  N, then z
n
 = 1

n
 (cos n + i sin 

n ).  
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UNIT 3  SUBGROUPS 
 

CONTENTS 

 

1.0 Introduction  

2.0 Objectives 

3.0 Main Content 

 3.1 Subgroups  

3.2 Properties of Subgroups  

3.3  Cyclic Groups  

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Readings 

 

1.0  INTRODUCTION  
 

You have studied the algebraic structures of integers, rational numbers, real numbers 

and, finally, complex numbers. You have noticed that, not only is Z   Q   R   C. 

but the operations of addition and multiplication coincide in these sets. 

 

In this unit you will study more examples of subsets of groups which are groups in 

their own right. Such structures are rightfully named subgroups.  In Sec. 3.3 we will 

discuss some of their properties also. 

 

In Sec. 3.4 we will see some cases in which we obtain a group from a few elements of 

the group. In particular, we will study cases of groups that can be built up by a single 

element of the group. 

 

Do study this unit carefully because it consists of basic concepts which will be used 

again and again in the rest of the course.  

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 define subgroups and check if a subset of a given group is a subgroup or not 

 check if the intersection. union and product of two subgroups is ;I subgroup 

 describe the structure and properties of cyclic groups. 
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3.0 MAIN CONTENT 
 

3.1 Subgroups  
 

You may have already noted that the groups (Z,+), (Q,+) and (R,+) are contained in 

the bigger group (C,+) of complex numbers, not just as subsets but as groups. All 

these are examples of subgroups, as you will see. 

 

Definition 

 

Let (G,*) be a group. A non-empty subset H of G is called a subgroup of G if 

 

i.  a * b  H V a. b  H. i.e.. * is a binary operation on H. 

ii.  (H,*) is itself a group. 

 

So, by definition, (Z,+) is a subgroup of (Q,+), (R,+) and (C,+). 
 

Now, if (H, *) is a subgroup of (G,*), can the identity element in (H,*) be different 

from the identify element in (G,*)?  Let us see. If h is the identity of (H,*), then for 

any a  H. 

 

b * a = a * h = a.  However, a  H   G. Thus. a * e = e * a = a. where e is the identity 

in G. 
 

Therefore h * a = e * a. 

By right cancellation in (G,*). We get h = e. 

Thus, whenever (H, *) is a subgroup of (G,*). e  H. 
 

Now you may like to try the following exercise.  
 

SELF ASSESSMENT EXERCISE 1 
 

If (H, *) is a subgroup of (G,*), does a 
-1

  H for every a  H., 
 

Self Assessment Exercise 1 and the discussion before it allows us to make the 

following remark. 
 

Remark 1 
 

(H,*) is a subgroup of (G, *) if and only if 
 

i. e  H. 

ii. a, b  H  a * b  H 

iii. a  H  a
-1

  H. 

 

We would also like to make an important remark about notation here.  
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Remark 2 
 

If (H,*) is a subgroup of (G,*), we shall just say that H is a subgroup of G, provided 

that there is no confusion about the binary operations. We will also denote this fact by 

H  G. 
 

Now we discuss an important necessary and sufficient condition for a subset to be a 

subgroup. 
 

Theorem 1 
 

Let H be a non-empty subset of a group G. Then H is a subgroup of G iff 

a, b  H, ab
-1

  H. 

 

Proof 
 

Firstly, let us assume that H  G. Then, by Remark 1, a, b  H  a, b
-l
  H. 

 

Conversely, since H ≠    a  H. But then, aa
-1

 = e  H. 
 

Again, for any a e H, ea
-1

 = a
-1

  H. 
 

Finally, if: a, b  H, then a, b
-1

  H. Thus, a (b
-l
)

-1
 = ab  H, i.e., 

H is closed under the binary operation of the group.  
 

Therefore by Remark 1, H is a group. 
 

Let us look at some examples of subgroups now. While going through these you may 

realise the fact that a subgroup of an abelian group is abelian. 

 

Example 1  
 

Consider the group (C*,.). Show that 
 

S = {z  C | |z| = 1} is a subgroup of C* 
 

Solution 
 

S ≠ , since 1 S. Also, for any z1, z2  S, 
 

|z1z2
-1 

| = |z1| |z2
-1

| = |z1| 
|z|

1

2

= 1. 

Hence, z1 z2
-1

  S.  Therefore, by Theorem 1, S  C*. 

 

Example 2 
 

Consider G = M2x3 (C), the set of all 2 x 3 matrices over C. Check that 

(G,+) is an abelian group. Show that 
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S = 
















Cc,b,a

c00

ba0
     is a subgroup of G. 

 

Solution 
 

We define addition on G by 

 
































uftesd

rcqbpa

uts

rqp

fed

cba
. 

 

You can see that + is binary operation on G. O = is the additive identity and  

 














fed

cba
is the inverse of 









fed

cba
 G. 

 

Since, a + b = b + a.  V a, b  C, + is also abelian. 
 

Therefore, (G,+) is an abelian group. 
 

Now, since O  S, S ≠ .  Also, for 
 










c00

ba0
, 









f00

ed0
  S, we see that 

 










c00

ba0
 - 









f00

ed0
=   













fc00

ebda0
   S. 

 

  S  G. 

 

Example 3 
 

Consider the set of all invertible 3 x 3 matrices over R, GL3 (R). That is, 

A  GL3(R) iff det (A) ≠ 0.  Show that SL3 (R) = (A E GL3(R)  det(A) 1} is a 

subgroup of (GL3(R),.). 
 

Solution 
 

The 3x3 identity matrix is in SL3(R). Therefore, SL3(R) ≠ . 

 

Now, for A, B  SL3(R). 

det (AB
-1

) = det (A) det(B
-1

) = det (A) 
)Bdet(

1
= 1, since det (A) =1and det (B) =l. 

AB
-1

  SL3(R) 

:. SL3(R)  GL3(R). 

 

H  (G, +)  

 H ≠  and  

a – b  H. 
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Try the following exercise now. 
 

SELF ASSESSMENT EXERCISE 2 
 

Show that for any group G, {e} arid G are subgroups of G. 

({e} is called the trivial subgroup.) 

 

The next example is very important, and you may use it quite often. 

 

Example 4  
 

Any non-trivial subgroup of (Z, +) is of the form mZ; where m  N and 

mZ = { mt | t  Z} = { 0, ±m, ±2m, ±3m, }. 

 

Solution 
 

We will first show that mZ is a subgroup of Z. Then we will show that if H is a 

subgroup of Z, H ≠ {0}, then H = mZ, for some m  N. 

 

Now, 0  mZ. Therefore, mZ ≠ . Also, for mr, ms  mZ, mr-ms = m(r-s)  mZ. 
 

Therefore, mZ is a subgroup of Z. 
 

Note that m is the least positive integer in mZ.  

 

Now, let H ≠ {0} be a subgroup of Z and S={i | i> 0, i  H}. 
 

Since H ≠ {0}, there is a non-zero integer k in H. If k > 0, then k  S. If k < 0, then (-

k)  S, since (-k)  H and (-k) > 0. 

 

Hence, S ≠ . 
 

Clearly, S   N. Thus, by the well-ordering principle (Sec. 16.1) S has a least element, 

say s. That is, s is the least positive integer that belongs to H. 

 

Now s Z   H. Why? Well, consider any element st sZ. 

 

If t = 0, then st = 0  H. 

If t > 0, then st = s +s +….. + s (t times)  H. 

If t < 0, then st = (-s) + (-s) + …...+ (-s) (-t times)   H. 

 

Therefore, st  H V t  Z. That is, sZ   H. 

 

Now, let m  H. By the division algorithm (see Sec. 1.6.2), m = ns + r for some n, r  

Z, 0  r < s. Thus, r = m -ns. But H is a subgroup of Z and m, ns  H. Thus, r  H. 

By minimality of S S, we must have r = 0, i.e., m = ns. Thus, H  sZ.  

 

So we have proved that H = sZ. 
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Before going to the next example, let us see what the nth roots of unity are, that is; for 

which complex numbers z is z
n
 = 1. 

 

From Unit 2, you know that the polar form of a non-zero complex number z  C is z 

= r(cos + i sin), where r = |z| and  ia an argument of z.  Moreover, if 1 is an 

argument of z1 and 2 that of z2, then 1 + 2 is an argument of z1 z2.  Using this we 

will try to find the nth roots of 1, where n  N. 

 

Thus, by De Moivre‟s theorem, 

 

1 = 2
n
 = 1

n
 (cos n+ i sin n), that is, 

cos () + i sin() = r
n
 (cos n) + i sin n). ………………………….. (1) 

 

Equating the modulus of both the sides of (1), we get rn = 1, i.e., r = 1. On comparing 

the arguments of both sides of (1), we see that 0 + 2k (k  Z) and n are arguments 

of the same complex number.  Thus, n can take any one of the values 2k, k  Z.  

Does this mean that as k ranges over Z and  ranges over 

n

m
i

n

m

n

k
i

n

k
Cos

 2
sin 

2
cos

2
sin 

2
  if and only if t2

n

m2

n

k2






 for some t  

Z.  This will happen if k = m + nt, i.e., k = m (mod n).  Thus, corresponding to every r  

in Zn we get an nth root of unity, z = cos
n

k2
sini

n

k2 



 , 0  r < n; and these are all 

the nth roots of unity. 
 

For example, if n = 6, we get the 6
th

 roots of 1 as z0, z1, z2, z3, z4, and z5, where zj, 

.6,5,4,3,2,1,
6

2
sin 

6

2
 j

j
i

j 
  In Fig. 1 you can see that all these lie on the 

unit circle (i.1., the circle of radius one with centre (0, 0)).  They form the vertices of a 

regular hexagon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y 

O 
X 

Z1

1 

Z3 

Z2

1 

Z0

1 

Fig. 1: 6
th

 Roots of Unity 
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Now, let ω = 
n

2
sini

n

2
cos





.  Then all the nth roots of 1 are 1, ω, ω

2
, ……., ω

n-1
, since 

ω
j
, = 

n

j2
sini

n

j2
cos





 for 0  j  n – 1 (using De Moivre‟s theorem). 

 

Let 
n

 = {1, ω, ω
2
, ……., ω

n-1
}.  The following exercise shows you an interesting 

property of the elements of 
n

 . 

 

SELF ASSESSMENT EXERCISE 3 

 

If n > 1 and ω = 
n

2
sini

n

2
cos





, then show that 1 + ω + ω

2 
+ ω

3
 +….+ ω

n-1
 = 0. 

Now we are in a position to obtain a finite subgroup of C*. 

 

Example 5 
 

Show that 
n

  (C*,.). 
 

Solution  
 

Clearly, 
n

 ≠ .  Now, let ω
i 
, ω

j
  n
 . 

 

Then, by the division algorithm, we can write i + j = qn + r for q, r  Z, 0  r  n – 1.  

But then ω
i 
. ω

j
 = ω

i +j
 = ω

qn + r
 = (ω

n
)

q
, ω

r  
= ω

r
  

n
 , since ω

n
 = 1, i.e, ω

n – 1
.   Thus, 

n
 is closed under multiplication. 
 

Finally, if ω
1
 n
 , then 0  i  n – 1 and ω

i
, ω

n – 1
 = ω

n
 = 1, i.e., ω

n – 1
 is the inverse of 

ω
1
 for all 1  i < n.  Hence, 

n
 is a subgroup of C*. 

 

Note that 
n

 is a finites group of order n and is a subgroup of an infinite group, 

C*.  So, for every natural number n we have a finite subgroup of order n of C*. 

 

Before ending this section we will introduces you a subgroup that you will use off and 

on. 

 

Definition 
 

The centre of a group G, denoted by Z(G) =G, denoted by Z(G), is the set Z(G) = {g 

 G   xg = gx V x  G}. 

 

Thus, Z(G) is the set of some elements of G that commute with every element of G. 

 

For example, if G is abelian, then Z(G) = G. 
 

We will now show that Z(G)  G. 
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Theorem 2 
 

The centre of any group G is a subgroup of G. 

 

Proof 
 

Since e  Z(G), Z(G) ≠ .  Now, 

 

a  Z(G)  ax  V  x  G. 

   x = a
-1

 xa V x  G, pre-multiplying by a
-1

. 

   x = a
-1

 = a
-1

 x V x  G, post-multiplying by a
-1

. 

   a
-1

   Z(G). 

 

Also, for any a, b  Z(G) and for any x  G. 

(ab) x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab). 

 ab   Z(G). 

 

Thus,  Z(G) is a subgroup of G. 

 

The following exercise will give you some practice in obtaining the centre of a group. 

 

SELF ASSESSMENT EXERCISE 4 

 

Show that Z(S3)) = (I). 

 

(Hint:  write the operation table for S3) 

 

Let us now discuss some properties of subgroups. 

 

3.2 Properties of Subgroups  
 

Let us start with showing that the relation „is a subgroup of‟ is transitive.  The proof is 

very simple. 

 

Theorem 3 

 

Let G be a group, H be a subgroup of G and K be a subgroup of H.  Then k is a 

subgroup of G. 

 

Proof 

 

Since K  H, K ≠  and ab
-1
 K V a, b  K.  Therefore, K  G. 

 

Let us look at subgroups of Z, in the context of Theorem 3. 
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Example 6 

 

In Example 4 we have seen that any subgroup of Z is of the form mZ for some m  

N.  Let mZ and kZ be two subgrougs of Z.  Show that mZ is a subgroup of kZ iff k | 

m. 

 

Solution 

 

We need to show that mZ   kZ  k | m.  Now mZ   kZ  m  mZ   kZ  m  

kZ  m = kr for some r  Z k |m. 

 

Conversely, suppose k | m. 

 

Then, m = kr for some r  Z.  Now consider any n  mZ such that n = mt. 

 

Then n = mt = (kr) t = k (rt)  kZ. 

 

Hence, mZ   kZ 

 

Thus, mZ  kZ iff  k | m.  

 

Now, you may like to try the next exercise. 

 

SELF ASSESSMENT EXERCISE 5 

 

Which subgroups of Z is 9Z a subgroup of? 

 

We will now discuss the behaviour of subgroups under the operations of intersection 

and union. 

 

Theorem 4 

 

If H and K are two subgroups of a group G, then H∩K is also a subgroup of G. 

 

Proof 

 

Since e  H and e  K, where e is the identity of G, e   H∩K. 

 

Thus, H∩K ≠ . 

 

Now, let a, b  H∩K.  By Theorem 1, it is enough to show that ab
-1
 H∩K.   Now, 

since a, b  H, ab
-1
 H.  Similarly, since a, b  K, ab

-1
 K.  Thus, ab

-4
   H∩K.  

Hence, H∩K is a subgroup of G. 
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The whole argument of Theorem 4 remains valid if we take a family of subgroups 

instead of just two subgroups.  Hence, we have the following result. 

 

Theorem 4': if {Hi}i1 is a family of subgroups of a group G, then 
1  i 

  Hi is also a 

subgroup of G. 

 

Now, do you think the union of two (or more) subgroups is again a subgroup?  

Consider the two subgroups 2Z and 3Z of Z.  Let S = 2Z  3Z.  Now, 3 3Z S, 2 

 2Z S, but 1 = 3 – 2 is neither in 2Z nor in 3Z.  Hence, S is not a subgroup of 

(Z,+).  Thus, if A and B are subgroups of G, AB need not be a subgroup of G.  But, 

if AB is a subgroup of G. The next exercise says that this is the only situation in 

which AB is a subgroup of G. 

 

SELF ASSESSMENT EXERCISE 6 

 

Let A and B be two subgroups of a group G. Prove that AB is a subgroup of G iff A 

B or B A. 

 

(Hint: Suppose AB and BA. Take a  A\B and b B\A. Then show that ab  

AB.  Hence, AB G.  Note that proving this amounts to proving that AB  G 

 A   B or B   A. 

Let us now see what we mean by the product of two subsets of a group G. 

 

Definition 

 

Let G be a group and A, B be non-empty subsets of G. 

 

The product of A and B is the set AB = {ab   a  A, b  B}. 

 

For example, (2Z) (3Z) = {(2m) (3m) | m, n  Z} 

     = {6mn | m, n  Z} 

     =6Z. 

In this example we find that the product of two subgroups is a subgroup. But is that 

always so? Consider the group 

 

S1 = {1, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}, and its subgroups H = {1, (1 2)} and K = 

{1, (1 3)}. 
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Remember, (1 2) is the permutation 








312

321
and  321 is the 

permutation 








132

321
. 

 

Now HK = {I ◦ I, I ◦ (1 3), (1 2) ◦I, (1 2) ◦ (1 3)} 

      = {I, (1 3), (1 2), (1 3 2)} 

 

HK is not a subgroup of G, since it is not even closed under composition.  (Note that 

(1 3) ◦ (1 2) = (1. 2 3)  HK.) 

 

So, when will the product of two subgroups be a subgroup? The following result 

answers this question. 

 

Theorem 5 

 

Let H and K be subgroups of a group G.  Then HK is a subgroups of G if HK = KH. 

 

Proof 
 

Firstly, assume that HK  G.  We will show that HK = KH.  Let hk  HK.  Then (hk)
-

1
 = k

-1
 h

-1
  HK, since HK  G. 

 

Therefore, k
-1

 h
-1

 = k1 h1 for some h1 H, k1 K.  But then hk = (k
-1

 h
-1

)
-1

 = 1

1

1

1
hk 

 

KH.   Thus, HK  KH.
 

 
Now, we will show that KH   HK. Let kh  KH. Then (kh)

-1
 = h

-1
 k

-1
  HK.  But 

HK  G. Therefore, (kh)
-1

)
-1

  HK, that is, kh  HK. Thus, KH   HK. 

 

Hence, we have shown that HK = KH. 

 

Conversely, assume that HK = KH. We have to prove that HK  G. Since e = e
2
  

HK, HK ≠ .   

Now, let a, b HK. Then a = hk and b = h1 kl for some h, h1  Hand k, kl  K. 

 

Then ab
-1

 = (hk) (k 1

1

  h 1

1

 )= h [ (kk, 1

1

 ) h 1

1

 ]. 

 

Now (kk
1

1


) h

1

1


  KH = HK. Therefore,   h2k2  HK such that (kk

1

1


) h

1

1


 = h2k2. 

+Then, ab
-1

 = h(h2k2) = (hh2)k2  HK. 

Thus, by Theorem 1, HK  G. 

 

The following result is a nice corollary to Theorem 5. 
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Corollary:  If H and K are subgroups or abelian group G, then HK.  

 

Try the following exercise now. 

 

SELF ASSESSMENT EXERCISE 7 
 

Is AB a subgroup of S4, where A = {I, (1 4)} and B = {I, (1 2)}?  
 

The next topic that we will take up is generating sets. 

 

3.3  Cyclic Groups  
 

In this section we will briefly discuss generating sets, and then talk about cyclic 

groups in detail. 

 

Let G be any group and S a subset of G. Consider the family F of all subgroups of G 

that contain S, that is, 

 

F = {H | H  G and S   H}. 

 

We claim that F .  Why Doesn‟t G  F? Now, by Theorem 4, 
FH

H


  is a subgroup 

of G. 

 

Note that 

 

i         S   
FH

H


 . 

 

ii.       
FH

H


  is the smallest subgroup of G containing S. (Because if K is a subgroup of 

G containing S, then K  F. 

Therefore,
FH

H


 K.    ) 

 

These observations lead us to the following definition. 

 

Definition 

 

If S is a subset of a group G, then the smallest subgroup of G containing S is called 

the subgroup generated by the set S, and is 'written as <S>. 

 

Thus, <S> = ∩ {H | H  G, S   H}. 

If S = , then <S> = {e}. 

If <S> = G, then we say that G is generated by the set S, and that S is a set of 

generators of G. 

 

If the set S is finite, we say that G is finitely generated.  
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Before giving examples, we will give an alternative way of describing <S>. This 

definition is much easier to work with than the previous one. 

 

Theorem 6 
 

If S is a non-empty subset of a group G, then 

<S> =  .Sa|a.....aa
i

n

k

n

2

n

1
k21    Zn ..,…… ,n k,   i   1 for

k1
   

 

Proof 
 

Let A =  .Sa|a.....aa
i

n

k

n

2

n

1
k21    Zn ..,…… ,n k,   i   1 for

k1
  

Since a1……, ak  S   <S> and <S> is a subgroup of G, .Sa 1

1

n
  

 

Now, let us see why <S>   A. We will show that A is a subgroup containing S. Then, 

by the definition of <S>, it will follow that <S>   A. 
 

Since any a  S can be written as a =a
l
, S   A. 

Since S /  A / . 
 

Now let x, y  A. Then x = )a.......aa( k21 n

k

n

2

n

1

1m

r

m

2

m

1
)b.......bb( r21  l 

                      = )a.......aa( k21 n

k

n

2

n

1
.A)b.......b( 1r m

1

m

r



 

 

Thus, by Theorem 1, A is a subgroup of G. Thus, A is a subgroup of G containing S.  

And hence, <S>   A. 
 

This shows that <S> = A.  
 

Note that, if (G, +) is a group generated by S, then any element of G is of the form n1 

a1 + n2 a2 + …….. nr ar, where a1, a2 …., ar  S and n1, n2 …….. nr  Z. 

 

For example, Z is generated by the set of odd integers S = {1, 3, 5,….}. Let us see 

why.   Let m  Z. Then m = 2 r

s
 where r  0 and s  S. Thus, m e <5>. And hence, 

<S> = Z. 

 

Try the following exercises now. 

 

SELF ASSESSMENT EXERCISE 8 
 

Show that S = {I} generates Z. 

 

SELF ASSESSMENT EXERCISE 9 
 

Show that a subset S of N generates the group Z of all integers iff there exist 

S1….. , Sk in Sand nl, ….. nk in Z such that n1s1 + …...+ nksk =1. 

 

(Hint: Apply Theorem 6.) 
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SELF ASSESSMENT EXERCISE 10 
 

Show that if S generates a group G and S   T   G, then <T> = G. 

 

Self-Assessment Exercise 10 shows that a group can have many generating sets. Self 

Assessment Exercise 8 gives an example of a group that is generated by only one 

element. We give such a group a special name. 

 

Definition 
 

A group G is called a cyclic group if G = < {a} > for some a  G. We usually write < 

{a} > as < a>. 

 

Note that < a > = {a
n 
| n  Z}. 

 

A subgroup H of a group G is called a cyclic subgroup if it is a cyclic group. Thus, < 

(12) > is a cyclic subgroup of S3 and 2Z = <2> is a cyclic subgroup of Z. 

 

We would like to make the following remarks here. 

 

Remark 3 

 

i. If K  G and a  K, then <a> K.  This is because <a> is the smallest 

subgroup of G containing 

 

ii. All the elements of <a> = {a
n
 | n Z} may or may not be a distinct.  For 

example, take a = (1 2)  S3. 

 

Then < (1 2)> = {I, (1 2)}, since (1 2)
2 
= I, (1 2)3 = (1 2), and so on. 

 

SELF ASSESSMENT EXERCISE 11 

 

Show that if G  {e}, then G  < e >. 
 

SELF ASSESSMENT EXERCISE 12 

 

Show that <a> = <a-1> for any a  G. 

 

We will now prove a nice property of cyclic groups. 

 

Theorem 7 

 

Every cyclic group is abelian 
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Proof 
 

Let G = <a> = {a
n
 | n  Z}.  Then, for any x, y in G there exist m, n  Z such that x = 

a
m

, y = a
n
.  But, then xy = a

m. 
a

a 
= a

m +n
 = a

n
.a

m
 = yx.  Thus, xy = yx for all x, y. in G. 

 

That is, G is abelian. 

 

Note that Theorem 7 says that every cyclic group is abelian.  But this does not mean 

that every abelian group of is cyclic.  Consider the following example. 
 

Example 7 
 

Consider the set K4 = {e, a, b, ab} and the binary operation of K4 given by the table. 

 

  e a b ab 

e e a b ab 

a a e ab b 

b b ab e a 

ab ab b a e 

 

The table shows that (K4 , .) is a group. 

 

This group is called the Klein 4-group, after the pioneering German group theorist 

Felix Klein. 

 

Show that K4 is abelian but not cyclic. 

Solution 

 

From the table we can see that K4 is abelian. If it were cyclic, it would have to be 

generated by e, a,. b or ab. Now, < e > = {e}. Also, a
l
 =a,a

2
 = e,a

3
 = a, and so on. 

 

Therefore, < a > = {e, a}. Similarly, < b > = {e, b} and < ab > = { e, ab}. 

 

Therefore, K4 can't be generated bye, a, b or ab. 

Thus, K4 is not cyclic. 

 

Use Theorem 7 to solve the following exercise. 

 

SELF ASSESSMENT EXERCISE 13 
 

Show that S3 is not cyclic. 
 

Now let us look at another nice property of cyclic groups. 
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Theorem 8 

 

Any subgroup of a cyclic group is cyclic. 

 

Proof 

 

Let G = < x > be a cyclic group and H be a subgroup. 

 

If H = {e}, then H = < e >, and hence, H is cyclic. 

 

Suppose H  {e}. Then 3 n  Z such that x
n
 H, n  0. Since H is a subgroup, (x

-n
)

-1
 

= x
-n

  H. Therefore, there exists a positive integer m(i.e., n or-n) such that x
m 
 H.  

Thus, the set S = {t  N | x
t
 |   H} is not empty.  By the well-ordering principle (see 

Sec.) 1.6.1.) S has a least element, say k. We will show that H = < x
k
 >. 

 

Now, <x
k
 >   H, since x

k
  H. 

 

Conversely, let x
n
 be an arbitrary element in H. By the division algorithm n = mk + r 

where m, r  Z, 0  r  k-l. But then x
r
 = x

r
 = x

n – mk
 = x

n
. x

k
)

m
  H, since x

n
, x

k
 .  H. 

But k is the least positive integer such that x
k
  H.  Therefore, x

r
 can be in H only if r 

= 0. And then, n = mk and x
n
  = (x

k
)

m
  < k

k
 >.  Thus, H   < x

k
 >. Hence, H = < x

k
?, 

that is, H is cyclic. 

 

Using Theorem 8 we can immediately prove what we did in Example 4. . 

Now, Theorem 8 says that every subgroup of a cyclic group is cyclic. But the 

converse is not true. That is, we can have groups whose proper subgroups are all 

cyclic, without the group being cyclic. We give such an example now. 

 

Consider the group S3, of all permutations on 3 symbols. Its proper subgroups are 

subgroups are all cyclic, without the group being cyclic.  We give an example now. 

 

Consider the group S3, of all permutations on 3 symbols.  Its proper subgroups are 

 

A = < 1 >   

B = <12>  

C = < (1 3) > 

D = < (2 3) >  

E = <123> 

 

As you can see, all these are cyclic. But, by Self Assessment Exercise you know that 

S3 itself is not cyclic.  

 

Now we state a corollary to Theorem 8, in which we write down the important point 

made in the proof of Theorem 8.  
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Corollary:  Let H {e} be a subgroup of < a >. Then H = < a
n
 >, where n is the least 

positive integer such that a
n
  H. 

 

Try the following exercises now. 

 

SELF ASSESSMENT EXERCISE 14 

 

Show that any non-abelian group must have a proper subgroup other than {e}. 

 

SELF ASSESSMENT EXERCISE 15 

 

Obtain all the subgroups of Z4, which you know is < 1 >. 

 

 Let us now see what we have done in this unit. 

 

4.0 CONCLUSION 
 

Subgroups play important roles in group theory. In MTH 312 you will be introduced 

to another important subgroups called the normal subgroups which has a lot of 

application in some other sciences such as Molecular Chemistry, You are to read 

carefully and master all the materials in this unit.  

 

5.0 SUMMARY 
I 

n this unit we have covered the following points. 

 

1. The definition and examples of subgroups. 

2. The intersection of subgroups is a subgroup.  

3. The union of two subgroups H and K is a subgroup if and only if H K or K 

  H. 

4. The product of two subgroups H and K is a subgroup if and only if HK = KH. 

5. The definition of a generating set. 

6. A cyclic group is abelian, but the converse need not be true. 

7. Any subgroup of a cyclic group is cyclic, but the converse need not be true. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 1 
 

1. Yes, because H is a group in its own right. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 2 
 

 2. {e}  . Also for any e e
-1

 = e  {e} ….., by Theorem 1, {e}  G. 

G  .  Also for any x  G, x
--1

  G.  :., for a, b  G. 

 A, b e G  ab
-1

 e G. G  G. 
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ANSWER TO SELF ASSESSMENT EXERCISE 3 
 

Since 0)1(,1 nn  i.e., 

(1 - .0......1)( 1n2    

Since .0......1,1 1n2    

 

ANSWER TO SELF ASSESSMENT EXERCISE 4 
 

From Self Assessment Exercise 14 of Unit 2 recall the elements of S3. On writing the 

operation table for S3 you will find that only I commute with every permutation in S3. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 5 
 

The divisors of 9 are 1, 3 and 9 

Thus, 9Z is a subgroup of Z, 3Z and itself only. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 6 
 

We know that if A   B or B   A, then AB is A or B, and hence, is a subgroup of 

G. 

 

Conversely, we will assume that A  Band B   A, and conclude that AB ≰ G. 

Since AB,   a  A such that a  B. 

 

Since BA,   b  B such that b  A. 

 

Now, if ab  A, then ab = c, for some c  A. 

Then b = a
-1

 c  A, a contradiction.  ab  A. Similarly, ab  B. ...ab  AB. 

 

But a  AB and b  AB. So, AUB ≰ G.  

 

ANSWER TO SELF ASSESSMENT EXERCISE 7 
 

AB = {I, (1 4), (1 2), (1 2 4)  

But, (1 2) ◦ (14) = (142)  AB.  AB ≰ S4 

 

ANSWER TO SELF ASSESSMENT EXERCISE 8 
 

For any n  Z, n = n. l  < {1} >.   Z = < {1} >. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 9 
 

Firstly, suppose Z = < S>. Then 1  < S >.   s1,….,sk  S and  

nl, ……. ,nk  Z such that n1s1 +….. + nksk = 1. 
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Conversely, suppose , s1, …….sk  S and n1,…., nk  Z such that  

n1s1 + n2s2 +….. + nksk = 1. 

 

Then, for any n  Z, n = n.1 = nn1, s1, + ...:. + nnksk  <S>. 

 Z = < S >. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 10 
 

We know that G = < S >. Therefore, for any g  G, 

  s1……,sk  S and  n1,….., nk  Z such that g = k1 n

k

n

1
s.........s m  

Since S T, s1  T Vi = 1, …., k. 

 by Theorem 6, we see that G = < T >. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 11 
 

Since G  {e}, a ≠ e in G.  Since a  e for any r  Z. a < e >. 

 G  < e >. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 12 
 

We will show that < a > < a
-1

> and < a
-1

>   < a >. 

Now, any element of < a > is a
n
 = (a

-1
) 

-n
, for n  Z. 

 a
n
  < a

-1 
>. < a >   < a-1 >. 

 

Similarly, < a
-1 

> = < a >. 
 

< a >=< a
-1

>. 

ANSWER TO SELF ASSESSMENT EXERCISE 13 
 

Since S3 is not abe!ian (e.g., (1 3) ◦ (1 2)   (1 2) ◦ (1 3)), by . 

Theorem 7, S3 can't be cyclic. 

 

6.0   TUTOR- MARKED ASSIGNMENT 
 

1. Let G be a non-abelian group. Then G  {e}. Therefore, 3 a  G, a ≠ e. Then < 

a > G. G   < a >, since G is non-abelian.  < a >  G. 

2.    Since Z4 is cyclic, all its Subgroups are cyclic. 

Thus, its Subgroups are Z4, < 2  >, < 3  > and 
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UNIT 4  LAGRANGE'S THEOREM 
 

CONTENTS 

 

1.0  Introduction  

2.0 Objectives 

3.0 Main Content 

3.1 Cosets  

 3.2 Lagrange‟s Theorem  

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Readings 

 

1.0  INTRODUCTION 
 

In the previous unit we have discussed different subgroups. In this unit we will see 

how a subgroup can partition a group into equivalence classes. To do this we need to 

define the concept of cosets.  

 

In Sec. 4.3 we use cosets to prove a very useful result about the number of elements in 

a subgroup. The beginnings of this result were made in a research paper on the 

solvability of algebraic equations by the famous mathematician Lagrange. Today this 

elementary theorem is known as Lagrange‟s theorem, though Lagrange proved it for 

subgroups of Sn only.  

 

While studying MTH 312 you will be using Lagrange‟s theorem again and again.  So, 

make sure that you read this unit carefully. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to:: 

 

 form left or right cosets of a subgroup 

 partition a group into disjoint cosets of a group 

 prove and use Lagrange‟s theorem. 

 

3.0 MAIN CONTENT 
 

3.1  Cosets  
 

In Sec. 3.3 we defined the product of two subsets of a group. We will now look at the 

case when one of the subsets consists of a single element only. In fact, we will look at 

the situation H{x) = {hx | h  H}, where H is a subgroup of a group G and x  G. We 

will denote H{x} by Hx. 
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Definition  
 

Let H be a subgroup of a group G, and let x  G. We call the set, 

{hx | h H} a right coset of H in G. The element x is a representative of Hx. 

 

We can similarly define the left coset  

 

xH {xh | h  H} 

 

Note that, if the group operation is +, then the right and left cosets of H in (G,+) 

represented} x  G are 

 

H+x = {h+x  |  h H} and x + H = { x + h  |  h H} , respectively.  

 

Let us look at some examples. 

 

Example 1  
 

Show that H is a right as well as a left coset of a subgroup H in a group G. 

 

Solution 

 

Consider the right coset of H in G represented by e, the identity of G. Then 

He= {he | h H} = {h | h  H} =H. 

 

Similarly, eH = H.  

 

Thus, H is a right as well as left coset of H in G.  

 

Example 2  

 

What are the right cosets of 4Z in Z? ' 

 

Solution 

 

Now H = 4Z = {….., -8, -4, 0, 4, 8, 12, ….} 

 

The, right cosets of H are 

H + 0 = H, using Example 1. 

H +1 = {…… , -11, -7, -3, 1,5,9, 13,….. } 

H + 2 = {….., -10, -6, -2, 2, 6, 10, 14, …..} 

H+3 = { ….,-9,-5,-1,3,7,11,15,…. } 

H + 4 = {….., -8, -4, 0, 4, 8, 12,…..} = H 

 

Similarly, you can see that H+5 = H+1, H+6 = H+2, and so on. 
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You can also check that H-1 = H+3, H-2= H+2, H-3 = H+1, and so on 

 

Thus, the distinct right co sets are H, H+1, H+2 and H+3.  

 

 In general, the distinct right cosets of H (= nZ) in Z are H, H+l,  

 

H+ (n-l). Similarly, the distinct left cosets of H (=nZ) in Z are H, 1 +H, 2+H ......, (n-

1) + H. 

 

Before giving more examples of cosets, let us discuss some properties of cosets. 

 

Theorem 1 

 

Let H be a subgroup of a group G and let x, y  G. 

 

Then 

 

a.  x   Hx 

b.  Hx = H  x  H.  

c.  Hx = H  xy
-1

  H. 

 

Proof  

 

a. Since x = ex and e  H, we find that x  Hx. 

b.  Firstly, let us assume that Hx = H. Then, since x  H x, x  H. 

 

Conversely, let us assume that x  H. We will show that Hx   H and H   

Hx. Now any element of Hx is of the form hx, where h  H. This is in H, since 

h  H and x  H. Thus, Hx    H. Again, let h H. Then h = (hx
-l
) x  Hx, 

since hx
-1

  H. 

 

 H Hx. 

 H = Hx. 

 

c.  Hx = Hy =  Hxy
-1

 = Hyy
-1

 = He = H  xy
-1

  H, by (b). 

 

Conversely, Xy
-1

  H  Hxy
-1

 = H  Hxy
-1

y = Hy  Hx = Hy. 

 

Thus, we have proved (c). 

 

The properties listed in Theorem 1, are not only true for right cosets.  We make the 

following observations. 

 

Note:  Along the lines of the proof of Theorem 1, we can prove that if H is a subgroup 

of G and x, y  G,  
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a.   x  xH.  

b.  xH = H  x  H. 

c.  xH = yH  x
-l
y  H.  

 

Let us look at a few more examples of cosets. 

 

Example 3 
 

Let G = S3 = {I, (1 2), (1 3), (2 3), (1 23), (13 2) and H be the cyclic 

subgroup of G generated by (1 2 3). Obtain the left cosets of H in G. 

 

Solution 
 

Two cosets are 

 

H = {I, (1 23), (1 3 2)} and 

(1 2)H = {(1 2), (1 2) ◦ (1 2 3), (1 2) ◦ (1 3 2)} 

= {(1 2), (2 3), (1 3)) 

 

For the other cosets you can apply Theorem 1 to see that 

 

(1 2) H = (2 3)H = (1 3)H and 

(123)H = (132)H. 

 

Thus, the distinct left cosets of H are H and (1 2)H. 

 

Try the following exercise now. 

 

SELF ASSESSMENT EXERCISE 1 
 

Obtain the left and right cosets of H = < (1 2) > in S3.  Show that Hx  xH for some x 

 S3. 

 

Let us now look at the cosets of a very important group, the quaternion group. 

 

Example 4  
 

Consider the following set of 8 2x2 matrices over C. 

 

Q8 = {±I, ±A, ±B, ±C}‟ where 

 

I = 








10

01
‟ A = 









 01

10
, B = 









 i0

i0
, C = 









 i0

0i
and i = .1  

 

You can check that the following relations hold between the elements of  

Q8: 
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I
2 
= I, A

2
 = B

2
 = C

2
 =-I, 

AB = C = -BA, BC = A = -CB, CA = B = -AC. 

 

Therefore, Q8 is non-abelian group under matrix multiplication. 

 

Show that the subgroup H = < A > has only two distinct right cosets in Q8. 

 

Solution 
 

H = < A> = {I, A, A
2
, A

3
} = {I, A, -I, -A}, 

Since A
4
 = I, A

5
 = A, and so on. 

Therefore, HB = {B, C, -B, -C}, using the relations given above. 

Using Theorem I (b), we see that 

H= HI = HA = H(-I) = H(-A). 

Using Theorem I(c), we see that 

HB =HC= H(-B) = H(-C). 

Therefore, H has only two distinct right co sets in Q8, H and HB. 

 

The following exercise will help you to understand Q8. 

 

SELF ASSESSMENT EXERCISE 2 

 

Show that K = {I, -I} is a subgroup of Q8, Obtain all its right cosets in Q8. 

 

We will show that each group can be written as the union of disjoint cosets of any of 

its subgroups.  For this we define a relation on the elements of G. 

 

Definition 
 

Let H be a subgroup of a group G.  We define a relation „~‟ on G by x~y iff xy
-1

  H, 

where x, y  G.  Thus, from Theorem 1 we see that x ~ y iff Hx = Hy. 

 

We will prove that this relation is an equivalence relation (see unit 1). 
 

Theorem 2 
 

Let H be a subgroup of a group G. Then the relation ~defined by „x ~y‟ xy
-1 
 H is an 

equivalence relation. The equivalence classes are the right cosets of H in G. 

 

Proof  
 

We need to prove that ~is reflexive, symmetric and transitive. 

 

Firstly, for any x  G, xx
-1

 = e  H,   x ~ x, that is, ~ is reflexive. 

 

Secondly, if x ~ y for any x, y  G, then xy
-1

  H. 
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 xy = xy
-1- 
 H, Thus, y ~ x.  That is, ~ is symmetric. 

 

Finally, fi x, y, z,  G such that x ~ y and y ~ z, then xy
-1

  H and yz
-1 
 H. 

 

  (xy
-1

) (yz
-1

) = x(y
-1

y)z
-1

 = xz
-1

  H, x ~ z. 

 

That is ~ is transitive. 

Thus, ~ is an equivalence relation. 

The equivalence class determined by x  G is  {x |  = {y  G | y – x} = {y  G | xy
-1

 

 H}. 

 

Now, we will show that [x] = Hx. So, let y  [x]. Then Hy = Hx, by Theorem 1.   And 

since y  Hy, y  Hx. 

 

Therefore, [x]   Hx. 

 

Now, consider any element hx of Hx. Then x(hx)
-1

 = xx
-1

 h
-1

 = h
-1

  H. 

 

Therefore, hx ~ x. That is, hx  [x]. This is true for any hx  Hx. Therefore, H   G 

[x]. 

 

Thus, we have shown that [x] = Hx. 

Using Theorem 2 and Theorem 1 (d) of Unit l, we can make the following remark. 

 

Remark 
 

If Hx and Hy are two right cosets of a subgroup H in G, then Hx = Hy or Hx∩Hy = . 

 

Note that what Theorem 2 and the remark above say is that any subgroup H of a 

group G partitions G into disjoint right cosets. 

 

On exactly the same lines as above we can state that 

 

i.  any two left cosets of H in G are identical or disjoint, and 

ii.  G is the disjoint union of the distinct left cosets of H in G. 

 

So, for example, S3 = < (1 23) >   (1*2) < (1 2 3) > (using Example 3). 

 

You may like to do the following exercises now. 

 

SELF ASSESSMENT EXERCISE 3 

 

Let H be a subgroup of a group G. Show that there is a one-to-one correspondence 

between the elements of H and those of any right or left coset of H. 
 

(Hint:  Show that the mapping f: H  Hx: f(h) = hx is a bijection.) 
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SELF ASSESSMENT EXERCISE 4 
 

Write Z as a union of disjoint cosets of 5Z. 

 

Using Self-Assessment Exercise 3 we can say that if H is a finite subgroup of a group 

G, then the number of elements in every coset of H is the same as the number of 

elements in H. 
 

We will use this fact to prove an elementary theorem about the number of cosets of a 

subgroup of a finite group 10, the next section. 

 

3.2 LAGRANGE'S THEOREM  
 

In this section we will first define the order of a finite group and then show that the 

order of any subgroup divides the order of the group. 

So let us start with a definition. 

 

Definition 
 

The order of a finite group G is the number of elements in G.  It is denoted by o(G).  

For example, o(S3) = 6 and o(A3) = 3. Remember, A3 = {I, (1 23), (1 32)}! 

 

You can also see that o(Zn> = n. And, from Sec. 2.5.2 you know that o(Sn> = n! . 

 

Now, let G be a finite group and H be a subgroup of G. We define a function f 

between the set of right cosets of H in G and the set of left cosets of H in G by 

 

f: {Hx  |  x  G}  {y H  | y G}: f (Hx) = x
-1

H. 

 

Now try Self-Assessment Exercise 5. 

 

SELF ASSESSMENT EXERCISE 5 

 

Check that f is a bijection. 

 

Self-Assessment Exercise 5 allows us to say that there is a one-to-one 

correspondence between the right cosets and the left cosets of H in G. Thus, the 

number of distinct right cosets of H in G always equals the number of distinct left 

cosets of H in G. 

 

Definition 
 

Let H be a subgroup of a finite group G. We call the number of distinct 

of H in G the index of H in G, and denote it by | G : H|. 

 

Thus, from Example 3 we see that | S3: A3| = 2.  
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Note that, if we take H = {e}, then | G: {e} | = o(G), since {e}g = {g} V g  G and 

{e}g  {c}g if g g . 

 

Now let us look at the order of subgroups. In Sec. 3.4 you saw that the orders of the 

subgroups of S3 are 1, 2, 3 and 6. All these divide o(S3) = 6. This fact is part of a 

fundamental theorem about finite groups. Its beginnings appeared in a paper in 1770, 

written by the famous French mathematician Lagrange. He proved the result for 

permutation groups 

only.  The general result was probably proved by the famous mathematician Evariste 

Galois in 1839. 

 

Theorem 3 (Lagrange)  

 

Let H be a subgroup of a finite group G. Then o(G) = o(H) | G: H |. Thus, o(H) 

divides o(G), and | G: H | divides o(G). 

 

Proof 

 

You know that we can write G as a union of disjoint right cosets of H in G. So, if Hx1, 

Hx2, are all the distinct right cosets of if in G, we have 

 

G = Hx1  Hx2 ……  Hxr …………. (1)  

 

From Self Assessment Exercise 3, we know that | Hx1 | = | Hx2 | =...= | Hxr | =o(H). 

 

Thus the total number of elements in the union on the right hand side of (l) is element 

o(H) + o(I I) +….. + o(H) (r    times) = r o(H). 

 

Therefore, (1) says that o(G) = r o(H)  

   = o(H) | G: H |.' 

 

 

 

 
 

For example, suppose we are asked to find all the subgroups of a group G of order 35. 

Then the only possible subgroups are those of order 1, 5, 7 and 35. So, for example, 

we don't need to waste time looking for subgroups of order 2 or 4.  

 

In fact, we can prove quite a few nice results by using Lagrange's theorem. Let us 

prove some results about the order of an element. But first, let us define this phrase. 

 

Definition  
 

Let G be a group and g  G. Then the order of g is the order of the cyclic subgroup < 

g >, if < g > is finite. We denote this finite number by o(g). If < g > is an infinite 

subgroup of G, we say that g is of infinite order.  

 

You will see the power of Lagrange's theorem when we get 

down to obtaining all the subgroup of a finite group. 
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Now, let g  G have finite order. Then the set {e, g, g
2
, ...} is finite, since G is finite. 

Therefore, all the powers of g can't be distinct.  

 

Therefore, g
r
 = g

S
 for some r > s. Then 

g
r-s

 ,e and r-s  N. Thus, the set {t  N | gt = e} is non-empty. So, by the well-

ordering principle it has a least element Let n be the least positive integer such that g
n
 

= e. 
 

Then  
 

< g > = {e. g, g
2
, g

n - 1
}. 

Therefore, o(g) =0< g > = n. 

 

That is, o(g) is the least positive integer n such that g
n
 = e. 

 

(Note that. if g  (G, + ), then o(g) is the least positive integer n such that g
n
 = e.) 

 

Now suppose g  G is of infinite order. Then, for m  n, g
m

  g
n
. (Because, if g

m n
 = e, 

which shows that < g > is a finite group.) We will use this fact while proving 

 

Theorem 5 
 

Try the following exercise now. 

 

SELF ASSESSMENT EXERCISE 6 

 

What are the orders of  

 

a) (1 2)  S3,  b)  I   S4,  c)  








 01

10
 Qg, 

d) 3  Z4,  e)  1  R? 

 

Now Jet us prove an important result about the order of an element. 

 

Theorem 4  

 

Let G be a group and g  G be of order n. Then g
m
 = e for some m N iff n | m. 

 

Proof 

 

We will first show that g
m

 = e  n | m.  For this & consider the set 

S = {r  Z  | g
r
 = e}. 

 

Now, n  S. Also, if a, b  S, then g
a
 = e = g

b
. Hence, g

a -b 
= g

a
 (g

b
)

-1
 = e. Therefore. 

a-b  S. Thus, S   Z. 



MTH 211                                                                                  SET THEORY AND ABSTRACT ALGEBRA 

 

 
98 

So, from Example 4 of Unit 3, we see that S = nZ. Remember, n is the least positive 

integer in S!  
 

Now if g
m
 = e for some m  N, then m  S = nZ. Therefore, n | m. 

 

Now let us show that n | m  g
m
 = e. Since n | m, m = nt for some t  Z; Then g

m
 = 

g
nt

 = (g
n
)

t
 = e

t
 = e. Hence, the theorem is proved. 

 

We will now use Theorem 4 to prove a result about the orders of elements in a cyclic 

group. 

 

Theorem 5  
 

Let G = < g > be 11 cyclic group. 

 

a.  If g is of infinite order then g
m

 is also of infinite order for every m  Z. 

b.  If o(g) = n, then o(g
m
) = 

)m,n(

n
V m = 1, …., n-l.((n, m) is the g.c.d. of n and 

m.) 

 

Proof 
 

a.  An element is of .infinite order iff all its powers are distinct. We know that all 

the powers of g
m
 are distinct. We have to show that all the powers of g

m
 are 

distinct. If possible, let (g
m
)

t
 = (g

m
)

w
. Then g

mt
 = g

mw
. But then mt = mw, and 

hence t = w. This shows that the powers of g
m

 are all distinct, and hence g
m

 is 

of infinite order. 
 

b.  Since o(g) = n, G= {e, g,….. , g
n -1

} < gm >, being a subgroup of G, must be of 

finite order. Thus, g
m

 is of finite order. Let o(gm) = t. We will show that 

t
)m,n(

n
. 

Now, g
mt

 = (g
m

)
t
 y= e  n |  tm, by Theorem 4. 

 

Let d = (n, m). We can then write n = n1d, m = m1d, where (ml nl) =1. 
 

Then n1
d

n
= 

)m,n(

n
 

 

Now, n | tm  n | tmld   n1d | tmld  n  |  tm1. 

 

But (n,ml) = 1. Therefore, nl |  t.  ……………………..………... (1) 

Also, .ee)g(ggg)g( 111
1

1
1

11 mmnnmdmdnmnm   
 

Thus, by definition of o(g
m

) and Theorem 4, we have 

t  | nl, ……………………………………………… (2) 
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 (1) and (2) show that 

t = n1  ,
m,n

n
 

i.e., o(g
m
) = 

m,n

n
 

 

Using this result we know that o )4( , in Z12 is  
)4,12(

12
= 3. 

The next exercise will give you some practice in using Theorem 5. 

 

SELF ASSESSMENT EXERCISE 7 

 

Find the orders of= ,4,2  and 5 Z18. 

 

The next exercise is a consequence of Lagrange‟s theorem. 

 

SELF ASSESSMENT EXERCISE 8 

 

Let G be a finite group and x  G.  Then, show that o(x) divides o(G).  In particular, 

show that x
o(G) 

= e. 

 

We use the result of Self-Assessment Exercise 8 to prove a simple but important result 

of finite group theory. 

 

Theorem 6 

 

Every group of prime order is cyclic. 

 

Proof 

 

Let G be a group of prime order p.  Since p  1,  a  G such that a  e.  Now, by 

Self-Assessment Exercise and Theorem 4, o(a) | p.  Therefore, o(a) = 1 or o(a) = p.  

Since a   e, o(a)  2. 

 

Thus, o(a) = p, i.e., o(< a >) = p.  So, < a >  G such that o(< a >) = o(G).   Therefore, 

< a> = G.  That is, G is cyclic. 

 

Using Theorem 3 and 6, we can immediately say that all the proper subgroups of a 

group of order 35 are subgroups. 

Now let us look at groups of composite order. 
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Theorem 7 
 

If G is a finite group such that o(G) is neither 1 nor a prime, then G has non-trivial 

proper subgroups. 

 

Proof 
 

If G is not cyclic, then any a  G, a  e, generates a proper non-trivial subgroup < a >. 

 

Now suppose G is acyclic, say G = < x >, where o(x) = mn (m, n  1). 

 

Then, (x
m

)
n
 = x

mn
 = e.  Thus, by Theorem 4, o(x

m
)  n < o(G). 

 

Now, you can see Theorem 7 to solve the following exercise. 

 

SELF ASSESSMENT EXERCISE 9 

 

Obtain two trivial proper subgroups of Z8. 

 

We will now prove certain important number theoretic results which follow from 

Lagrange‟s theorem.   Before going further, recall the definition of „relatively prime‟ 

from Sec. 1.6.2. 

 

We first define the Euler phi-function, named after the Swiss mathematician Leonard 

Euler (1707 – 1783). 

 

Definition 

 

We define the Euler phi-function  : N  N as follows: 

 

(i) = 1, and 

(u) = number of natural numbers < n and relatively prime to n, for  

n  2. 

 

For example, (2) = 1 and (6) = 2 (since the only positive integers < 6 and relatively 

prime to 6 are 1 and 5). 

 

We will now prove a lemma, which will be needed to prove the theorem that follows 

it.   This lemma also gives us examples of subgroups of Zn, for every  

n  2. 

 

Lemma1: Let G = { 1)n,r(|Zr
n

 } , where n  2.  Then (G,.) is a group, 

where rssr  V s ,r  Zn. Further, o(G) =  (n). 
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Proof 
 

We first check that G is closed under multiplication. 

 

Now, s ,r  G  (r, n) = 1 and (s, n) = 1  (rs, n) = 1. 

 

 rs   G.  Therefore, is a binary operation on G. 

 

1  G, and its identity. 

 

Now, for r  G, (r, n) = 1. 

  ar + bn = 1 for some a, b,  Z (by Theorem 8 of Unit 1) 

 n  |  ar 

 ar = 1 (mod n) 

 .1   r  a   

 1-r a   

 

Further,  a  G, because if a and n have a common factor other than 1, then this factor 

will divide ar + bn = 1.  But that is not possible. 

 

Thus, every element in G has an inverse. 

 

Therefore, (G,.) is a group. 

 

In fact, it is the group of the elements of Zn that have multiplication inverse.  Since G 

consist of all those r  G such that r < n and (r, n) = 1, o(G) = (n).   

 

Lemma 1 and Lagrange‟s theorem immediately give us the following result due to the 

mathematician Euler and Pierre Fermat. 

 

Theorem 8 (Euler-Fermat) 
 

Let a  N and n  2 such that (a, n) = 1. 

Then, a
(n)

 = 1 (mod n). 

 

Proof 

 

Since a   Zn and (a, n) = 1, a   G (of Lemma 1).  Since o(G) = (n), we use Self-

Assessment Exercise and find that a
-(n)

 = 1 . 

 

Thus, a
(n)

= 1 (mod n). 

Now you can use Theorem 8 to solve the following exercises. 
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SELF ASSESSMENT EXERCISE 10 

 

What is the remainder left on dividing 3
47

 by 23?  (Note that (23) = 22, since each of 

the numbers 1, 2, …, 22 are relatively prime to 23.) 

 

SELF ASSESSMENT EXERCISE 11 

 

Let a  N and p be a prime.  Show that = 1 (mod p).  (This result is called Fermat’s 

little theorem.  To prove it you will need to use the fact that (p) = 

 p-1.) 

 

You have seen how important Lagrange‟s theorem is. Now, is it true that if  

m | o(G), then G has a subgroup of order m?  IF G is cyclic, it is true.  (You can prove 

this on the lines of the proof of Theorem 7.)  But, if G is not cyclic, the converse of 

Lagrange‟s theorem is not true.   

 

In Unit 7 we will show you that the subgroup 

A4 = {I, (1 2 3), (1 2 4), (1 3 2), (1 3 4), (1 4 2), (1 4 3), (2 3 4), (2 4 3), (1 2),  

          (3 4), (1 3), (2 4), (1 4), (2 3)}. 

of S4 has no subgroup of order 6, though 6 | 12 = o(A4). 

 

Now let us summaries what we have done in this unit. 

 

4.0 CONCLUSION 
 

We have examined in this unit subgroup and cosets of a group. You should read this 

unit carefully because it will useful in MTH 312 where we shall be considering a class 

of subgroup called normal subgroup.  

 

5.0 SUMMARY 
 

In this unit we have covered the following points. 

 

1. The definition and examples of right and left cosets of a subgroup. 

2. Two left (right) cosets of a subgroup are disjoint or identical. 

3. Any subgroup partitions a group into disjoint left (or right) cosets of the 

subgroup. 

4. The definition of the order of a group and the order of an element of a group 

5. The proof of Lagrange‟s theorem, which states that if H is a group of a finite 

group G, then o(G) = o(H)  | G : H |.  But, if m | o(G), then G need not have a 

subgroup of order m. 

6. The following consequences of Lagrange‟s theorem: 

 

 (i) Every group of prime order is cyclic. 

 (ii) a
(n)

   1 (mod n), where a, n  N, (a, n) = 1 and n  2. 
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ANSWER TO SELF ASSESSMENT EXERCISE 1 
 

H = {I, (1 2)}, 

 

Its left cosets are H, (1 2)H, (1 3 )H, (2 3 )H, (1 2 3)H, ( 1 3 2)H. 

 

Now, (1 2)H = H, ( 1 2 3)H = ( 1 3)H, ( 1 3 2)H = (2 3)h. 

Thus, the distinct left cosets of H in S3 are H, (1 3)H, (2 3)H. 

 

Similarly, the distinct right cosets of H in S3 are  

H, H(1 3), H(2 3). 

 

Now, (1 3)H = {(1 3), ( 1 2 3)} and H(1 3), (1 3 2)} 

 (1 3) H  H( 1 3). 

 

You can also see that (2 3)H  H(2 3). 

 

ANSWER TO SELF ASSESSMENT EXERCISE 2 
 

Since ab
-1
 K V a, b  K, we can apply Theorem 1 of Unit 3 to say that K  Q8. 

Now, K = KI = K(-I), KA = K(-A) = {A, -A}‟ 

KB – K(-B) = {B, -B}, KC = K(-C) = {C, -C} 

 

ANSWER TO SELF ASSESSMENT EXERCISE 3 
 

Let Hx be a coset of H in G.  Consider the function f: H  Hx: f(h) = hx. 

Now, for h, h by cancellation. 

 

Therefore, f is 1 – 1. 

F is clearly surjective.  Thus, f is a bijection. 

And hence, there is a one-to-one correspondence between the elements of H and those 

of Hx. 

 

Similarly, the map f: H  Hx: f(h) = xh is  a bijection. 

Thus, the elements of H and xH are in one-to-one correspondence. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 4 
 

The distinct cosets of 5Z in Z are 5Z, 5Z + 1, 5Z + 2, 5Z + 3, 5Z + 4. 

 Z = 5Z5Z + 1 5Z + 2 5Z + 3 5Z + 4. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 5 
 

f is well defined because Hx = Hy  xy
-1

  H  (xy
-1

)
-1

  H 

 (y
-1

)
-1

 x
-1

  x
-1

H y
-1

H 

 f(Hx) = f(Hy) 
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f is 1 – 1 because f(Hx) = f(Hy)  x
-1

H = y
-1

H 

 yx
-1
 H  xy

-1
  Hx = Hy. 

F is surjective because any left coset of H in G is yH = f(Hy
-1

). 

 

Therefore, f is a bijection. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 6 
 

i. ( 1 2)  1, ( 1 2)
2
 = ( 1 2) ◦ ( 1 2) = I  o ((1  2)) = 2. 

ii. 1
1
 = I.  (I) = 1. 

iii. 2 

iv. .4)3(o,0123,4,193,3,262,2,03    

 v. Since < 1 > R is infinite, 1 is of infinite order. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 7 
 

Z18 = < 1 >.  Thus, using Theorem 5, we see that  

o( )r = o( )1,r = 
)r,18(

18
, for any r  Z18 

 o( 2 ) = 9, o( 4 ) = 9, o( 5 ) = 18. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 8 
 

Since o(x) = o(< x >) and o(< x >)  |  o(G), o(x)  |  o(G). 

Thus, using Theorem 4, x
o(G)

 = e. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 9 
 

o(Z8) = 8 = 2 x 4. 

2 Z8 such that o( )2 = 4.  Then < .Z2
8

  

Similarly, 
8

Z4 such that o )4( = 2. < 4 < Z8. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 10 

 

We know that in Z23, 1 )3( )23(   , 

that is, 3
22

  = 131 44   .  

 3
47

 = 3
-3,

 3
44

 = 27   ,33  

Thus, 3
47

 = 27 (mod 23). 

 

Therefore, on dividing 3
47

 by 23, the remainder we get is 27. 

 

ANSWER TO SELF ASSESSMENT EXERCISE 11 

 

We get the result immediately by using Theorem 8 and the fact that  (p) = p – 1. 
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6.0 TUTOR-MARKED ASSIGNMENT 
 

1. State and prove the Lagrange Theorem. 

2.  Show that every subgroup of a commutative group is normal. Is the converse 

true? Justify your answer. 
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