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1.0 INTRODUCTION

In this unit we first discuss some ideas concerning sets and functions. These concepts
are fundamental to the study of any branch of mathematics, in particular, algebra.

In MTH 131, we discuss some elementary number theory. The primary aims of this
section, is to discuss some few facts that we will need in the rest of the course. We
also hope to:

Give you a glimpse of the elegance of number theory. It is this elegance that led the
mathematician Gauss to call number theory the ‘queen of mathematics’.

We would like to repeat that this unit consists of very basic ideas that will be used
throughout the course. So go through it carefully.
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2.0 OBJECTIVES

At the end of this unit, you should be able to:

. use various operations on sets

o define Cartesian products of sets

) check if a relation is an equivalence relation or not, and find equivalence
classes

) define and use different kinds of functions

o state the principle of induction

) use the division algorithm and unique prime factorisation theorem.

3.0 MAINCONTENT

3.1  Sets

You must have used the word ‘set’ off and on in your conversations to describe any
collection. In mathematics the term set is used to describe any well defined collection
of objects, that is, every set should be so described that given any object it should be
clear whether the given object belongs to the set or not.

For instance, the collection N of all natural numbers is well defined, and hence is a
set. But the collection of all rich people is not a set, because there is no way of
deciding whether a human is rich or not.

If S is set, an object a in the collection S is called an element of S. This fact is
expressed in symbols as ae S (read as “a is in S” or “a belongs to S”). If ais notin S,

we write ae S. For example, 3e R the set of real numbers. But. V-1 ¢ R.
Elementary Group Theory

A set with no element in it is called the empty set, and is denoted by the Greek ¢
(phi). For example, the set of all natural numbers less than 1 is¢.

There are usually two way of describing a non-empty set:

(1) Roster method, and (2) set builder method.

Roster Method

In this method, we list all the elements of the set: within braces. For instance, the

collection of all positive divisors of 48 contains 1, 2, 3, 4, 6, 8, 12, 16, 24 and 48 as its
elements. So this set may be written as '{1, 2, 3, 4, 6, 8, 12, 16, 24, 48}.
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In this description of a set, the following two conventions are followed:
Convection 1

The order in which the elements of the set are listed is not important.
Convention 2

No element is written more than once, that is, every element must be written exactly
once.

For example, consider the set S of all integers between %and 4%. Obviously, these

integers are 2, 3 and 4. So we may write S = (2, 3, 4}.

We may also write S = (3, 2, 4}, but we must not write S = (2, 3, 2, 4}. Why? Isn't this
what Convention 2 says?

The roster method is sometimes used to list the elements of a large set also. In this
case we may not want to list all the elements of the set. We list a few, enough to give
an indication of the rest of the elements. For example, the set of integers lying
between 0 and 100 is {0, 1, 2... 100}, and the set of all integers is

Z={0, £1, +2,...... }.

Another method that we can use for describing a set is the

Set Builder Method

In this method we first try to find a property which characterises, the elements of the
set, that is, a property P which all the elements of the set possess. Then we describe
the set as:

{x | x has property P}, or as

{x: x has property P}.

This is to be read as “the set all x such that x has property P”. For example, the set of
all integers can also be written as

Z = {x | xis an integer}.

Some other sets that you may be familiar with are

Q, the set of rational numbers = {% ‘ abeZb ¢ 0}.

3
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R, the set of real numbers

C, the set of complex numbers = {a+ib| a, b € R}. (Here i =J-1 )

Let us now see what subsets are.

Subsets

Consider the sets A = {1, 3, 4} and B = {1, 4}. Here every element of B is also all

element of A. in such a case, that is, when every element of a set B is an element of a
set A, we say that B is a subset of A, and we write thisas B < A.

forevery set A, A c A.
Also, for any set A, ¢ < A.

Now consider the set S ={1, 3,5, 15}and T =(2, 3, 5, 7}. Is S < T? No, because not
every element of Sisin T; for example, 1 € S but 1¢ T. In this case we say that S is
not a subset of T, and denote itby S ¢ T.

‘J'denotes ‘there exists’, Note that if B is not a subset of A, there must be an
element of B which is not an element of A. In mathematical notation this can be
written as ‘3" X > B such that x ¢ A’.

We can now say that two sets A and B are equal (i.e., have precisely the same
elements) ifand only if A cBand B c A.

Sets and Functions

Try the following exercise now.

SELF ASSESSMENT EXERCISE 1

Which of the following statements are true?

@ NcZ (b)) Z< N, (c) {0} = {1,2,3}, (d) {2,4,6} « {2,4,8}.

Let us now look at some operations on sets. We will briefly discuss the operations of
union, intersection and complementation on sets.

Union
If A and B are subsets of a set S, we can collect the elements of both to get a new set.

This is called their union. Formally, we define the union of A and B to be the set of
those elements of S which are in A or in B.
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We denote the union of A and B by:

A UB. Thus,
AUB={x € S| x € Aorx ¢ B}

For example, if A={1,2}and B={4,6, 7}, thenAUB ={1, 2, 4,6, 7}.

Again, if A=(1,2,3,4]and B=(2,4,6,8), AUB=(1, 2, 3, 4, 6, 8). Observe that 2
and 4 are in both A and B, but when we write A U B, we write these elements only
once, in accordance with Convention 2 given earlier.

Can you see that, forany set A, AU A=A?

Try the following exercise now. While trying it remember that to show that A ¢ B
you need to showthatx € A = x¢ B

SELF ASSESSMENT EXERCISE 2

Let A, B, C, be subsets of a set Such that A ¢ Cand B ¢ C.

Then show that:

a. AUBzC
b. AUB=BUA
c. AU$=A

Now will extend the definition of union to define the union of more than two sets.

If Ay, Ay, Ag........ A, are k subsets of a set S, then their union A;UAU .....UA s
the set of elements which belong to at least one of these sets. That is,
A UAU....... UA={xe$ xeAforsomei=1,2...... k).

k
The expression A; UA,U .....UA is often abbreviated to UA..
i=1

If ¢ is a collection of subsets of a set S, then we can define the union of all members
of pby UA={x € A for some A € g}

Aecp
Now let us look at another way of obtaining a new set from two or more given sets.

Intersection

If A and B are two subsets of a set S, we can collect the elements that are common to
both A and B. We call this set the intersection of A and B (denoted by A N B, So,

5
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ANB={x e S|x eAand x B}
Thus, if P={1, 2, 3,4} and Q= {2, 4, 6, 8}, then PN Q= {2, 4}.
Can you see that, for any set A, A A= A?

Now suppose A = {1, 2} and B = (4, 6, 7). Then what is A [1B? We observe that, in
this case A and B have no common elements, and so A (| B =¢, the empty set.

When the intersection of two sets is ¢ , we say that the two sets are disjoint (or
mutually disjoint). For example, the sets {1, 4} and {0, 5, 7, 14} are disjoint.

Try this exercise now.
SELF ASSESSMENT EXERCISE 3
Let A and B be subsets of a set S. Show that

a. ANB=BNA
b. AcB=AB=A
c. AN¢=¢

Elementary Group Theory
The definition of intersection can be extended to any number of sets.

Thus, the intersection of k subsets A;, A,...... A ofasetSis
ANAN ... A={x]e S x €A foreachi =1 2, ....k}.

k
We can shorten the expression A; N A>( ....... Acto NA.
i=1

In general, if @ is a collection of subsets of a set S, then we can define the
intersection of all the members of pby N A= {xeS [xe AvAcp}

Acp

In the following exercise we give important properties of unions and intersections of
sets.

SELF ASSESSMENT EXERCISE 4

For any subsets, A, B, C of a set S, show that

a. (AUBJUC=AUBUDC)
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b.  (ANB)NC=ANBNC)
c. AU(BNC=(AUBNKUC
d. ANBUC=ANBUMRNC)

SELF ASSESSMENT EXERCISE 5

State whether the following are true or false. If false, give a counter-example.
a. IfAcBandB c C,thenA c C

b. If Az Band B ¢ A, then A and B are disjoint

C. Ag AUB

d. IfAUB=¢ ,thenA=B=¢ .

Apart from the operations of unions and intersections, there is another operation on
sets, namely, the operation of taking differences.

Differences

Consider the sets A = {1, 2, 3} and B = {2, 3, 4}. Now the set of all elements of A that
are not in B is {1}. We call this set the difference A\B. Similarly, the difference B\ A
Is the set of elements of B that are not in A, that is, {4}. Thus, for any two subsets ‘A
and BofasetS, {xeX xeAandxeB}

When we are working with elements and subsets of a single set X, we say that the set
X is the universal set. Suppose X is the universal set and A < X. Then the set of all
elements of X which are not in A is called the complement of A and is denoted by

A" A° or X\A.
Thus,

A ={xeX|x¢gA}
For example, if X ={a, b, p, g, r} and A = {a. p, g}, then A® ={b, r}.
Try the following exercise now.

SELF ASSESSMENT EXERCISE 6

Why are the following statements true?

a. A and A°‘are disjoint, i.e., AN A° = ¢
b. A U A° =X, where X is the universal set.
C. (A% =A.

And now we discuss one of the most important constructions in set theory.
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3.2 Cartesian Products

An interesting set that can be formed from two given sets is their Cartesian product,
named after a French philosopher and mathematician Rene Descartes (1596 -1650).
He also invented the Cartesian coordinate system.

Let A and B be two sets. Consider the pair (a, b), in which the first element is from A
and the second from B. Then (a, b) is called an ordered pair. In an ordered pair in
order in which the two elements are written is important. Thus, (a, b) and (b, a) are
different ordered pairs. Two ordered pairs (a, b) and (c, d) are called equal, or the
same, ifa=cand b =d.

Definition

The Cartesian product A x B, of the sets A and B, is the set of all possible ordered
pairs (a, b), wherea € A,b e B.

For example, if A= {1, 2,23} and B = {4, 6},then AX B ={(1, 4), (1, 6), (2, 4), (2,
6), (3, 4), (3, 6)}.

Also note that
BxA={41),(4,2),4,3),(,1),(6,2),(6,3)} and Ax BZBxA.

Let us make some remarks about the Cartesian product here.
Remarks:

I. AxXB=¢ifA=¢ orB=9¢.

i, If A has m elements and B has n elements, then A x B has mn elements. B x A
also has mn elements. But the elements of B x A need not be the same as the
elements of A x B, as you have just seen.

We can also define the Cartesian product of more than two sets in a similar way. Thus,
It As, Ay, As ........ A, are n sets, we can define their Cartesian product as

Al XArX...... xAn={(as, a, ...... an) a1 € Ar.onnnnn, an € An}.
For example, if R is the set of all real numbers, then

RXR:{(al, a2)| ai e R, d € R}
RXRXxR={(a, a, a3) | ai, ¢ R; i=1, 2,3}, and so on. Itis customary to write
R*’forRxRand R"forRx ......... x R (in n times).

Now, you know that every point in a plane has two coordinates, x and y. Also, every
ordered pair (X, y) of real numbers defines the coordinates of a point in the plane. So,
we can say that R? represents a plane. In fact, R? is the Cartesian product of the x-axis
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and the y-axis. In the same way R® represents three-dimensional space, and R"
represents n-dimensional space, for any n >1. Note that R represents a line.

Try the following exercises now.

SELF ASSESSMENT EXERCISE 7

IfA={2,5}B={2,3},find AxB,BxAand AxA.

SELF ASSESSMENT EXERCISE 8

IfAxB={(7,2),(7,3),(7,4), (2, 2), (2,4)}, determine A and B.

SELF ASSESSMENT EXERCISE 9

Provethat (AU B)xC=(AxC) U BxC)and(AN B)xC==(AxC) N (BxC).
Let us now look at certain subsets of Cartesian products.

3.3 Relations

You are already familiar with the concept of a relationship between people. For
example, a parent-child relationship exists between A and B if and only if A is a

parent of B or B is a parent of A.

In mathematics, relation R on a set S is a relationship between the elements of S. If a
e Sisrelated to b € S by means of relation, we writtea R b or (a, b) e R =SxS.
And this is exactly how we define a relation on a set.

Definition
A relation R defined on a set S is a subset of S x S.

For example, if N is the set of natural and R is the relation’ is a multiple of” then 15 R
5, butnot 5R 15. Thatis, (15,5) € Rbut (5,15) ¢ R. Here R < N x N.

Again, if Q is the set of all rational numbers and R is the relation ‘is greater than’,
then 3 R 2 (because 3> 2).

The following exercise deals with relations.
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SELF ASSESSMENT EXERCISE 10

Let N be the set of all natural numbers and R the relation {(a, a®) a € N}. State
whether the following are true or false:

a. 2R3, b. 3RY, C. 9R 3.
We now look at some particular kinds of relations.
Definition

A relation R defined on a set S is said to be

I reflexive if we have aRa VvV a € S.
i. symmetric if aBRb = bRa Va,b € S.
iil. transitive if aRb and bRc = aRc Va, b, c € S.

To get used to these concepts, consider the following examples.
Example 1

Consider the relation R on Z given by ‘aRb iff and only if a> b’. Determine whether
R is reflexive, symmetric and transitive.

Solution
Since a > a is not true, aRa is not true. Hence, R is not reflexive.

If a > b, then certainly b > a is not true. That is, aRb does not imply bRa. Hence, it is
symmetric,

Since a > b and b > ¢ implies a > ¢, we find that aRb, bRc implies aRc. Thus, R is
transitive.

Example 2

Let S be a non-empty set. Let o (S) denote the setof all S, i.e., o (S)={A:A c S}.
We call o (S) the power set of S.

Define the relation R on g (S) by
R={(A,B)| A/B e @(S)and A c B}.

Check whether R is reflexive, symmetric or transitive.

10
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Solution

Since A c AMA e p (S), Ris reflexive.

If A — B, B need not be contained in A. (In fact, A c Band B ¢ A < A =B))
Thus, R is not symmetric.

IfAcBandB < C,then A c CM A, B,C € p(S). Thus, R is transitive.

You may like to try the following exercises now.
SELF ASSESSMENT EXERCISE 11

The relation R < N x N is defined by (a, b) e, R if 5 divides (a -b). Is R Reflexive?
Symmetric? Transitive? ,

SELF ASSESSMENT EXERCISE 12

Give examples to show why the relation in Self-Assessment Exercise 10 is not
reflexive, symmetric or transitive.

The relationship in Self-Assessment Exercise 11 is reflexive, symmetric and
transitive. Such a relation is called an equivalence relation.

A very important property of an equivalence relation on a set S is that it divides S into
a number of mutually disjoint subsets, that is, it partitions S. Let us see how this
happens.

Let R be an equivalence relation on the set S. Leta € S. Then the set {b € S aRb} is
called the equivalence class of a in S. It is just the set of elements in S which are
related to a. We denote it by [a].

For instance, what is the equivalence class of 1 for R given in Self- Assessment
Exercise 117

This is
[1] {n |1Rn,n € N}
{n|n e Nand>5 divides 1-n}

{n|n e Nand>5 divides n-1}
{1, 6, 11, 16, 21 ...},

11
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Similarly,

[2] ={n]|n e Nand5divides n-2}
={2,7, 12 17,22},

[3] =43,8,13,18,23..},

[4] =4{4,9, 14,19, 24},

[5] =45, 10,15, 20, 25 ...},

[6] =4{1,6,11,16,21...},

[71 ={2,7,12,17,22 ...},

Note that

I. [1] and [6] are not disjoint. In fact, [1] = [6]. Similarly, [2] = [7], and so on.
ii N =[1] U[2] U [3] U [4] U [5], and the sets on the right hand side are
mutually disjoint.

We will prove these observations in general in the following theorem.

Theorem 1

Let R be an equivalence relation on a set S. For a < S, let [a] denote the equivalence
class of a. then

a. a € [a],

b.  bela] < [a]=[b],

C. S= Us[a]

d ifa, b e S, then [a] N[b] = ¢ or [a] = [b].

Proof: a. Since R is an equivalence relation, it is reflexive.
~.aRaMaces, . ae]a]

b. Firstly, assume that b € [a]. We will show that [a] < [b] and [b] < [a]. For
this, let X € [a]. Then xRa.

We also know that aRb. Thus, by transitivity of R, we have xRb, i.e., x € [b]. .. [a]
c [b].

We can similarly show that [b] < [a].
. [a] = [b].

Conversely, assume that [a] = [b]. Thenb € [b]. .. b € [a].

C. Since[a] € SMae S, U [a] < S (see Self Assessment Exercise 2).
aeS

12
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Conversely, letx € S. Then Ae [X], x < [X] by (a) above. [X] is one of the sets in the
collection whose union isU [a].

aes

Hence,x= U [a]. So,S < U [a].

aeS

Thus, S < U [a]and U [a] < S, proving (c).
aeS aeS

d. Suppose [a] N [b]=¢. Letx € [a] N [b].

Then x € [a] and x € [b]
= [x] =[a] and [X] = [b], by (b) above
= [a] = [b].

Note that in Theorem 1, distinct sets on the right hand side of (c) are mutually disjoint
because of (d). Therefore, (c) expresses S as a union of mutually disjoint subsets of S;
that is we have a partition of S into equivalence classes.

Let us look at some more examples of partitioning a set into equivalence classes.

Examples 3

Let S be the set of straight lines in R x R. Consider the relation on S given by ‘L; R L,
if Ly =L, or L, is parallel to L,’. Show that R is an equivalence relation. What are the
equivalence classes in S?

Solution

R is reflexive, symmetric and transitive. Thus, R is an equivalence relation.

Now, take any line L, (see Fig. 1).

\ \
\
\
N L s N Ly
\ \\

Fig. 1: The equivalence class of L;

13



MTH 211 SET THEORY AND ABSTRACT ALGEBRA

Let L be the line through (0, 0) and parallel to L;. Then Le [L;]. Thus, [L] = [L4]. In
this way the distinct through (0, 0) give distinct equivalence classes into which S is
partitioned. Each equivalence class [L] consists of all the lines in the planes that are
parallel to L.

Now for a nice self assessment exercise!

SELF ASSESSMENT EXERCISE 13

Show that ‘aRb if and only if |a| = |b|’ is an equivalence relation on Z. what are [0] and
[11?

In the next section we will briefly discuss a concept that you may be familiar with
namely, functions.

3.4 Functions

Recall that a function f from a non-empty set A to a non-empty set B is a rule which
associates with every element of A exactly on element of B. This is written as f: A —
B. If f associates with a € A, the element b of B, we write f(a) = b. A is called the
domain of f, and the set f(A) = {f(a) | a € A} is called the range of f. The range of f is
a subset of B, i.e., f(A) < B. B is called the codomain of f.

Note that

I. For each element of A, we associate some element of B.

i, For each element of A, we associate only one element of B.

ii Two or more elements of A could be associated with the same element of B.
For example, let A={1,2,3},B={1, 2,3,4,5,6, 7, 8,9, 10}. Define f: A —» B by
f(1) = 1, f(2) = 4, f(3) = 9. Then f is a function with domain A and range {1, 4, 9}. In
this case we can also write f(x) = x* fro each x € A or f: A — B: f(x) = x%. We will

often use this notation for defining any function.

If we define g: A —> B by g(1) =1, 9(2) =1, g(3) =4, then g is also a function. The
domain of g remains the same, namely, A. but the range of g is {1, 4}.

Remark
We can also consider a function f: A — B to be the subset {(a, f(a)) | a € A} of Ax B.

Now let us look at functions with special properties.

14
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Definition

A function f: A — B is called one-to-one (or injective) if f associates different
elements of A with different elements of B, i.e., if a;, a, € A and a; # a,, then f(a,) #
f(ay). In other words, fis 1 - 1if f(a;) =f(ay) = a; = a,.

In the examples given above, the function f is one-to-one. The function g is not one-
one because 1 and 2 are distinct elements of A, but g(1) = g(2).

Now consider another example of sets and functions.

LetA={1,2 3} B={p, q,r} Letf: A— B be defined by f(1) = q, f(2) =, f(3) = p.
then f is a function. Here the range of f = B = codomain of f. This is an example of an
onto function, as you shall see.

Definition

A function f: A — B is called onto (or surjective) if the range of f is B, i.e., if, for
each b € B, thereisan a € A such that f (a) = b. In other words, f is onto if f(A) = B.

For another important example of a surjective function, consider two non-empty sets
A and B. we define the function m;: A X B —> A: m; ((a, b)) = a. my is called the
projection of A x B onto A. You can see that the range of m; is the whole of A.
Therefore, =, is onto. Similarly, ©,: A x B — B: 7, ((a, b)) = b, the projection of A x B
onto B, is a surjective function.

If a function is both one-to-one and onto, it is called bijective, or a bijection. You will
be using this type of function heavily in Block 2 of this course.

Consider the following example that you will use again and again.
Example 4

Let A be any set. The function Ia: A — A: Ia(a) = a is called the identity function on
A. Show that I, is bijective.

Solution
Forany a € A, Ia(a) = a. Thus, the range of I, is the whole of A. That is, I is onto.
I iIs also: because if a;, ay, € A such that a; # ay, then I (ay) # 1a(ay).

Thus, |4 is bijective.

15
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If f: A — B is a bijection, then we also say that the sets A and B are equivalent. Any
set which is equivalent to the set {1, 2, 3......... n}, for some n € N, is called a finite
set. A set that is not finite is called an infinite set.

Convention

The empty set f is assumed to be finite.
Try the following self assessment exercise now.

SELF ASSESSMENT EXERCISE 14

Let f: N — N be defined by f(n) = n + 5. Prove that f is one-to-one but not onto.
SELF ASSESSMENT EXERCISE 15

Let f: Z — Z be defined by f(n) = n + 5. Prove that f is both one-one and onto.

The next exercise deals with a function that you will often come across, namely, the
constant function f: A — B: f(a) = ¢, where c is a fixed element of B.

SELF ASSESSMENT EXERCISE 16

What must X be like for the constant function f: X — {c} to be injective? Is f
surjective?

Let us now see what the inverse image of a function is.
Definition

Let A and B be two sets and f: A — B be a function. Then, for any subset S of B, the
inverse image of S under fis the set.

f1(S)={a e A|f(a) € S}.
For example, 1,1 (A) ={a € A|la(@) € A} = A
Again, for the function f in Self-Assessment Exercise 14,
f1({1,2,3)={n e N|f(n) e {1, 2, 3}}
={n e N|n+5 e {1, 2, 3}}
=¢, the empty set.
Butf* (N)={6,7,8, ...}

We now give some nice theorems involving the inverse image of a function.

16
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Theorem 2

Let f: A — B be a function. Then,

a)  forany subset S of B, f(f(S)) < S.

b)  forany subset X of A, X < fFY(f(X)).

Proof

We will prove (a) and you can prove (b) (see Self Assessment Exercise 17). Letb e
f(f*(S)). Then, by definition, 3 a e ¥%(S) such that b = f(a). Buta  f*(S) = f(a) < S.
Thatis, b € S. Thus, f(f(S) < S.

The theorem will be proved once you solve Self Assessment Exercise 17.

SELF ASSESSMENT EXERCISE 17

Prove (b) of Theorem 2.

SELF ASSESSMENT EXERCISE 18

Givenf: A—>Band S, T < B, show that

a. ifSc T, thenf'(S) < f}(T).

b. LU T)=fYS) U FY(T)

c. fHENT)=FYS)NFYT)

Now let us look at the most important way of producing new functions from given
ones.

Composition of Functions

If f: A— Bandg: C— D are functions and if the range of f is a subset of C, there is
a natural way of combining g and f to yield a new function
h: A — D. Let us see how.

For each x € A, h(x) is defined by the formula h(x) = g(f(x)).
Note that f(x) is in the range of f, so that f(x) € C. Therefore, g(f(x)) is defined and is
an element of D. This function h is called the composition of g and f and is written as

gof. The domain of gof is A and its codomain is D. In most cases that we will be
dealing with we will have B = C. Let us look at some examples.

17
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Example 5

Let f: R > R and g: R - R be defined by f(x) = x* and g(x) = x + 1. What is gof?
What is fog?

Solution

We observe that the range of f is a subset of R, the domain of g. Therefore, gof is
defined. By definition, Mxe R,gof(x) = g(f(x)) = f(x) + 1 = x* + 1.

Now, let us find fog. Again, it is easy to see that fog is defined. ¥x € R,fog(x) =
f(@(9) = (9(x))* = (x + 1)*

So fog and gof are both defined. But gof #fog.

Example 6

Let A={1,2 3} B={p q,r}and C = {x, y}. Let f: A — B be defined by (1) = p,
f(2) = p, f(3) =r. Let g: B — C be defined by g(p) = X, 9(q) =y, g(r) = y. determine if
fog and gof can be defined.

Solution

For fog to be defined, it is necessary that the range of g should be a subset of the
domain of f. In this case the range of g is C and the domain of fis A. As C is not a
subset of A, fog cannot be defined.

Since the range of f, which is {p, r}, is a subset of B, the domain of g, we see that gof
is defined. Also gof: A — C is such that

gof(1) =g(f(1)) = 9(p) = x,
g-f(2) = 9(f(2)) = 9(p) = x,
gof(3) = g(f(3)) = g9() =y.

In this example note that g is surjective, and so is gof.
Now for an exercise on the composition of functions.

SELF ASSESSMENT EXERCISE 19

In each of the following questions, both f and g are functions from R — R. Define fog
and gof.

a. f(xX) =5%,g(X) =x+5

b. f(X) = 5%, g(x) = x/5

c.  f(x)=]x],g(x)=x"

18
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We now come to a theorem which shows us that the identity function behaves like the
number 1 € R does for multiplication. That is, if we take the composition of any
function f with a suitable identity function, we get the same function f.

Theorem 3
Let A be a set. For every function f: A — A, we have folp = l5of =T,
Proof

Since both f and I, are defined from A to A, both the compositions fol, and Iaof are
defined. Moreover, M-xe A.,

fola(X) = f(la(X)) = f(X), so fola =T,

Also, ¥xe A, laof(X) = Ia(f(X)) = f(X), s0 laof = 1.

You can try the next self assessment exercise on the lines of this theorem.
SELF ASSESSMENT EXERCISE 20
If Aand B are setsand g: B —» A, prove that Iacg=gand golg =g.

In the case of real numbers, you know that given any real number x # 0, 3y # 0 such

that xy = 1. y is called the inverse of x. Similarly, we can define an inverse function
for a given function.

Definition

Let f: A — B be a given function. If there exists a function g: B — A such that fog =
lg and gof = 1, then we say that g is the inverse of f, and we write g = .

For example, consider f: R — R defined by f(x) = x + 3. If we define g: R— R by g(x)
= x — 3, then fog(x) = f(g(x)) = g(x) + 3 = (x —3) + 3 = x ¥xe R. Hence, fog = Ir.
You can also verify that gof = Ig. So g = f™.

Note that in this example f adds 3 to x and g does the opposite — it subtracts 3 from x.
Thus, the key to filling the inverse of a given function is: try to retrieve x from f(x).

For example, let f: R — R be defined by f(x) = 3x + 5. How can we retrieve x from 3x
+ 5?7 The answer is “first subtract 5 and then divide by 3”. So, we try g(x) :X-TE' And

f(x)-5_ (3x+5-5 _
3 3 -

u_a}+5:x

we find go f(x) = g(f(x)) =

Also, fog(x) =3(g(x)) = 3{

19
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Let’s see if you’ve understood the process of extracting the inverse of a function.
SELF ASSESSMENT EXERCISE 21

What is the inverse of f: R - R: f(x) :é?

Do all functions have an inverse? No, as the following example shows.

Example 7

Let f: R > R, be the constant function given by f(x) = 1 ¥xe R. What is the inverse.
Solution

If f has an inverse g: R & R, we have fog =I5, i.e. ¥ xe R, fog(x) =X.

Now take x = 5. We should have fog (5) =5, i.e., f(g(5)) = 5. But f(g(5)) = 1,

Since f(x) =1 M xeR. So we reach a contradiction. Therefore, f has no inverse.

In view of this example, we naturally ask for necessary and sufficient conditions for f
to have an inverse. The answer is given by the following theorem.

Theorem 4
A function f: A — B has an inverse if and only if f is bijective.
Proof

Firstly, suppose f is bijective. We shall define a function g: B — A and prove that g =
.

Let b € B. Since f is onto, there is some a € A such that f(a) = b. Since f is one-one,
there is only one such a € A. We take this unique element a of A as g(b). That is,
given b € B, we define g(b) = a, where f(a) = b.

Note that, since f is onto, B = {f(a) | a € A}. Then, we are simply defining g: B > A
by g(f(a)) = a. This automatically ensures that gof = Ia.

Now, let b € B and g(b) = a. Then f(a) = b, by definition of g. Therefore, fog(b) =
f(g(b)) = f(a) = b. Hence, fog = Ip.

So, fog = Ig and gof = Ia. This proves that g = f™.

Conversely, suppose f has an inverse and that g = f*. We must prove that f is one-one
and onto.

20
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Suppose f(a;) = f(az). Then g(f(a1)) = 9(f(az)).
= gof(a1) = gof(ay)

= a; = a,, because gof = IA.

So, f is one-one.

Next, given b € B, we have fog = Ig, so that f - g(b) = Ig(b) = b,
I.e., f(g(b)) = b. That is, f is onto.

Hence, the theorem is proved.

Try the following self assessment exercise now.

SELF ASSESSMENT EXERCISE 22

Consider the following functions from R to R. For each determine whether it has an
inverse and, when the inverse exists, find it.

a.  f(xX)=x*MxeR.

b. f(x) =0M xe R.

C. f(x) =11x+7 ¥ xe R.

Let us now discuss some elementary number theory.

3.5 Some Number Theory

In this section we will spell out certain factorization properties of integers that we will

use throughout the course. For this we first need to present the principle of finite
induction.

3.5.1 Principle of Induction

We will first state an axiom of the integers that we will often use implicitly, namely,
the well-ordering principle. We start with a definition.

Definition

Let S be a non-empty subset of Z. An element a € S is called a least element (or a
minimum element) of Sifa<b ¥ b e S. For example, n has a least element, namely,
1. But Z has no least element. In fact, many subsets of Z, like 2Z, {-1, -2, -3, .....},
etc., don’t have least elements.

The following axiom tells us of some sets that have a least element.

Well-ordering Principle: Every non-empty subset of N has a least element.
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You may be surprised to know that this principle is actually equivalent to the principle
of finite induction, which we now state.

Theorem 5
Let S < € N such that

I 1leS, and
i, Wheneverk € S,thenk+1 e S
ThenS=N

This theorem is further equivalent to:
Theorem 6
Let S < N such that

I 1leS, and
i, ifmeSMmc<Kk, thenk € S.
thenS=N

We will not prove the equivalence of the well-ordering principle and Theorems 5 and
6 in this course, since the proof is slightly technical.

Let us rewrite Theorem 5 and 6 in the forms that we will normally use.
Theorem 5°: Let P(n) be a statement about a positive integer n such that

I. P(1) is true, and
ii. if P(K) is true for some k € N, then P(k + 1) is true.
Then, P(n) is true for all n € N.

Theorem 6°: Let P(n) be a statement about a positive integer n such that

. P(1) is true, and
ii. if P(m) is true for all positive integers m <k, then P(k) is true.
Then P(n) is true for all n € N.

The equivalence statements given above are very useful for proving a lot of results in
algebra. As we go along, we will often use the principle of induction in whichever
form is convenient. Let us look at an example.

Example 8

2 (04 1)2
Prove that 13 + 22 +.............. +n®= % for every n e N.

22
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Solution
LetS, =13+ e, +n®, and let P(n) be the statement that
S = n2 (n+ 1)2
4
2 2
Since S; 1 X2 , P(1) is true.
: : - 1)? n?
Now, suppose P(n —1) is true, i.e., S;.q = %
Then Sy =13+ oo, +(-1P°+n
= Sn-l + I"I3
2 2
= w +n®, since P(n — 1) is true.
_ n®[(n- 1)’ + 4n]
4
n? (n+ 1)2

4
Thus, P(n) is true.
Therefore, by the principle of induction, P(n) is true for all nin N.

Now, use the principle of induction to prove the following property of numbers that
you must have used time and again.

SELF ASSESSMENT EXERCISE 23

Fora,b € Rand n e N, prove that (ab)" = a"b".

Let us now look at some factorization properties of integers.

3.5.2 Divisibility in Z

One of the fundamental ideas of number theory is the divisibility of integers.
Definition

Leta, b € Z, a#0. Then, we say that a divides b if there exists an integer ¢ such that

b = ac. We write this as a | b and say that a is a divisor (or factor) of b, or b is
divisible by a, or b is a multiple of a.
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If a does not divide b we write a /b.

We give some properties of divisibility of integers in the following exercise. You can
prove them very easily.

SELF ASSESSMENT EXERCISE 24
Let a, b, ¢ be non-zero integers. Then

al0,+1]a +ala

a|b= ac|bc.

albandb|c=a]|c.
albandb|la<=a==+Dh.
claandc|b=c|(ax+by)¥Xx,y e Z

®o 0o

We will now give a result, to prove which we use Theorem 5°.
Theorem 7

(Division Algorithm): Let a, b € Z, b > 0. Then there exists unique integers g, r such
thata=qb +r, where 0 < r<h.

Proof

We will first prove that g and r exist. Then we will show that they are unique. To
prove their existence, we will consider three different situations: a=0,a>0, a<0.

Casel (a=0):Takeq=0,r=0.Thena=qgb+r.

Case 2 (a>0): Let P(n) be the statement thatn =qgb + r forsome q,r € Z,0<r<bh.
Now let us see if P(1) is true.

Ifb=1, wecantakeq=1,r=0,and thus, 1 =1.1 +0.
Ifb#1,thentakeq=0,r=1,i.e,1=0b+1.

So, P(1) is true.

Now suppose P(n - 1) is true, i.e., (n—1) =q,b + r, forsome q; r; € Z,0< ry <b. But
thenr; < b—1, i.e.,rp +1<hb. Therefore,
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q,b+(r,+2),if(r,+1) <b
n= (g, +)b+0,if r,+1=D

This shows that P (n) is true. Hence, by theorem 5°, P(n) is true, for any n € N. That
is,fora>0,a=qgb+r,q,rezZ, 0<r<h.

Case 3 (a<0): Here (-a) > 0. Therefore, by Case 2, we can write

(Fa)=gb+1’,0<r’<b

e a- {(—q)b,if =0
(-g-Db+(b-r),if 0<r'<b

This proves the existence of the integers g, r with the required properties.
Now let q’, r’ be in Z such thata=qgb+randa=q’b+r’, where 0 <r,r’ <b. Thenr
—1’=b(q”—q). Thus,b | (r—1’). But r — 1’| <b. Hence,r—1r’ =0, i.e.,r=1"and q =

q’. So we have proved the uniqueness of q and r.

In the expression,a=qb +r, 0 < r <b, ris called the remainder obtained when a is
divided by b.

Let us go back to discussing factors.

Definition

Leta,b € Z.c € Zis called acommon divisor ofaand b ifc|aandc|b.

For example, 2 is a common divisor of 2 and 4. From Self Assessment Exercise 24(a)
you know that 1 and -1 are common divisors of a and b, for any a, b € Z. Thus, a pair
of integers does have more than one common divisor. This fact leads us to the
following definition.

Definition

An integer d is said to be a greatest common divisor (g.c.d in short) of two non-zero
integers aand b if

I. d|aandd |b, and
il ifclaandc|b, thenc|d.
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Note that if d and d’ are two g.c.d s of a and b, then (ii) says that d | d’ and d’ | d.
Thus, d = + d’ (see Self-Assessment Exercise 24). But then only one of them is
positive. This unique positive g.c.d. is denoted by (a, b).

We will now show that (a, b) exists for any non-zero integers a and b. You will also
see how useful the well-ordering principle is.

Theorem 8

Any two non-zero integers a and b have a g.c.d, and (a, b) = ma + nb, for some m, n e
Z.

Proof

LetS={xa+yb|x,y e Z (xa+yb)>0}

Since a? + b? >0, a® + b? € S, i.e., S #f . But then, by the well-ordering principle, S
has a least d € S. Therefore, d > 0. So by the division algorithm we can write
a=qd+r,0<r<d. Thus,

r=a-qd=a-q(ma+nb)=(1-gm)a+ (-q)b.

Now, if r #0, then r € S, which contradicts the minimality of d in' S. Thus, r =0, i.e.,
a=aqd, i.e.,, d|a We can similarly show that d | b. Thus, d is a common divisor of a
and b.

Now, let ¢ be an integer such thatc |aand c | b.

Then a = a;¢, b = byc for some a3, b, € Z.

But then d = ma + nb = ma;c + nb,c. Thus, ¢ | d. So we have shown that d is a g.c.d. In
fact, it is the unique positive g.c.d. (a, b).

For example, the g.c.d. is2 and 10 is2 = 1.2 + 0.10, and the g.c.d. of 2and 3is 1 = (-
1) 2+ 1(3).

Pair of integers whose g.c.d. is 1 have a special name.
Definition

If (a, b) = 1, then the two integers a and b are said to be relatively prime (or co
prime) to each other.

Using Theorem 8, we can say that a and b are co prime to each other iff there
exists m, a € Z such that 1 = ma + nb.

The next theorem shows us a nice property of relatively prime numbers.
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Theorem 9
Ifa,b € Z,suchthat (a,b)=1and b|ac, thenb|c.
Proof

We know that 3 m, n € Z such that 1 = ma + nb. Then ¢ = ¢.1 = ¢(ma +nb) = mac +
nbc.

Now, b |acand b | bc. .. b | (mac + nbc) (by Self-Assessment Exercise 24(c)). Thus,
blc.

Let us now discuss prime factorization.
Definition

A natural number p (# 1) is called a prime if its only divisors are 1 and p. If a natural
number n (# 1) is not a prime, then it is called a composite number.

For example, 2 and 3 are prime numbers, while 4 is a composite number.

Note that, if p is a prime number and a € Z such that p / a, then (p, a) = 1.

Try the following self assessment exercise now.

SELF ASSESSMENT EXERCISE 25

If pisaprime and p | ab, then show thatp |aorp|b.

SELF ASSESSMENT EXERCISE 26

If pisaprime and p| a;a; ...... a,, then show that p\ai for somei=1, ..., n.

Now consider the number 50. We can write 50 = 2 x 5 x 5 as a product of primes. In
fact we can always express any natural number as a product of primes. This is what
the unique prime factorization theorem says.

Theorem 10

(Unigue Prime Factorisation): Every integer n > 1 can be written as n py, P2 «oooovevee.
Pn, Where py, .......... , pn are prime numbers. This representation is unique, except for

the order in which the prime factors occur.

Proof
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We will first prove the existence of such a factorization. Let P (n) be the statement
that n + 1 is a product of primes. P (1) is true, because 2 is a prime number itself.

Now let us assume that P (m) is true for all positive integers m < k. We want to show
that P (k) is true. If (k + 1) is a prime, P (K) is true. If k + 1 is not a prime, then we can
write kK + 1 =mym,, where 1 <m;<k+land1<m,<k+1 ButthenP (m;-1)and
P(m, — 1) are both true. Thus, m; = pp,......... Pry My = Qr 02 cverrennee Js, Where py, ps...
Pr, A1, 2 vevvvnnns , s are primes. Thus,

K+1=pps...pr 01z .... Us, 1.6, P(K) is true. Hence, by Theorem 6°, P(n) is true for
everyn € N.

Now let us show that the factorisation is unique.
Letn=pP,...pt=0Q1 Q> .... s, Where

P1, P2 ... Pv O, Q2 -... gs, are primes. We will use induction on t.

Ift=1thenp; =01 ....... , Js- But p; is a prime. Thus, its only factors are 1 and
itself. Thus, s =1 and p; = Q.

Now suppose t > 1 and the uniqueness holds for a product of t — 1 primes. Now p; |
g0z -..... gs and hence, by Self-Assessment Exercise 26, p; | g, for some i. By re-
ordering i, ....., gs We can assume that p; | g;. But both p, and g, are primes.
Therefore, p; = g, are primes.

Therefore, p, = q;. But then p, ...... Pt=02 ....... gs- So, by induction, t—1=s-1
and p,, ....... ,prare the same as gy, ...... qs in some order.

Hence, we have proved the uniqueness of the factorisation.
The primes that occur in the factorisation of a number may be repeated in the

factorisation 50 = 2 x 5 x 5. By collecting the same primes together we can give the
following corollary to Theorem 10.

Corollary: Any natural number n can be uniquely written as n = p,™ p,™ ......p,™,
where fori=1, 2, ......... ,r,eachm; e Nand eachpjisaprimewithl<p;<p,<....<
Pr.

As an application of Theorem 10, we give the following important theorem, due to the
ancient Greek mathematician Euclid.

Theorem 11

There are infinitely many primes.
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Proof

Assume that the set P of prime numbers is finite, say
P={pwu po, ...., pn}- Consider the natural number

n=(pPo, ...... ,pn) +1

Now, suppose some p; | n. Then p; | (n —psps ...... In.. py), i.e., pi | 1, a contradiction.
Therefore, no p; divides n. But since n > 1, Theorem 10 says that n must have a prime
factor. We reach a contradiction. Therefore, the set of primes must be infinite.

Try the following self assessment exercise now.

SELF ASSESSMENT EXERCISE 27

Prove that ./p is rational for any prime p.
(Hint: Suppose \/E is rational. Then /p :%, where a, b € Z and we can assume that

(a, b) = 1. Now use the properties of prime numbers that we have just discussed.)

Let us now summarise what we have done inn this unit.

4.0 CONCLUSION

In this unit, we have placed emphasis on some properties of sets and subsets. We have
also defined relations in general and equivalence relations in particular. The
definitions of functions were also considered. The summary of what we have
considered in this unit are given below, Please read carefully and master every bit of it
in order for you to follow the subsequent units.

5.0 SUMMARY

In this unit we have covered the following points.

. Some properties of sets and subsets.

. The union, intersection, difference and complements of sets.

. The Cartesian product of sets.

o Relation in general and equivalence relations in particular.

. The definition of a function, a 1-1 function, an onto function and a bijective
function.

. The composition of functions.

. The well-ordering principle, which states that every subset of N has a least
element.

o The principle of finite induction, which states that : If P(n) is a statement about

some n € N such that:

- P(1) is true, and
- if P(K) is true for some k € N, then P(k + 1) is true,
then P(n) is true for every n € N.
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) The principle of finite induction can also be stated as:
If P(n) is a statement about some n e N such that
- P(1) is true, and

- if P(m) is true for every positive integer m < k, then P(k) is true,
then P(n) is true for every n € N,

Note that well-ordering principle is equivalent to the principle of finite induction.

o Properties pf divisibility in Z, like the division algorithm and unique prime
factorisation.

ANSWER TO SELF ASSESSMENT EXERCISE 1
a T b) F ) F d T
ANSWER TO SELF ASSESSMENT EXERCISE 2

a. XxXeAUB=>xeAorxeB=xeC,sinceAc CandB c C.

b. xeAUBoeoxeAoxeBoxeBoxeAx=>eBUA. - AU B=
BUA.

C. XeAU ¢ =>xeAorx ed = x € A, since ¢ has no element.
AU 6 c A
Also, A e AU ¢,sincexe A=>xeAU ¢.
JA=AU

ANSWER TO SELF ASSESSMENT EXERCISE 3

a. You can do it on the lines of Self Assessment Exercise 2(b).
b. XeANB=xeAandx e B=x € A, since A c B.
~ANBCA

Conversely, x e A= x € Aand x € Bsince A ¢ B.
=Xe AN B.
~Ac AN B.
~ANB=A

C. Use the fact that ¢ < A.
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ANSWER TO SELF ASSESSMENT EXERCISE 4

a.

d.

xce(AUB)UC o©xecAUBorxeC

oXeAorxeBorx e C.

sxeAorxeBUC
oxeAUBUCOC
~(AUB)UC=AU BUQOQC

Try it on the same lines as (a).

BNCcB=AU®BNC)cAUB.

Similarly, AU (BN C)c AU C.
~AUBNC c(AUB)YN(AUCQ)

Conversely, x e (AU B) N (AU C)
=>xXxeAUBandxe AUC
=>XeAorxeBandx e Aorx e C.
=>xeAorxeBNC
=>xeAUBNCOC
~(AUBNAUCccAUBNCO.

Thus, (c) is proved

Try it on the same lines as (C).

ANSWER TO SELF ASSESSMENT EXERCISE 5

a.
b.

o o

T
F. For example, if A=10, 1] and B = [0, 2], then
AzB,Bz and AN B=(0)%#¢.

F, In fact, for any set A, A < B.

T.

T.

ANSWER TO SELF ASSESSMENT EXERCISE 6

X e Aiffx ¢ A,

Since A and A° are subsets of X, A U A° < X.
Conversely, if x e X and x ¢A, then x eA".
X c AU A

“X=AUA®C

XeAoxe Ao xe (A A=A
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ANSWER TO SELF ASSESSMENT EXERCISE 7
AxB={22), 2 3), (5 2), (5 3)}
BxA={(22),(3,2),(25), (3 5)}
AxA={(22),(25),(5,2),(55)}
ANSWER TO SELF ASSESSMENT EXERCISE 8

The set of the first coordinates is A. .. A = {7, 2}.
The set of the second coordinates is B. ..B = {2, 3, 4}.

ANSWER TO SELF ASSESSMENT EXERCISE 9

xX,y)ye(AUB)XC @xeAUBandy eC
oXeAorxeBandy e C
< xeAandyeCorxeBandy e C
< (X,y) e AxCor(x,y) e BxC
< (X y) e (AxC) U (BxC).

You can similarly show that

(ANB)xC=(AxC)N (BxC).

ANSWER TO SELF ASSESSMENT EXERCISE 10
a. F b. T C. F
ANSWER TO SELF ASSESSMENT EXERCISE 11
Since 5 divides (a-a) =0Ma € N, R is reflexive.
If5|(@—b),then5]|(b—a). .., R is symmetric.
If5|(a—Db),then5|(b—c),then5|{(a—b)+ (b—cC)}, i.e.
5| (a—c). .., Ristransitive.

ANSWER TO SELF ASSESSMENT EXERCISE 12
2R 2is false

(2,4) e R,but(4,2) ¢ R.

(2,4) e R, (4,16) € R, but (2, 16) ¢ R.

ANSWER TO SELF ASSESSMENT EXERCISE 13
la| =|a] ¥ae Z .., Risreflexive.

la| = |b| = [b| =a| .., R is symmetric.

la| = |b| and |b| = |c| = |a| = [c]. .., R is transitive.
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.., R'is an equivalence relation.

[0]={a e Z|aRO0}={a  Z | [a] = 0} = {O}.
[1]={1, -1}.

ANSWER TO SELF ASSESSMENT EXERCISE 14
Fornme N, f(n)=f(m)=>n+5=m+5=n=m.
L, Fis1-1.

Since 1 ¢ f(N), f(N) #N..-., fis not surjective.
ANSWER TO SELF ASSESSMENT EXERCISE 15

fis1—1 (as in Self Assessment Exercise 14).
Foranyz € Z, f(z-5) = z. .., fis surjective, and hence, bijective.

ANSWER TO SELF ASSESSMENT EXERCISE 16
f(X)=c M x e X.

Suppose X has at least two elements, say x and y. Then f(x) = ¢ = f(y), but x # y. That
is, fisnot 1 — 1. Therefore, if fis 1 — 1, then X consists of only one element.

Since f(X) = {c}, fis surjective.
ANSWER TO SELF ASSESSMENT EXERCISE 17
X e X = f(x) € f(X) = x e F1 (f(X))..., X < FHf(X)).
ANSWER TO SELF ASSESSMENT EXERCISE 18
a.  xefl(S)ef(x) e SUT.
<Sf(x) eSorfx)eT
oxefl(S)orx ef' (T)
- FH(S) < FH ().
b xef'SUTNefx)eSUT
ofx) e Sorf(x) e T
ox eft(S)orx e £1(T)

o x eft(S) UFt (1)

c.) Do iton the lines of (b).
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ANSWER TO SELF ASSESSMENT EXERCISE 19
fogand gof are functions from R to R in all cases.

a. fog(X) =f(x+5)=5(x+5) ¥x € R
gof(X) =9g(5%X) =5x+5¥ x « R.

b. fog(X) =gof(X)=x¥X € R.

c. fog(X)=x*=gof(X)¥x < R.

ANSWER TO SELF ASSESSMENT EXERCISE 20
Show that 10 g(b) = g(b) and g Ig(b) = g(b) ¥ b « B.
ANSWER TO SELF ASSESSMENT EXERCISE 21
g:R—>R:g(x)=3x.

ANSWER TO SELF ASSESSMENT EXERCISE 22

a. fisnot1-—1,since f(1) = f(-1).
-, 1 doesn’t exist.

b. f is not surjective, since f(R) # R.
-, F! doesn’t exist.

c.  fisbhijective, .., f* exists.

fLRoR:fi(x) =21,
11

ANSWER TO SELF ASSESSMENT EXERCISE 23

Let P(n) be the statement that (ab)" = a"b".

P(1) is true. Assume that P(n — 1) is true. Then

(ab)" = (ab)™* (ab) = (a™* b"")ab, since P(n -1) is true.
=a"" (b"a)b
=a"" (ab"™")b
=a"b".

., P(n) is true

s, P(n)istrueMn eN.
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ANSWER TO SELF ASSESSMENT EXERCISE 24

a. Sincea.0=0,a]|0.
(1) (+a)=a ..+1|aand + a|a.
b. al|b=b=ad, forsomed « Z
= bc = (ac)d,
= ac | bc
C. b =ad, c =be, forsomed, e e Z

~.,C=ade. ..,a|c.

d. alb=Db=ad, forsomed  Z
b|a= a=be, forsomee  Z.
c.,a=ade = de=1,sincea#0.
s,e=+1 r.,a=+bh.

e. claandc|b=a=cd, b=ceforsomed, e Z.

o, forany x,y e Z, ax + by = c(dx + ey).
o, | (ax + by).

ANSWER TO SELF ASSESSMENT EXERCISE 25

Suppose p | a. Then (p, a) = 1. .., by Theorem 9, p | b.

ANSWER TO SELF ASSESSMENT EXERCISE 26

Let P(n) be the statement thatp|a; a, ......... an
=plaforsomei=1,2,........... , .
P(2) is true.

Suppose P (m — 1) is true.

Now, letp|aa, ......... am. Thenp|(a.......... Anm-1)am.

By Self Assessment Exercise 25, p|(a;a ......... am-1) O P | am.
s, plaforsomei=1,...... , m (since P(m — 1) is true).

-, P(m) is true.

s, P(n)istrueMn N,
ANSWER TO SELF ASSESSMENT EXERCISE 27

\j_:%:>a2:pb2:>p|a2:>p|a,sincepisaprime.
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Let a = pc. Then a = pb? = p%c? = pb®> = pc? = b?
—=p|b*=p|b.

~., p|(a, b) =1, acontradiction.

~., |Jp is irrational.
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1.0 INTRODUCTION

In Unit 1 we have discussed some basic properties of sets and functions. In this unit
we are going to discuss certain sets with algebraic structures. We call them groups.

The theory of groups is one of the oldest branches of abstract algebra. It has many
applications in mathematics and in the other sciences. Group theory has helped in
developing physics, chemistry and computer science. Its own roots go back to the
work of the eighteenth century mathematicians Lagrange, Ruffini and Galois.

In this unit we start the study of this theory. We define groups and give some
examples. Then we give details of some properties that the elements of a group
satisfy. We finally discuss three well known and often used groups. In future units we
will be developing group theory further.

20 OBJECTIVES

At the end of this unit, you should be able to:

define and give examples of binary operations

define and give examples of abelian and non-abelian groups

use the cancellation laws and laws of indices for various groups

use basic properties of integers modulo n, permutations and complex numbers.
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3.0 MAINCONTENT
3.1 Binary Operations

You are familiar with the usual operations of addition and multiplication in R, Q and
C. The operations are examples of binary operations, a term that we will now define.

Definition

Let S be an non-empty set. Any function* : S x S — S is called a binary operation
on S.

So, a binary operation associates a unique element of S to every ordered pair of
elements of S.

For a binary operation* on S and (a, b) € Sx S, we denote *(a, b) by a*b.
We will use symbols like +, -, x,®,0,* and A to denote binary operations.
Let us look at some examples.

. + and x are binary operations on Z. In fact, we have +(a, b) =a + b and x (a, b)
=a’ bWa, b e Z Wewill normally denote a x b by ab.

. Let ¢ (S) be the set of all subsets of S. Then the operations U and N are binary
operations on o (S), since A U Band A N Barein g (S) for all subsets A
and B of S.

i. Let X be a non-empty set and F(X) be the family of all functions f: X —» X.
Then the composition of functions is a binary operation on F (X), since fog €
FX)" f,g e F(X).

We are now in a position to define certain properties that binary operations can have.

Definition

Let * be a binary operation on a set S. We say that

I * jsclosed onasubset Tof S,ifa*b e TMa beT.

ii. * is associative if, foralla,b,c € S, (@, * b) * c=a * (b * ¢).

ii. * js commutative if, foralla,b I S,a*b=b * a.
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For example, the operations of addition and multiplication on R are commutative as
well as associative. But, subtraction is neither commutative nor associative on R.
Why? Isa—-b=b-aor(a—b)-c=a- (b-c)¥a, b, ceR?No, for example, 1 -2
#2-1and (1-2)-3+#1-(2-3). Also subtraction is not closed on N < R, because
1eN,2eNbutl-2¢N.

Note that a binary operation on S is always closed on S, but may not be closed on a
subset of S.

Try the following self assessment exercise now.
SELF ASSESSMENT EXERCISE 1

For the following binary operations defined on R, determine whether they are
commutative or associative. Are they closed on N?

1. X®Yy=x+y-5
2. X*y=2(x+Yy)
X
3. Ay= ——
XAy 5
forall x,y € R.

In calculations you must have often used the fact that a(b + c) =ab +acand (b +¢) a
=ba+ca¥a, b, c e R. This fact says that multiplication distributes over addition in
R. In general, we have the following definition.

Definition
If - and * are two binary operations on a set S, we say that * is distributive over o if

Mab,ceSwehavea* (boc)=(@*b)o(@a*c)and(boc)*a=(b*a)o (c*

a).

For example, leta * b = a;b Ma,beR. Thenalb *c)=a (b;cj = ab;ac =ab

* ac, and

(b *cla= (b;c)a: ba;ca =ba*caMa,b,ceR.

Hence, multiplication is distributive over*.
For another example, go back to Self Assessment Exercise 4 of Unit 1. What does it

say? It says that the intersection of sets distributes over the union distributes over the
intersection of sets.
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Let us now look deeper at some binary operations. You know that, foranya € R, a +
0O=a,0+a=aanda+ (-a) = (-a) + a= 0. We say that 0 is the identity element for
addition and (-a) is the negative or additive inverse of a. In general, we have the
following definition.

Definition

Let * be a binary operation on a set S. If there is an element e € S such that M a € S,
a*e=aande * a=a,theneis called an identity element for*.

Fora € S,wesaythatb € Sisaninverse of a,ifa * b=eand b * a =e. In this case
we usually write b = a™.

Before discussing examples of identity elements and inverses consider the following
result. In it we will prove the uniqueness of the identity element for*, and the
uniqueness of the inverse of an element with respect to*, if it exists.

Theorem 1

Let * be a binary operation on a set S. Then

a. if * has an identity element, it must be unique.

b. If * isassociative and s € S has an inverse with respect to *, it must be unique.
Proof

a. Suppose a and ¢’ are both identity elements for*.

Thene=e * e’,since e' is an identity element.
e =e', since e is an identity element.
That is, e = e'. Hence, the identity element is unique.

b. Suppose there exista, b € Ssuchthats *a=e=a*sands*b=e=b *s,e
being the identity element for*. Then
a=a*c=a*(s*h)
=(a * s) * b, since * is associative.
=e*b=h.

Thatis, a=b.
Hence, the inverse of s is unique.

This uniqueness theorem allows us to say the identity element and the inverse,
henceforth.
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A binary operation may or may not have an identity element. For example, the
operation of addition on N has no identity element.

Similarly, an element may not have an inverse with respect to a binary operation. For
example, 2eZ has no inverse with respect to multiplication on Z, does it?

Let us consider the following examples now.
Example 1

If the binary operation®: R x R — R is defined bya @ b =a+ b — 1, prove that ®
has an identity. If X € R, determine the inverse of x with respect to @, if it exists.

Solution

We are looking for somee € Rsuchthata ® e=a=e @ aMa e R. Sowe wante e
Rsuchthata+e—-1=a\a e R. Obviously, e = 1 will satisfy this. Also, 1 ® a=a
Ma e R. Hence, 1 is the identity element of ® .

For x € R, if b is the inverse of x, we should haveb & x = 1.
le,b+x—-1=1ie,b=2-x.Indeed,(2-X) ® x=2-x)+x-1=1.
Also, X ® 2-x)=x+2-x-1=1.50,x'=2—x.

Example 2

Let S be a non-empty set. Consider ¢ (S), the set of all subsets of S. Are UandN
commutative or associative operations on g (S)? Do identity elements and inverses of
elements of g (S) exist with respect to these operations?

Solution

Since AUB=BUA and ANB=BNAMA, B € p(S), the operations of union and
intersection or are associative operations on ¢ (S). Self Assessment Exercise of Unit
1 also says that both operations are associative. You can see that the empty set ¢ and

the set are S the identities of the operations of union and intersection, respectively.
Since S #¢, there isno B € o (S) such that S U B =¢. In fact, for any A € o (S)

such that A # ¢, A does not have an inverse with respect to union. Similarly, any
proper subset of S does not have an inverse with respect to intersection.

Try the following self assessment exercise now.
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SELF ASSESSMENT EXERCISE 2

1. Obtain the identity element, if it exists, for the operations given in Self
Assessment Exercise 1.

2. For x e R, obtain x* (if it exists) for each of the operations given in Self
Assessment Exercise 1.

When the set S under consideration is small, we can represent the way a binary
operation on S acts by a table.

Operation Table

Let S be a finite set and * be a binary operation on S. We can represent the binary
operation by a square table, called an operation table or a Cayley table. The Cayley
table is named after the famous mathematician Arthur Cayley (1821 — 1895).

To write this table, we first list the elements of S vertically as well as horizontally, in
the same order. Then we write a * b in the table at the table at the intersection of the
row headed by a and the column headed by b.

For example, if S = {-1, 0, 1} and the binary operation is multiplication, denoted by
then it can be represented by the following table.

-1 O 1
. (-1)-C1) (DO (DI | g
0.(-1) 0.0 (-1).1
0 i ) - L
1.(-1) 1.0 1.1
1 =1 = —

Conversely, if we are given a table, we can define a binary operation on S. For
example, we can define the operation * on S = {1, 2, 3} by the following table.

*

1
1 1
2 3
2

Wl = NN

3
3
2
1
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From this table we see that, for instance, 1 * 2=2and 2 * 3= 2.
Now?2 *1=3and1*2=2. -2*1#1=* 2. Thatis, * is not commutative.

Again,(2*1)*3=3*3=1and2* (1 * 3)=2.
L(2*1)*3#£2* (1 * 3). .., * isnotassociative.

See how much information a mere table can give!
The following exercise will give you some practice in drawing Cayley tables.
SELF ASSESSMENT EXERCISE 3

Draw the operation table for the set @ (S) (ref. Example 2), where S = {0, 1} and the
operation in.

Now consider the following definition.

Definition

Let * be a binary operation on a non-empty set S and let a, .., ax+1 € S.
We define the producta; * ...... * a4 as follows:

Ifk=1,a; * a,is awell defined element in S.

Ifa; > ......... * g, Is defined, then

a* ... * =@ * ..e * )™ Akt
We use this definition in the following result.

Theorem 2

Letas, ........, amen De elements in a set S with an associative binary operation*. Then
(a]_ * * am) * (am+1 * * am+n) = a]_ * o * am+n.

Proof

We use induction on n. That is, we will show that the statement is true for n = 1.
Then, assuming that is true for n — 1, we will prove it for n.

If n =1, our definition above gives us
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Now, assume that

(al * ... * am) *(am+l * cecee * am+n_1) = al * ... * am+n_]_

Then

(al * ceeee * am) *(am+1 * cecee * am+n)

= (a]_ * * a.m) *((am+1 * o * am+n_1) * am+n)

=(ar * ..... *am) *(@m+1 * ..... * @men-1)) * @man, SINCE * IS @ssoCiative

=(@ * ..... * @men1) * @men, DY INduction
=(ay * ..... * @m+n, Dy definition.

Hence, the result holds for all n.
We will use Theorem 2 quite often in this course, without explicitly referring to it.
Now that we have discussed binary operations let us talk about groups.

3.2  What is a Group?

In this section we study some basic properties of an algebraic system called a group.
This algebraic system consists of a set with a binary operation which satisfies certain
properties that we have defined in Sec. 2.2. Let us see what this system is.

Definition

Let G be a non-empty set and * be a binary operation on G. We say that the pair
(G,*) isagroup if

G1l) * isassociative,

G2) G contains an identity element e for*, and

G3) everyelementin G has an inverse in G with respect to*.
We will now give some examples of groups.

Example 3

Show that (Z, +) is a group, but (Z,) is not.

Solution

+ is an associative binary operation on Z. the identity element with respect to + is 0,
and the inverse of any n € Zis (-n). Thus, (Z, +) satisfies G1, G2 and G3.

Therefore, it is a group.
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Now, multiplication in Z is associative and 1e Z is the multiplicative identity. But
does every element in Z have a multiplicative? No. For instance, 0 and 2 have no
inverses with respect to ¢.”. Therefore, (Z,.) is not a group.

Note that (Z,.) is a semi group since it satisfies G1. So, there exist semi groups that
aren’t groups!

The following self assessment exercise gives you two more examples of groups.
SELF ASSESSMENT EXERCISE 4
Show that (Q, +) and (R, +) are groups.

Actually, to show that (G,*) is a group it is sufficient to show that * satisfies the
following axioms.

G1’) * isassociative.
G2’) Je e Gsuchthata*e=aVa e G.
G3’) Givena € G, 3 b € Gsuchthata * b =e.

What we are saying is that the two sets of axioms are equivalent. The difference
between them is the following:

In the first set we need to prove that e is a two-sided identity and that the inverse b of
any a € G satisfiesa * b=eand b * a =e. In the second set we only need to prove
that e is a one-sided identity and that the inverse b of any a € G only satisfiesa * b =
e.

In fact, these axioms are also equivalent to

G1”) * isassociative.

G2”) de e Gsuchthate *a=aVa e G.

G3”)Givena € G 3 b € Gsuchthath * a=e.

Clearly, if = satisfies G1, G2 and G3, then it also satisfies G1’, G2’ and G3’. The

following theorem tells us that if * satisfies the second set of axioms, then it satisfies
the first set too.

Theorem 3

Let (G, *) satisfy G1°, G2’ and G3’. Thene *a=a " a € G. Also, givena € G, if 3
b € Gsuchthata * b=e,thenb * a=e. Thus, (G,*) satisfies G1, G2 and G3.

To prove this theorem, we need the following result.
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Lemma 1
Let (G,*) satisfy G1°, G2’ and G3°. If 3 a € Gsuchthata * a=4a,thena=e.

Proof
By G3’ we know that 3 b € Gsuch thata * b =e.

Now(a*a)*b=a*b=e.
Also, a *(a * b) =a * e =a. Therefore, by G1’, a=e.
Now we will use this lemma to prove Theorem 3.

Proof to Theorem 3

G1 holds since G1 and G1’ are the same axioms. We will next prove that G3 is true.
Leta € Gsuchthata * b =e. We will show that b * a = e. Now,

(b*xa)*(b*a)=(b*@*b)*a=(b=*e)*a=b *a

Therefore, by Lemma 1, b *a = e. Therefore, G3 is true.

Now we will show that G2 holds. Let a € G. Then by G2°, fora € G, a * e = a. since
G3 holds, 3 b € Gsuchthata *b=b *a=e. Then
e*a=(a*b)*a=a*(b*a)=a*e=a.

That is, G2 also holds.

Thus, (G, *) satisfies G1, G2 and G3.

Now consider some more examples of groups.

Example 4
Let G = {+ 1, =i}, i =~ 1. Let the binary operation be multiplication. Show that
(G,») is a group.

Solution

The table of the operation is

1 -1 I -1
1 1 -1 I -1
-1 -1 1 -1 I
I I -i -1 1
-1 -1 I 1 -1
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This table shows us that a.1 = a M a € G. Therefore, 1 is the identity element. It also
shows us that (G,) satisfies G3’. Therefore, (G,) is a group.

Note that G = {1, x, X%, x°}, where x = i.

From Example 4 you can see how we can use Theorem 3 to decrease the amount of
checking we have to do while proving that a system is a group.

Note that the group in Example 4 has only 4 elements, while those in Example 3 and
Self Assessment Exercise 4 have infinitely many elements. We have the following
definitions.

Definition
If (G,*) is a group, where G is a finite set consisting of n elements, then we say that

(G,*) is a finite group of order n. If G is an infinite set, then we say that (G,*) is an
infinite group.

If = is a commutative binary operation we say that (G,*) is a
commutative group, or an abelian group. Abelian groups are
named after the gifted young Norwegian mathematician Niels
Henrik Abel.

Thus, the group in Example 4 is a finite abelian group of order 4.
The groups in Example 3 and Self Assessment 4 are infinite
abelian groups.

© 1829)
Now let us look at an example of a non-commutative (or non-abelian) group. Before

doing this example recalls that an m by n matrix over a set S is a rectangular
arrangement of elements of S in m rows and n columns.

Example 5

Let G be the set of all 2 x 2 matrices with non-zero determinant. That is,

o={%

Consider g with the usual matrix multiplication, i.e., for

A= a b and P = P A inG,AP= ap + br aq +bs
c d rs cp + dr cq+ds

a,b,c,d € R, ad-bc ¢0}

Show that (G,) is a group.
Solution
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First we show that, is a binary operation, thatis, A, Pe G = A.P € G.
Now,

det(A. P) = det A. det P £ 0, since det A #0, det P # 0.
Hence, A.P € Gforall A,PinG.

: e - 10
We also know that matrix multiplication is associative and {O }

ab
is the multiplicative identity. Now, for A = { d} in G, the matrix

c
d -b
B=|ad—bc ad—bc| jssychthat det B= —L— +0and AB
—C a ad- bc
ad—bc ad-bc

110
01]
Thus, B = A™. (Note that we have used the axiom G3’ here, and not G3.) This shows

that the act set of all 2 x 2 matrices over R with non-zero determinant forms a group
under multiplication. Since

1 2] [01] [21

= and
2 2o [e 3]
[0 1][1 2] _[3 4],
1 0[[34] [12

We see that this group is not commutative.

This group is usually denoted by GL,(R), and is called the general linear group of
order 2 over R. We will be using this group for examples throughout Blocks 1 and 2.

And now another example of an abelian group.
Example 6

Consider the set of all translation of R?,
T= {fayb:R2 - Rzlfa,b(xy) =(X+a,y+Db) for somefixed a,b e R}

Note that each element f,;, in T is represented by a point (a, b) in R®. Show that (T, )
IS a group, where o denotes the composition of functions.
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Solution

Let us see if o is a binary operation on T.

Now fapofep(X, y) =fap(Xx+Cc,y+d)=(x+c+a,y+d+Dh)
= fasc.bsa(X, y) for any (x, y) e R%

cfapofed = facpa € T.

Thus, o is a binary operationon T.

NOW, fa’bofoyo = fa’bV fa’b (S T.

Therefore, foq is the identity element.

Also, f,pof 4. IS the inverse of foo M f,,eT.

Thus, (T, o) satisfies G1°, G2’ and G3’, and hence is a group.

Note that f,pofe g = fogo fap M fopofeq € T. Therefore, (T,0) is abelian.

Try the following self assessment exercises now.

SELF ASSESSMENT EXERCISE 5

Let Q", R” and Z~ denote the sets of non-zero rationals, reals and integers. Are the
following statements true? If not, give reasons.

1. (Q),.)isan abelian group.

2. (R, .) is a finite abelian group.

3. (Z,)isagroup.

4, (Q,.), (R,.)and (Z,.) are semigroups.
SELF ASSESSMENT EXERCISE 6

Show that (G, *) is a non-abelian group,
where G = {(a,b)|la,beR,a=0} and * is defined on G by

(a, b) * (c, d) = (ac, bc + d).
We will now look at some properties that elements of a group satisfy.

3.3 Properties of Groups

In this section we shall give some elementary results about properties that group
elements satisfy. But first let us give some notational conventions.
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Convention

Henceforth, for convenience, we will denote a group (G,*) by G, if there is no
danger of confusion. We will also denote a * b by ab, for a, be G, and say that we
are multiplying a and b. The letter ‘e” will continue to denote the group identity.
Now let us prove a simple result.

Theorem 4

Let G be a group. Then

a. (@Y't=aforeverya e G.
b. (ab)*=b'a'foralla b e G.

Proof

a. By the definition of inverse,
@h'@hH=e=(@"h @"H™

But,aa™ a = c also. Thus, by Theorem 1 (b), (@) = a.

b. For a, beG, abeG. Therefore, (ab)™ G and is the unique element satisfying
(ab) (ab)™ = (ab)™ (ab) =e.

However, (ab) (b*a™?) = ((ab) bH)a™
=(a(b t_>1'1)a'1)

Similarly, (b™a™) (ab) =e.

Thus, by uniqueness of the inverse we get (ab)* =b™* a™.
Note that, for a group G, (ab)* =a* b* M a, b € G only is abelian.

You know that whenever ba = ca or ab = ac fora, b, cin R,
we can conclude that b = c. That is, we can cancel a. This fact is true for any group.

Theorem 5

Fora, b, cinagroup G,

a. ab =ac = b =c. (This is known as the left cancellation law.)
b. ba = ca = b =c. (This is known as the right cancellation law.)
Proof

We will prove (a) and leave you to prove (b) (see Self Assessment 7).
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a. Let ab = ac. Multiplying both sides on the left hand side by a* e G, we get
a’'(ab) = a’(ac)
— (@ta)b = (ata)c
= eb = ec, e being the identity element.
=b=c.
Remember that by multiplying we can mean we are performing the operation *.
SELF ASSESSMENT EXERCISE 7
Prove (b) of Theorem 5.
Now use Theorem 5 to solve the following self assessment exercise.

SELF ASSESSMENT EXERCISE 8

If in a group G, there exists an element g such that gx = g for all x € G, then show that

G ={e}.
We now prove another property of groups.
Theorem 6

For elements a, b in a group G, the equations ax = b and ya = b have unique solutions
in G.

Proof

We will first show that these linear equations do have solutions in G, and then we will
show that the solutions are unique.

Fora, b € G, consider a* b e G. We find that a(a” b) = (aa )b =eb = b. Thus, a* b
satisfies the equation ax = b, i.e., ax = b has a solution in G.

But is this the only solution? Suppose X1, X, are two solutions of ax = b in G. then ax;
= b = ax,. By the left cancellation law, we get x; = X,. thus, atbisthe unique solution
in G.

Similarly, using the right cancellation law, we can show that ba™ is the unique

solution of ya=Db in G.
Now we will illustrate the property given in Theorem 6.
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Example 7

23 B= LS in GL, (R) (see Example 5)
12" |04 ? PIe )

Find the solution of AX = B.

Consider A :{

Solution

From Theorem 6, we know that X = A™ B. Now,

2 -3
Al= { L o } (see Example 5).

-1 2 _2
L ATB= =X
-1 3

In the next example we consider an important group.

Example 8

Let S be a non-empty set. Consider g (S) (see Example 2) with the binary operation of

symmetric differenceA, given by
A AB=(A\B)U B\A)MA, B e p(9).

Show that (g (S), A) is an abelian group. What is the unique solution for the equation
YAA=B?

Solution

A is an associative binary operation. This can be seen by using the fact that
A\B=ANB, (ANB=A°U B (AU B)=A"N B°and that U and N are
commutative and associative. A is also commutative since AAB=BAAMA B¢
# (S).

Also, ¢ isthe identity elementsince AA ¢ =AM A € o (S).
Further, any element is its own inverse, since AAA = M A € p(S).
Thus, (¢ (S), A) is an abelian group.

For A, B in (9 (S), A) we want to solve Y A A = B. but we know that A is its own

inverse. So, by Theorem 6, Y =B A Al=BAAisthe unique solution. What we have
also proved isthat (B AA) AA=Bforany A, Bin ¢ (S).
Try the following self assessment exercise now.
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SELF ASSESSMENT EXERCISE 9

Consider Z with subtraction as a binary operation. Is (Z, -) a group? Can you obtain a
solution fora—x=bMa, b € Z?

And now let us discuss repeated multiplication of an element by itself.
Definition
Let G be a group. For a € G, we define

0=¢,

. a
i. a’=a"ta ifn>0
i a*=@"Y",ifn>0.

n is called the exponent (or index) of the integral power a" of a.
Thus, by definition a' = a, a = a.a, a° = a°. a, and so on.

Note: When the notation used for the binary operation is addition, a" becomes na. For
example, forany a € Z,

na=0ifa=0,

na=a+a+...+a(ntimes)ifn>0;

na=(-a)+(-a)+... +(-a) (-n times) if n <O0.

Let us now prove some laws of indices for group elements.

Theorem 7

Let G beagroup. Forae Gandm,n € Z,

a (an) 1 =a n_ (a-l)l"l’
b a"a'=a™"

C (am)n - amn

Proof

We prove (a) and (b), and leave the proof of (c) to you (see Self Assessment Exercise
10).

a. Ifn=0, clearly @"*=a"=(a%)",
Now suppose n > 0. Since aa™ e, we see that
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e=¢" —(aa )
= (aa )(aa o (aa™) (n times)
=a" (a )" since a and a™* commute
L @)= @""

Also, (a)" = a™, by definition.
S @*t=@"hH"=a"whenn>0.
If n<0, then (-n) >0 and
@) ="
=[@")"]*, by the case n > 0
= a-n
Also, (a)" = (a-") ™"
=[@@"™]", y the case n > 0
=a"
So, in this case too,

(an)-l — a-n — (a-l)n.
b. Ifm=0o0rn=0,thena™" =a™a". Suppose m# 0 and n # 0.
We will consider 4 situations.

Case 1 (m >0 and n > 0): We prove the proposition by induction on n.

If n =1, then a™.a = a™", by definition.

Now assume that a"a"=a

Then, a™a" = a"(@"".a) = (@"a"") a = a™"t.a = a™". Thus, by the principle of

induction, (a) holds for allm>0and n> 0.

Case 2 (m < 0 and n < 0): Then (-m) > 0 and (-n) > 0. Thus, by Case 1, a™.a™ = a ™™
=a ™", Taking inverses of both the sides and using (a), we get,
am+n — (a-n.a-m)-l — (a-m)-ll(a-n)-l — am.an.

Case 3 (m> 0, n < 0 such that m + n > 0): Then, by Case 1,a™".a™ = a™. Multiplying
m+n _

both sides on the right by a” = (a")*, we geta™" = a™.a".

m m+n

Case4 (m>0,n<0 such that m + n < 0): By Case 2, a = a". Multiplying both

on the leftby a™ = (@™ ™, we geta™™" = a™.a".

The cases when m < 0 and n > 0 are similar to Case 3 and 4. Hence, a™" = a™.a" for
allae Gandm,n € Z.

To finish the proof of this theorem try self assessment exercise 10.
SELF ASSESSMENT EXERCISE 10

Now you can prove (c) of theorem 7.
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(Hint: Prove, by induction on n, for the case n > 0.
Then prove forn <0.)

We will now study three important groups.
3.4 Three Groups
In this section we shall look at three groups that we will use as examples very often

throughout this course — the group of integers modulo n, the symmetric group and the
set of complex numbers.

3.4.1 Integers Modulo n

Consider the set of integers, Z, and n € Z and n € N. Let us define the relation of
congruence on Z by: a is congruent to b modulo n if n divides a-b. We write this as a
= b (mod n). For example, 4=1 (mod n 3), since 3| (4 -1).

Similarly, (-5) =2 mod 7) and 30 = 0 (mod 6).

= is an equivalent relation (see Sec. 3.3 of Unit 1), and hence partitions Z into disjoint
equivalence classes called congruence classes modulo n. We denote the class
containing r by T.

Thus, T ={m € Z| m=r(mod n)}.

So an integer m belongs to T for somer, 0 <r <, iff n|(r—m), i.e., iff r—m = kn, for
somek e Z.

~T={r+kn | kI Z}.

Now, if m > a, then the division algorithm says that m=nq + r forsome q,r € Z,0 <

r<g. Thatis, m= r (mod n), forsomerO0, ....,n— 1.
Therefore, all the congruence classes modulonare 0, 1, ...... ,n- 1.
LetZ,={0,1, 2, ....... , n- 1}. We define the operation + on Z,by @ + b = a+ b.

Is this operation well defined? To check this, we have to see thatif a = b and © = d

inZ,, then a+ b =c+d.
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wl | Nl | ol

Now, a = b (mod n) and ¢ = d (mod n). Hence, there exist integers k; and k, such that
a-b=knandc—-d=k,n. Butthen(a+c)—(b+d)=
(@a-b) +(c—d)= (ki + kx)n.

a+c=b+d.
Thus, + is a binary operation on Z,,.
For example, 2 + 2 = 0 in Z,since 2+ 2 =4 =0 (mod 4).
To understand addition in Z,, try the following self assessment exercise.
SELF ASSESSMENT EXERCISE 11
Fill up the following operation table for + on Z,.

Now, let us show that (Z,, +) is a commutative group.

i a+b=atb=b+a=b+aVa,bez,ie,
addition is commutative in Z,.

ii. a+(b+c)=3+(b+c)=a+(b+c)
= (atb)+c=(atb)+Tc=(a+b)+cMa,b,T ez,
i.e., addition is associative in Z,,.

iii. a+0=a=0+aVMaelZ,ie, 0 istheidentity for addition.

iv. For €eZ,3n-aeZ,suchthata+n-a=n=0=n-a +3.

Thus, every element a in Z, has an inverse with respect to addition.
The properties (i) to (iv) show that (Z,, +) is an abelian group.

Try the following self assessment exercise now.
SELF ASSESSMENT EXERCISE 12

Describe the partition of Z determined by the relation ‘congruence modulo 5°.
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Actually we can also define multiplication on Z, bya.b = ab. Then, ab = b7 V 7,
b € Z,. Also (ab)c = a(bt) ¥ 3, b, T e Z, Thus, multiplication in Z, is a
commutative and associative binary operation.

Z, also has a multiplicative identity, namely, 1.

But (Z,,.) is not a group. This is because every element of Z,, for example 0 does not
have a multiplicative inverse.

But, suppose we consider the non-zero elements of Z,, that is, (Z; , .) Is this a group?
For example z, = {1, 2, 3} is not a group because . is not even a binary operation
on Z,,since 2.2 =0 ¢ Z,.But(Zy,.). is an abelian group for any prime p.

SELF ASSESSMENT EXERCISE 13

Show that (Z;,.) is an abelian group.

(Hint: Draw the operation table.)
Let us now discuss the symmetric group.
3.4.2 The Symmetric Group

We will now discuss the symmetric group briefly. In MTH 312 we will discuss this
group in more detail.

Let X be a non-empty set. We have seen that the composition of functions defines a
binary operation on the set F(X) of all functions from X to X. This binary operation is
associative. ly, the identity map, is the identity in F (X).

Now consider the subset S(X) of F (X) given by

S(X) = {f e F (X) | f is bijective}.

So f e S(X) iff f1: X — X exists. Remember that fof' = f'of = Iy. This also shows
that f* e S(X).

Thus, , is a binary operation on S(X).

Let us check that (S(X), ,) is a group

I. o Is associative since (f, g) o h=1(g, h) ¥ f, g, h eS(X).
ii. I is the identity element because f, 1, =1, o, T M T € S(X).
iii.  f'isthe inverse of f, for any f e S(X).
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Thus, (S(X), o) is a group. It is called the symmetric group on X.

If the set X is finite, say X =(1,2,3 ........cooee.an. ,n), then we denote S(X) by S,,
and each f Sn is called a permutation on n symbols.

Suppose we want to construct an element f in S,. We can start by choosing f(1).
Now, f(1) can be any one of the n symbols 1, 2, ....,n. Having chosen f(1), we can
choose f(2) from the set {1, 2, ....n}\{f(1)}, i.e., in (n — 1) ways. This is because fis 1
— 1. Inductively, after choosing f(i), we can choose f (I + 1) in (n—1) ways. Thus, f
can be chosen in (1 x 2 X....xp) N 1 ways, i.e., S, contains an! Elements.

For our convenience, we represent f € S, by

1 2 e n
( @) f(2) f(n) J
1 2 34

For example,
2 4 31

)represents the function f:

{1, 2, 3,4} —> {1, 2, 3, 4}: f(1) =2, f(2) = 4, f(3) = 3, f(4) = 1. the elements in the
top row can be laced in any order as long as the order of the elements in the bottom
row is changed accordingly.

2134

Thus,
4 2 31

]also represents the same function f.

Try this exercise now.
SELF ASSESSMENT EXERCISE 14

Consider Ss, the set of all permutations on 3 symbols. This has 3! (=6) elements. One

123
is the identify function, I. Another is (2 1 3). Can you list the other four.

Now, while solving Self Assessment Exercise one of the elements you must have

i ) 1 23
obtained is f = )
2 31

Here f(1) = 2, f(2) = 3 and f(3) = 1, such a permutation is called a cycle. In general
we have the following definition.
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Definition

We say that f € S, is a cycle of length r if there are x;....... X, inX=1{1,2,.....n}
such that f(x;) = x;+ Lfor 1 <i <r—1, (fx;) and f(t) =t for t x;, .....x,. Inthis case fis
written as (X; ...x;),

For example, by f = (2 4 5 10) € S;p, we mean f(2) = 4, f(4) =5, f(5) = 10, f(10) = 2
and f(j) =j for j # 2, 4, 5,10.

. (12345678910}
e, f=

1435106789 2

f € S, fixes an element x if f(x) = x.

Note that, in the notation of a cycle, we don’t mention the elements that are left fixed
by the permutation. Similarly, the permutation.

12345
25413

Jis thecycle (12534)in S;,

Now let us see how we calculate the composition of two permutations. Consider the
following example S;,

1 2345 1 2345
aoB:[z 5 4 3 1}(5 341 2}
B 1 2 3 4 5 J
laB@® B2 aB3) aB(4) o)
1 2 3 4 5
a5 a@) o(4) o) Ot(2)j

_ 1234 5)2(2’4)’

14325

Since 1, 3 and 4 are left fixed.

The following exercises will give you some practice in computing the product of
elements in S,,.

SELF ASSESSMENT EXERCISE 15

Calculate (1 3) o (12) in Ss.
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SELF ASSESSMENT EXERCISE 16

Write the inverses of the following in S3:

a. 12
b. (132

Show that [(1 2)o (13 2)]™* # (1 2)* (1 3 2)™". (This shows that in Theorem 4(b) we
can’t write (ab)™* = a'b™)

And now let us talk of a group that you may be familiar with, without knowing that it
IS a group. j

3.4.3 Complex Numbers

In this sub-section we will show that the set of complex numbers forms a group with
respect to addition. Some of you may not be acquainted with some basic properties of
complex numbers. We have placed these properties in the appendix to this unit.

Consider the set C of all ordered pairs (X, y) of real numbers, i.e., we take C=R x R.

Define addition (+) and multiplication (.) in C as follows:

(X1, Y1) + (X2, ¥2) = (X Xo — y1 + ) and
(X1, Y1) - (X2, ¥2) = (X1 X2 — Y1 Y2, X1 Y2 — X2 Y1)
for  (Xy,y1) and (Xo, yo) in C.

This gives us an algebraic system (C, +,.) called the system of complex numbers. We
must remember that two complex numbers (X, y1) and (X,, y»,) are equal iff x; = x, and

Y1=Yo.

You can verify that + and, are commutative and associative.
Moreover,

I. (0,)) is the additive identity.

Il For (X, y) in C, (-, -y) s its additive inverse.

i. (1, 0) is the multiplicative identity.

iv. If (x, y) (0, 0) in C, then either x* > 0 or y* > 0.

Hence, x* + y* > 0. Then
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X y) -y X
=| X - -V - , X -
[ x2+y2 y x2+y2 x2+y2 +yx2+y2j
= (1,0

Thus, (C, +) is a group and (C*,.) is a group, (as usual, C* denotes the set of non-zero
complex numbers).

Now let us see what we have covered in this unit.

4.0 CONCLUSION

The study of groups in algebra is a fundamental requirement for any students who
want to major in pure mathematics. You are required to pay attention to all the
details in this unit.

5.0 SUMMARY
In this unit we have

discussed various types of binary operations.

defined and give examples of groups.

proved and used the cancellation laws and laws of indices for group elements.
discussed the group of integers modulo n, the symmetric group and the group
of complex numbers.

e

We have also provided an appendix in which we list certain basic fact about complex
numbers.

ANSWER TO SELF ASSESSMENT EXERCISE 1

1. a. X®Yy=yo®dx,¥Xx,yeZ
Therefore, @ is commutative

xX®y)@®z=(x+y-5)@®z=(x+ty-5)+z-5

=xXx+y+z-10
=X ® (y ® 2)
Therefore, @ is associative.
@isnotclosedon Nsincel ® 1¢ N.
b. * |s commutative, not associative, closed on N.
C. A IS not commutative, associative or closed on N.
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ANSWER TO SELF ASSESSMENT EXERCISE 2

a.

The identity element with respect to @ is 5.
Suppose e is the identity element for *

Thenx*e=x=>2((X+e)=X=>cC=- g which depends on x. Therefore,

there is no fixed element e in R for which x *e =e *x=x M X € R.
Therefore, * has no identify element.

The inverse of x with respect to @ is 10-x. Since there is no identity for the
other operations, there is no question of obtaining x .
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ANSWER TO SELF ASSESSMENT EXERCISE 3

#(S)={¢. (0), {1}, (0, 1)}

So, the table is

N ¢ {0} {1} S

¢ ¢ ¢ ¢ {1}
{0y |¢ {0} ¢ {0}
{1} |¢ ¢ {1} {1}

S ¢ {0} {1} S

ANSWER TO SELF ASSESSMENT EXERCISE 4
Check that both of then satisfy G1, G2 and G3
ANSWER TO SELF ASSESSMENT EXERCISE 5

a. and (d) are true.

b. R* is an infinite abelian group.

C. (Z*,.) satisfies G1 and G2, but not G3. NO integer, apart from +- 1, has a
multiplicative inverse.

ANSWER TO SELF ASSESSMENT EXERCISE 6

((a, b) > (c, d)) * (e, f)
(ac, bc +d) * (e, f)
(ace, (bc + d) e +f)

= (@ b)*((c,d)*(ef))

Thus, * satisfies G1°.

(a,b)*(1,0)=(a b)¥(a b) € G.

Therefore, G3’ holds.

Therefore, (G, *) is a group.

ANSWER TO SELF ASSESSMENT EXERCISE 7

ba=ca= (ba)a’= (ca)a’=b=c
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ANSWER TO SELF ASSESSMENT EXERCISE 8
Letx € G. Thengx =g =ge. So, by Theorem 5, x =e.
- G ={e},

ANSWER TO SELF ASSESSMENT EXERCISE 9

(Z,-) is not a group since G1 is not satisfied.

Foranya, b € Z,a—(a—b)=Db. So,a—xhasasolution foranya, b € Z.
ANSWER TO SELF ASSESSMENT EXERCISE 10

When n = 0, the statement is clearly true. Now, let n > 0. We will apply induction on
n. For n =1, the statement is true.

Now , let n > 0. We will apply induction on n. For n =1, the statement is true.
Now, assume that it is true for n — 1, that is, @™" Y- = a1,

Then, @™"=@""*+1=@M" " =a" by (b)

- am(n— 1). am
— am(n+l+1), by (b)
=am.
So, (c)istrue¥n>m e Z.
Now, letn < 0. Then (-n) > 0.
@D =[@YT by ()
=[@™™*", by the case n >0
=[@™]1"
=a™", by (a).

Thus, ¥ m, n € Z, (c) holds.

ANSWER TO SELF ASSESSMENT EXERCISE 11

+ 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2
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ANSWER TO SELF ASSESSMENT EXERCISE 12

Z is the disjoint union of the following 5 equivalence classes.

0={....., —10, -5,0,5,10, 15,......... }
I={i, =9, —4,1,6,11, ccesevvr..n. }
2={i, =8, =3,2, 7,12, }
3={i, =7, =2,3,8,13,ccevreenrne. }
4={, =6, =1, 4,9, 14 .cccoeevreer...... }

ANSWER TO SELF ASSESSMENT EXERCISE 13

The operation table for on Zsis

Bl wl| NI I
wWl| I Bl I NI
NI Bl I wi| wl
Rl Nl wl| B B

Bl wI| NI

It shows that, is an associative and commutative binary operation of Z*5. 1 is the
multiplicative identity and every element has an inverse.

Thus, (Z*s,.) is an abelian group.

ANSWER TO SELF ASSESSMENT EXERCISE 14

(1 2 3}(1 2 3}(1 2 3)(1 2 3j
321132)(231)(312

ANSWER TO SELF ASSESSMENT EXERCISE 15

f=(13),9=(12).
123)(123
Thenf,g= o
(3 2 J [2 1 SJ

:( 1 2 3 J
fg(2) fg@ f9(3)
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(1 2 3
r@ r@ r(3>j

_(1 23}2(123)

2 31

ANSWER TO SELF ASSESSMENT EXERCISE 16

123 213
a. Letf=(12)= R ,
213 123

just interchanging the rows.
~fl=(12).

b. (132)'=(@231).

123
Now, (12), (132) = (3 , J

) . (3
Its inverse IS (1

1—13
Z?J—( )

On other hand,
(12)%6(132) 6=(12),(123)=(23)#(13).

APPENDIX: COMPLEX NUMBERS

Any complex number can be denoted by an ordered pair of real numbers (X, y). In
fact, the set of complex numbers is

C:{(x,y)|x,yeR}.

Another way of representing (X, y) € Cisx + iy, where i =+/—1..

We call x the real part and y the imaginary part of X + iy.

The two representations agree if we denote (X, 0) by x and (0, 1) by i .On doing so we
can write

x+iy =(x,0)+(0,1) (v, 0)
=(x,0), +(0,y),

= (X, y),
and i*=(0, 1) (0,.1) = (-1, 0) = -1.

While working~ with complex numbers, We' will sometimes use the notation x + iy
and sometimes the fact that the elements of C can be represented by points in R%
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You can see that
(X +iy1) + (X2 +1y2) = (X1, Y1) + (X2, ¥2)
= (X1 + X2, X2 + Y2)
= (X1 + X2) +i(y1 + ), and

(Xy +iy1) (X2 +1y2) = (X1, Y1) + (X2, Y2)
= (X1X2 - Y1¥2, X1Y2)
= (X1X2) - Y1Y2) + i(X1y2 + Xoy1).), and

Now, given a complex number, we will define its conjugate.
Definition

For a complex number z = x + iy, the complex number x + i (-y) is called the
conjugate of z. It is also written as X -iy and is denoted by Z .

For z = x + 1y, we list the following properties.

I z+ Z isareal number. In fact, z + Z =.2 Xx.
i z° Z =x%+y? anon-negative real number.

.  z,+z,=2,+2,, forany z;, z, € C. This is because

(X, +X, +i(y, +Y,) = (X + X) —i(y1+Yo)

= (Xq - 1y1) + (X2 - 1y2)
=7,+7,.

iv. 2,z,=2,.Z,, forany z;,z, ¢ C.
Let us now see another way of representing complex numbers.

Geometric Representation of Complex Numbers Y

We have seen that a complex number, z = X + iy is represented by the point (X, y) in
the plane. If O is the point (0, 0) and P is (x,y) (see Fig.3), then we know that the

distance OP = /x> +y?. This is called the modulus (or the absolute value) of the
complex y number z and is denoted by | z |. Note that /x* +y* =0 iff x=0and y = 0.

Now, let us denote | z | by r and the angle made by OP with the positive x-axis by ©.
Then 0 is called an argument of the non-zero complex: number z. If 0 is an
argument of z, then 0 + 2nx is also an argument of z for all n € Z,. However, there is
a unique value of these arguments which lies in the interval [-w,7]. It is called the
principal argument of x + iy, and is denoted by Arg (x +iy).
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From fig. 3 you can see that x =r cos0, y = r sin0 that is, z = (rcos6, rsind) = r(cos6 +
i sin@) = re™.

This is called the polar form of the complex number (x + iy).

Now, if z; = re™andz, =r,e', then

_ 1(6,+6,)
z,z, =11,

Thus, an argument of z; z, = an argument of z; + an argument of z,.

We can similarly show that if z, # 0,

z
An argument of =+ = an argument of z; — an argument of z,.
2

In particular, if 0 is an argument of z (# 0), then (-0) is an argument of z°
We end by stating one of the important theorems that deals with complex numbers.

De Moivre’s Theorem: If z = r(cos0 + i sinf) and n e N, then z" = 1" (cos nO + i sin
no ).
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UNIT 3 SUBGROUPS
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1.0 INTRODUCTION

You have studied the algebraic structures of integers, rational numbers, real numbers
and, finally, complex numbers. You have noticed that, notonlyisZ <« Q <« R < C.
but the operations of addition and multiplication coincide in these sets.

In this unit you will study more examples of subsets of groups which are groups in
their own right. Such structures are rightfully named subgroups. In Sec. 3.3 we will
discuss some of their properties also.

In Sec. 3.4 we will see some cases in which we obtain a group from a few elements of
the group. In particular, we will study cases of groups that can be built up by a single
element of the group.

Do study this unit carefully because it consists of basic concepts which will be used
again and again in the rest of the course.

20 OBJECTIVES

At the end of this unit, you should be able to:

o define subgroups and check if a subset of a given group is a subgroup or not
. check if the intersection. union and product of two subgroups is ;I subgroup
. describe the structure and properties of cyclic groups.
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3.0 MAINCONTENT

3.1 Subgroups

You may have already noted that the groups (Z,+), (Q,+) and (R,+) are contained in
the bigger group (C,+) of complex numbers, not just as subsets but as groups. All
these are examples of subgroups, as you will see.

Definition
Let (G,*) be a group. A non-empty subset H of G is called a subgroup of G if

I. a*beHW¥a.b e H.ie. *isabinary operation on H.
il (H,*) is itself a group.

So, by definition, (Z,+) is a subgroup of (Q,+), (R,+) and (C,+).

Now, if (H, *) is a subgroup of (G,*), can the identity element in (H,*) be different
from the identify element in (G,*)? Let us see. If h is the identity of (H,*), then for
any a € H.

b*a=a*h=a However,a e Hc G.Thus.a*e=e*a=a. where e is the identity
in G.

Thereforeh*a=¢e*a.
By right cancellation in (G,*). We geth =e.
Thus, whenever (H, *) is a subgroup of (G,*). e € H.

Now you may like to try the following exercise.
SELF ASSESSMENT EXERCISE 1
If (H, *) is a subgroup of (G,*), doesa * e H for everya € H.,

Self Assessment Exercise 1 and the discussion before it allows us to make the
following remark.

Remark 1
(H,*) is a subgroup of (G, *) if and only if

i e e H.
i, a,beH=>a*beH
iii. aeH=a'leH.

We would also like to make an important remark about notation here.
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Remark 2

If (H,*) is a subgroup of (G,*), we shall just say that H is a subgroup of G, provided
that there is no confusion about the binary operations. We will also denote this fact by
H<G.

Now we discuss an important necessary and sufficient condition for a subset to be a
subgroup.

Theorem 1

Let H be a non-empty subset of a group G. Then H is a subgroup of G iff
a,beH abteH.

Proof

Firstly, let us assume that H < G. Then, by Remark 1,a, b e H=a, b" € H.

Conversely, since H# ¢ 3 a € H. Butthen, aa™ =e € H.
Again, foranyaeH,ea' =a* e H.

Finally, if: a,b € H, thena, b™® € H. Thus, a (b")* =ab e H, i.e,,
H is closed under the binary operation of the group.

Therefore by Remark 1, H is a group.

Let us look at some examples of subgroups now. While going through these you may
realise the fact that a subgroup of an abelian group is abelian.

Example 1

Consider the group (C*,.). Show that
S={z € C||z| =1} is a subgroup of C*
Solution

S+#¢,since 1€ S. Also, forany z;,z, € S,

. . 1
|12, l| = |z1] |z, 1| =|zo] —=1.
|z, |

Hence, z; 22'1 e S. Therefore, by Theorem 1, S < C*,

Example 2

Consider G = My, (C), the set of all 2 x 3 matrices over C. Check that
(G,+) is an abelian group. Show that
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s={os]

Solution
We define addition on G by

abc+pqr_a+p b + ¢ C + r
def||stul|d+s e+t f+ul
You can see that + is binary operation on G. O = is the additive identity and

-a —-b —-c]. ) abc
is the inverse of e G.
—-d —e —f d e f

a, b, c e C} is a subgroup of G.

Since,a+b=b+a Ma b eC,+isalso abelian.
Therefore, (G,+) is an abelian group.

Now, since O € S, S #¢. Also, for

0 a b][0d e

: € S, we see that
0 110 0 f
_ - H<(G +)
Oab_Ode:Oa—db—eES H¢¢and©
00c| [00Ff] |0 0 c-f ' a-ben
. S<G.
Example 3

Consider the set of all invertible 3 x 3 matrices over R, GL; (R). That is,
A € GLy(R) iff det (A) # 0. Show that SL; (R) = (A E GL(R) det(A) 1} is a
subgroup of (GL3(R),.).

Solution

The 3x3 identity matrix is in SL3(R). Therefore, SL3(R) # ¢.

Now, for A, B € SL3(R).

det (AB™) = det (A) det(B™) = det (A) ﬁ(g): 1, since det (A) =1and det (B) =I.
~AB™ € SL4(R)

. SL3(R) < GL4(R).
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Try the following exercise now.

SELF ASSESSMENT EXERCISE 2

Show that for any group G, {e} arid G are subgroups of G.
({e} is called the trivial subgroup.)

The next example is very important, and you may use it quite often.

Example 4

Any non-trivial subgroup of (Z, +) is of the form mZ; where m € N and
mZ={mt|teZ}={0, £m, £2m, £3m, }.

Solution

We will first show that mZ is a subgroup of Z. Then we will show that if H is a
subgroup of Z, H # {0}, then H=mZ, for some m € N.

Now, 0 € mZ. Therefore, mZ # ¢. Also, for mr, ms € mZ, mr-ms = m(r-s) € mZ.
Therefore, mZ is a subgroup of Z.

Note that m is the least positive integer in mZ.

Now, let H # {0} be a subgroup of Z and S={i|i>0, i € H}.

Since H # {0}, there is a non-zero integer k in H. If k > 0, then k € S. If k <0, then (-
K) e S, since (-k) € Hand (-k) > 0.

Hence, S # ¢.

Clearly, S < N. Thus, by the well-ordering principle (Sec. 16.1) S has a least element,
say s. That is, s is the least positive integer that belongs to H.

Now s Z < H. Why? Well, consider any element ste sZ.
Ift=0,thenst=0 € H.

Ift>0,thenst=s+s+..... +s(ttimes) € H.
Ift<O0,thenst=(-s)+ (-s) +.....+ (-S) (-t times) € H.
Therefore, st e HMt € Z. That is, sZ < H.

Now, let m € H. By the division algorithm (see Sec. 1.6.2), m =ns + r for somen, r
Z,0<r<s. Thus, r=m-ns. But H is a subgroup of Z and m, ns € H. Thus, r € H.
By minimality of Se S, we must have r =0, i.e., m=ns. Thus, H csZ.

So we have proved that H = sZ.
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Before going to the next example, let us see what the nth roots of unity are, that is; for
which complex numbers z is z" = 1.

From Unit 2, you know that the polar form of a non-zero complex number z € C is z
= r(cosO + i sinB), where r = |z| and © ia an argument of z. Moreover, if 6, is an
argument of z; and 6, that of z,, then 6, + 0, is an argument of z; z,. Using this we
will try to find the nth roots of 1, where n € N.

Thus, by De Moivre’s theorem,

1=2"=1"(cos n6+ i sin nv), that is,
cos (0) +isin(0) =r"(cosnB) +isiNNO). .......ccvvviviiiiiniininnnn (1)

Equating the modulus of both the sides of (1), we getrn =1, i.e., r = 1. On comparing
the arguments of both sides of (1), we see that 0 + 2nk (k € Z) and n6 are arguments
of the same complex number. Thus, n6 can take any one of the values 27k, k € Z.
Does this mean that as k ranges over Z and © ranges over

2nk  2mm
Cos %Hsm%_coszﬂﬂsmz— if and only if IR 2 _ont for somet e
n n n n n n

Z. This will happen if k =m + nt, i.e., k = m (mod n). Thus, corresponding to everyr

: : 2rk . . 27k
in Z, we get an nth root of unity, z = cosi+|smi, 0 <r < n; and these are all
n n

the nth roots of unity.
For example, if n = 6, we get the 6" roots of 1 as Zo, 71, Zy, Z3, Zs4, and zs, where z;,
2? +|sm%zj, j=1 2, 3, 4, 5 6. InFig.1 you can see that all these lie on the

unit circle (i.1., the circle of radius one with centre (0, 0)). They form the vertices of a
regular hexagon.

Fig. 1: 6™ Roots of Unity
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2t . . 2 1 .
Now, let o = Cos—n+ ISII’]—TC. Then all the nth roots of 1 are 1, o, wz, ....... , @ l, since
n n
i ZTCJ .. 275] . . . ,
o, = coOS— +isin—"for 0 <j <n—1 (using De Moivre’s theorem).
n n
Let U = {1, o, W% el , ®"}. The following exercise shows you an interesting

property of the elements of U .

SELF ASSESSMENT EXERCISE 3

2n . . 2® i
Ifn>1 and ® = coS— +isin—, then show that 1 fto+o’to +..+o"t=0.
n n

Now we are in a position to obtain a finite subgroup of C*.
Example 5

Show that U < (C*,.).

Solution

Clearly, U, # ¢. Now, let o', o' ¢ U, .

Then, by the division algorithm, we can write i + j =g, +rforq,r e Z,0<r<n-1.
Buttheno'. o' =0 7= 0™ = (0" 0 =o' e U,,sincew"=1,ie o" . Thus,
U, is closed under multiplication.

Finally, if o'c U, ,then0<i<n-land o, 0" '=e"=1, ie., o" 'is the inverse of

o' forall 1 <i<n. Hence, U, is a subgroup of C*.

Note that U, is a finites group of order n and is a subgroup of an infinite group,
C*. So, for every natural number n we have a finite subgroup of order n of C*.

Before ending this section we will introduces you a subgroup that you will use off and
on.

Definition

The centre of a group G, denoted by Z(G) =G, denoted by Z(G), is the set Z(G) = {g
e G xg=gx¥x e G}

Thus, Z(G) is the set of some elements of G that commute with every element of G.

For example, if G is abelian, then Z(G) = G.
We will now show that Z(G) < G.
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Theorem 2

The centre of any group G is a subgroup of G.

Proof

Since e € Z(G), Z(G) # ¢. Now,

aeZ(G) =S ax ¥ xeG.
—x=a’*xaM¥x e G, pre-multiplying by a™.
—x=a'=a'xM¥x e G, post-multiplying by a™.
—a'e Z(G).

Also, forany a, b € Z(G) and for any x € G.

(ab) x = a(bx) = a(xb) = (ax)b = (xa)b = x(ab).

- ab e Z(G).

Thus, Z(G) is a subgroup of G.

The following exercise will give you some practice in obtaining the centre of a group.

SELF ASSESSMENT EXERCISE 4

Show that Z(S3) = (I).

(Hint: write the operation table for S3)

Let us now discuss some properties of subgroups.

3.2 Properties of Subgroups

Let us start with showing that the relation ‘is a subgroup of” is transitive. The proof is
very simple.

Theorem 3

Let G be a group, H be a subgroup of G and K be a subgroup of H. Then Kk is a
subgroup of G.

Proof
Since K<H, K+# ¢ and able KMa, b e K. Therefore, K <G.

Let us look at subgroups of Z, in the context of Theorem 3.
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Example 6

In Example 4 we have seen that any subgroup of Z is of the form mZ for some m e
N. Let mZ and kZ be two subgrougs of Z. Show that mZ is a subgroup of kZ iff Kk |
m.

Solution

We need to show that mZ c kZ< k|m. NowmZ c kZememZ c kZ=m e
kKZ = m =kr forsomer e Zk |m.

Conversely, suppose k | m.

Then, m = kr for some r € Z. Now consider any n € mZ such that n = mt.
Thenn=mt=(kr) t =k (rt) € kZ.

Hence, mZ < kZ

Thus, mZ < kZ iff k|m.

Now, you may like to try the next exercise.

SELF ASSESSMENT EXERCISE 5

Which subgroups of Z is 9Z a subgroup of?

We will now discuss the behaviour of subgroups under the operations of intersection
and union.

Theorem 4

If H and K are two subgroups of a group G, then HNK is also a subgroup of G.

Proof

Sincee € Hand e € K, where e is the identity of G, e € HNK.

Thus, HNK # ¢.

Now, let a, b € HNK. By Theorem 1, it is enough to show that ab™e HNK. Now,

since a, b € H, ab*e H. Similarly, since a, b € K, ab*e K. Thus, ab®* € HNK.
Hence, HNK is a subgroup of G.
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The whole argument of Theorem 4 remains valid if we take a family of subgroups
instead of just two subgroups. Hence, we have the following result.

Theorem 4. if {Hi}i<1 is a family of subgroups of a group G, then () H;is also a

iel

subgroup of G.

Now, do you think the union of two (or more) subgroups is again a subgroup?
Consider the two subgroups 2Z and 3Z of Z. Let S =2Z U3Z. Now, 3e 3Z cS, 2

€ 2Z S, but 1 =3 — 2 is neither in 2Z nor in 3Z. Hence, S is not a subgroup of
(Z,+). Thus, if A and B are subgroups of G, AUB need not be a subgroup of G. But,

if AcB is a subgroup of G. The next exercise says that this is the only situation in
which AUB is a subgroup of G.

SELF ASSESSMENT EXERCISE 6

Let A and B be two subgroups of a group G. Prove that AUB is a subgroup of G iff A
cBorB cA.

(Hint: Suppose AcB and Bc A. Take a € A\B and be B\A. Then show that abz
AUB. Hence, AUB <G. Note thatlproving this amounts to proving that AUB < G

=AcBorB c A.
Let us now see what we mean by the product of two subsets of a group G.

Definition
Let G be a group and A, B be non-empty subsets of G.
The product of A and Bistheset AB={ab|a € A, b € B}.
For example, (22) (3Z) ={(2m) (3m) |m, n € Z}
={6mn|m,n € Z}
=6Z.
In this example we find that the product of two subgroups is a subgroup. But is that

always so? Consider the group

S1={1,(12),(13),(23),(123),(132)}, and its subgroups H = {1, (1 2)} and K =
{1, (13)}
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2 3

1
Remember, (1 2) is the permutation (2 13

. (1 2 3
permutation :
2 31

jand @ 2 3)is the

Now HK = {1+ 1,1+ (13), (12) I, (1 2) » (1 3)}
={1,(13),(12),(132)}

HK is not a subgroup of G, since it is not even closed under composition. (Note that
(13)°(12)=(1.23) ¢ HK)

So, when will the product of two subgroups be a subgroup? The following result
answers this question.

Theorem 5
Let H and K be subgroups of a group G. Then HK is a subgroups of G if HK = KH.

Proof

Firstly, assume that HK < G. We will show that HK = KH. Let hk € HK. Then (hk)
l=k'h! e HK, since HK < G.

Therefore, k™ h* = ky hy for some h;e H, kye K. But then hk = (k' h™y* = k;*h,* e
KH. Thus, HK ¢ KH.

Now, we will show that KH < HK. Let kh € KH. Then (kh)* = h* k* € HK. But
HK < G. Therefore, (kh)")* e HK, that is, kh € HK. Thus, KH < HK.

Hence, we have shown that HK = KH.

Conversely, assume that HK = KH. We have to prove that HK < G. Since e = % ¢
HK, HK # ¢.

Now, let a, be HK. Then a = hk and b = h; k, for some h, h; € Hand k, k; € K.

Then ab™ = (hk) (k;* h;*)=h[ (kk, [*) h;'].

Now (kk;*) h;* € KH = HK. Therefore, 3 hok, € HK such that (kk;*) h;* = hyk,.
+Then, ab™ = h(h,k,) = (hh,)k, € HK.

Thus, by Theorem 1, HK < G.

The following result is a nice corollary to Theorem 5.
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Corollary: If H and K are subgroups or abelian group G, then HK.
Try the following exercise now.

SELF ASSESSMENT EXERCISE 7
Is AB a subgroup of S4, where A={l, (14)} and B ={l, (1 2)}?

The next topic that we will take up is generating sets.

3.3 Cyclic Groups

In this section we will briefly discuss generating sets, and then talk about cyclic
groups in detail.

Let G be any group and S a subset of G. Consider the family F of all subgroups of G
that contain S, that is,

F={H|H<GandS c H}.

We claim that F< ¢. Why Doesn’t G € F? Now, by Theorem 4', (\H is a subgroup
HeF
of G.

Note that

i Sc NH.

HeF

Il (1 H is the smallest subgroup of G containing S. (Because if K is a subgroup of
HeF

G containing S, then K € F.
Therefore,(NH < K.)

HeF
These observations lead us to the following definition.
Definition

If S is a subset of a group G, then the smallest subgroup of G containing S is called
the subgroup generated by the set S, and is 'written as <S>.

Thus,<S>=N{H|H<G,S « H}

If S = ¢, then <S> = {e}.

If <S> = G, then we say that G is generated by the set S, and that S is a set of
generators of G.

If the set S is finite, we say that G is finitely generated.
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Before giving examples, we will give an alternative way of describing <S>. This
definition is much easier to work with than the previous one.

Theorem 6

If S is a non-empty subset of a group G, then

<S>= {aflagz ..... a,|a, eSforl i k,n,......n, Z.}

Proof

Let A= {afiagz ..... a,|a, eSforl i k,n,......n, Z.}

Since a;...... ,a € S ¢ <S>and <S> is a subgroup of G, a;‘l e<S>.

Now, let us see why <S> < A. We will show that A is a subgroup containing S. Then,
by the definition of <S>, it will follow that <S> < A.

Since any a € S can be written as a :a', Sc A
SinceS/ oAl ¢.

Now letx,y € A. Then x = (al*a}’......aJ*) (b"b3>.....bM" )
= (@ray....a, ) (b,™.....b") e A

Thus, by Theorem 1, A is a subgroup of G. Thus, A is a subgroup of G containing S.
And hence, <S> < A.
This shows that <S> = A.

Note that, if (G, +) is a group generated by S, then any element of G is of the form n,
atha+...... n a;, whereag, a; ....,a, € Sandny, Ny ... ne e Z.

For example, Z is generated by the set of odd integers S = {#1, +3, £5,....}. Let us see
why. Letm € Z. Thenm = 2, wherer >0 and s € S. Thus, m e <5>. And hence,
<S>=7.

Try the following exercises now.

SELF ASSESSMENT EXERCISE 8
Show that S = {I} generates Z.

SELF ASSESSMENT EXERCISE 9

Show that a subset S of N generates the group Z of all integers iff there exist
Si....., SginSand ny, ..... ngin Z such that n;S; + ......+ NS =1.

(Hint: Apply Theorem 6.)
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SELF ASSESSMENT EXERCISE 10

Show that if S generatesagroup GandS < T < G, then<T>=G.

Self-Assessment Exercise 10 shows that a group can have many generating sets. Self
Assessment Exercise 8 gives an example of a group that is generated by only one
element. We give such a group a special name.

Definition

A group G is called a cyclic group if G = < {a} > for some a € G. We usually write <
{a} >as<a>.

Note that<a>={a"|n € Z}.

A subgroup H of a group G is called a cyclic subgroup if it is a cyclic group. Thus, <
(12) > is a cyclic subgroup of S; and 2Z = <2> is a cyclic subgroup of Z.

We would like to make the following remarks here.

Remark 3

I If K< G and a € K, then <a> K. This is because <a> is the smallest
subgroup of G containing

. All the elements of <a> = {a" | ne Z} may or may not be a distinct. For
example, takea=(12) € Ss.

Then < (12)> ={l, (1 2)}, since (1 2)*=1, (1 2)3 = (1 2), and so on.
SELF ASSESSMENT EXERCISE 11

Show that if G = {e},then G = <e >.

SELF ASSESSMENT EXERCISE 12

Show that <a> = <a-1> for any a € G.

We will now prove a nice property of cyclic groups.

Theorem 7

Every cyclic group is abelian
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Proof

Let G=<a>={a"|n e Z}. Then, for any x, y in G there exist m, n e Z such that x =

m+n _

a",y=a". But,thenxy =a™a®=a" " =a"a" = yx. Thus, xy =yx forall x, y. inG.
That is, G is abelian.

Note that Theorem 7 says that every cyclic group is abelian. But this does not mean
that every abelian group of is cyclic. Consider the following example.

Example 7

Consider the set K, = {e, a, b, ab} and the binary operation of K, given by the table.

. e a b ab
e e a b ab
a a e ab b
b b ab e a
ab ab b a e

{1B49—1925)

The table shows that (K, , .) is a group.

This group is called the Klein 4-group, after the pioneering German group theorist
Felix Klein.

Show that K, is abelian but not cyclic.
Solution

From the table we can see that K, is abelian. If it were cyclic, it would have to be
generated by e, a,. b or ab. Now, <e > = {e}. Also, a =a,a’> = e,a® = a, and so on.

Therefore, <a> = {e, a}. Similarly, <b >={e, b} and <ab > ={ e, ab}.

Therefore, K, can't be generated bye, a, b or ab.
Thus, K4 is not cyclic.

Use Theorem 7 to solve the following exercise.

SELF ASSESSMENT EXERCISE 13
Show that S3 is not cyclic.

Now let us look at another nice property of cyclic groups.
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Theorem 8

Any subgroup of a cyclic group is cyclic.

Proof

Let G = <x > be a cyclic group and H be a subgroup.
If H={e}, then H =<e >, and hence, H is cyclic.

Suppose H = {e}. Then 3 n e Z such that x"e H, n = 0. Since H is a subgroup, (x")*
= x" e H. Therefore, there exists a positive integer m(i.e., n or-n) such that x™ € H.
Thus, the set S = {t € N | x'| € H} is not empty. By the well-ordering principle (see
Sec.) 1.6.1.) S has a least element, say k. We will show that H = < x*>.

Now, <x*> < H, since x e H.

Conversely, let x" be an arbitrary element in H. By the division algorithm n = mk + r
wherem, r € Z, 0 <r <k-l. Butthen X" = x" = x""™ = x". x*)" € H, since x", x* . H.
But k is the least positive integer such that X € H. Therefore, X" can be in H only if r
= 0. And then, n = mk and X" = (X)™ € <k*>. Thus, H < < x>. Hence, H = < x*?,
that is, H is cyclic.

Using Theorem 8 we can immediately prove what we did in Example 4. .

Now, Theorem 8 says that every subgroup of a cyclic group is cyclic. But the
converse is not true. That is, we can have groups whose proper subgroups are all
cyclic, without the group being cyclic. We give such an example now.

Consider the group Ss, of all permutations on 3 symbols. Its proper subgroups are
subgroups are all cyclic, without the group being cyclic. We give an example now.

Consider the group Ss, of all permutations on 3 symbols. Its proper subgroups are

A=<1>
B =<12>
C=<(13)>
D:<(23)>
E=<123>

As you can see, all these are cyclic. But, by Self Assessment Exercise you know that
Sz itself is not cyclic.

Now we state a corollary to Theorem 8, in which we write down the important point
made in the proof of Theorem 8.
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Corollary: Let H ={e} be a subgroup of <a >. Then H = <a" >, where n is the least
positive integer such that a" € H.

Try the following exercises now.
SELF ASSESSMENT EXERCISE 14
Show that any non-abelian group must have a proper subgroup other than {e}.

SELF ASSESSMENT EXERCISE 15

Obtain all the subgroups of Z,, which you know is <1 >.
Let us now see what we have done in this unit.

4.0 CONCLUSION

Subgroups play important roles in group theory. In MTH 312 you will be introduced
to another important subgroups called the normal subgroups which has a lot of
application in some other sciences such as Molecular Chemistry, You are to read
carefully and master all the materials in this unit.

50 SUMMARY
I
n this unit we have covered the following points.

1. The definition and examples of subgroups.

2. The intersection of subgroups is a subgroup.

3. The union of two subgroups H and K is a subgroup if and only if H cK or K
c H.

The product of two subgroups H and K is a subgroup if and only if HK = KH.
The definition of a generating set.

A cyclic group is abelian, but the converse need not be true.

Any subgroup of a cyclic group is cyclic, but the converse need not be true.

No gk

ANSWER TO SELF ASSESSMENT EXERCISE 1

1. Yes, because H is a group in its own right.

ANSWER TO SELF ASSESSMENT EXERCISE 2

2.  {e}=.Alsoforanyee’=e e {e} ....., by Theorem 1, {e} < G.
G < ¢. Also forany x e G, x1eG. . forabeG.
A beG .. ab'eG. .G<G.
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ANSWER TO SELF ASSESSMENT EXERCISE 3

Since »" =1,(1-»")=0i.e.,
1- o)(l+o+o° +...+0" " =0.
Since ®#11+®* +.e.. +@"+ =0.

ANSWER TO SELF ASSESSMENT EXERCISE 4

From Self Assessment Exercise 14 of Unit 2 recall the elements of S;. On writing the
operation table for S; you will find that only | commute with every permutation in S,.

ANSWER TO SELF ASSESSMENT EXERCISE 5

The divisors of 9 are 1, 3 and 9
Thus, 9Z is a subgroup of Z, 3Z and itself only.

ANSWER TO SELF ASSESSMENT EXERCISE 6

We know that if A < BorB < A, then AUB is A or B, and hence, is a subgroup of
G.

Conversely, we will assume that Ac Band B < A, and conclude that AUB £ G.
Since AcB, 3 a € Asuchthata ¢ B.

Since Bc A, 3 b e Bsuchthatb ¢ A.

Now, if ab € A, then ab = ¢, for some ¢ € A.
Thenb=a'c e A acontradiction. .ab ¢ A. Similarly, ab ¢ B. ...ab ¢ AUB.

Buta €e AUBandb € AUB. So, AUB £ G.

ANSWER TO SELF ASSESSMENT EXERCISE 7
AB={l,(14),(12),(124)

But, (12) - (14) = (142) ¢ AB. .. AB£ S,
ANSWER TO SELF ASSESSMENT EXERCISE 8
Foranyne Z,n=n.le<{1}> .. Z=<{1}>.
ANSWER TO SELF ASSESSMENT EXERCISE 9

Firstly, suppose Z=<S>.Thenl € <S>. .. 3sy,....,5c € Sand
Npy o N € Zsuch that nys; +..... + nes = 1.
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Conversely, suppose 3, sy, ....... sy € Sand ny,...., Ny € Z such that
NSy + NS, +..... + NS = 1.

Then, foranyn e Z,n=n.1=nny, S, +..... + NN S, € <S>.
S ZL=<S>,

ANSWER TO SELF ASSESSMENT EXERCISE 10

We know that G = < S >. Therefore, forany g € G,

3sq...... S € Sand ny,....., N e Zsuchthatg = s"......... sym
SinceS cT,5,eTV=1, ...k

.. by Theorem 6, we seethat G=<T >,

ANSWER TO SELF ASSESSMENT EXERCISE 11

Since G#{e}, Ja#einG. Sinceazeforanyr e Z. a=<e>.
L G#E<e>.

ANSWER TO SELF ASSESSMENT EXERCISE 12

We will show that<a > c<a'>and<a’> < <a>.
Now, any element of <a>isa"=(a) ™ forn e Z.
a'e<al> r<a>c<al>.

Similarly, <a*>=<a>.

<a>=<al>.
ANSWER TO SELF ASSESSMENT EXERCISE 13

Since S; is not abelian (e.g., (13) > (12) = (12)° (13)), by.
Theorem 7, S;can't be cyclic.

6.0 TUTOR- MARKED ASSIGNMENT

1. Let G be a non-abelian group. Then G = {e}. Therefore, 3a € G, a#e. Then <
a>G. G < <a>,since Gisnon-abelian. .. <a><G.

2. Since Z, is cyclic, all its Subgroups are cyclic.
Thus, its Subgroups are Z,, < 2 > < 3>and
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1.0 INTRODUCTION

In the previous unit we have discussed different subgroups. In this unit we will see
how a subgroup can partition a group into equivalence classes. To do this we need to

define the concept of cosets.

In Sec. 4.3 we use cosets to prove a very useful result about the number of elements in

MODULE 1

a subgroup. The beginnings of this result were made in a research paper on the

solvability of algebraic equations by the famous mathematician Lagrange. Today this
elementary theorem is known as Lagrange’s theorem, though Lagrange proved it for

subgroups of S, only.

While studying MTH 312 you will be using Lagrange’s theorem again and again. So,

make sure that you read this unit carefully.

2.0

OBJECTIVES

At the end of this unit, you should be able to::

3.0

3.1

In Sec. 3.3 we defined the product of two subsets of a group. We will now look at the
case when one of the subsets consists of a single element only. In fact, we will look at
the situation H{x) = {hx | h € H}, where H is a subgroup of a group G and x € G. We

form left or right cosets of a subgroup

partition a group into disjoint cosets of a group

prove and use Lagrange’s theorem.

MAIN CONTENT

Cosets

will denote H{x} by Hx.
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Definition

Let H be a subgroup of a group G, and let x € G. We call the set,
{hx | h eH} a right coset of H in G. The element x is a representative of Hx.

We can similarly define the left coset
xH {xh|h e H}

Note that, if the group operation is +, then the right and left cosets of H in (G,+)
represented} x € G are

H+x={h+x | he H}andx+ H={x+h | he H}, respectively.

Let us look at some examples.

Example 1

Show that H is a right as well as a left coset of a subgroup H in a group G.
Solution

Consider the right coset of H in G represented by e, the identity of G. Then
He={he |he H} ={h|h € H} =H.

Similarly, eH = H.

Thus, H is a right as well as left coset of H in G.
Example 2

What are the right cosets of 4Z in Z?"'
Solution
NowH=4z={....,-8,-4,0,4,8,12, ....}
The, right cosets of H are

H + 0 = H, using Example 1.

H+1={...... ,-11,-7,-3,159,13,..... }
H+2={....,-10,-6,-2, 2, 6,10, 14, ..... }
H+3={....,-9,-5,-1,3,7,11,15,.... }
H+4={...,-8,-4,0,4,8,12,....} =H

Similarly, you can see that H+5 = H+1, H+6 = H+2, and so on.
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You can also check that H-1 = H+3, H-2= H+2, H-3 = H+1, and so on
Thus, the distinct right co sets are H, H+1, H+2 and H+3.
In general, the distinct right cosets of H (= nZ) in Z are H, H+l,

H+ (n-1). Similarly, the distinct left cosets of H (=nZ) in Z are H, 1 +H, 2+H ...... , (-
1) + H.

Before giving more examples of cosets, let us discuss some properties of cosets.
Theorem 1

Let H be a subgroup of agroup G and let x, y € G.

Then

a. X € Hx
b. Hx=H < x € H.
c. Hx=Heoxy'eH.

Proof
a. Since x =ex and e € H, we find that X € HXx.
b. Firstly, let us assume that Hx = H. Then, since x € H x, x € H.

Conversely, let us assume that x € H. We will show that Hx < Hand H ¢
Hx. Now any element of Hx is of the form hx, where h € H. This is in H, since
h € Hand x € H. Thus, Hx < H. Again, let he H. Then h = (hx") X e HX,
since hx™ e H.

.. H cHX.
.. H=HXx.

c. Hx=Hy=< Hxy'=Hyy'=He=H < xy' e H, by (b).
Conversely, Xy* € H < Hxy' = H < Hxy'y = Hy < Hx = Hy.
Thus, we have proved (c).

The properties listed in Theorem 1, are not only true for right cosets. We make the
following observations.

Note: Along the lines of the proof of Theorem 1, we can prove that if H is a subgroup
of Gand x,y € G,
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a. X € xH.
b. XH=H < x e H.
c. xH=yHexyeH.

Let us look at a few more examples of cosets.

Example 3

LetG=S;=A{l,(12),(13),(23),(123), (13 2) and H be the cyclic
subgroup of G generated by (1 2 3). Obtain the left cosets of H in G.

Solution

Two cosets are

H={l, (123),(132)}and
(L12H={(12),(12)°(123),(12) (132}
={(12),(23),(13))

For the other cosets you can apply Theorem 1 to see that

(12)H=(23)H=(13)Hand
(123)H = (132)H.

Thus, the distinct left cosets of H are H and (1 2)H.
Try the following exercise now.

SELF ASSESSMENT EXERCISE 1

Obtain the left and right cosets of H = < (1 2) > in S3. Show that Hx = xH for some x
S 53.

Let us now look at the cosets of a very important group, the quaternion group.

Example 4

Consider the following set of 8 2x2 matrices over C.

Qs = {I, £A, £B, £C}’ where

o o feels Yomren

You can check that the following relations hold between the elements of

Qs:
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12=1, A2=B?=C2 =,
AB=C=-BA BC=A=-CB,CA=B=-AC.

Therefore, Qg is non-abelian group under matrix multiplication.
Show that the subgroup H = < A > has only two distinct right cosets in Qg.

Solution

H=<A>={l,A A% A} ={I, A -I, -A},

Since A’ =1, A° = A, and so on.

Therefore, HB = {B, C, -B, -C}, using the relations given above.
Using Theorem | (b), we see that

H=HI = HA = H(-1) = H(-A).

Using Theorem I(c), we see that

HB =HC= H(-B) = H(-C).

Therefore, H has only two distinct right co sets in Qg, H and HB.

The following exercise will help you to understand Qs.
SELF ASSESSMENT EXERCISE 2
Show that K = {I, -1} is a subgroup of Qg, Obtain all its right cosets in Qs.

We will show that each group can be written as the union of disjoint cosets of any of
its subgroups. For this we define a relation on the elements of G.

Definition

Let H be a subgroup of a group G. We define a relation ‘~* on G by x~y iff xy* € H,
where X, y € G. Thus, from Theorem 1 we see that x ~ y iff Hx = Hy.

We will prove that this relation is an equivalence relation (see unit 1).

Theorem 2

Let H be a subgroup of a group G. Then the relation ~defined by ‘x ~y’ xy™ € H is an
equivalence relation. The equivalence classes are the right cosets of H in G.

Proof

We need to prove that ~is reflexive, symmetric and transitive.
Firstly, forany x € G, xx*=e e H, .. x ~x, that is, ~ is reflexive.

Secondly, if x ~y forany x, y € G, then xy* e H.
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5. Xy =xy" e H, Thus, y ~ x. That is, ~ is symmetric.
Finally, fiX, y, z, € G such thatx ~ yand y ~ z, then xy™* € Hand yz* e H.
Ly (yzh=x(y'ly)zt=xzt e H, x~z
That is ~ is transitive.
Thus, ~ is an equivalence relation.
The equivalence class determined by x € Gis {x| ={y e G|y—-x}={y € G| xy*
e H}.

Now, we will show that [x] = Hx. So, lety € [x]. Then Hy = Hx, by Theorem 1. And
sincey € Hy, y € Hx.

Therefore, [X] < HXx.
Now, consider any element hx of Hx. Then x(hx)* = xx* h? =h' e H.

Therefore, hx ~ x. That is, hx € [X]. This is true for any hx € Hx. Therefore, H ¢ G

[X].

Thus, we have shown that [x] = Hx.
Using Theorem 2 and Theorem 1 (d) of Unit |, we can make the following remark.

Remark

If Hx and Hy are two right cosets of a subgroup H in G, then Hx = Hy or HXNHy = ¢.

Note that what Theorem 2 and the remark above say is that any subgroup H of a
group G partitions G into disjoint right cosets.

On exactly the same lines as above we can state that

. any two left cosets of H in G are identical or disjoint, and
ii. G is the disjoint union of the distinct left cosets of H in G.

So, for example, S; =< (123) > U (1*2) < (1 2 3) > (using Example 3).
You may like to do the following exercises now.
SELF ASSESSMENT EXERCISE 3

Let H be a subgroup of a group G. Show that there is a one-to-one correspondence
between the elements of H and those of any right or left coset of H.

(Hint: Show that the mapping f: H — Hx: f(h) = hx is a bijection.)

94



MTH 211 MODULE 1

SELF ASSESSMENT EXERCISE 4

Write Z as a union of disjoint cosets of 5Z.

Using Self-Assessment Exercise 3 we can say that if H is a finite subgroup of a group
G, then the number of elements in every coset of H is the same as the number of
elements in H.

We will use this fact to prove an elementary theorem about the number of cosets of a
subgroup of a finite group 10, the next section.

3.2 LAGRANGE'S THEOREM

In this section we will first define the order of a finite group and then show that the
order of any subgroup divides the order of the group.
So let us start with a definition.

Definition

The order of a finite group G is the number of elements in G. It is denoted by o(G).
For example, 0(S3) = 6 and 0(As) = 3. Remember, A3 ={l, (1 23), (1 32)}!

You can also see that o(Z,> = n. And, from Sec. 2.5.2 you know that o(S,>=n!.

Now, let G be a finite group and H be a subgroup of G. We define a function f
between the set of right cosets of H in G and the set of left cosets of H in G by

f:{Hx | x e G} > {yH |ye G}: f (Hx) = xH.

Now try Self-Assessment Exercise 5.

SELF ASSESSMENT EXERCISE 5

Check that f is a bijection.

Self-Assessment Exercise 5 allows us to say that there is a one-to-one
correspondence between the right cosets and the left cosets of H in G. Thus, the

number of distinct right cosets of H in G always equals the number of distinct left
cosets of Hin G.

Definition

Let H be a subgroup of a finite group G. We call the number of distinct
of H in G the index of H in G, and denote it by | G : H|.

Thus, from Example 3 we see that | S;: Az| = 2.
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Note that, if we take H = {e}, then | G: {e} | = o(G), since {e}g = {9} ¥ g € G and
{e}g={c}g'ifg=g" .

Now let us look at the order of subgroups. In Sec. 3.4 you saw that the orders of the
subgroups of S; are 1, 2, 3 and 6. All these divide o(S3) = 6. This fact is part of a
fundamental theorem about finite groups. Its beginnings appeared in a paper in 1770,
written by the famous French mathematician Lagrange. He proved the result for
permutation groups

only. The general result was probably proved by the famous mathematician Evariste
Galois in 1839.

Theorem 3 (Lagrange)

Let H be a subgroup of a finite group G. Then o(G) = o(H) | G: H |. Thus, o(H)
divides o(G), and | G: H | divides o(G).

Proof

You know that we can write G as a union of disjoint right cosets of H in G. So, if Hxy,
Hx,, are all the distinct right cosets of if in G, we have

G=Hx;UHx U...... UHX oo, (1)
From Self Assessment Exercise 3, we know that | Hx; | = | HX, | =...= | HX, | =0o(H).

Thus the total number of elements in the union on the right hand side of (1) is element
o(H) +o(l'I) +..... + o(H) (r times) =r o(H). :

Therefore, (1) says that o(G) =r o(H)
=o(H)|G:H|'

You will see the power of Lagrange's theorem when we get
down to obtaining all the subgroup of a finite group.

Fig 1: boseph Louis Lagrange (1734
Z1813)

For example, suppose we are asked to find all the subgroups of a group G of order 35.
Then the only possible subgroups are those of order 1, 5, 7 and 35. So, for example,
we don't need to waste time looking for subgroups of order 2 or 4.

In fact, we can prove quite a few nice results by using Lagrange's theorem. Let us
prove some results about the order of an element. But first, let us define this phrase.

Definition

Let G be a group and g € G. Then the order of g is the order of the cyclic subgroup <
g >, if < g > is finite. We denote this finite number by o(g). If < g > is an infinite
subgroup of G, we say that g is of infinite order.
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Now, let g e G have finite order. Then the set {e, g, g% ...} is finite, since G is finite.
Therefore, all the powers of g can't be distinct.

Therefore, g = g° for some r > s. Then

g”° =, and r-s € N. Thus, the set {t € N | gt = e} is non-empty. So, by the well-
ordering principle it has a least element Let n be the least positive integer such that g"
=e.

Then

<g>={e.9,¢%9" '}
Therefore, o(g) =0< g >=n.

That is, o(g) is the least positive integer n such that g" = e.
(Note that. if g € (G, +), then o(g) is the least positive integer n such that g" = e.)

Now suppose g € G is of infinite order. Then, form = n, g" = g". (Because, if g"" = ¢,
which shows that < g > is a finite group.) We will use this fact while proving

Theorem 5

Try the following exercise now.
SELF ASSESSMENT EXERCISE 6

What are the orders of

a) 12) €S;, Db | €8S, C) {_01 ﬂ € Qg

d 3eZ, e) 1eR?

Now Jet us prove an important result about the order of an element.

Theorem 4

Let G be agroup and g € G be of order n. Then g™ = e for some m eN iff n | m.

Proof

We will first show that g™ = e = n | m. For this & consider the set
S={reZ|g =¢e}

Now, n € S. Also, ifa, b € S, then g® = e = g°. Hence, g° ® = ¢° (g°)* = e. Therefore.
a-b € S. Thus, S< Z.
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So, from Example 4 of Unit 3, we see that S = nZ. Remember, n is the least positive
integer in S!

Now if g™ = e for some m e N, then m € S = nZ. Therefore, n | m.

Now let us show that n | m = g™ =e. Since n | m, m = nt for some t € Z; Then g™ =
g™ = (g"' = e' = e. Hence, the theorem is proved.

We will now use Theorem 4 to prove a result about the orders of elements in a cyclic
group.

Theorem 5
Let G =< g > be 11 cyclic group.

a. If g is of infinite order then g™ is also of infinite order for every m € Z.
b. If o(g) = n, then o(g™) = (”—)v m=1, ...., n-L.((n, m) is the g.c.d. of n and
n,m
m.)
Proof
a. An element is of .infinite order iff all its powers are distinct. We know that all

the powers of g™ are distinct. We have to show that all the powers of g™ are
distinct. If possible, let (™" = (g™)". Then g™ = g™. But then mt = mw, and
hence t = w. This shows that the powers of g™ are all distinct, and hence g™ is
of infinite order.

b. Since o(g) = n, G={e, g,....., g" '} < gm >, being a subgroup of G, must be of
finite order. Thus, g™ is of finite order. Let o(gm) = t. We will show that
n

(n,m)’
Now, g™ = (g™'y=e = n| tm, by Theorem 4.

Letd = (n, m). We can then write n = n,d, m = m;d, where (m, n;) =1.

n
(n,m)

Then nlE:
d

Now, n|tm=n|tmd = nd|tmd=n | tm;.

But (n,m)) = 1. Therefore, ny| t. ..., 1)
Also, (g")" =g™™ =g™" =g™" =(g")" =e™ =e.

Thus, by definition of o(g™) and Theorem 4, we have
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(1) and (2) show that

t: nl L’

n,m
ie,ogM=_"_
n,m

Using this result we know that 0 (4), in Zy, s

(12,4)
The next exercise will give you some practice in using Theorem 5.

SELF ASSESSMENT EXERCISE 7
Find the orders of= 2,4, and 5e Zjs.

The next exercise is a consequence of Lagrange’s theorem.
SELF ASSESSMENT EXERCISE 8

Let G be a finite group and x € G. Then, show that o(x) divides o(G). In particular,
show that x>© = e,

We use the result of Self-Assessment Exercise 8 to prove a simple but important result
of finite group theory.

Theorem 6

Every group of prime order is cyclic.

Proof

Let G be a group of prime order p. Since p # 1, 3 a € G such that a # e. Now, by
Self-Assessment Exercise and Theorem 4, o(a) | p. Therefore, o(a) = 1 or o(a) = p.

Sincea #e, 0(a) > 2.

Thus, o(a) = p, i.e,,0(<a>)=p. So,<a><Gsuchthato(<a>)=0(G). Therefore,
<a>=G. Thatis, G is cyclic.

Using Theorem 3 and 6, we can immediately say that all the proper subgroups of a

group of order 35 are subgroups.
Now let us look at groups of composite order.
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Theorem 7

If G is a finite group such that o(G) is neither 1 nor a prime, then G has non-trivial
proper subgroups.

Proof

If G is not cyclic, then any a € G, a # e, generates a proper non-trivial subgroup < a >.
Now suppose G is acyclic, say G = < x >, where o(x) = mn (m, n = 1).

Then, (x™)"=x"" =e. Thus, by Theorem 4, o(x™) < n < o(G).

Now, you can see Theorem 7 to solve the following exercise.

SELF ASSESSMENT EXERCISE 9

Obtain two trivial proper subgroups of Zg.

We will now prove certain important number theoretic results which follow from
Lagrange’s theorem. Before going further, recall the definition of ‘relatively prime’

from Sec. 1.6.2.

We first define the Euler phi-function, named after the Swiss mathematician Leonard
Euler (1707 — 1783).

Definition

We define the Euler phi-function ¢ : N — N as follows:

¢() =1, and

¢(u) = number of natural numbers < n and relatively prime to n, for

n>?2.

For example, ¢(2) = 1 and ¢(6) = 2 (since the only positive integers < 6 and relatively
prime to 6 are 1 and 5).

We will now prove a lemma, which will be needed to prove the theorem that follows
it. This lemma also gives us examples of subgroups of Z,, for every
n>2.

Lemmal: LetG={reZ |(r,n)=1},wheren>2. Then (G,.)isagroup,
where FS=rsM T, § e Z,. Further, o(G) = ¢ (n).
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Proof

We first check that G is closed under multiplication.

Now, ,Se G=(r,n)=land(s,n)=1=(rs,n) = 1.

—rs e G. Therefore, is a binary operation on G.

1 e G, and its identity.

Now, for r € G, (r, n) = 1.
= ar+bn =1 forsome a, b, € Z (by Theorem 8 of Unit 1)

=n|ar

= ar =1 (mod n)
=ar = 1.
=a=T"

Further, a e G, because if a and n have a common factor other than 1, then this factor
will divide ar + bn = 1. But that is not possible.

Thus, every element in G has an inverse.
Therefore, (G,.) is a group.

In fact, it is the group of the elements of Z, that have multiplication inverse. Since G
consist of all those T € G such thatr <nand (r, n) =1, o(G) = ¢(n).

Lemma 1 and Lagrange’s theorem immediately give us the following result due to the
mathematician Euler and Pierre Fermat.

Theorem 8 (Euler-Fermat)

Leta € Nand n > 2 such that (a, n) = 1.
Then, a*™ = 1 (mod n).

Proof

Since @ € Z,and (8, n) =1, a € G (of Lemma 1). Since o(G) = ¢(n), we use Self-
Assessment Exercise and find that a*™ = 1.

Thus, a’™=1 (mod n).
Now you can use Theorem 8 to solve the following exercises.
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SELF ASSESSMENT EXERCISE 10

What is the remainder left on dividing 3*’ by 23? (Note that $(23) = 22, since each of
the numbers 1, 2, ..., 22 are relatively prime to 23.)

SELF ASSESSMENT EXERCISE 11

Leta € N and p be a prime. Show that = 1 (mod p). (This result is called Fermat’s
little theorem. To prove it you will need to use the fact that ¢(p) =
p-1.)

You have seen how important Lagrange’s theorem is. Now, is it true that if

m | 0(G), then G has a subgroup of order m? IF G is cyclic, it is true. (You can prove
this on the lines of the proof of Theorem 7.) But, if G is not cyclic, the converse of
Lagrange’s theorem is not true.

In Unit 7 we will show you that the subgroup

A4={1,(123),(124),(132),(134),(142),(143),(234),(243),(12),
(34),(13),(24),(14),(23)}.

of S, has no subgroup of order 6, though 6 | 12 = 0(A,).

Now let us summaries what we have done in this unit.

40 CONCLUSION

We have examined in this unit subgroup and cosets of a group. You should read this
unit carefully because it will useful in MTH 312 where we shall be considering a class
of subgroup called normal subgroup.

5.0 SUMMARY

In this unit we have covered the following points.

=

The definition and examples of right and left cosets of a subgroup.

Two left (right) cosets of a subgroup are disjoint or identical.

3. Any subgroup partitions a group into disjoint left (or right) cosets of the
subgroup.

no

4, The definition of the order of a group and the order of an element of a group

S. The proof of Lagrange’s theorem, which states that if H is a group of a finite
group G, then o(G) = o(H) | G : H|. But, if m|0o(G), then G need not have a
subgroup of order m.

6. The following consequences of Lagrange’s theorem:

(1 Every group of prime order is cyclic.
(i) a’"™ =1 (modn), wherea,n e N, (a,n)=1andn>2.
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ANSWER TO SELF ASSESSMENT EXERCISE 1

H={l, (12)},
Its left cosets are H, (1 2)H, (1 3)H, (23)H, (12 3)H, (13 2)H.

Now, (12)H=H, (123)H=(13)H, (132H=(23)h.
Thus, the distinct left cosets of H in Sz are H, (1 3)H, (2 3)H.

Similarly, the distinct right cosets of H in S; are
H, H(1 3), H(2 3).

Now, (1 3)H = {(13), (12 3)} and H(L 3), (1 32)}
S (L3)H=H(13).

You can also see that (2 3)H = H(2 3).

ANSWER TO SELF ASSESSMENT EXERCISE 2

Since abte KM a, b e K, we can apply Theorem 1 of Unit 3 to say that K < Q.
Now, K = Kl = K(-1), KA =K(-A) = {A, -A}’
KB - K(-B) = {B, -B}, KC = K(-C) = {C, -C}

ANSWER TO SELF ASSESSMENT EXERCISE 3

Let Hx be a coset of H in G. Consider the function f: H — Hx: f(h) = hx.
Now, for h, h’ by cancellation.

Therefore, fis1—1.

F is clearly surjective. Thus, f is a bijection.

And hence, there is a one-to-one correspondence between the elements of H and those
of Hx.

Similarly, the map f: H — Hx: f(h) = xh is a bijection.
Thus, the elements of H and xH are in one-to-one correspondence.

ANSWER TO SELF ASSESSMENT EXERCISE 4

The distinct cosets of 5Z in Zare5Z,5Z2+ 1,52+ 2,52+ 3,5Z + 4.
.. Z=5Z5Z+1U5Z +2U5Z +3U5Z + 4.

ANSWER TO SELF ASSESSMENT EXERCISE 5

f is well defined because Hx = Hy = xy* e H = (xy)* e H
= yH'xtexHy'™H
= f(Hx) = f(Hy)
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fis 1— 1 because f(Hx) = f(Hy) = x'H = y'H
= yx'e H=xy"’ e Hx = Hy.
F is surjective because any left coset of H in G is yH = f(Hy™).

Therefore, f is a bijection.
ANSWER TO SELF ASSESSMENT EXERCISE 6

. (12)#1,(122=(12)2(12)=1..0(1 2)=2.
i.  1'=1L .. (1)=1

. 2

iv. 3%022-=6=233=9=143=12=0,0(3)=4
V. Since < 1 > R is infinite, 1 is of infinite order.
ANSWER TO SELF ASSESSMENT EXERCISE 7

Z1g=<1>. Thus, using Theorem 5, we see that

o(f)=o(r,1)= i forany T e Zs
8,1
5.0(2)=9,0(4)=9,0(5) = 18.

ANSWER TO SELF ASSESSMENT EXERCISE 8

Since o(x) =o(< x>) and o(< x>) | 0(G), o(x) | o(G).
Thus, using Theorem 4, x°©) =e.

ANSWER TO SELF ASSESSMENT EXERCISE 9

0(Zg) =8=2x4.
2 € Zgsuchthato(2)=4. Then< 2><Z,.
Similarly, 4 € Z such that o (4)=2. ..< 4 >< Z,.

ANSWER TO SELF ASSESSMENT EXERCISE 10

We know that in Z,3, (3)*?®® = 1,
thatis, 3% = 1. 3% =1

53 =3%3%=33_27

Thus, 3*" =27 (mod 23).

Therefore, on dividing 3*' by 23, the remainder we get is 27.
ANSWER TO SELF ASSESSMENT EXERCISE 11

We get the result immediately by using Theorem 8 and the fact that ¢ (p) = p — 1.
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6.0 TUTOR-MARKED ASSIGNMENT

=

State and prove the Lagrange Theorem.
2. Show that every subgroup of a commutative group is normal. Is the converse
true? Justify your answer.
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