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1.0 INTRODUCTION 
 

We are considering in this unit a special ring, whose specialties lay in the property of 

their multiplication. We shall examine a type of ring called Integral Domain. In MTH 312 

we shall examine Rings into details and also examine their mathematical structures. 

 

Next, we will look at rings like Q, R, C, and Zp (where p is a prime number). In these 

rings the non-zero elements form an abelian group under multiplication. Such rings are 

called fields. These structures are very useful, one reason being that we can “divide” in 

them. 

 

Related to integral domains and fields are certain special ideals called prime ideals and 

maximal ideals. In this unit we will also discuss them and their corresponding quotient 

rings. 

 

Finally, we shall see how to construct the smallest field that contains a given integral 

domain. This is essentially the way that Q is constructed from Z. we call such a field the 

field of quotients of the corresponding integral domain. 
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In this unit, we have tried to introduce you to a lot of new concepts. You may need some 

time to grasp them. Don‟t worry; take as much time as you need. But by the time you 

finish it, make sure that you have attained the following objectives. Only then will you be 

comfortable in the remaining units of this course. 

 

2.0 OBJECTIVES  
 

At the end of this unit, you should be able to:  
 

 check whether an algebraic system is an integral domain or not 

 obtain the characteristic of any ring 

 check whether an algebraic system is a field or not 

 define and identify prime ideals and maximal ideals 

 prove and use simple properties of integral domains and fields  

 construct or identify the field of quotients of an integral domain.  

 

3.0 MAIN CONTENT  
 

3.1 Integral Domains 
 

You know that the product of two non-zero integers is a non-zero integer, i.e., if m, n  Z 

such that m = 0, n / 0, then mn  0. Now consider the ring Z6. We find that 


2   


0  and 


3  / 


0 , yet 


2 .


0  = 


0 . So, we find that the product of the non-zero elements 


2 and 


3  in Z6 is 

zero. As you will soon realize, this shows that 


2 (and


3 ) is a zero divisor, i.e., 


0  is 

divisible by 


2  (and 


3 ). 

 

So, let us see what a zero divisor s. 

 

Definition  
 

A non-zero element in a ring R is called a zero divisor in R if there exists a non-zero 

element b in R such that ab = 0 

 

(Note that b will be a zero divisor~ too!) 

 

Now do you agree that 
_

2  is a zero divisor in Z6? What about 
_

3  in Z4? Since
_

3  x / 
_

0 for 

every non-zero x in Z4, 
_

3  is not a zero divisor in Z4. 

 

Our short discussion may help you to do the following exercise.  

E 1)  Let n E N and m | n, 1 < m < n. Then show that 
_

m  is a zero divisor in Zn. 
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Now let us look at an example of a zero divisor m C[0,1]. Consider the function f  

C[0,1] given by f(x) =  

 













12/1,0

2/10,
2

1

)(

x

xx
xf  

 

Let us define g: [0,1]  R by 

 










12/1,2/1

2/10,0
)(

xx

x
xg  

 

Then g C[0.l], g / 0 and (fg) (x) = 0  x  [0,l], Thus, fg is the zero function. Hence, f is 

a zero divisor in C[0,1]. 

 

For another example, consider the Cartesian product of two non-trivial rings A and B. For 

every a  0 in A. (a.0) is a zero divisor in A x B, This is because, for any b / 0 in B, (a.0) 

(0.b) = (0.0) 

  

Now let us look al the ring (X), where X is a set with at least two elements. Each non 

empty proper subset A of X is a zero divisor because A.A
c
 = A  cA , the zero element 

of (X). 

 

Try these exercises now. 

 

E 2)  List all the zero divisors m Z. 

 

E 3)  For Which rings with unity will I be a zero divisor? 

 

E 4)  Let R be a ring and a R be a zero divisor. Then show that every element of the 

principal deal Ra is a zero divisor. 

 

Let us now talk of a type of ring that is without zero divisors. 

 

Definition 
 

We call a non-zero ring R an integral domain if  
 

i)  R is with identity and  

ii) R has no Zero divisors.  
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Thus, an integral domain is a non-zero ring with identity in which the product of two 

non-zero elements. 

 

This kind of ring gets its name from the set of integer, one of its best known examples. 

Other examples of domains that immediately come to mind are Q.R and C. What about 

 [01,]? You have already seen that it has zero divisors. Thus C[0.1] is not a domain  

 

The next result gives us an important class of examples of integral domains  

 

Theorem 1 
 

Zp is an integral domain iff p is a prime number,  

 

Proof 
 

Firstly, let us assume that p is a prime number. Then you know that Zp is a non-zero ring 

with identity. Let us see if it has zero divisors/ for this, suppose pZba , satisfy 0, ba  

then a 0b , i.e., p | ab. Since p is a prime number, using E 25 of Unit 1 we see that p | a or 

p | b. Thus, a = .00  bora  What we have shown is that if 0a and 0b , then .0ba  

Thus, Zp is the trivial ring, which is not a domain.  

 

Conversely, we will show that if p is not a prime, then Zp is not a domain. So, suppose p 

is not a prime. If p = 1, then Zp is the trivial ring, which is not a domain. 

 

If p is a composite number and m | p, then by E 1 you know that m Zp is a zero divisor. 

Thus, Zp has zero divisors. Hence, it is not a domain.  

 

Try this exercise now 

 

E 5) Which of the following rings are not domains? Why? 

 Z4, Z5, 2Z, Z + iZ, R x R, {0} 

 

Now consider a ring R. we know that the cancellation law for addition holds in R, i.e 

whether a+b = a+c in R, then b = c. But, does ab = ac imply b = c? it need not. For 

example, o.1 = 0.2 in Z but 1  2. So, if a = 0, ab = ac need not imply b = c. But, if a 0 

and ab = ac, is it true that b = c? We will prove that this is true for integral domains. 
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Theorem 2 

 

A ring R has no zero divisors if and only if the cancellation law for multiplication holds 

in R (i.e., if a,b,c R such that a  0, and ab = ac, then b = c) 

 

Proof 
 

Let us first assume that R contains no zero divisors. Assume that a,b,cR such that a 0. 

Suppose ab = 0 for some bR. Then ab = 0 = a0. Using the cancellation law for 

multiplication, we get b = 0. So, a is not a zero divisor, i.e., R has no zero divisors. 

 

Using this theorem we can immediately say that the cancellation aw holds for 

multiplication in an integral domain.  

 

Now, you can use this property of domains to solve the following exercises.  

 

E 6) In a domain, show that the only solutions of the equation x
2
 = x are x = 0 and x = 

1. 

 

E 7) Prove that 0 is the only nilpotent element (see Example 9 of Unit 10) in a domain. 

 

Now let us introduce a number associated with an integral domain, in fact, with any ring. 

For this let us look at Z4 first. We known that 4x =  x0 Z4. In fact, 8x = 0 and 12 x = 

0 also for any x  Z4. 

 

But 4 is the least element of the set {n  N | nx =  x0 Z4}. This shows that 4 is the 

characteristics pf Z4 as you will see now. 

 

Definition 
 

Let R be a ring. The least positive integer n such that nx = x0 R is called the 

characteristic of R. If there is no positive integer n such that nx= x0 R, then we say 

that the characteristic of R is zero. 

 

We denote the characteristic of the ring R by char R. 

 

You can see that char Zn = n and char Z = 0. 

 

The following exercises will give you some practice in obtaining the characteristic of a 

ring. 
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E 8) Show that char (X) =2, where X is a non empty set. 

 

E 9)  Let R be a ring and char R = m. What is char (R x R) 

 

Now let us look at a nice result for integral domains. It helps in considerably reducing our 

labour when we want to obtain the characteristic of a domain. 

 

Theorem 3 
 

Let m be a positive integer and R be an integral domain. Then the following conditions 

are equivalent. 

 

a)  m 1 = 0. 

b)  ma = 0 for all a  R. 

c)  ma = 0 for some a  in R. 

 

Proof  
 

We will prove (a)   (b)   (c)   (a).  

(a)   (b): We know that m l = 0. 

 

Thus, for any a  R, ma = (la) = (ml) (a) = 0a = 0, i.e., (b) holds. 

 

(b)   (c): If ma = 0  a  a0  R, then it is certainly true for some a   0 in R. 

 

(c)   (a) : Let mil = 0 for some a   0 in R. Then 0 = ma = m (1a) = (m.) a. As a   0 

and R is without zero divisors, we get m1 = 0. 

 

What Theorem 3'tells us is that to find the characteristic of a domain we on1y need to 

look at the set {n,1 | n  N}. 

 

Let us look at some examples. 
 

i)  char Q=0, since n.1 0 for any n  N. 

ii) Similarly, char R = 0 and char C = 0. 

iii)  You have already seen that char Zn = n. Thus, for any positive integer n, there 

exists a ring with characteristic n. 
 

Now let us look at a peculiarly of the characteristic of a domain. 
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Theorem 4 
 

The characteristic of an integral domain is either zero or a prime number. 

 

Proof 
 

Let R be a domain. We will prove that if the characteristic of R is not zero, then it is a 

prime number. So suppose char R = m, where m  0. So m Iii the least positive integer 

such that m.1 = 0. We will show that m is a prime number by supposing that it is not, and 

then proving that our supposition is wrong. 
 

So suppose m = st, where s,t  N, 1 < s < m and 1 < t < m. Then m.1 = 0  (st). l = 0 

(s.l) (t.1) = 0. As R is without zero divisors, we get s.l = 0 or t.1 = 0. But, s and t are less 

than m. So, we reach a contradiction to the fact that m = char R. Therefore, our 

assumption that m = st, where 1 < s < m, 1 < t < m is wrong. Thus, the only factors of m 

are 1 and itself. That is, m is a prime number.  

 

You can now use your knowledge of characteristics to solve the following exercise 

 

E 10)  Let R be an integral domain of characteristic p. Pr0ve that 

 

a)  (a+b)
p
= a

p
+ b

p
 and 

(a-b)
p
 = a

p
- b

p
 for all a, bR." 

 

b)  the subset { a
p
 | a R} is it subring of R. 

 

c)  the map   : R   R :   (a) = a
p
 is a ring homomorphism. 

 

d)  if R is a finite integral domain, then  is an isomorphism. 

 

E 11) Let R be a ring with unity 1 and char R = m. Define f: ZR: f (n) = n.1. Show 

that f is a homomorphism. What is Kerf?  

 

E 12) Find the characteristic of Z3 x Z4. Use this ring as an example to show why 

Theorems 3 and 4 are only true for integral domains.  

 

We will now see what algebraic structure we get after we impose certain restrictions on 

the multiplication of a domain. If you have gone through our course Linear Algebra, you 

will already be familiar with the algebraic system that we are going to discuss, namely, a 

field. 
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3.2 Field  
 

Let (R, +,.) be a ring. We know that (R, +) is an abelian group. We also know that the 

operation is commutative and associative. But (R,.) is not an abelian group. Actually, 

even if R has identity, (R.,) will never be a group since there is no element aR such that 

a.0 = 1. But can (R\{0}.,) be a group? It can, in some cases. For example, from Unit 2 

you know that Q* and R* are groups with respect to multiplication. This allows us to say 

that Q and R are fields a term we will now define.  

 

Definition 

 

A ring (r, +.,) is called a field if (R\{0}.,) is an abelian group.  

 

Thus, for a system (R, +.,) to be a field it must satisfy the ring axioms R1 to R6 as well as 

the following axioms. 

 

i) is commutative, 

ii) R has identity (which we denote by 1) and 1   0, and 

iii) every non-zero element x in R has a multiplicative inverse, which we denote by x
-

1
. 

 

Just as a matter of information we would like to tell you that a ring that satisfies only (ii) 

and (iii) above, is called a division ring or a shew field or a non-commutative field. 

Such rings are very important in the study of algebra, but we will not be discussing them 

in this course. 

 

Let us go back to fields now. The notion of a field evolved during the 19
th

 century 

through the research of the German mathematicians Richard Dedekind and Leopold 

Kronecker in algebraic number theory. Dedekind used the German word Korper, which 

assdfsdf field, for this concept. This is why you will often find that a field is denoted by 

K. 

 

As you may have realized, two of the best known examples of fields are R and C. These 

were the fields that Dedekind considered. Yet another example of a field is the following 

ring. 

 

Example 1 

 

Show that Q + },|2{2 QbabaQ  is a field.  
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Solution 

 

From Unit 9 you know that F = Q + Q2 is a commutative ring with identity 1 + .0.2  

F
b

b

b

a

ba

ba

baba

b

ba
ba























2222

22

22

)(
2

22

4

2

)2()2(

22

2

1
)2(

 

 

(Note that a
2
-2b

2
 0, since 2 is not rational and either a 0 or b 0.) 

 

Thus, every non-zero element has a multiplicative inverse. Therefore, Q+ Q2 is a field. 

 

Can you think of an example of a ring that is not a field? Does every non-zero integer 

have a multiplicative inverse in Z? No. Thus, Z is not a field.  

 

By now you have seen several examples of fields. Have you observed that all of them 

happen to be integral domains also? This is not a coincidence. In fact, we have the 

following result. 

 

Theorem 5 
 

Every field is an integral domain. 

 

Proof 
 

Let F be a field. Then F {0} and 1F. we need to see if F has zero divisors. So let a and 

b be elements of F such that ab = 0 and a  0 and F is a field, a
-1

 exists. Hence, b =1.b = 

(a
-1

a) b = a
-1

 (ab) = a
-1

 0 = 0. Hence, if a 0 and ab = 0, we get b = 0. i.e., F has no zero 

divisors. Thus, F is a domain. 

 

Now you try these exercises! 

 

E 13) Which of the following rings are not fields? 

 2Z, Z5, Z6, Q x Q 

E 14) Will a subring of a field be a field? Why? 

 

Theorem 5 may immediately prompt you to ask if every domain is a field. You have 

already seen that Z is a domain but not a field. But if we restrict ourselves to finite 

domains, we find that they are fields.  
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Theorem 6 
 

Every finite integral domain is a field. 

 

Proof 
 

Let R = {a0 = 0, a1 = 1, a2……,2n} be a finite domain. Then R is commutative also. To 

show that R is a field we must show that every non-zero element of R has a multiplicative 

inverse. 

 

So, let a = ai be a non-zero element of R (i.e., i 0). Consider the elements aa1,…, aan. For 

every j 0, aj 0; and since a 0, we get aaj 0. 

 

Hence, the set {aa1, aa2…..,aan}   {a1,…..,an}. 

 

Also, aa1, aa2,…, aan are all distinct elements of the set {a1,…..,an}, since aaj = aak   aj 

= ak, using the cancellation law for multiplication. 

 

Thus, {aa1,….,aan} = {a1,….,an}. 

 

In particular, a1 = aaj, i.e., 1 = aaj for some j. thus, a is invertible in R. hence every non-

zero element of R has a multiplicative inverse. Thus, R is a field.  

 

Using this result we can now prove a theorem which generates several examples of finite 

fields. 

 

Theorem 7 
 

Zn is a field if and only if n is a prime number. 

 

Proof 
 

From Theorem 1 you know that Zn is a domain if and only if n us a prime number. You 

also know that Zn has only n elements. Now we can apply Theorem 6 to obtain the result. 

 

Theorem 7 unleashes a load of examples of fields: Z2, Z3, Z5, Z7, and so on. Looking at 

these examples, and other examples of fields, can you say anything about the 

characteristic of a field? In fact. Using Theorems 4 and 5 we can say that. 
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Theorem 8 

 

The characteristic of a field is either zero or a prime number. 

 

So far the examples of finite fields that you have seen have consisted of p elements, for 

some prime p. In the following exercise we give you an example of a finite field for 

which this is not so. 

 

E 15) Let R = {0,1,a,1+a}. Define + and in R as given in the following Cayley tables  

 

+ 0 1 a 1+a  . 0 1 a 1+a 

0 0 1 a 1+a  0 0 0 0 0 

1 1 0 1+a a and 1 0 1 a 1+a 

a a 1+a 0 1  a 0 a 1+a 1 

1+a 1+a a 1 0  1+a 0 1+a 1 a 

 

Show that R is a field. Find the characteristic of this field.  

 

Let us now look at an interesting condition for a ring to be a field  

 

Theorem 9  
 

Let R be a ring with identity. Then R is a field if and only if Rand {0} are the only ideals 

of R. 

 

Proof 
 

Let us first assume that R is a field. Let I be an ideal of R. If I   {0}, there exists a non-

zero element x  I. As x 0 and R is a field, xy = 1 for some y  R. Since x  I and I is 

an ideal, xy  I. i.e., 1  I. 

  

Thus, by Theorem 4 of Unit 10, I = R. So, the only ideals of R are {0} and R. 
 

Conversely, assume that Rand {0} are the only ideals of R. Now, let a   0 be an element 

of R. Then you know that the set Ra = {ra | r R} is a non-zero ideal of R. Therefore, Ra 

= R. Now, 1  R = Ra. Therefore, 1 = ba for some b  R, i.e., a
-1

 exists. Thus, every non-

zero element of R has a multiplicative inverse. Therefore, R is a field. 
 

This result is very useful. You will be applying it again and again in the rest of the units 

of this block. 
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Using Theorem 9, we can obtain some interesting facts about field homeomorphisms 

(i.e., ring homeomorphisms from one field to another). We give them to you in the form 

of an exercise. 

 

E16)  Letf: F   K be a field homomorphism. Show that either f is the zero map or f is 

1-1. 

 

E 17)  Let R be a ring isomorphic to a field F. Show that R must be a field. 

 

E 17 again goes to show that isomorphic algebraic structures must be algebraically 

identical. 

 

Now that we have discussed domains and fields, let us look at certain ideals of a ring, 

with respect to which the. quotient rings are domains or fields. 

 

3.3  Prime and Maximal Ideals 
  
In Z we know that if P is a prime number and p divides the product of the integers a and 

b, then either p divides a or p divides b. In other words, if ab  pZ, then either a  pZ or 

b  pZ. Because of this property we say that pZ is a prime ideal, a term we will define 

now. 

 

Definition  
 

A proper ideal P of a ring R is called a prime ideal of R if whenever ab  P for a, b R, 

then either a  P or b  P. 

 

You can see that {0} is a prime ideal of Z because ab {0}  a  {0} or b {0}, where 

a,b  Z. 

 

Another example of a prime ideal is 

 

Examp1e 2  
 

Let R be an integral domain. Show that I = {(0,x) | x  R) is a prime ideal of R x R.  

 

Solution  
 

Firstly, you know that I is an ideal of R x R. Next, it is a proper ideal since I  R x R. 

Now, let us check if I is a prime ideal or not. For this let (a1,b2), (a2,b2)  R x R such that 

(a1,b2), (a2,b2)  I Then (a1a2b1,b2) = (0,x) for some x (a1,b2), (a2,b2)   R  a1a2 = 0, i.e., 

at = 0 or a2 = 0, since R is a domain. Therefore (a1,b1)  I or (a1,b2)  I. Thus, I is a 

prime ideal.  
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Try the following exercises now. They will help you get used to prime ideals. 

 

E 18) Show that the set I= {f  C[0,l] | f(0) = 0} is a prime ideal of C[0,l]. 

E 19) Show that a ring R with identity is an integral domain if and only if the zero ideal 

{0} is a prime Ideal of R. 

 

Now we will prove the relationship between integral domains and prime ideals. 

 

Theorem 10 
 

An ideal P of a ring R with identity is a prime ideal of R if and only if the quotient ring 

R/P is an integral domain. 

 

Proof 
 

Let us first assume that P is a prime ideal of R. Since R has identity, so has R/P. Now, let 

a+P and b+P be in R/P such that (a+P) (b+P) = P, the zero element of R/P. Then ab+P = 

P, i.e., abP. As P is a prime ideal of R either aP or bP. So either a+P = P or b+P = P. 

 

Thus, R/P has no zero divisors. 

 

Hence, R/P is an integral domain. 

 

Conversely, assume that R/P is an integral domain. Let a,b R such that abP. Then ab 

+ P = P in R/P, i.e., (a+P) (b+P) = P in R/P. As R/P is an integral domain, either a+P = P 

or b+P = P, i.e., either aP or bP. This shows that P is a prime ideal of R. 

 

Using Theorem 10 and Theorem 1 we can say that an ideal mZ of Z is prime in m is a 

prime number. Can we generalize this relationship between prime numbers and prime 

ideals in Z to any integral domain? To answer this let us first try and suitably generalize 

the concepts of divisibility and prime elements.  

 

Definition  
 

In a ring R, we say that an element a divides an element b (and denote it by a | b) if b = ra 

for some r  R. In this case we also say that a is a factor of b, of a is a divisor of b. 

Thus, 3  divides 6  in Z7, since 62.3  . 

 

Now let us see what a prime element is. 
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Definition 
 

A non-zero element p of an integral domain R is called a prime element if 
 

i) p does not have a multiplicative inverse, and  
 

ii) whenever a, bR and p | ab, then p | a or p | b. 

 

Can you say what the prime elements of Z are? They are precisely the prime numbers and 

their negatives. 

 

Now that we know what a prime element is, let us see if we can relate prime ideals and 

prime elements in an integral domain.  

 

Theorem 11 
 

Let R be an integral domain. A non-zero element p  R is a prime element if and only if 

Rp is a prime ideal of R.  

 

Proof 
 

Let us first assume that p is a prime element in R. Since p does not have a multiplicative 

inverse, 1   Rp. Thus, Rp is a proper ideal of R. Now let a, b  R such that ab  Rp. 

Then ab = rp for some r  R. 

 

  p | ab 

  p | a or p | b, since p is a prime element  

  a = xp or b = xp for some x  R 

  a  Rp or b  Rp 

 

Thus ab  Rp   either a  Rp or b  Rp, i.e., Rp is a prime ideal of R.  

 

Conversely, assume that Rp is a prime ideal. Then Rp   R. Thus, 1   Rp, and hence, p 

does not have a multiplicative inverse. Now suppose p divides ab, where a, b  R. Then 

ab = rp for some r  R, i.e., ab  Rp. 

 

As Rp is a prime ideal, either a  Rp or b  Rp. Hence, either p | a or p | b. Thys, p is a 

prime element in R. 

 

Theorem 11 is very useful for checking whether an element is a prime element or not, or 

for findings out when a principal ideal is a prime ideal. For example, now we can use E 

19 to say that 0 is a prime element of R iff R is a domain. 
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Prime ideals have several useful properties. In the following exercises we ask you to 

prove some of them  

 

E 20)  Let f: R ~ S be a ring epimorphism with kernel N. Show that 

 

a)  if J is a prime ideal in S, then f (J) is a prime ideal in R. 

b)  if 1 is a prime ideal in R containing N, then f(l) is a prime ideal in S. 

c)  the map 0 between the set of prime ideals of R that contain N and the set of all 

prime ideals of S given by   (I) = f(I) is a bijection. 

 

E 21)  If II and 12 are ideals of a ring such that neither II ,nor 12 contains the other, then 

show that the ideal  I1 I2 is, not prime. 

 

Now consider the ideal 2Z in Z. Suppose the ideal nZ in Z is such that 2Z nZ Z. Then 

n | 2 n =   l or n =  2. nZ = Z or nZ = 2Z. 

 

This shows that no ideal can lie between 2Z and Z. That is, 2Z is maximal among the 

proper ideals of Z that contain it. So we say that it is a "maximal ideal", Let us define this 

expression. 

 

Definition  
 

A proper ideal M of a ring R is called a maximal ideal if whenever I is an ideal of R such 

that M  I   R, then either I = M or 1 = R. 

 

Thus, a proper ideal M is a maximal ideal if there is no proper ideal of R which contains 

it. An example that comes to mind immediately is the zero ideal in any field F. This is 

maximal because you know that the only other ideal of F is F. itself. 

 

To generate more examples of maximal ideals, we can use the following characterization 

of such ideal. 

 

Theorem 12 

 

Let R be a ring with identity. An ideal M in R is maximal if and only if R/M is a field  

 

Proof 
 

Let us first assume that M is a maximal ideal of R. We want to prove that R/M is a field. 

For this it is e'1ough to prove that R/M has no non-zero proper ideals (see theorem 9). So, 

let 1 be an ideal of R/M. Consider the canonical homomorphism : R   R/M:   (r) = r + 

M. Then, from Theorem 3 of Unit 11, you know that 
-1

 (I) is an ideal of R containing 
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M, the kernel of  . Since M is a maximal ideal of R, 
-1 

(I) = M or 
-1

 (I) = R. 

Therefore, I =  (
-1

 (I)) is either  (M) or  (R), That is, I = { 0 } or I = R/M, where 0 = 

0+M = M. Thus, RIM is a field. 

 

Conversely, let M be an ideal of R such that R/M is a field. Then the only ideals of R/M 

are { 0 } and R/M. Let I be an ideal of R containing M. Then, as above,   (I) = { 0 } or, 

(I) = R/M. 

 

I =
-1

 ( (I)) is M or R. Therefore, M is a maximal ideal of R. 

 

Now look at the following consequence of Theorem 12 (and a few other theorems too). 

 

Corollary 

 

Every, maximal ideal of a ring with identity is a prime ideal. 

 

We ask you to prove it in the following exercise. 

 

E72)  Prove the corollary given above.  

 

Now, the corollary is a one-way statement. What about the converse? That is, is every 

prime ideal maximal? What about the zero ideal in Z? Since Z is a domain but not a field 

and Z = Z/{0}, Z/{0} is a domain but not a field. Thus, {0} is a prime ideal but not a 

maximal ideal of Z. 

 

Now let us use Theorem 12 to get some examples of maximal ideals. 

 

Example 3 
 

Show that an Idea mZ of Z is maximal iff m is a prime number. 

 

Solution  
 

From Theorem 7 you know that Zm is a field iff m is a prime number. You  

Also know that Z/mZ 
~
 Zm. Thus, by E 17,Z/mZ is a field iff m is prime. Hence, by 

Theorem 12,mZ is maximal in Z iff m is a prime number.  

 

Example 4 
 

Show that 122Z is a maximal ideal of Z12 
~ 

Z/27. Thus by E 23 of Unit 11, we see that Z12/

122Z  
~ 

(Z/12Z)/(2Z/12Z) 
~
 Z/2Z 

~
 Z2, which is a field. Therefore, 122Z = ( 10,8,6,4,2,0 ) is 

maximal in Z12 
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Now, .24}8,4,0{ 121212 ZZZ

  

Try the following exercises now  

E 23) Show that { 8,6,4,2,0 } is maximal in Z10. 
 

E 24) Use Example 4 of Unit 11 to prove that the ideal {f }0)
2

1
(|]1,0[  fC is maximal in 

C[0,1]. 

 

So, let us see what we have done in this section. We first introduced you to a special ideal 

of a ring, called a prime ideal. Its speciality lies in the fact that the quotient ring 

corresponding to it is an integral domain.  

 

Then we discussed a special kind of prime ideal, i.e., a maximal ideal. Why do we 

consider such an ideal doubly special? Because, the quotient ring corresponding to it is a 

field, and a field is a very handy algebraic structure to deal with.  

 

Now, if we restrict our attention to domains, can you think of any other method of 

obtaining a field from a domain? In the next section we look at such a method.  

 

3.4 Field of Quotients  

Consider Z and Q. You know that every element of Q is of the form 
b

a
, where a  Z and 

b  Z*. Actually, we can also denote 
b

a
by the ordered pair (a,b)  Z x Z*. Now, in Q 

we know that 
d

c

b

a
 iff ad = bc. Let use put a similar relation on the elements of Z x Z*. 

 

Now, we also know that the operations on Q are given by 

.Q



d

c

b

a

db

ca

d

c

b

a
and

db

bcad

d

c

b

a
 

 

Keeping these in mind we can define operations on Z x Z*. Then we can suitably define 

an equivalence relation on Z x Z* to get a field isomorphic to Q. 

 

We can generalise this procedure to obtain a field from any integral domain. So, take an 

integral domain R. Let K be the following set of ordered pairs: 

 

K = {(a,b) | a,b  R and b   0} 
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We define a relation ~ in K by 

 

(a,b) ~ (c.d) if ad = bc. 

 

We claim that ~ is an equivalence relation. Let us see if this is so. 

 

i) (a,b) ~ (a,b)  (a,b)  K, since R is commutative. Thus, ~ is reflexive. 

 

ii) Let (a,b), (c.d)  K such that (a,b) ~ (c.d). Then ad = bc, i.e., cb = da. Therefore, 

(c,d) ~ (a,b). Thus, ~ is symmetric. 

 

iii) Finally, let (a,b), (c,d), (u,v)  K such that (a.b) ~ (c,d) and (c,d) ~ (u,v). Then ad 

= bc and cv = du. Therefore, (ad) v = (bc)v = bdu, i.e., avd = bud. Thus, by the 

cancellation law for multiplication (which is valid for a domain), we get av = bu, 

i.e., (a,b) ~ (u,v). Thus, ~ is transitive. 

 

Hence, ~ is an equivalence relation. 

 

Let us denote eequivalence class that contains (a,b) by [a,b]. Thus, [a,b] = {(c,d) | c,d  

R,d   0 and ad = bc} 

 

Let F be the set of all equivalence classes of K with respect to  

 

Let us define + and in F as follows. (Itri1ighthelpyou to keep in mind the rules for adding 

and multiplying rational numbers.)  

 

[a,b] + [c,d] = [ad+bc,bd] and  

 

[a,b] [c,d] = [ac,bd]. 

 

Do you think + and are binary operations on F?  

 

Note that b   0 and d   0 in the integral domain R imply bd   0. So, the right-hand 

sides of the equations given above are well defined equivalence classes. Thus, the sum 

and product of two elements in F is again an element in F. 
 

We must make sure that these operations are well defined. 
 

So, let [a,b] = [a´,b´] and [c´,d´] = [c´,d´]. We have to show that [a,b] + [c,d] = [a´,b´] + 

[c´,d´], i.e:, [ad+bc,bd] = [a´d´+b´c´,b´d´]. 
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Now, (ad+bc)b'd' -(a´d´ + b´c´) bd 
 

= ab´dd´ + cd´bb´- a´bdd´- c´dbb´ 
 

= (ab´-a´b)dd´ + (cd´-c´d) bb' 
 

= (0)dd´ + (0)bb´ since (a,b) ~ (a´,b´) and (c,d) ~ (c´,d´). 
 

= 0. 

 

Hence, [ad + bc,bd] = [a´ d´ + b´c´,b´d´], i.e., + is well defined. 
 

Now, let, us show that (a,b] .[c,d] = [a´,b´] . [c´,d´], 
 

i.e., [ac,bd] = [a´c´,b´d´]. 
 

Consider (ac) (a´c´,b´d´) 

 

= ab´cd´ - ba´dc´ = ba´cd´ - ba´cd´, since ab´ = ba´ and cd´ = dc´ 

 

= 0 

 

Therefore, [ac,bd} = [a´c´,b´d´]. Hence, .is well defined. 

 

We will now prove that F is a field. 

 

i)  + is associative : For [a,b], [c,d], [u,v]  F, 

([a,b] + [c,d]) + [u,v] = [ad+bc,bd] + [u,v] 

= [(ad+bc)v + ubd, bdv]  

= [adv + b(cv+ud), bdv] 

= [a,b] + [cv+ud,dv] 

= [a,b] + ([c,d] + [u,v])' 

 

ii)  +is commulative: For [a,b], [c,d]  F, 

[a,b] + [c,d] = [ad + bc,bd] = [cd + da,db] = [c,d] + [a,b] 

 

iii)  [0,1] is the additive identity for F: For [a,b]  F, 

[0,1] + [a.b] = [0.b+l.a, l.b] = [a,b]  

iv)  The additive inverse of [a,b]  F is [-a,b]:  

[a,b] + [-a,b] = [ab-ab,b
2
] = [0,b

2
] = [0,1], since 0.1 = 0.b

2
, 
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We would like you to prove the rest of the requirements for F to be a field (see the 

following exercise).  

 

E 25)  Show that, in F is associative, commutative, distributive over +, and [1, 1] is the 

multiplicative identity for F. 

 

So we have put our heads together and proved that F is a field.  

Now, let us define f : R   F : f(a) = [a. I]. We want to show that f is a homomorphism. 

 

Firstly, for a, b  R, 

 

f(a+b) = [a+b,l] = [a,1] + [b,1]. , .. 

 

= f(a) + f(b), and 

 

f(ab) = [ab,l] = [a,1]. [b,1] = f(a) .f(b).  

 

Thus, f is a ring homomorphism. 

 

Next, let a,b  R such that f(a) = f(b). Then [a, 1] = [b,I], i.e., a = b. Therefore, f is 1 – 1. 

 

Thus, f is a homomorphism. 
 

So, 1m f = f(R) is a subring of F which is isomorphic to R. 

 

As you know, isomorphic structures are algebraically identical.  
 

So, we can identify R with f(R), and think of R as a subring of F. Now, any element of F 

is of the form  

 

[a,b] = [a, 1] [1,b] = [a,1] [b,1]
-1

 = f(a) f(b)
-1

, where b   0. Thus, identifying x  R with 

f(x)  f(R), we can say that any element of. F is of the form ab
-l
, where a,b  R. b   0. 

 

All that we have discussed in this section adds up to the proof of the following theorem. 

 

Theorem 13 
 

Let R be an integral domain. Then R can be embedded in a field F such that every 

element of F has the form ab
-1

 for a, b  R, b   0.  

 

The field F whose existence we have just proved is called the field of quotients (or the 

field of fractions) of R. 
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Thus, Q is the field of quotients of Z. What is the field of quotients of R? The following 

theorem answers this question. 

 

Theorem 14  
 

If f : R   K is a homomorphism of an integral domain R into a field K, then there exists 

a homomorphism 

 

g : F   K : g([a,1]) = f(a), where F is the field of quotients of R. 

 

We will not prove this result here, since it is a little technical. But let u~ look at this 

theorem closely. It says that the field of quotients of an integral domain is the smallest 

field containing it. Thus, the field of quotients of any field is the field itself. So, the field 

of quotients of R is R and of Zp is Zp, where p is a prime number.  

 

Try these exercises now. 

 

E 26)  Is R the field of quotients of Z + 2 Z? Or, is it C? Or, is it Q+ 2 Q? Why'?  

 

E 27)  At what stage of the construction of the field F in Theorem 13 was it crucial to 

assume that R is a domain?  

 

Let us now wind up this unit with a summary of what we have done in it.  

 

5.0 SUMMARY 
 

In this unit we have covered the following points. 
 

1. The definition and examples of an integral domain. 

2. The definition and examples of a field.  

3.  Every field is a domain. 

4.  A finite domain is a field. 

5. The characteristic of any domain or field is either zero or a prime number.  

6. The definition and examples of prime and maximal ideals. 

7.  The proof and use of the fact that a proper ideal I of a ring R with identity is prime 

(or maximal) iff R/I is an integral domain (or a field), 

8.  Every maximal ideal is a prime ideal.  
 

9.  All element p. of an integral domain R is prime iff the principal ideal pR is a prime 

ideal or R. 

10.  Zn is a field iff n is a prime number. 

11.  The construction of the field of quotients of an Integral domain.  
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ANSWER TO SELFASSESSMENT EXERCISE  

 

E1)  Let n = mr, where r  N. 

 

Then nZinnrm 0  

 

Since 1 < m < n, 0m . Similarly, 0r  

 

Thus m Zn IS a zero divisor. 

 

E 2) Z has no zero divisors. 

 

E 3) For none since 1 x = x 00  x in the ring. 

 

E 4) Let b   0 be in R such ab = 0. Then, for any r  R, (ra)b = 0 Thus, every element 

of Ra is a zero divisor 

 

E 5)  Z4, since 2 is a zero divisor. 

 

2Z, since 1   2Z. 

R x R,  since (1,0) is a zero divisor.  

 

{0}, since a domain must be non-zero. 

 

E 6)  x
2
= x   x(x-l) = 0   x = 0 or x-l = 0 

 

  x = 0 or x = 1. 

 

E 7)  Let R be a domain and x  R be nilpotent. , 

then x
n
 =.0 .for some n  N. Since R has no zero divisors, this implies that x = 0. 

 

E 8)  We want to show that 2A = A X, and that 2 is the least such natural number. 

Firstly, for any A   X, 

2A = A   A =  (A \ A)   (A \ A) =   

 

Also, since X  , 1.X  . Thus, char  (X)   1. 

 

char (X) = 2 

E9) Let char (R x R) = n. We know that mr =0   r  R. 
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Now, let (r,s) be any element of R x R. 

 

Then m(r,s) = (mr,ms) = (0,0), since r,s   R. 

 

Thus, n   m  

 

On the other hand, if r  R, then (r,0)  R x R 

n(r,0) = (0,0). 

 

i.e., (nr,0) = (0,0) 

 

i.e., nr = 0 

 

This is true for any r  R.  

 

m   n. 

 

Thus, (1) and (2) show that m = n, i.e., char R = char (R X R)  

 

E 10a)  By the binomial expansion (E II of Unit 9), 

 

(a+b)
p
 = a

p
 + 

p
C1 a

p-1
 b + …… + 

p
Cp-1 ab

p-1
 + b

p 

 

Since p | 
p
Cn   n = 1,….., p

-1
, 

p
Cnx = 0  x  R and  n = 1,….,P

-l
. 

 

Thus, 
p
C1 a

p-1
 b = 0 = .. = 

p
C1 ab

p-1
  

 

(a+b)
p
 = a

p
 + b

p
. 

 

You can similarly show that (a-b)
p
 = a

p
 –b

p
, 

 

 b)  Let S = {a
p
 | a  R}  

 

Firstly, S  . 

 

Secondly, let    (a-b)
p
  S. Then   = a

p
,   = b

p 
for some a,b  R. 

 

Then   = (a-b)
p
  S and  = (ab)

p
  S.  

 

Thus, S is, a subring of R 
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c)   (a+b) = (a+b)
p 

= a
p
 + b

p
 =   (a) +   (b),  

 (ab) = (ab)P = aPbP =   (a)   (b).  

Thus,   is a ring homomorphism. 

  is 1-1 because . 

  (a) =   (b).   a
p
 = b

p
   (a-b)

p
 = 0, from (a). 

  a-b = 0, since R is without zero divisors. 

  a = b. 

 

d)  We have to show that if R is finite then 0 is surjective, 

Let R have n elements. Since   is 1-1, 1m   also has n elements. 

Also 1m   R. Thus, Im   = R. 

Hence,   is surjective. 

 

E 11)  You Can easily show that f is a ring homomorphism. 

 

Ker f = {nZ | n.1 = 0} 

= mZ4, since char R = m. 

 

E 1 2)  char (Z3 x Z4) = 1.c.m. of char Z3 and char Z4 = 12. 

 

Thus, the characteristic of Z3 x Z4 is neither 0 nor a prime. 

 

Note that Z3 x Z4 is not a domain, since it has several zero divisors. 

 

Now let us see why Theorem 3 is not valid for Z3 x Z4. 

 

Take ( )0,1  Z3 x Z4. Then 3  )0,0()0,1(  Z3 x Z4 

 

But 3 ).0,0()0,1(   Thus, Theorem 3(a) and Theorem 3(c) arc not equivalent in this case 

 

E 13)  2Z since 2  2Z is not invertible in 2Z. 

 

Zn since it is not a domain 

 

Q x Q, since it is not a domain. 

 

E 14) No. For example, Z is a subring of Q,Q is a field, but Z is not. 

 

E 15)  From the tables you can see that R is commutative with identity and every non-

zero element has an inverse: Thus, R is a field. 
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Also 2x = 0   x  R and 1.x   0 for some x E R.  

 

Thus, char R = 2. 

 

E 16) Ker I is an ideal of F. Thus, by Theorem 9. 

 

Ker f = {0} or Ker f = F. 

 

If Ker f = {0}, then f is 1-1. 

If Ker f = F, then f = 0. 

 

E 17)  Let F R be an isomorphism. Then  (1) is the identity of Im  = R, Also, 

since F is commutative, so is R. Now, let   R. r   O. Since   is onto,   a  F  

such that   (a) = r. Since r   0, 2  0. Since F is a field,   b  F such that lib = 1.  

 

Thus,  (ab) =  (1), i.e., r (b) =  (1)i.e., r has a multiplicative inverse. 

 

Thus, R is a field  

 

18)  Firstly, 1 is an ideal of C[0,1] 

 

(because f.g. I   f-g,  I, and 

 

T C[0.I], fI TfI.) 

 

Secondly, since any non-zero constant function is in 

 

C[0,1] \I. I is a proper ideal. 

 

Finally, let fg  J. Then f(0) g(0) = 0 in R. Since R is a domain, we must have f(0) = 0 or 

g(0) = 0, i.e., f  I or g  I 

 

Thus, I is a prime ideal of C[0,1]. 

 

E 19) R is a ring with identity. Thus, we need to show that R is without zero divisor iff 

{0} is a prime ideal in R. 

 

Now, {0} is a prime ideal in R 

 

iff ab {0}   a  {0} or b  {0} for a, b  R 
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iff ab = 0   a = 0 or b = 0 

 

iff R is without zero divisors. 
 

So, we have shown what we wanted to show 

E 20) a) From Theorem 3 of Unit 11, you know that f
-1

 (J) is an ideal of R. Since f is 

surjective and J   S, f
-1

 (J)  R 

 

Now, let a,b R such that ab  f
-1

 (J) 

 

   f(ab)  J. 

 

   f(a) f(b)  J. 

 

   f(a)  J or f(b)  J, since J is a prime ideal. 
 

   a  f
-1

 (J) or b  f
-1

 (J). 

 

Thus, f
-1

 (J) is a prime ideal in R 

 

b) Firstly, since f is onto, you know that f(I) is an ideal of S. Also, since 1   1 and f
-

1
(f(I)) = I (from Theorem 4 of Unit 11). F(1)  , f(I). Thus, f(I)   S. 

 

Finally, let x,y  S such that xy  f(I) 

 

Since S = Im f,   a,b  R such that x = f(a) and y = f(b) 

 

Then f(ab) = xy  f(I), i.e., ab  f
-1

(f(I)) = I 

 

 a  I or b  I, i.e., x  f(I) or y  f(I) 

 

Thus, f(I) is a prime ideal of S. 

 

c)   is 1 – 1 :   (I) =   (J)   f(I) = f(J) 

 

  f 
-1

 (f(I)) = f
-1 (f(I)) I = J. 

 

 is onto: Let J be a prime ideal of S. Then f
-1

(J) is a prime ideal of R and   (f
-1

(J)) = f(f
-

1
(J)) = J (from Unit 11). Thus, J   Im  . 
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E 21) Let x  I1\ I2 and y  I2 \ I1. Then xy  I1 and xy  I2, since I1 and I2 are ideals. 

 

xy  I1   I2. But x   I1   I2 and y   I1   I2 

 

Thus, I1  I2 is not prime. 

 

E 22)  M is maximal in R 

  R/M is a field, by Theorem 12 
 

R/M is a domain, by Theorem 5 
 

  M is prime in R, by Theorem 10 

 

E 23)  { 8,6,4,2,0 } = 2 Z10 and Z10/ 2 Z10 ~ Z2, a field. 

 

Thus, as in Example 4, { 8,6,4,2,0 } is maximal in Z10. 

 

E 24) In Unit 11 we have shown that this ideal in the kernel of the onto homomorphism 

 :C[0,1] R:  (f) = f (
2

1
). 

 

C[0,l]/Ker   ~ R, a field. 

 

Thus, Ker   is maximal in C[0,1]. 

 

E 25) You can prove all these properties by using the corresponding properties of R. 

 

E 26)  Any element of the field of quotients F is of the form ,02,
2

2





dcwhere

dc

ba
 

a,b,c,d  Z. 

 

.2,

2
2

2
2

2

2

22
,

2

2
Now,

222222

QQ

QQ






































FThus

dc

adbc

dc

bdac

dc

dcba

dc

ba

 

Also, any element of Q + ,22
d

c

b

a
is Q  a,b,c,d  Z, b 0, d 0 
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Now 
20

22
2

2

1









db

bcad

db

bcad

d

c
with ad, bc, bd  Z 

 

Thus, .2 F
d

c

b

a
  

 

Hence, Q + FQ2  

 

Thus, F = Q + Q2  

 

E 27)  If R is 'hot a domain, the relation -need not be transitive, and hence, F is not 

defined. 
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UNIT 2  POLYNOMIAL RINGS  

 
CONTENTS  

 

1.0 Introduction  

2.0 Objectives 

3.0 Main Content  

3.1 Ring of Polynomials 

3.2 Some Properties of R [x] 

3.3 The Division Algorithm  

3.4 Roots of Polynomials  

4.0 Conclusion  

5.0 Summary  

6.0 Tutor-Marked Assignment  

7.0 References/Further Readings  

 

1.0 INTRODUCTION  
 

In the past you must have come across expressions of the form x+1, x
2
+2x+1, and so on. 

These are examples of polynomials. You have also dealt with polynomials in the course 

Linear Algebra. In this unit we will discuss sets whose elements are polynomials of the 

type a0 + a1 x +….+ an x
n
, where a0,a1……,an are elements of a ring R. You will see that 

this set, denoted by R [x], is a ring also. 
 

You may wonder why we are talking of polynomial rings in a block on, domains and 

fields. The reason for this is that we want to focus on a particular case, namely, R [x], 

where R is a domain. This will turnout to be a domain also, with 'a lot of useful 

properties. In particlI1ar, the ring of polynomials over a field satisfies a division 

algorithm, which is similar to the one satisfied by Z (see Sec. 1.6.2). We will prove this 

property and use it to show how many roots any polynomial over a field can have. 
 

In the next two units we will continue to work with polynomials and polynomial rings. So 

read this unit carefully and make sure that you have achieved the following objectives. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 
 

 identify polynomials over a given ring 

 prove and use the fact that R [x], the set of polynomials over a ring R, is a ring 

 relate certain properties of R[x] to those of R 

 prove and use the division algorithm for F[x], where F is a field.  
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3.0 MAIN CONTENT  

 

3.1 Ring of Polynomials 
 

As we have said above, you may already be familiar with expressions of the type 1 + x, 2 

+ 3x
2
 + 4x or 2 + 3x + 4x

2
, x

5 
- l, and so on. These are examples of polynomials over the 

ring Z. Do these examples suggest to you what a polynomial over any ring R is? Let's 

hope that your definition agrees with the following one.  

 

Definition 
 

A polynomial over a ring R in the indeterminate x is an expression of the form  

 

a0x
0 

+ alx
l
 + a2x

2 
+... + anx

n
, 

 

Where n is a non-negative integer and a0,a1, ..., an  R. 

 

While discussing polynomials we will observe the following conventions. We will  

 

i)  write x
0
 as1, so that we will write a0 for aox

o
!lox\), 

 

ii) write x
1
 as x. 

 

iii)  write x
m 

instead of l.x
m

 (i.e., when am = 1). 

 

iv) omit terms of the type 0.x
m
. 

 

Thus, the polynomial 2 + 3x
2
 - l.x

3
 is 2x

0
 +0.x

1
 + 3x

2
 + (-1 )x

3
 

 

Henceforth, whenever we use the word polynomial, we will mean a polynomial in the 

indeterminate x. we will also be using the shorter notation i

i xa

i

n

0

  for the polynomial a0 

+ a1 x +…+ an x
n
. 

 

Let us consider a few more basic definitions related to a polynomial. 
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Definition 
 

Let a0 + a1 x + …+ an x
n
 be a polynomial over a ring R. Each of a0 a1,…., an is a 

coefficient of this polynomial. If an  0, we call an the leading coefficient of this 

polynomial. 

 

If a1 = 0 = a2 = … = an, we get the constant polynomial, a0. Thus, every element of R is a 

constant polynomial. 

 

In particular, the constant polynomial 0 is the zero polynomial. 

 

It has no leading coefficient. 

 

Now, there is a natural way of associating a non-negative integer with any non-zero 

polynomial. 

 

Definition 

 

Let a0 + a1 x +… + an x
n
 be a polynomial over a ring R, where an  0. Then we call the 

integer n the degree of this polynomial, and we write. 

 

0,)

0

(deg 



 n

i

i aifnxa

i

n

 

 

We define the degree of the zero polynomial to be -  . Thus, deg 0 = -  . 

 

Let us consider some examples. 

 

i) 3x
2
 + 4x + 5 is a polynomial of degree 2, whose coefficients belong to the ring of 

integers Z. Its leading coefficient is 3. 

ii) x
2
 + 2x

4
 + 6x + 8 is a polynomial of degree 4, with coefficients in Z and leading 

coefficient 2. (Note that this polynomial can be rewritten as 8 + 6x + x
2
 + 2x

4
). 

iii) Let R be a ring and r  R, r   0. Then r is a polynomial of degree 0, with leading 

coefficient r.  

 

Before giving more examples we would like to set up some notation  
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Notation  

 

We will denote the set of all polynomials over a ring R by R[x]. (Please note the use of 

the square brackets [ ]. Do not use any other kind of brackets because R [x] and R (x) 

denote different sets). 

 




















 ZnwherenniRaxa

i

n

xRThus i

i

i ,0,.,.......,.1,0)

0

][,  

 

We will also often denote a polynomial a0 + a1 x +…+ an +
n
 by f(x), p (x), q(x), etc. 

 

Thus, an example of an element from Z4 [x] is f(x) = 132 2  xx  

 

Here deg f(x) = 2, and the leading coefficient of f(x) is .2  

 

To check your understanding of what we have said so far, you can try these exercises 

now. 

 

E 1) Identify the polynomials from the following expressions. Which of these are 

elements of Z[x]?  

 

a) x
6
 + x

5
 + x

4 
+ x

2
 + x + 1 

 

b) 2

2

12
xx

xx
  

 

c) 523 2  xx  

 

d) 32

4

1

3

1

2

1
1 xxx   

 

e) x
1/2

 + 2x
3/2

 + 3 x 
5/2 

 

f) -5. 
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It E 2 Determine the degree and the leading coefficient of the following polynomials in 

R[x].  

 

a)  72 x  

 

b)  1- 7x
3
 + 3x 

 

c)  1 + x
3
 + x

4
 + 0.x

5
 

 

d)  32

7

1

5

1

3

1
xxx    

 

e)  0.  

 

Now, for any ring R, we would like to see if we can define operations on the set R [x] so 

that it becomes a ring. For this purpose we define the operations of addition and 

multiplication of polynomials.  

Definition  

 

Let f(x) = 20 + a1x + .. + an x
n
 and g (x) = b0 + b1 x + .. + bm x

m
 be two polynomials in 

R[x]. let us assume that m > n. Then their sum f(x) + g(x) is given by f(x) + g(x) = (a0 + 

b0) + (a1 + b1) x + .. + (an + bn) x
n
 + bn+1x

n+1
 + .. + bmx

m
. 

 

= .0,)(

0

1 niforawherexba

i

m

i

i

i 



  

For example, consider the two polynomials p(x),q(x) in Z[x] given by 

p(x) =1+2x + 3x
2
, q(x) = 4 + 5x + 7x

3 

 

Then 

 

p(x) + q(x) = (1+4) + (2+5)x + (3+0) x
2
 + 7x

3
 = 5 + 7x + 3X

2
 + 7X

3
. 

 

Note that p (x) + q (x)  Z [x] and that 

 

deg (p(x)+q(x)) = 3 = max(deg p(x), deg q(x)). 

 

From the definition given above, it seems that deg (f(x)+g(x)) = max (deg f (x), deg g 

(x)). But this is not always the case. For example, consider p(x) = 1 + x
2
 and q (x) = 2 + 

3x -x
2 
in Z [x]. 
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Then p(x) + q(x) = (1+2) + (0+3)x + (1-1)x
2
 = 3 + 3x. 

 

Here deg (p(x) + q (x)) = 1 < max (deg p(x), deg q(x)). 

 

So, what we can say is that 

 

deg (f(x) + g(x) ::; Max (deg f(x), deg g(x) 

 

  f(x), g(x)  R [x]. 

 

Now let us define the product of polynomials. 

 

Definition  
 

If f(x) = a0 + aix + ..+ an x
n
 and g(x) = b0 + bi x + ..+ bmx

m
 are two polynomials in R [x], 

we define their product f(x). g(x) by 

 

f(x) .g(x) = c0 + c1x +.. + cm+nx
m+n

, 

where ci = aib0 + ai-1 b1 + ...+ a0 bi   i=0,1,...,m + n. 

 

Note that ai = 0 for i > n and bi = 0 for i > m. 

 

As an illustration, let us multiply the following polynomials in Z[x] : 

 

p(x) = 1 -x + 2x
3
 , q(x) = 2 + 5x + 7x

2
. 

 

Here a0 = 1, ai = -1, a2 = 0, a3 = 2, b0 = 2, b1 = 5, b2 = 7. 

 

Thus, p(x) q (x) = ,

0

5
i

i xc

i 

  where 

 

c0 = a0b0 = 2, 

 

c1 = a1b0 + a0b1 = 3, 

 

c2 = a2b0 + a1b1 + a0b2 = 2, 

 

c3 = a3b0 + a2b1 + a1b2+ a0b3 = - 3 (since b3 = 0), 

 

c4 = a4b0 + a3b1 + a2b2 + a1b3 + a0b4 = 10 (since a4 = 0 = b4), 
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c5 = a5b0 + a4b1 + a3b2 + a2b3 + a1b4 + a0b5 = 14 (since a5 = 0 = b5), 

So p(x), q(x) = 2 + 3x + 2x
2
 – 3x

3
 + 10x

4
 + 14x

5 

 

Note that p(x), q(x)  Z[x], and deg (p(x) q(x)) = 5 = deg p(x) + deg q(x) 

 

As another example, consider  

 

p(x) = ,21 x  q(x) = 2 + 3x
2
  Z6 [x]  

 

Then, p(x). q(x) = .3426342 232 xxxxx   

 

Here, deg (p(x).q(x) = 2 < deg p (x) + deg q (x) (since deg p (x) = 1, deg q(x) = 2). 

 

In the next section we will show you that 

 

deg (f(x) g(x) < deg f(x) + deg g(x) 

 

Now try the following exercise. It will give you some practice in adding and multiplying 

polynomials. 

 

E3)  Calculate 

 

a)  (2 + 3x
2
 + 4x

3
) + (5x + x

3
) in Z [x]. 

b)  ( )521()26( 32 xxx  in Z7 [x]. 

c)  ( )21()1 2xxx  in Z[x]. 

d) ( )21()1 2xxx  in Z3 [x] 

e)  (2 + x + x
2
) (5x + x

3
) in Z[x] 

 

By now you must have got used to addition and multiplication of polynomials. We would 

like to prove that fur any ring R, R [x] is a ring with respect to these operations. For this 

we must note that by definition, + and. are binary operations over R[x]. 

 

Now let us prove the following theorem. It is true for any ring, commutative or not. 

 

Theorem 1  
 

If R is a ring, then so is R [x], where x is an indeterminate. 
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Proof 
 

We need to establish the axioms RI -R6 of Unit 9 for (R[x], + ,.). 

 

i)  Addition is commutative: We need to show that 

 

p (x) + q (x) = q (x) + p(x) for any p (x) , q (x)  R [x]. 

 

Let p(x) = a0 + a1x +...+ anx
n
, and 

 

q(x) =b0 + b1 x +...+.bmx
m 

be in R[x]. 

 

Then, p (x) + q(x) = c0 + c1 x + ...+ ctx
t
 , 

 

where ci = ai + bi and t = max(m,n). 

 

Similarly, 

 

q(x) + p(x) = d0 + d1 x +...+ ds x
s
, 

 

Since addition is commutative in R, c1 = d1   i > 0 

 

So we have  

 

p(x) + q (x) = q(x) + p(x). 

ii)  Addition is associative: Again, by using the associatively of addition in R, we can 

show that if p (x),q(x), s(x)  R[x], then 

 

{p(x)+q(x)} + s(x) = p(x) + (q(x)+ s(x)}, 

 

iii)  Additive identity : The zero polynomial is the additive identity in R [x]. This is 

because, for any p (x) = a0+ a1 x + ...+ anx
n
  R [x], 

 

0+p(x)= (0 +a0) + (0 + al) x + ...+ (0 + an) x
n
 

 

= ao + a1x1 + ...+ anx
n
. 

 

= p(x) 

 

iv)  Additive invers: For p (x) = a0 + a1x +... + anx
n
  R[x], consider the polynomial  

 

-p(x) = – a0 – a1x –…– anx
n
, –ai being the additive inverse of at in R. Then 
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-p (x) + (-p(x)) = (a0 –a0) + (a1 –a1) x + ...+ (an –an)x
n
 

 

= 0 + 0 x + 0.x
2
 + .., + 0.x

n
 

= 0. 

 

Therefore, -p (x) is the additive inverse of p (x).  

 

v)  Multiplication is associative: 

 

Let p(x) = a0 + a1 x +...+ anx
n
, 

 

q (x) = b0 + b1 x + ...+ bmx
m

, 

 

and t (x) = d0 + d1 x + ...+ drx
r
, be in R [x] 

 

Then 

 

p (x), q(x) = c0 + cl x + … + csx
s
, where s = m+n and 

 

Therefore, 

 

{p(x), q(x)} t (x) = e0 + e1 x + … + etx
t
, 

 

where t = s + r = m+n+r and  

 

ek = ckd0 + ck-1 d1 + ...+ c0dk 

 

= (akb0 + ...+ a0bk) d0 + (ak-1b0 +...+ a0bk-1)d1 +... + a0b0dk, 

 

Similarly, we can show that the coefficient of x
k
 (for any k > 0).in p(x) {q (x) t(x)1} 

 

is akb0d0 + ak-1 (b1d0 + b0dl) + ...+ a0,(bkd0 + bk-1 d1 + … + b0dk)  

 

= e k, by using the properties of + and in R. 

 

Hence, {p(x), q(x)}, t(x) = p(x), {q (x), t (x)} 

 

vi) Multiplication distributes over addition: 

 

Let  p(x) = a0 + al x + ...+ anx
n
. 

 

q(x) =b0 + b1 x +...+ bmx
m
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and  t(x) = d0 + d1 x +… + d, x
r
 be in R[x]. 

 

The coefficient of x
k
 in p (x). (q(x) +t (x)) is 

 

ck = ak (b0+d0) + ak-1 (b1 +d1) +... + a0 (bk + dk). 

 

And the coefficient of x
k
 in p (x) q (x) + p (x) t(x) is 

 

(akb0+ak-1b1+…+a0bk)+(akd0+ak-1d1 +…+a0dk), 

 

=   ak(b0+d0) + ak-l (b1+d1)+…+a0 (bk+dk) = ck 

 

This is true   k > 0. 

 

Hence, p (x). {q (x) + t (x)} = p (x): q(x) + p (x) t (x). 

 

Similarly, we can prove that 

 

{q(x) + t(x)}. p(x) = q(x) .p(x) + t(x) p(x)  

 

Thus, R [x] is a ring. 

 

Note that the definitions and theorem in this section are true for any ring. We have not 

restricted ourselves to commutative rings. But, the case that we are really interested in is 

when R is a domain. In the next section we will progress, towards this case.  

 

3.2 Some Properties of R[x] 

 
In the previous section you must have realised the intimate relationship between the 

operations on a ring R and the operations on R [x]. The next theorem reinforces this fact. 

 

Theorem 2 

 

Let R be a ring. 

 

a)  If R is commutative, ~o is R [x]. 

b)  If R has identity, so does R [x]. 

 

Proof  
 

a)  Let p (x) = a0 + at x +... + anx
n
 and 

 

q (x) = b0 + b1 x + ...+ bmx
m

 be in R [x]. 
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Then p (x) q (x) = c0 + c1 x + ...+ csx
s
, where s = m + n and 

 

ck = akb0 + ak-1b1 +...+ a0bk 

 

= bka0 + bk-1al + ...+ b1ak-1 + b0ak, since both addition and multiplication are commutative 

in R.  

 

= coefficient of x
k
 in q (x) p(x).  

 

Thus, for every > 0 the coefficients of xi in p(x) q(x) and q(x) p(x) are equal 

 

Hence, p (x) q(x) = q(x) p(x). 

 

b)  We know that R has identity I. We will prove that the constant polynomial 1 is the 

identity of R [x]. Take any 

 

p (x) = a0 + a1 x + ...+ anx
n
  R [x]. 

 

Then I. p (x) = c0 + c1 x + ... + cnx
n
 (since deg 1 = 0), 

 

where ck = ak 1 + ak-1 0 + ak-2 0 + ...+ a0 0= ak 

 

Thus 1 P (x) = p (x) 

 

Similarly, p (x) l = p(x) 

This shows that 1 is the identity of R [xl. 

In the following exercise we ask you to check if the converse of Theorem 2 is true. 

 

E 4) If R is a ring such that R [x] is commutative and has identity, then  

 

a)  is R commutative? 

 

b)  does R have identity  

 

Now let us explicitly state a result which will help in showing us that R is a domain iff R 

[x] is a domain. This result follows just from the definition of multiplication of 

polynomial 

 

Theorem 3 

 

Let R be a ring and f(x) and g (x) be two non-zero elements of R [x). Then deg (f (x) g 

(x) < deg f(x) + deg g (x),  
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with equality if R is an integral domain. 

 

Proof: Let f (x) = a0 + al x + ...+ anx
n
, an   0,  

 

and g (x) = b0 + b1 x + ... + bmx
m
, bm   0. 

 

Then deg f(x) = n, deg g (x) = m. We know that 

 

f (x) g (x)= c0 +c1 x + ... + cm+n x 
m+n

, 

 

where Ck = akb0 + ak-1b1 +... + a0bk. 

 

Since a n+1 , a n+2,… and bm+1 bm+2, … are all zero, 

 

cm+n = anbm . 

 

Now, if R is without zero divisors, then anbm  0, since an   0 

 

and bm  0. Thus, in this case, 

 

deg (f(x) g (x) = deg f(x) + deg g (x). 

 

On the other hand, if R has zero divisors, it can happen that anbm = O. In this case,  

 

deg (f (x) g (x) < m+n = deg f(x) + deg g(x). 

 

Thus, our theorem is proved. 

The following result follows immediately from Theorem 3. 

 

Theorem 4 

 

R [x] is an integral domain <=> R is an integral domain. 

 

Proof  
 

From Theorem 2 and E 4 we know that R is a commutative ring with identity iff R [x] is 

a commutative ring with identity. Thus, to prove this theorem we need to prove that R is 

without zero divisors iff R [x] is without zero divisors. 

 

So let us first assume that R is without zero divisors. 

 

Let p (x) = a0 + a1 x + … + anx
n
, and q (x) = b0 + bl x + ...+ bmx

m 
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be in R [x], where an  0 and bm   0. 

 

Then, in Theorem 3 we ha'/e seen that deg (p (x) q (x) = m + n > 0. 

 

Thus, P (x) q (x)  0 

 

Thus, R [x] is without zero divisors. 

 

Conversely, let us assume that R [x] is without zero divisors. Let a and be non-zero 

elements of R: Then they are non-zero elements of R [x] also. Therefore, ab   0. Thus, R 

is without zero divisors. So, we have proved the theorem. 

 

See if you can solve the following exercises now. 

 

E 5)  Which of the following polynomial rings are free from zero divisors? 

 

a)  R[x], where R = {a+ b |5  a,b  Z} 

b)  Z7 [x] 

c)  Z6 [x] 

d)  R[x], where R = C [0,1] 

E 6)  Let R be a domain. Show that char R = char R [x]. 

 

E 7)  Let, R and S be commutative rings and f: R + S be a ring homomorphism. 

Show that the map 

 

 : R [ x] S [x] :   (a0+a1x + ...+ an x
n
) = f (a0) + f (al) x + … +, f(an) x

n
 is a 

homomorphism: 

 

Now, you have seen that many properties of the ring R carry over to R [x1. Thus, if F is a 

field, we 'should expect F[x] to be a field also. But this is not so. F [x] can never be a 

field 

 

This is because any polynomial of positive degree in F [x] does not have a multiplicative 

inverse. Let us see why. 

 

Let f (x)  F [x] and deg f (x) = n > 0. Suppose g (x)  F [x] such that 

 

f(x) g (x) = 1. Then 

 

0 = deg 1 = deg (f(x) g (x) = deg f(x) + deg g (x), since F [x] is a domain. 
 

= n +deg g (x) > n > 0. 
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We reach a contradiction. 

 

Thus, F [x] cannot be a field. 
 

But there are several very interesting properties of F [x], which are similar to those of Z, 

the set of integers. In the next section we shall discuss the properties of division in F [x]. 

You will see how similar they are to the properties of Z that we have discussed in Sec. 

1.6,2. 

 

3.3 The Division Algorithm  
 

In Sec. l.6.2 we discussed various properties of divisibility in Z. In particular, we proved 

the division algorithm for integers. We will now do the same for polynomials over a field 

F. 

 

Theorem 5 (Division Algorithm)  
 

Let F be a field. Let f(x) and g(x) be two polynomials in F [x], with g(x)  0. Then  

 

a)  there exist two polynomials q(x) and r (x) in F [x] such that 
 

f (x) = q (x) g (x) + r (x), where deg r(x) < deg g (x). 

 

b)  the polynomials q (x) and r (x) are unique. 

 

Proof 

 

a)  If, deg f (x) < deg g (x), we can choose q (x) = 0. 

 

Then f, (x) = 0. g(x) + f (x), where deg f(x) < deg g (x). 

 

Now, let us assume that deg f(x) > deg g (x). 

 

Let f(x) = a0 + a1x +… + anx
n
, an  0, and 

       g(x) = b0 + b1 x + … + bmx
m
, bm 0, with n > m. 

 

We shall apply the principle of induction (see Sec. 1.6.1) on deg f(x), i.e., n. 

 

If n = 0, then m = 0, since g(x)   0. Now 

 

f(x) = a0, g(x) = b0, and hence 
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f(x) = (a0 b0 + 0 = q(x) g (x) + r (x), where q(x) = a0b0
-1

 and r(x) = 0. 

 

Thus, 

 

f(x) = q(x) g(x) + r(x), where deg r(x) < deg g(x). 

 

So the algorithm is true when n = 0. Let us assume that the algorithm is valid for all 

polynomials of degree < n -1 and try to establish that it is true for f(x). Consider the 

polynomial 

 

f1 (x) = f(x) anbm
-1

 x
n-m

 g(x) 

 

= (a0 + a1 x +…+ anx
n
) – (anbm

-1
b0x

n-m
+anbm

-1
b1x

n-m+1
 +…+anbmx

n
) 

 

Thus, the coefficient of x
n
 in fl (x) is zero; and hence, 

 

deg fl(x) < n–l. 

 

By the induction hypothesis, there exist ql (x) and r (x) in 

 

F[x] such that fl (x) = ql (x) g(x) + r(x), where deg r(x) < deg g(x). 

 

Substituting the value of f1(x), we get 

 

f(x)–anbm
-l
 x

n-m
 g(x) = q1(x) g(x)+r(x),  

 

i.e., f(x) = {anbm
-l
 x

n-m 
+ q1(x)} g(x)+r(x) 

 

1 = q(x) g(x)+r(x), where q(x) = anbm
-1

 x
n-m

+ql(x) 

and deg r(x) < deg g(x).  

 

Therefore, the algorithm is true for f(x). and hence, for all polynomials in F[x]. 

 

b)  Now let us show that q(x) and r(x) are uniquely determined.  

 

If possible, let 

 

f(x) = q1(x) g(x)+r1(x) where deg rl(x) <deg g(x). and 

f(x) = q2(x) g(x)+r2(x) where deg r2(x) <deg g(x).  
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Then  

 

q1(x) g(x)+rl(x) = q2(x) g(x)+r2(x), so that 

{q1(x)-q2(X)} g(x) = r2(x)-rl(x)   ………(1) 

 

Now if q1(x)   q2(x) then deg {q1(x) -q2(x)} > 0, so that 

deg [{ql(x) – q2(x)} g(x)] > deg g(x). 

 

On the other hand, deg {r2(x)-r1(x) } < deg g(x), since 

deg r2(x) <deg g(x) and deg r1(x) < deg g(x). 

 

But this contradicts Equation (1). Hence, Equation (l) will remain valid only if q1(x) –

q2(x) = 0. And then r2(x) –r1(x) = 0, 

 

i,e., q1(x) = q2(x) and rl(x) = r2(x). 

 

Thus we have proved the uniqueness of q(x) and r(x) in the expression f(x) = q(x) 

g(x)+r(x). 

 

Here q(x) is called the quotient and r(x) is called the remainder obtained on dividing f(x) 

by g(x). 

 

Now, what happens if we take g(x) of Theorem 5 to be a linear polynomial? We get the 

remainder theorem. Before proving it let us set up some notation. 

 

Notation 
 

Let R be a ring and f(x) R[x].Let 

f(x) = a0 + alx +…...+an x
n
R 

Then, for all r  R, we define 

f(r) = a0+a1r+...+anr
n
  R. 

 

That is, f(r) is the value of f(x) obtained by substituting r for x. 

 

Thus, if f(x) = 1+x+x
2
  Z[x], then  

 

f(2) = 1+2+4 = 7 and f(0) = 1+0+0 = 1. 

 

Let us now prove the remainder theorem. which is a corollary to the division algorithm. 
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Theorem 6 (Remainder Theorem) 

 

Let F be a field. If f(x)  F[x] and b F, then here exists unique polynomial q(x)  F[x] 

such that f(x) = (x-b) q(x)+f(b,). 

 

Proof 
 

Let g(x) = x-b. Then, applying the division algorithm to f(x) and g(x), we can find unique 

q(x) and r(x) in F[x], such that  

f(x) = q(x) g(x)+r(x) 

 

= q(x) (x-b)+r(x), where deg r(x) < deg g(x) = 1. 

 

Deg r (x) < 1, r (x) is an element of F, say a.  

 

So, f(x) = (x-b) q(x)+a. 

 

Substituting b for x, we get 

 

f(l) = (b-b) q(b) + a 

 

= 0.q(b)+a = a 

 

Thus, a = f(b). 

 

Therefore, f(x) = (x-b) q(x)+f(b). 

 

Note that deg f(x) = deg(x-b)+deg q(x) = 1 +deg q(x). 

 

Therefore, deg q(x) = deg f(x)–l. 

 

Let us apply the division algorithm in a few situations now. 
 

Example 1 
 

Express x
4
+x

3
+5x

2
 -x as 

 

(x
2
+x+l) q(x)+r(x) in Q[x]. 
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Solution 

 

We will apply long division of polynomials to solve this problem. 

 

45

444

4

51

4

2

2

234

2342

2













x

xx

xx

xxx

xxxxxx

x

 

 

Now, since the degree of the remainder -5x- 4 is less than deg (x
2
+x+ I), we stop the 

process, We get 

 

x
4
+x

3
+5x

2
 -x = (x

2
+x+l) (x

2
+4) -(5x+4). 

 

Here the quotient is x
2
+4 and the remainder is -(5x+4). 

 

Now you can try some exercises. 

 

E 8) Express f as gp+r, where deg r < deg g, in each of the following cases. 

 

a) f = x4+1, g = x3 in Q[x] 

b) f = x
3
 + 2 x

2
 – x + 1  in Z3 [x] 

c) f = x
3
 – 1, g = x – 1 in R[x] 

E 9)  You know that if p,q  Z, q   0, then 
q

p
 can be written as the sum of an integer 

and a fraction 
q

m
 with | m | < | q |. What is the analogous property, fur elements of F[x]? 

Now, let us see what happens when the remainder in the expression f = pg+r is zero 

 

3.4 Roots of Polynomials  
 

In Sec. 12.4 you have seen when we can say that an element in a ring divides another 

element. Let us recall the definition in the context of F[x], where F is a field. 
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Definition 

 

Let f(x) and g(x) be in F[x], where F is a field and g (x)   0. We say that g(x) divides 

f(x)(or g(x) is a factor of f(x), or f(x) is divisible by g(x) if there-exists q(x)  F[xl such 

that 

 

f(x) = q(x) g(x). 

 

 

We write g(x) j f(x) for 'g(x) divides f(x), and g(x) ~ f(x) for 'g(x) does not divide f(x). 

 

Now, if f(x)  F[x] and g(x)  F[x], where g(x)   0, then does Theorem say when g(x) | 

f(x)? It does, We find that g(x) | f(x) if r(x) = 0 in Theorem 5. 

 

In the fol1owing exercise we make an important, similar statement. You can prove it by 

applying Theorem 6. 

 

E 10)  Let F be a field and f(x)  F[x] with deg f(x) > 1. Let a  F. 

 

show that f(x) is divisible by x-a iff f(a) = 0. 

 

This exercise leads us to the following definition.  

 

Definition 

 

Let F be a field and f(x)  F[x]. We say that an element a  F is a root (or zero) of f(x) if 

f(a) = 0. 

 

For example, 1 is a root of x
2
-1  R[x], since 1

2
-1 = 0.  

 

Similarly, - 1 is a root of f(x) = x
3
+x

2
+

2

1
 x +

2

1
 Q [x], since- . 

f(-1) = 1+1 - 
2

1
 +

2

1
 = 0. 

 

Not that, in E 10 you have proved the following criterion for an element to be a root of a 

polynomial: 

 

Let f be a field and f (x)  F[x]. Then a  F is a root of f(x) if and only if (x-a)|f(x). 

 

We can generalize this criterion to define a root of multiplicity m of a polynomial in F[x]. 
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Definition 

 

Let F be a field and f(x)  F[x] We say that a  F is a root of multiplicity m (where) m 

is a positive integer of  

 

f(x) it (x -a)
m

 | f(x) but (x-a)
m+l

 x f(1). 

For example, 3 is a root of multiplicity 2 of the polynomial (x-3)
2
 (x+2) Q[x]; and (-2) is 

a root of multiplicity 1 of this polynomial. 

 

Now is it easy to obtain all the roots of a given polynomial? Any linear polynomial ax+b 

 F[x] will have only one root namely, -a
-l
b. This is because ax+b = 0 iff x = -a

-l
b. 

 

In the case of a quadratic polynomial ax
2
+bx+c  F[x], you know that its two roots are 

obtained by applying the quadratic formula. 

 

a

acbb
x

2

42 
  

 

For polynomials of higher degree we may be able to obtain some roots by trial and error. 

For example, consider f(X) = x
5
-2x+1  R[x], Then, we try out x = 1 and find f(1) = 0. 

So, we find that l is a zero of f(x). But this method doesn't give us all the roots of f(x),. 

 

Now you can try these exercises. 

 

E 11) Find the roots of the following polynomials, along with their multiplicity. 

 

a)  f(x) = 
2

1
 x

2
 - 

2

1
 x + 3  Q[x] 

b)  f(x) = x
2
+ x + 1   Z3 [x] 

c)  f(x) = x
4
+ 2 x

3
 - 2 x-1  Z5 [x]  

 

E 12)  Let F be a field and a  F Define a function 

 

  :F[x] F:   (f(x)) = f(a). 

 

This function is the evaluation at a. 

 

Show that 

 

a)    is an onto ring homomorphism. 
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b)    (b) = b   b  F. 

c)  Ker   = < x - a>  

 

So, what does the Fundamental Theorem of Homomorphism say in this case? 

 

As we have just seen; it is not easy to find all the roots of a given polynomial. But we can 

give a definite result about the number of roots of a polynomial. 

 

Theorem 7 

 

Let f(x) be a non-zero polynomial of degree n over a field F. Then f(x) ha: at most n roots 

in F. 

 

Proof 

 

If n = 0, then f(x) is anon-zero constant polynomial.  

 

Thus, it has no roots, and hence, it has at most 0 (= n) roots in F. 

 

So, let us assume that n > 1. We will use the principle of induction on n. If deg t(x) = 1, 

then  

 

f(x) = a0 + a1 x, where a0 al  F and al   0. 

 

So f(x) has only one root, namely, (-a1
-1

 a0) 

 

Now assume that the theorem is true for all polynomials in F[x] of degree < n. We will 

show that the number of roots of f(x), < n. 

 

If f(x) has no root in F, then the number of root of f(x) in F is 0 < n. So, suppose f(x) has 

a root a  F. 

 

Then f(x) = (x-a) g(x), where deg g(x) = n-l. 

 

Hence, by the induction hypothesis g(x) has at most n-1 roots in F, say a
l
,...,an-1 Now, 

 

a1 is a root of g(x)   g(ai) = 0   f(ai) = (ai-a) g(a) = 0 

 

   ai is it root of(x)   i = 1,..., n-l. 

 

Thus, each root of g(x) is It root of f(x). 
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Now, b  F is a root of f(x) iff f(b) = 0, i.e., iff (b-a) g(b) = 0, i.e., iff b-a = 0 or g(b) = 0, 

since F is an integral domain. Thus, b is a root of f(x) iff b = a or b is a root of g(x). So, 

the only roots of f(x) are a and a1…,an-1.  

 

Thus, f(x) has at the most n roots, and so, the theorem is true for n.  

Hence, the theorem is true for all n > 1. 

 

Using this result we know that, for example, x
3
-1  Q[x] can't have more than 3 roots in 

Q. 

 

In Theorem 7 we have not spoken about the roots being distinct. But an obvious corollary 

of Theorem 7 is that 

 

if f(x)  F[x] is of degree n, then f(x) has at most n distinct roots in F. 

 

We will use this result to prove the following useful theorem. 

 

Theorem 8  
 

Let f(x) and g(x) be two non-zero polynomials of degree, n over the field F if there exist 

n+1 distinct elements al,...,an+1 in F such that f(ai) = g(a)   i = 1, ..., n+1, then f(x) = g(x). 

 

Proof 

 

Consider the polynomial h(x) = f(x) -g(x)  

 

Then deg h(x) < n, but it has n+1 distinct roots a1,..., an+1. 

 

This is impossible, unless h(x) = 0, i.e., f(x) = g(x). 

 

We will now give you an example to show you that Theorem 7 (and hence Theorem 8) 

need not be true for polynomials over a general ring.  

 

Example 2  
 

Prove that x
3
 + x5 Z6 [x] has more roots than its degree. (Note that Z6 is not a field.) 

 

Solution 
 

Since the ring is finite, it is easy for us to run through all its elements and check which of 

them, are roots of  

f(x) = x
3
 + 5  x. 
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So, by substitution we find that 

 

f(0) = 0 = f(1 ) = f( 2 ) =f(3 ) = f( 4 ) = f( 4 ). 

 

In fact, every element of Z6 is a zero of f(x). Thus, f(x) has 6 zeros, while deg f(x) =3. 

 

Try these exercises now. 

 

E 13)  Let p be a prime number. Consider x
p-l 

- 1  Zp[x]. Use the fact that Zp is a group 

of order p to show that every non-zero element of Zp is a root of x
p-1 

- 1 . 

 

Thus, show that x
p-1

 - 1  = (x -1 ) (x - 2 ) ...(x- 1p ). 

 

E 14)  The polynomial x
4
 + 4  can he factored into, linear factors in Z5 [x]: 

 

Find this factorization. 

 

So far, we have been saying that a polynomial of degree n over F has at most n roots in F. 

If can happen that the polynomial has no root in F. for example, consider the polynomial 

x
2
+1  R[x].  From Theorem 7 you know that it can have 2 roots in R, at the most. But as 

you know, this has no roots in R (it has two roots, i and – i, in C). 

 

We can find many other examples of such polynomials in R[x]. We call such 

polynomials irreducible over R. We shall discuss them in detail in the next two units. 

 

4.0 CONCLUSION  
 

Polynomial rings are very important class of rings in mathematics. Hardily can we not 

come across polynomial expressions in our daily mathematical endeavours, since we 

need to add or subtract two mathematical algebraic expressions from each other. It is 

required of you to read this unit carefully before you proceed to the next unit.  

 

5.0 SUMMARY 
 

In this unit we have covered the following points.  
 

1)  The definition and examples of polynomials over a ring. 

2)  The ring structure of R[x], where R is a ring. 

3)  R is a commutative ring with identity iff R[x] is a commutative ring with identity. 

4)  R is an integral domain iff R[x] is an integral domain. 
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5)  The division algorithm in F[x], where F is a field, which states that if f(x), g(x)  

F[x], g(x)   0, then there exist unique q(x), r(x)  F[x] with f(x) = q(x) g(x)+r(x) 

and deg r(x) < deg g(x). 

6)  a  F is a root of f(x)  F[x] iff (x-a) | f(x). 

7)  A non-zero polynomial of degree n over a field F can have at the most n roots. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

 1.  The polynomials are (a), (c), (d), (f). 

 

(b) and (e) are not polynomials since they involve negative and fractional powers 

of x. 

 

(a) and (t) are in Z[x].  

 

 2.  The degrees are 1, 3, 4.3, -  , respectively. The leading coefficients of the first 

four are ,2  7, 1, 
7

1
, respectively, o has no leading coefficient. 

 

3a.  2+5x+3x
2
+(4+1)x

3
 = 2+5x+3x

2
+5x

3
 

b. ( 07sin,522522)16 3232  cexxxxxx  

c. 1+3x+3x
2
+x

3
 

d. 03sin,1 3  cex  

e. 10x+5x
2
+7x

3
+x

4
+x

5
 

 

4.  Every element of R is an element of R[x]. Therefore multiplication in R is also 

commutative. 

Also, the identity of R[x] is an element of R, and hence is the identity of R. 

 

 5.  (a) and (b) 

 

 6.  We know that R[x] is a domain. Let char R = n. By Theorem 3 of Unit 12 we 

know, that n is the least positive integer sucl1that n.l = 0. Since 1 is also the 

identity of R[x], the same theorem of Unit 12 tells us that char R. 

 

7.  Let p(x) = a0+a1x+...+anx
n
, q(x) = b0+b1x+...+bmx

m
  R [x]. 

 

Then   (p(x)+q(x)) =   (

0



i

t

(ai+bi)x
i
), where t = max (m,n) 
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= 

0



i

t

f(ai+bi)x
i 

 

= 

0



i

t

[f(ai)+f(bi)]x
i
 

 

= 

0



i

t

f(ai)x
i
+

0



i

t

f(bi)x
i
 

 

=   (p(x))+  (q(x)), since f(ai) = 0 = f(bj) 

 

 Whenever ai = 0, bj = 0. 

 

 Also,   (p(x)q(x)) =   (

0





i

nm

cixi), where ci = aib0+ai-1b1+…+a0bi 

 

= 

0





i

nm

f(ci)x
i 

= 

0





i

nm

 [f(ai)f(b0) + f(ai-1) f(b1) +…+(a0) f(bi)]x
i 

 

since f is a ring homomorphism; 

 

=   (p(x))   (q(x)). 

 

Thus,   is a ring homomorphism. 

 

8a.  f = x.g+l, q = x, r = l 
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3

12

12

1

12

2
1)

2

2

23

23

2
















x

x

xx

xx

xx

xxx

xx
xb

 

 

Thus, f = (x
2
 + x - 2 ) g + , since 03  . 

 

c) f = (x
2 + x + 1

)g + 0 

 

9. Let f(x), g(x)  F[x], with g(x)   0. By Theorem 5, f(x) = g(x) q(x)+r(x) with deg 

r(x) < deg g(x). Now, this equality is still true if we consider it over the field of 

fractions of F[x]. Then, we can divide throughout by g(x), and get 

 

 
)(

)(
)(

)(

)(

xg

xr
xq

xg

xf
 , where deg r(x) < deg g(x). 

 

10. By Theorem 6, 

 

f(x) = (x-a) q (x)+f(a) 

Thus, f(x) = (x-a) q(x) iff f(a) = 0, i.e., 

(x-a) | f(x) iff f(a) = 0. 

 

11a.  By the quadratic formula, the roots are 3 and 2, each with multiplicity 1. 

b. x
2
+x+ 1 = (x-1 )

2
, since - 2 = 1 in Z3 

 

Thus, 1 is the only zero, and its multiplicity is 2. 

 

c.  By trial, one zero is 1. Now, applying long division, we get 

x
4
+ 2 x

3 
- 2 x-1 =(x-1 ) (x

3
+3 x

2
+3 x+1 )again, by trial and error we find that x+1

is a factor of thus, x
4
+ 2 x

3
- 2 x-1 = (x+1 )

3 

 

This shows that 1  is a root of multiplicity 1. and -1  (= 4 ) is a root of multiplicity 3. 

 12a.  Let f(x) = i

i

i

i xb

i

m

xgxa

i

n

0

)(,

0 





 .  

0
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Then   (f(x)+g(x)) =   

0

(





i

t

(ai+bi) x
i
), where t = max(m,n). 

 

  = 

0



i

t

(ai + bi)a
i 

= 

0



i

t

aia
i
+

0



i

t

bia
i 

 

= f(a)+g(a) 

 

=   (f(x))+   (g(x)), and 

 

  (f(x) g(x)) = 


























i

iii xbababa

i

nm

)...(

0

0110  

 

= i

iii abababa

i

nm

)...(

0

0110 








 

 

= f(a) g(a) 

 

=   (f(x))   (g(x)). 

 

Thus,   is a homomorphism. 

 

Now, given any element b  F,   the constant polynomial  

 

f(x) F[x] such that f(a) = b, i.e., (f(x)) = b. 

 

Thus,   is surjective. 

 

b) This is what we have shown in the previous two lines. 

 

c) f(x)  Ker   iff   (f(x)) = 0 iff f(a) = 0 
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iff (x-a) | f(x) iff f(x)  <x-a> 

 

Thus, Ker   = <x-a> 

The Fundamental Theorem of Homomorphism says that 

 

F[x]/<x-a> ~ F. 

 

13. 1)(,.)( **  pZoandgroupaisZ pp ) 

 

Thus, by E 8 of Unit 4, x
p-1

 = ,1 *

pZx   

 

i.e., each of the p-1 elements of *

pZ  is a root of x
p-1

-1  

 

Therefore, (x-1 ) …(x- 1p ) | (x
p-1

-1 ). 

 

Since, x
p-1

-1 can have at most p-1 rots in Zp, we find that the (p-1) elements of *

pZ are yjr 

only rooyd of x
p-1

-1 . 

 

Thus, x
p-1

-1 = (x-1 )…(x- 1p ). 

 

14. The polynomial x
4
 + 4   is the same as x

4
 -1  in Z5[x], 

 

since 4  = -1 . Thus, applying the result in E 13, we get, 

 

x
4
+ 4 = (x-1 ) (x- 2 ) (x-3 ) (x- 4 ) 

 

  



MTH 211                                                                                                                         MODULE 2 

162 

 

 

7.0 REFERENCES/FURTHER READING  

 
Ansa B. E. (2010). Modern Algebra Ethereal Bliss Publisher. Calabar. 

 

Kiku, A. O. (1992). Abtract Algebra Ibadan. Ibadan University, Press 

 

Ilori, S. A. & Akinyele, O. (1986). Elementary Abstract and Linear Algebra. Ibadan 

University, Press. 

 

Ilori, S. A. & Ajayi D. O. (2000). University Mathematics Series 2. Algebra Books (A 

Division of Ass Book Markers Nig. Ltd Ibadan). 

 

Lipschuty, S. (2004). Schaum‟s Outlines Series on Set Theory and Related Topics. 

MAcGraw – Hill, NY. 

 

Osisiogu, U. A. (1998). An Introduction to Real Analysis with Special Topic on 

Functions of Several Variables and Method of Languages Multipliers, Bestsoft 

Educational Books Nigeria. 

  



MTH 211                                                                                                                         MODULE 2 

163 

 

 

UNIT 3 SPECIAL INTEGRAL DOMAINS  
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1.0 INTRODUCTION  
 

In this unit we shall look lit three special kinds of integral domains. These domains were 

mainly studied with a view to develop number theory. Let us say a few introductory 

sentences about them. 

 

In Unit 6 you saw that the division algorithm holds for F[x] where F is a field. In Unit 1 

you saw that it holds for Z. Actually, there are lots of other domains for which this 

algorithm is true. Such integral domains are called Euclidean domains. We shall discuss 

their properties in Sec. 7.2 

 

In the next section we shall look at some domains which are algebraically very similar to 

Z. These are the principal ideal domains, so called because every ideal in them is 

principal. 

 

Finally, we shall discuss domains in which every non-zero non-invertible element can be 

uniquely factorised in a particular way. Such domains are very appropriately called 

unique factorisation domains. While discussing them we shall introduce you to 

irreducible elements of a domain. 

 

While going through the unit you will also see the relationship between Euclidean 

domains, principal ideal domains and unique factorisation domains. 
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2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 check whether a function is a Euclidean valuation or not 

 identify principal ideal domains 

 identify unique factorisation domains 

 obtain "the g.c.d of any pair of elements in a unique factorisation domain 

 prove and use the relationship between Euclidean domains principal ideal domains 

and unique factorisation domains. 

 

3.0 MAIN CONTENT  

 

3.1 Euclidean Domain 
 

In this course you have seen that Z and F[x] satisfy a division algorithm. There are many 

other domains that have this property. In this section we will introduce you to them and 

discuss some of their properties. Let us start with a definition. 

 

Definition 
 

Let R be an integral domain. We say that a function d: R \ {0}   N {0} is 

A Euclidean valuation on R if !.he following conditions are satisfied: 

 

i) d(a) < d (ab)   a, b  R \ {0}, and 

 

ii)  for any a, b  R, b   0   q. r  R such that 

 

a = bq+r, where r = 0 or d(r) < d(b). 

 

And then R is called a Euclidean domain. 

 

Thus, a domain on which we can define a Euclidean valuation is a Euclidean domain, 

 

Let us consider an example. 

 

Example 1  
 

Show that Z is a Euclidean domain.  
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Solution 
 

Define, d: Z   N   {0}: d(n) = | n | 

Then, for any a,b  Z\{0}, 

 

d(ab) = |ab| = |a| |b| > |a| (since |b| > 1 for b  0) 

 

= d(a), 

 

i.e., d(a) < d(ab). 

 

Further, the division algorithm in Z (see Sec.l. 6.2) says that if a, b  Z, b   0, then   q, 

r  Z such that 

 

i.e., a = bq+r,. where r= 0 or 0 < |r| < |b|, 

 

i.e, a = bq+r, where r = 0 or d(r) < d(b).  

 

Hence, d is a Euclidean valuation and Z is a Euclidean domain. 

 

For other examples, try the following exercises.  

 

E 1)  Let F be a field. Show that F, with the Euclidean valuation d defined by d(a) = 1 

 a  F\.{0}, is a Euclidean domain. 

 

E 2)  Let F be a field. Define the function 

 

d: F[x] \ {0}   N  {0} : d(f(x)) = deg f(x). 

 

Show that d is a Euclidean valuation on F[x], and hence, F[x] is a Euclidean domain. 

 

Let us now discuss .some properties of Euclidean domains. The first property involves 

the concept of units. So let us define this concept. Note that this definition is valid for any 

integral domain. 

 

Definition  
 

Let R be an integral domain. An element a  R is called a unit (or an invertible element) 

in R, if we can find an element b  R, such that ab = 1, i.e., if a has a multiplicative 

inverse. 
 

For example, both 1 and -1 are units in Z since 1.1 = 1 and (-1).(-1) = 1. 
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Caution 
 

Note the difference between a unit in R and the unity in R. The unity is the identity with 

respect to multiplication and is certainly a unit. But a ring can have other units too, as you 

have just seen in the case of Z. 

 

Now, can we obtain all the units in a domain? You know that every non-zero element in a 

field F is invertible. Thus, the set of units of F is F \ {0}. Let us look at some other cases 

also. 

 

Example 2  
 

Obtain all the units in F[x], where F is a field. 

 

Solution 

 

Let f(x)  F[x] be a unit. Then   g(x)  F[x] such that f(x) g(x) = 1. Therefore, 

 

deg (f(x)g(x)):deg (1) = 0, i.e., 

 

deg f(x)+deg g(x) = 0. 

 

Since deg f(x) and deg g(x) are non-negative integers this equation can hold only if deg 

f(x) = 0 = deg g(x). Thus, f(x) must be a non-zero constant, i.e. an element of F\ {0}. 

Thus, the units of F[x] are the non-zero element of F. That is, the units of F and F[x] 

coincide. 

 

Example 3  
 

Find all the units in R = {a +b 5  | a,b  Z}. 

 

Solution 

 

Let a+b 5  be a unit in R. The there exists 

 

C+d 5  R such that 

 

 (a+b 5 ) (c+d 5 ) = 1 

 

 (ac-5bd)+(bc+ad 5 ) = 1 
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 ac-5bd = 1and bc+ad = 0 

 

 abc-5b
2
d = b and bc+ad = 0 

 a(-ad)-5b
2
d = b, substituting be =-ad. 

 

 (a
2
+5b

2
)d =-b 

 

So, if b   0, then (a
2
+5b

2
) | b, which is not possible. 

 

b = 0. 

 

Thus, the only units of R are the invertible elements of Z. 

 

We have asked you to find these elements and other units in E 3 below 

 

E 3) Find all the units in 

 

 a) Z, b) Z6, c) Z+iZ. 

 

E 4) Let R be an integral domain. Prove that u  R is a unit iff 

 

 Ru = R 

 

Now we are in' a position to discuss some very simple properties of a Euclidean domain. 

 

Theorem 1 

 

Let R be a Euclidean domain with Euclidean valuation d. Then, for any a  R \ {0}, d(a) 

= d(1) iff a is a unit in R. 

 

Proof  
 

Let us first assume that a that a  R \ {0} with d(a) = d(1) 

 

By the division algorithm in R,   q,r  R such that 1 = aq+r, 

 

where r = 0 or d(r) < d(a) = d(1). 

 

Now, if r  0, d(r) = d(r.1) > d(1). Thus, d(d) d(1) can't happen.  

 

Conversely, assume that is a unit in R. Let be R such that ab = 1. Then d(a) < d(ab) = 

d(1). But we know that d(a) = d(a.1) > d(1). So, we must have d(a) = d(1). 
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Using this theorem, we can immediately solve Example 2 since f(x) is a unit in F[x] iff 

deg f(x) = deg (1) = 0. 

 

Similarly, Theorem 1 tells us that n  Z is a unit in Z iff |n| = |1| = 1. Thus, the only unit 

in Z are 1 and (-1). 

 

Now let us look at the ideals of a Euclidean domain. 

 

Theorem 2 

 

Let R be a Euclidean domain with Euclidean valuation. d. Then every ideal I of R is of 

the form I = Ra for some a  R. 

 

Proof 

 

If I = {0}, then I = Ra, where a = 0. So let us assume that I  {0}. Then I\ {0} is non-

empty, Consider the set {d(a) | a  I\{0}}. By the well ordering principle (see Sec. 1.6.1) 

this set has a minimal element. Let this be d(b), where b  I.\ {0}. We will show that I = 

Rb. 

 

Since b  I and I is an ideal of R, 

 

Rb   I.   …….(1) 

 

Now take any a  I. Since I   Rand R is a Euclidean domain, we can. find q,r  R such 

that 

 

a = bq + r, where r = 0 or d(r) < d(b).  

 

Now, b  I bq  I. Also, a  I. Therefore, r =a -bq  I. 

 

But r = 0 or d(r) < d(b). The way we have chosen d(b), d(r) < q(b) is not possible. 

 

Therefore, r = 0, and hence, a = bq  Rb. 

 

Thus, I   Rb.        .....(2) 

 

From (I) and (2) we get 

 

1= Rb. 
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Thus, every ideal I of a Euclidean domain R with Euclidean valuation d is principal, and 

is generated by a  I, where d(a) is a minimal element of the set {d(x) | x I \ {0}}. 

So, for example, every ideal of Z is principal, a fact that you have already proved in Unit 

10. 

 

Now try the following exercises involving the ideals of a Euclidean domain. 

 

E 5)  Show that every ideal of F[x] is principal, where F is a field. 

 

E 6)  Using Z as an example show that the set 

 

S = {a  R \ {0} | d(a) >d(l)}  {0} is not an ideal of the Euclidean domain with 

Euclidean valuation d. 

 

Theorem 2 leads us to a concept that we shall discuss now. 

 

3.2 Principal Ideal Domain (PID) 
 

In the previous section you have proved that every ideal of F[x] is principal, where F is a 

field. There are several other integral domains, apart from Euclidean domains, which 

have this property. We give such rings a very appropriate name.  

 

Definition 
 

We call an integral domain R a principal ideal domain (PID, in short) if every ideal in R 

is a principal ideal. 

 

Thus, Z is a PID. Can you think of another example of a PID? What about Q and Q[x]? 

In fact, by Theorem 2 all Euclidean domains are PlDs. But, the converse is not true. That 

is, every principal Ideal domain is not a Euclidean domain.  

 

For example, the ring of all complex numbers of the form a+ ),191(
2

i
b

  where a, b  Z, 

is a principal ideal domain, but not it Euclidean domain. The proof of this too technical 

for this course, so you can take our word for it for the present! 

 

Now let us look at an example of an integral domain that is not a PID. 

 

Example 4  
 

Show that Z[x] is not a PID. 
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Solution 
 

You know that Z[x] is a domain, since Z is one. We will show that all its ideals are not 

principal. Consider the ideal of Z[x] generated by 2 and x, i.e., < 2,x>. We want to show 

that < 2, x >   <f(x)> for any f(x)  Z[x). 

 

On the contrary, suppose that  f(x)  Z[x] such that <2,x> = <f(x)>. Clearly, f(x)  0. 

Also,   g(x), h(x)  Z[x] such that 

 

2 = f(x) g(x) and x = f(x) h(x). 

 

Thus, deg f(x) + deg g(x) = deg 2 = 0    ……… (1) 

 

and deg f(x) + deg h(x) = deg x = 1   ……..  (2) 

 

(1) shows that deg h(x) = 0, i.e., f(x)  Z, say f(x) = n. 

 

Then (2) shows that deg h(x) = 1. Let h(x) = ax+b with a,b  Z 

 

Then x = f(x) h(x) = n(ax+b) 

 

Comparing the coefficients on either side of this equation, we see that na = 1 and nb = 0. 

Thus, n is a unit in Z, that is, n = + 1  

 

Therefore, 1 < f(x)> = <x,2>. Thus, we can write  

 

1 = x (a0+a1x
4
+a1x

r
) + 2(b0+b1x+…+bsx

s
), where a1,bjZ i = 0, 1…..r and j = 0, 

1,…….,s 

 

Now, on comparing the constant term on either side we see that 1 = 2b0. This can‟t be 

true, since 2 is not invertible in Z. So we reach a contradiction. 

 

Thus, <x,2> is not a principal ideal. 

 

Thus, Z[x] is not a P.I.D. 

 

Now, try the following exercise. 

 

E 7) Show that a subring of a PID need not be a PID. 

 

E 8) Will any quotient ring of a PID be a PID? Why? 
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Remember that a PID must be an integral domain. 

 

We will now discuss some properties of divisibility in PIDs. You may recall from Unit 12 

that if R is a ring and a,b  R, with a,b  0, then a divides b if there exists c  R such 

that b = ac. 

 

Now we would like to generalize the definition of some terms that you came across in 

Unit 1 in the context of Z. 

 

Definition 

 

Given two elements a and b in a ring R, we say that c  R is a common divisor of a and 

b if c | a and c | b. 

 

An element d  R is a greatest common divisor (g.c.d. in short) of a, b R if 

 

i) d | a and d | b, and 

 

ii) for any common divisor c of a and b, c | d. 

 

We will show you that if the g.c.d of two elements exists, it is unique up to units, i.e., if d 

and d` are two g.c.ds of a and, then d=ud`, for some unit u. For this we need a result that 

you can prove in the following exercise. 

 

E 9) Let R be an integral domain. Show that 

 

a) u is a unit in R iff u | 1. 

b) for a, b  R, a | b and b | a iff a and b are associates in R. 

 

So now let us prove the following result. 

 

Theorem 3 

 

Let R be an integral domain and a, b R. If a g.c.d of a and b exists, then it is unique up 

to units. 

 

Proof 
 

So, let d and d` be two g.c.ds of a and b. Since d is a common divisor and d` is a g.c.d, we 

get d | d`. Similarly, we get d` | d. Thus, by E 9 we see that d and d` are associates in R. 

thus, the g.c.d of a and b is unique up to units. 
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Theorem 3 allows us to say the g.c.d instead of a g.c.d. We denote the g.c.d of a and b by 

(a,b). (This notation is also used for elements of R x R. But there should be no cause for 

confusion. The context will clarify what we are using the notation for). 

 

How to we obtain the g.c.d of two elements in practice? How did we do it in Z? we 

looked at the common factors of the two elements and their product turned out to be the 

required g.c.d. We will use the same method in the following example.  

 

Example 5 

 

In Q[x] find the g.c.d of  

 

p(x) = x
2
+3x – 10 and  

 

q(x) = 6x
2
 – 10 x – 4  

 

Solution  

 

By the quadratic formula, we know that the roots of p(x) are 2 and – 5, and the roots of 

q(x) are 2 and – 1 / 3 

 

Therefore, p(x) = (x-2) (x+5) and q(x) is the product of the common factors of p(x) and 

q(x), which is (x-2). 

 

Try this exercise now 

 

E 10) Find the g.c.d of  

 

a) 2 and 6 in Z / <8> 

b) x
2
+8x15 and x

2
+12x+35 in Z[x]. 

c) x
3
-2x

2
+6x-5 and x

2
-2x+1 in Q[x]. 

 

let us consider the g.c.d of elements in a PID 

 

Theorem 4 

 

Let R be a PID and a, b R. Then (a,b) exists and is of the form ax+by for some x,y  R. 

 

Proof 

 

Consider the dieal <a,b>. Since R is a PID, this ideal must be principal also. Let d  R 

such that <a,b> = <d>. we will show that the g.c.d of a and b is d. 
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Since a <d>, d | a, Similarly, d | b. 

 

Now suppose c  R such that c | a and c | b. 

 

Since d <a,b>,   x, y  R such that d = ax+by. 

 

Since c | a and c | b, c | (ax+by), i.e., c | d. 

 

Thus, we have shown that d = (a,b), and d = ax+by for some x,y  R. 

 

The fact that F[x] is a PID gives us the following corollary to Theorem a. 

 

Corollary 
 

Let F be a field. Then any two polynomials f(x) and g(x) in F[x] have a g.c.d which is of 

the form a(x) f(x) + b(x) g(x) for some a(x)  F[x]. 

 

For example, in 10 (c), (x–1) = )12(
5

)(
)562(

5

1 223 


 xx
x

xxx  

 

Now you can use Theorem 4 to prove the following exercise about relatively prime 

elements in a PID, i.e., pairs of elements whose g.c.d is 1. 

 

E 11) Let R be a PID and a,b,c  R such that a | bc. Show that if (a,b) = 1, then a | c. 

 

(Hint: By Theorem 4,   x,y  R such that ax+by = 1). 

 

Let us now discuss a concept related of a prime element of a domain (see Sec. 12.4). 

 

Definition  

 

Let R be an Integral domain. We say that an element x  R IS irreducible if  

 

i)  x is not a unit, and  

 

ii)  if x = ab with a,b  R, then a is a unit or b is a unit. 

 

Thus, an element is irreducible if it cannot be factored in a non-trivial way, i.e., its only 

factors are its associates and the units in the ring.  

 

So, for example, the irreducible elements of Z are the prime, numbers and their 

associates. This means that an element in Z is prime iff it is irreducible. 
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Another domain in which we can find several examples is F[x}, where F is a field. Let us 

look at the irreducible elements in E9(x), i.e., the irreducible polynomials over R and C. 

Consider the following important theorem about polynomials in C[x]. You have already 

come across this in the Linear Algebra course. 

 

Theorem 5 (Fundamental Theorem of Algebra) 
 

Any non-constant polynomial in C[x] has a rot in C. (In fact, it has all its roots in C). 

 

Does this tell us anything about the irreducible polynomials over C? Yes. In fact, we can 

also write it as. 

 

Theorem 5 

 

A polynomial is irreducible in C[x] iff it is linear 

 

Theorem 6 

 

Any irreducible polynomial in R[x] has degree 1 or degree 2. 

 

We will not prove these results here but we will use them often when discussing 

polynomials over R or C. You can use them to solve the following exercise. 

 

E 12) Which of the following polynomials is irreducible? Give reasons for your choice. 

 

a) x
2
-2x+1  R[x] 

b) x
2
+x+1  C[x] 

c) x-i  C[x] 

d) x
3
-3x

2
+2x+5  R[x] 

 

Let us now discuss the relationship betwee9 prime and irreducible elements in a PID. 

 

Theorem 7 
 

In a PID an element is prime iff it is irreducible. 

 

Proof 
 

Let R be a PID and xR be irreducible. Let x | ab, where a,bR. Suppose x a. Then 

(x,a) = 1, since the only factor of x is itself, up to units. Thus, by E 11, x | b, Thus, x is 

prime.  
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To prove the converse, you must solve the following exercise. 
 

E 13)  Let R be a domain and p  R be a prime element. Show that p is irreducible. 
 

(Hint: Suppose P = ab. Then p | ab. If p | a, then show that b must be a unit.) 
 

Now, why do you think we have said that Theorem,7 is true for a PID only? From E 13 

you can see that one way is true for any domain. Is the other way true for any domain? 

That is, is every irreducible element of a domain prime? You will get an answer to this 

question in Example 6. Just now we will look at some uses of Theorem 7.  
 

Theorem 7 allows us to give a lot of examples of prime elements of F[x]. For example, 

any linear polynomial over F is irreducible, and hence prime. In the next unit we will 

particularly consider irreducibility (and hence primness) over Q[x] 
 

Now we would like to prove a further analogy between prime elements in a PID and 

prime numbers, namely, a result analogous to Theorem l0 of Unit For this we will first 

show a very interesting property of the ideals of a PID. This property called the ascending 

chain condition, says that any increasing chain of ideals in a PID must stop after a finite 

number of steps.  
 

Theorem 8 
 

Let R be a PID and I1,I2……, be an infinite sequence of ideals of R satisfying  
 

I1 ....2  I r an ass( 

 

Then m N such that Im = Im+1 = Im+2=…… 

 

Proof 
 

Consider the set I =


1
21 ....

n

II  . We will prove that I is Firstly, I 

.sin, 11 IIandIce    

 

Secondly, if a,b I, then a I, and b Is for some r,s  N.  

 

Assume r > s. Then Is   Ir. Therefore, a,b  Ir, Since Ir is an ideal of R, a-b  Ir   I. 

Thus, a-b  I   a, b I. 

 

Finally, let x  R and a  I. Then a  Ir for some r  N. 
 

xa  Ir   I. Thus, whenever x  R and a  I, xa  I.  
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Thus, I is n ideal of R. Since R is a PID, I = <a> for some a  R. Since a  I, a  Im for 

some m N. 

 

Then I Im. But Im  I. So we see that I = Im. 

 

Now, Im = Im+2, and so on. Thus, Im=Im+1 = 1m+2=… 

 

Now, for a moment let us go back to Sec. 12.4, where we discussed prime ideals. Over 

there we said that an element pR is prime iff < p > is a prime ideal of R. If R is a PID, 

we shall use Theorem 7 to make a stronger statement.  

 

Theorem 9 
 

Let R be a PIP. An ideal < a > is a maximal ideal of R iff a is a prime element of R.  

  

Proof 
 

If <a> is a maximal ideal of R, then it is a prime ideal of R. Therefore, a is a prime 

element of R.  

 

Conversely, let a be prime and let I be an ideal of R such that < a > ~ I. Since R is a PID, 

I = <b> for some b e R. We will show that b is a unit in R; and hence, by E 4, <b>=R, 

i.e., I = R. 

 

Now, <a>   <b>   a = bc for some c  R. Since a is irreducible, either is an associate 

of a or b is a unit in R. But if b is an associate of a, then <b> = <a>, a contradiction. 

Therefore, b is a unit in R. Therefore, 1= R. 

 

Thus, <a> is a maximal ideal of R. 

 

What Theorem 9 says is ~hat the prime ideals and maximal ideals coincide in a PID. 
 

Try the following exercise now. 
 

E 14) Which of the following ideal are maximal? Give reasons for your choice. 
 

a)  < 5 > in Z, 

b)  < x
2
-1 > in Q [ 

c)  <x
2
+x+1 > in R[x], 

d)  < x > in Z[x]. 
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Now, take any integer n. then we can have n = 0, or n = + 1, or n has a prime factor. This 

property of integers is true for the elements of any PID, as you will see now. 
 

Theorem 10 
 

Let R be a ID and a be a non-zero non-invertible element of R. then there is some prime 

element p in R such that p|a. 
 

Proof 
 

If a is prime, take p = a. otherwise, we write a = a1b1, where neither a1 nor b1 is an 

associate of a. Then <a> 

  < a1 >. If a1 is prime take p = a1. Otherwise, we can write a1 = 

a2b2, where neither a2 nor b2 is an associate of a1. Then <a1> 

  <a2>. Continuing in this 

way we get an increasing chain 
 

<a> 

  <a1> 


  <a2> 


… 

 

By Theorem 8, this chain stops with some <an>. Then an with be prime, since it doesn‟t 

have any non-trivial factors. Take p = an, and the theorem is proved. 
 

And now we are in a position to prove that any non-zero non-invertible element of a PID 

can be uniquely written as a finite product of prime elements (i.e., irreducible elements). 
 

Theorem 11 
 

Let R be a PID. Let a  R such that a   0 and a is not a unit. Then a = p1p2…pr, where 

p1,p2,…,pr, are prime elements of R. 

 

Proof 

 

If a is a prime element, there is nothing to prove. If not, then p1 | a for some prime p1 in 

R, by Theorem 10. Let a = p1a1. If a1 is a prime, we are through. Otherwise p2|a1 for some 

prime p2 in R. Let a1 = p2a2. Then a = p1p2a2. If a2 is a prime, we are through. Otherwise 

we continue the process. Note that since a1 is a non-trivial factor of a, <a> 

  <a1>. 

Similarly, <a1> 

  <a2>. So, as the process continues we get an increasing chain of ideals,  

<a> 

  <a1> 


  <a2> 


  

 

In the PID R. Just as in the proof of Theorem 10, this chain ends at <am> for some m  

N, and am is irreducible. 
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Hence, the process stops after m steps, i.e., we can write a = p1p2… pm, where pi is a 

prime element of R  i = 1,…, m. 

 

Thus, any non-zero non-invertible element in a PID can be factorised into a product of 

Primes. What is interesting about this factorization is the following result that you have 

already proved for Z in Unit 1. 

 

Theorem 12 

 

Let R. be a PID and a   0 be non-invertible in R. Let a = P1P2...Pn = q1q2...qm, where Pi 

and qj are prime elements of R. Then n = m and each Pi is an associate of some qj for 1 < i 

< n, 1 < j < m. 

 

Before going into the proof of this result, we ask you to prove a property of prime 

elements that you will need in the proof. 

 

E 15)  Use induction on n to prove that if p is a prime element in an integral domain 

Rand if p|a1a2... an (where a1,a2,…, an R), then pi for some i= 1,2,...,n. 

 

Now let us start the proof of Theorem 12. 

 

Proof 

 

Since p1p2…pn = q1q2…qm, p1|p1p2…qm. 

 

Thus, by E 15, p1|qj for some j = 1,……,m. By changing the order of the qi, if necessary, 

we can assume that j = 1, i.e., p1 | q1. Let q1 = p1u1. Since q1 is irreducible, u1 must be a 

unit in R. So p1 and q1 are associates. New we have  

 

P1p2…pn = (p1u1) q2…qm 

 

Canceling p1 from both sides, we get 

 

p2p3…pn = u1q2…qm. 

 

Now, if m > n, we can apply the same process to p2,p3, and so on. 

 

Then we will get  

 

1 = u1u2…un qn+1…qm. 

 

This shows that qn+1 is a unit. But this contradicts the fact that qn+1 is irreducible. 
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Thus, m < n. 

 

Interchanging the roles of the ps and qs and by using a similar argument, we get n < m. 

 

Thus, n = m. 

 

During the proof we have also shown that each pi is an associate of some qi, and vice 

versa. 

 

What Theorem 12 says is that any two prime factorizations of an element in a PID are 

identical, apart from the order in which the factors appear and apart from 

replacement of the factors by their associates. 

 

Thus, Theorems 11 and 12 say that every non-zero element in a PID R, which is not a 

unit, can be expressed uniquely (upto associates) as a product of a finite number of prime 

elements.  

 

For example, x
2
 – 1  R [x] can be written as (x–1) (x +1) or (x+1) (x–1) or [

2

1
(x +1)] 

[2(x -1)] in R [x]. 

 

Now you can try the following exercise.  

 

E 16)  Give the prime factorization of 2x
2
–3 x+1 in Q[x] and Z2[x]. 

 

The property that we have shown for a PID in Theorems 11 and 12 is true for several 

oilier domains also. Let us discuss such rings now.  

 

3.3 Unique Factorisation Domain (UFD) 
 

In this section we shall look at some details of a class of domains that includes PIDs 

 

Definition 

 

We call an integral domain R a Unique Factorisation Domain (UFD, in short) if every 

non-zero element-of R which is not a unit in R can be uniquely expressed as a product of 

a finite number of irreducible: elements of R. 

 

Thus, if R is a UFD and a  R, with a   0 and a being non-invertible, then 

 

i)  a can be written as a product of a finite number of irreducible elements, and  
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ii)  if a = p1p2 pn=qlq2… qm be two factorisations into irreducible, then n = m and each 

pi is am associate of some qj, where 1 < I < n, 1 < j < m. 

 

Can you think of an example of a UFD? Do Theorem 11 and 12 help? Of course! In them 

we have proved that every PID is a UFD. 

 

Thus, F[x] is a UFD for any field F. 

 

Also, since any Euclidean domain is a PID, it is also a UFD. Of course, in Unit 1 you 

directly proved that Z is a UFD. Why don‟t you go through that proof and then try and 

solve the following exercises. 

 

E 17) Directly prove that F[x] is a UFD, for any filed F. 

  

 (Hint: Suppose you want to factorise f(x). Then use induction on deg f(x).) 

 

E 18)  Give two different prime factorisations of 10 in Z:  

 

So you have seen several examples of UFDs. Now we give you an example of a domain 

which is not a UFD (and hence, neither a PID nor a Euclidean domain).  

 

Example 6 

 

Show that Z[ 5 ] = {a+b 5  | a,b  Z} is not a UFD. 

 

Solution  

 

Let us define a function  

 

f: Z [ 5 ]  NU {0}by f(a+b 5 ) = a
2
+5b

2
.  

 

This function is the norm function, and is usually denoted by N. 

 

You can check that this function has the property that  

 

f() = f() f()  ,  Z [ 5 ]. 

 

Now, 9 has two factorizations in Z[ 5 ], namely,  

 

9 = 3.3 = (2+ 5 ) (2- 5 ) 
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In Example 3, you have already shown that the only units of Z[ 5 ] are 1 and – 1. Thus, 

no two of 3, 2+ 5  and 2 - 5  are associates of each other. 

 

Also, each of them is irreducible. For suppose any one of them, 

 

say 2+ 5 , is reducible. Then  

 

2+ 5 =  for some non-invertible ,  Z[ 5 ].  

Applying the function f we see that  

 

f(2+ 5 ) = f() f(), 

 

i.e., 9 = f() f(). 

 

Since f(), f()  N and ,  are not units, the only possibilities are f() = 3 = f().  

 

So, if  = a+b 5 , then a
2
+5b

2
 = 3. 

 

But, if b  0, then a
2 

+ 5b
2
 > 5; and if b = 0, then a

2
 = 3 is not possible in Z. So we reach a 

contradiction. Therefore, our assumption that 2+ 5  is reducible is wrong. That is, 2+

5 is irreducible.  

 

Similarly, we can show that 3 and 2- 5  are irreducible. Thus, the factorization of 9 as a 

product of irreducible elements is not unique. Therefore, Z [ 5 ] is not a UFD.  

 

From this example you can also see that an irreducible element need not be a prime 

element. For example, 2+ 5  is irreducible and 2+ 5 |3.3, but 2+ 5 3. Thus, 2+

5  is not a prime element. 

 

Now for an exercise  

 

E 19) Give two different factorisations of 6 as a product of irreducible elements in Z[

5 ]. 

 

Now let us discuss some properties of a UFO. The first property says that any two 

elements of a UFD have a g.c.d; and their g;c.d is the product of all their common factors. 

Here we will use the fact any element a in a UFD R can be written as 

 

A = p1
r1

p2
r2

…pn
rn
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Where the pis are distinct irreducible elements of R. For example, in Z[x] we have x
3 

– 

x
2
–x+1= (x-1) (x+1) (x–1) = (x–1)

2
 (x+1). 

 

So, let us prove the following result.  

 

Theorem 13 
 

Any two elements of a UFD have a g.c.d. 

 

Proof 
 

Let R be a UFD and a.b R.  

 

Let a = p1
r1

p2
r2

…pn
rn

 and b = p1
S1

p2
S2

…pn
Sn

  

 

Where p1,p2,…, pn are distinct irreducible elements of R and ri and spare non-negative 

integers  i =  1,2,…,n. 

 

(If some Pi does not occur in the factorisation of a, then the corresponding ri = 0 

Similarly, if some pi is not a factor of b, then the corresponding si = 0. For example, take 

20 and 15 in Z. Then 20 = 2
2
x3

0
 x.5

1
 and 15 = 2

0 
x3

1
x.5

1
)  

 

Now, let ti = min (ri,si)  I = 1, 2,….,n. 

 

Then d = p1
t1

p2
t2

…pn
tn

 divides a as well as b, since ti < ri and ti < si  I = 1,2,….,n. 

 

Now, let c | a and c | b. Then every irreducible factor of c must be an irreducible factor of 

a and of b, because of the unique factorisation property. 

 

Thus, c = p1
m1

p2
m2

…pn
mn

 where mi < ri and mi < si I = 1,2,…,n. Thus, mi < ti   

 

Therefore, c | d.  

 

Hence, d = (a,b). 

 

This theorem tells us that the method we used for obtaining the g.c.d in Example 5 and E 

10 is correct. 

 

Now, let us go back to Example 6 for a moment. Over there we found a non-UFD in 

which an irreducible element need not be a prime elemnt. The following result says that 

this distinction between irreducible and prime elements can only occur in a domain that is 

not a UFD 
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Theorem 14  
 

Let R be a UFD. An element of R is prime iff it is irreducible. 

 

Proof 

 

By EI3 We know that every prime in R is irreducible. So let us prove the converse.  

 

Let a  R be irreducible and let a | bc, where b,c R. 

 

Consider (a,b). Since a is irreducible, (a,b)=1 or. (a.b) = a 

 

If(a,b) = a, a | b. 

 

If (a,b) = 1, then a  | b. Let bc = ad, where d  R.  

 

Let b = p1
r1 

p2
r2

…pm
rm

 and c = q1
S1

q2
S2

…qn
Sn

, be irreducible factorizations of b and c. 

Since bc = ad and a is irreducible, a must be one of the pis or one of the qis. Since ab, a 

 pi for any i. Therefore, a = qj for some j. That is, a|c. 

 

Thus, If (a,b) =1 , then a |c  

 

So, we have shown that a | bc a | b or a | c. 

 

Hence, a is prime. 

 

For the final property of UFDs that we are going to state, let us go back of Example 4 for 

a moment. Over there we gave you an example of a PID R, for which R [x] if R is a UFD. 

We state the following result.  

 

Theorem 15 

 

Let R be a UFD. Then R[x] is a UFD 

 

We will not prove this result here, even though it is very useful to mathematicians. But let 

us apply it. Y 011 can use it to solve the following exercises. 

 

E 20)  Give an example of a UFD which is not a PID.  

 

E21)  If p is an irreducible clement of a UFD R. then is it irreducible in every quotient 

ring of R? 
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E 22)  Is the quotient ring of a UFD a UFD? Why? 

 

E 23) Is a subring of a UFD a UFD? Why? 

 

Let us wind up this unit now, with a brief description of what we have covered in it. 

 

4.0 CONCLUSION  

 

5.0 SUMMARY 
 

In this unit we have discussed the following points. 

 

1)  The definition and examples of a Euclidean domain. 

 

2)  Z, any field and any polynomial ring over a field arc Euclidean domains. 

 

3)  Units associates, factors, the g.c.d of two elements, prime elements and irreducible 

elements in an integral domain. 

 

4)  The definition and examples of a principal ideal domain (PID). 

 

5)  Every Euclidean domain is a PID, but the converse is not true. Thus, Z. F and F[x] 

are PIDs for any field F. 

 

6) The g..c.d of any two elements a and b in a PID R exists and is of the form ax+by 

for some x,y  R. 

 

7) The Fundamental Theorem of Algebra: Any non-constant polynomial over C has 

all its roots1n C.  

 

8)  In a PID every prime ideal is a maximal ideal. 

 

9)  The definition and examples of a unique factorisation domain (UFD).  

 

10)  Every PID is a UFD, but the converse is not true. Thus Z. F an~ F[x] are UFDs, 

for any field F 

11)  In a UFD (and hence, in a PID) an clement is prime iff it is irreducible  

12)  Any two elements In a UFD have a g.c.d.  

 

13) If Ris a UFD, then so is R [x] 
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ANSWER TO SELFASSESSMENT EXERCISE 

 

 1. d : F \ {0}  N  {0}: d(x) = 1 

 

For any a, b  F \ {0}, 

 

d(ab) = 1 = d(a). 

 

d(a) = d(ab)  a,b  F \ {0} 

 

Also, for any a,b  F, b  0, 

a = (ab
-1

)b+0, 

So, F trivially satisfies the second condition for a domain to be Euclidean. 

 

Thus, F is a Euclidean domain.  

 

2.  In Unit. 13, you have seen that 

 

deg (f(x) g(x) = deg f(x)+deg g(x)  f(x),g(x)  F [x] \ {0}. 

 

Now, use Theorem 5 of Unit 13, and you will have proved the result. 

 

3a) m  Z is a unit iff  n  Z such that mn = 1,i.e., iff m = + l. 

 

b) Let m m  Z6 be a unit. Then  n   Z6 such that m n  =1  

 

Thus, from Sec. 1.6.2 we see that m is a unit if the g.c.d of m and 6 is 1. 

 

 m = 1 or 5  

 

c)  Z/5Z is a field. Thus, the units are all its non-zero elements. 
 

d)  Let a+ib be a unit. Then  c+id  Z+iZ such that 
 

(a+ib) (c+id) = 1, 

 (ac-bc)+(ad+bc)I = 1 

 ac-bd = 1 and ad+bc = 0 

 b = 0, as in Example 3. 

 

Thus, a+ib = l or-1, using,(a) above. 
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4.  Let u  R be a unit. Then  v  R such that vu = 1. Thus, for any r  R, r = r. 1 = 

r(vu) = (rv)u  Ru. 

 

Thus, R  Ru.  R = Ru, 

 

Conversely, let Ru = R. Since 1  R =.Ru,  v  R such that 

 

1 = vu. Thus, u is a unit in R. 

 

5.  Apply Theorem 2 to the Euclidean domain F[x].  

 

6.  Let R=Z. Then S = {n  Z* |  | n | > 1} U {0} 

 

Then 2  S, 3  S but 2-3  S since |2-3| = 1. 

 

Thus, S is not even a subring of R, 

 

7.  For example, Z[x] is a subring of Q[x], which is a PID. But Z[xl is not a PID. 

 

8.  Z is it,PID. But Z/6Z is not even a domain. Thus, it is not a P1D. 

 

9a. u is a unit iff uv = 1 for some v  R iff u | 1 

 

b. a | b and b | a 

 

=> b = ac and a = bd for some b,d  R. 

=> b = bdc 

=> b = 0 or dc = 1 

 

If b = 0, then a = 0, and then a and b are associates. 

If b  0, then dc = 1. Thus, c is a unit and b = ac.  

 

Therefore, a and bare associates.  

 

Conversely, let a and b be associates in R, say a = bu, where u is a unit in R. then b | a. 

Also, let v  R such that uv = 1. Then av = buv = b.  

Thus, a | b. 

 

10a.  2 . 

 

b)  x
2
+8x+15 = (x+3) (x+5), x

2
+12x+35 = (x+5) (x+7) 
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Thus, their g.c.d is x+5 

 

c)  x
3
-2x

2
+6x-5 = (x-1) (x

2
-x+5), x

2
-2x+1 ::: (x-1)

2
, 

 

Thus, their g.c.d is x-1. 

 

11.  x,y  R such that ax+by = 1 

 

Then c = 1c = (ax+by) c = acx+bcy  

 

Since a | ac and a | bc, a | (acx+bcy) 

  

12.  (c) is, because of Theorem  

 

(a)  is not, since it is (x-1)
2
  

(b)  is not, because of Theorem 5'.  

(d)  is not, because of Theorem 6.  
  

13.  Let p = ab. Then p | ab  p | a or p | b. suppose p | a. Let a – pc. Then p = ab = pcb 

 p(1-cb) = 0  1 – cb = 0, since R is a domain and p  0. Thus, bc = 1, i.e., b is 

a unit. Similarly, you can show that if p | b, then a is a unit.  

 

So, p = ab  a is a unit or b is a unit, i.e., p is irreducible.  

 

14(a),  (c), since 5 and x
2
+x+ 1 are irreducible in Z and R[x], respectively.  

(b) is not, using Theorem 9. 

(d)  is not, since Z[x]/ <x> ~ Z, which is not a field.  

 

15.  The result is clearly true for n = 1. Assume that it holds for all m < n, i.e., 

whenever m < n and p | al a2...am then p | ai for some i = 1, 2,…,m. 

 

Now let p | al a2...an. Then p | (al a2...an-1)an.  

 
Since p is a prime element, we find that p | al a2...an-1 or p | an 
 

If p | al a2...an-1, then p | ai for some i = 1,…,n-l by our assumption.  

 

If p  |  a1…an-1, p | an. 

 

Thus, in either case, p | ai for some i = 1,….,  

 

So, our result is true for n.  
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Hence, it is true  n  N.  
 

16.  2x
2
 - 3x + 1 = (2x - l) (x - 1) in Q[x].  

 

In Z2 [x] the given polynomial is x+1 , since 2  = 0 and - 3  = 1 .  

 

This po1ynonlial is linear, and hence, irreducible over Z2 

 

Thus, its prime factorisation is just x+1 . 

 
17.  Let f(x) be a non-zero non-unit in F[x] and let deg f(x) = n.  

 

Then n > 0. We will prove that f(x) can be written as a product of irreducible elements, 

by induction on n, If n = 1, then f(x) is linear, and hence irreducible.  

 

Now suppose that the result is true for polynomials of degree < n. Now take f(x). If f(x) is 

irreducible, there is nothing to prove. Otherwise, there is a prime f1(x) such that f1(x) | 

f(x). Let f(x) = f1(x)g1(x). Note that deg f1(x) > 0. 

 

Hence, deg g1(x),< deg f(x). If g1(x) is prime, we are through. Otherwise we can find a 

prime element f2(x) such that gl(x) = f2(x)g2(x). Then deg g2(x) < deg gl(x). This process 

must stop after a finite number of steps, since, each time we get polynomials of lower 

degree. Thus, we shall finally get  

 

f(x) = f1(x) f2(x)…fm(x),  

 

where each f1(x) is prime in F[x].  

  
Now, to show that the factorization is unique you go along the lines of the proof of 

Theorem 12. .'   
 

18. 10 = 2 x 5 = x 2. 

 

19. 6 = 2.3 = (1+ 5 ) (1- 5 )  

 

Using the norm function you should check that each of 2,3,1+ 5 and 1 - 5 are 

irreducible in Z [ 5 ]. 

 

20. Z[x]. 

 



MTH 211                                                                                                                         MODULE 2 

189 

 

21. No. For example, x is irreducible in Z[x]; but x  is zero in Z[x]/< x > ~ Z. 

22. The quotient ring of a domain need not be a domain. For example, Z is a UFD, but 

Z/<4> is not. 

 

Also, even if the quotient ring is a domain, it may not be a UFD. For example, Z[ 5 ] ~ 

Z[x]/< x
2
+5 > is not a UFD, while Z[x] is 

 

23. No. For example, Z[ 5 ] is a subring of C, a UFD. But Z[ 5 ] is not a UFD. 
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1.0 INTRODUCTION  
 

In the previous unit we discussed various kinds of integral domains, including unique 

factorization domains. Over there you saw that Z[x] and Q[x] are UFDs. Thus, the prime 

and irreducible elements coincide in these rings; In this unit we will give you a method 

for obtaining the prime (or irreducible) elements of Z[x] and Q[x]. This is the Eisenstein 

criterion, which can also be used for obtaining the irreducible elements of any polynomial 

ring over a UFD. 

 

After this we will introduce you to field extensions and subfields. We will use irreducible 

polynomials for obtaining field extensions of a field F from F[x]. We will also show you 

that every field it; a field extension of Q or Zp for some prime p. Because of this we call 

Q and the Zp
S
 prim fields. We will discuss these fields briefly. 

 

 

Fig. 1: Evariste Galois (1811 – 1832) 

 

Finally, we wil1.look at finite fields. These fields were introduced 

by the young French mathematician Evariste Galois (Fig. l) while 

he was exploring number theory. We will discuss some properties 

of finite fields which will show us how to classify them. 

 

Before reading this unit we suggest that you go through the 

definitions of irreducibility from Unit l4. We also suggest that you 
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go through Units 3 and 4 of the Linear Algebra course if you want to understand the 

proof of Theorem 7 of this unit. We have kept the proof optional. But once you know 

what a vector space and its basis are, then the proof IS very. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 prove and use Eisenstein's criterion for irreducibility in Z[x] and Q[x] 

 obtain field cxten5ionsof a field F from F[x] 

 obtain the prime field of any field 

 use the fact that finite field F has p
n
 elements, where char F = p and 

PZdim F= n. 

 

3.0 MAIN CONTENT  
 

3.1 Irreducibility in Q[x] 
 

In Module 3 Unit 4 we introduced you to irreducibility irredt1clble polynomials in F[x], 

where F is a field. We also stated the Fundamental Theorem of Algebra, which said that a 

polynomial over C is irreducible iff it is linear. You also learnt that if a polynomial over 

R is irreducible, it must have degree l or degree 2. Thus, anypo1ynomial over R of 

degree more than 1 is reducible. And. using the quadratic formula, we know which 

quadratic polynomials over R are irreducible.  

 

Now let us look at polynomials over Q. Again, as for any field F, a linear polynomial 

over Q is irreducible. Also, by using the quadratic formula we can explicitly obtain the 

roots of any quadratic polynomial over Q and hence figure out whether it is irreducible or 

not. But, can you tell whether 2x
7
+3x

5
 – 6x

4
 + 3x

3
 + 12 is irreducible over Q or not? In 

two seconds we can tell you that it is irreducible, by using the Eisenstein criterion. This 

criterion was will build up the theory for proving this useful criterion. 

 

Let us start with a definition.  

 

Definition 
 

Let f(x) = a0 + a1x +...+ anx
n
  Z[x]. We define the content of f[x] to be the g.c.d of the 

integers a0, al,…, an,  

 

We say that f(x) is primitive if the content of f(x) is 1 
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For example, the content of 3x
2
 + 6x+ 12 is the g.c.d. of 3,6 and  12, i.e., 3. Thus, this 

polynomial is not primitive. But x
5
 + 3x

2
 + 4x -5 is primitive, since the g.c.d of 1,0,0,3,4,-

5 is 1. 

 

You may like to try the following exercises now. 

 

E 1)  What are the contents of the following polynomials over Z? 

 

a) 1 + x + x
2
 + x

3
 + x

4
 

 

b) 7x
4
 - 7  

 

c)  5(2x
2
 -l)(x+ 2) 

 

E 2)  Prove that any Polynomial f(x)  Z[x] can be written as dg(x), where d is the 

conter t 

 

We will now prove that the product of primitive polynomials is a primitive polynomial. 

This result is well known as Gauss’ lemma. 

 

Theorem 1 
 

Let f(x) and g(x) be primitive polynomials. Then so is f(x) g(x). 

 

Proof  
 

Let f(x) = a0 + alx + ... anx
n
  Z[x] and 

 

g(x) = b0 + blx + ...+ bmx
m

  Z[x].where the  

 

g.c.d of a0, a1,…, an is 1 and the g.cd of b0 b1,…, bm is 1. Now  

 

f(x) g(x) = c0+ c1x +…+cm+nx
m+n 

 

where ck = a0bk+ albk-1 +...+akb0. 

 

To prove the result we shall assume that it is false and then reach a contradiction. So, 

suppose that f(x) g(x) is not primitive. Then the g.c.d of c0, c1,..., cm+n is greater than 1, 

and hence some prime p must divide it. Thus, p | ci  i = 0, 1,..., m+n. Since f(x) is 

primitive, p does not divide some ai. Let r be the least integer such that p | ar. Similarly, 

let s be the least integer such that p | bs. 
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Now consider 

 

cr+s  =  a0br+s+albr+s1 + ...+ arbs + ...+ar+s b0 

 

= arbs + (a0br+s + albr+s-l+ … + ar-l bs+1 + ar+1bs-1+…+ ar+sb0) 

 

By our choice Of r and s, p | a0,…, p | a1, P | ar-1, and p | b0, p | bl,…, p | bs-l. Also  p | cr+s  

 

Therefore, p | cr+s - (a0br+s +... + ar-1 bs+1 + ar+1 bs-l+ ...+ ar+sb0) 

 

i.e., p | ar bs  

 

 p | ar or p | bs since p is a prime. 

 

But p  |  ar and p  |  bs. So we reach a contradiction. Therefore, our supposition is false. 

That is, our theorem is true. 

 

Let us shift our attention to polynomials over Q now. 

 

Consider any polynomial over Q, say f(x) = 
3

1
3

5

1

2

3 23  xxx . If we take the kcm of all 

the denominators, i.e., of 2,5, 1 and 3, i.e., 30 and multiply f(x) by it what do we get?  

 

30f(x) = 45x
3
 + 6x

2
 + 90x + 10  Z[x] 

 

Using the same process, we can multiply any f(x)  Q[x] by a suitable integer d so that 

df(x)  Z[x]. We will use this fact while relating irreducibility in Q[x] with irreducibility 

in Z[x]. 

 

Theorem 2 

 

If f(x)  Z[x] is irreducible in Z[x], then it is irreducible in Q[x]. 

 

Proof 
 

Let us suppose that f(x) is not irreducible over Q[x]. Then we should reach a 

contradiction. So let f(x) = g(x) h(x) in Q[x], where neither g(x) nor h(x) is a unit, i.e., 

deg g(x) > 0, deg h(x) > 0. Since g(x)  Q[x],  m  Z such that mg(x)  Z[x]. 

Similarly,  n Z such that n h(x)  Z[x].  
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Then, 

 

mnf(x) = mg(x) nh(x)  ……………(1) 

 

Now, let us use E2. By E2, f(x) = rf1(x), mg(x) = sg1 (x), nh(x) = th1 (x), where r, s and t 

are the contents of f(x), mg (x) and nh (x) and f1(x), g1(x), h1(x) are primitive polynomials 

of positive degree. 

 

Thus, (1) gives us 

 

Mnrf1(x) = stg1(x) h1(x)  ……………(2) 

 

Since g1(x) and h1(x) are primitive, Theorem 1 says that g1(x) h1(x) is primitive. Thus, the 

content of the right hand side polynomial in (2) is st. But the content of the left hand side 

polynomial in (2) is mnr. Thus. (2) says that mnr = st.  
 

Hence, using the cancellation law in (2), we get f1(x) = g1(x) h1(x).  

 

Therefore, f(x) = rf1(x) = (rg1(x)) h1(x) in Z[x], where neither rg1(x) nor h1(x) is a unit. 

This contradicts the fact that f(x) is irreducible in Z[x].  

 

Thus, our supposition is false. Hence, f(x) must be irreducible in Q[x].  

 
What this result says is that to check irreducibility of a polynomial in Q[x], it is enough 

to check it in Z[x]. And. for checking it in Z[x] we have the terrific Eisenstein‟s criterion 

that we mentioned at the beginning of this section.  

 

Theorem 3 (Eisenstein’s Criterion)  
 

Let f(x) = a0 + a1x + ... + anx
n
  Z[x] Suppose that for some prime number p, 

  
i)  f | an,  

 

ii)  p | a0 p | a1,…, p | an-1, and  

 

iii) p2 | a0 

 

Then f(x) is irreducible in Z[x] (and hence in Q[x])  
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Proof  
 

Can you guess our method of proof? By contradiction, once again! So suppose f(x) is 

reducible in Z[x]. 

Let f(x) = g(x) h(x), 

 

Where g(x) = b0 + b1 x + ... + bmx
m
, m> 0 and  

 

h (x) = c0 + c1 x + … + crx
r
, r > 0. 

 

Then n = deg f = deg g + deg h = m + r, and 

 

ak = b0 ck + b1 ck-1 + … + bk c0  k = 0, 1 …, n. 

 

Now a0 = b0c0. We know that p | a0. Thus, p | b0c0  p b0 or p | c0. Since p
2
  |  a0, p cannot 

divide both b0 and c0. Let us suppose that p | b0 and p  | c0. 

 

Now let us look at an = bm cr. Since p  | an, we see that p  | bm and p  | cr. Thus, we see that 

for some I, p  | bi. Let k be the least integer such that p  | bk. Note that 0 < k < m < n. 

 

Therefore, p | ak. 

 

Now, ak = (b0 ck + … + bk-1 c1) + bk c0. 

 

Since p | ak and p | b0,…, p | bk-1, we see that p | ak – (b0ck + … + bk-1c1), i.e., p | bkc0. But 

p | c0. So we reach a contradiction.  

 

Thus, f(x) must be irreducible in Z[x]. 

 

Let us illustrate the use of this criterion. 

 

Example 1 

 

Is 2x
7
 + 3x

5
 – 6x

4
 + 3x

3
 + 12 irreducible in Q[x]? 

 

Solution 

 

By looking at the coefficients we see that the prime number 3 satisfies the conditions 

given in Eisenstein‟s criterion. Therefore, the given polynomial is irreducible in Q[x] 
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Example 2 

 

Let p be a prime number. Is Q[x]/<x
3
 – p > a field? 

 

Solution   
 

From Unit 14 you know that for any field F, if f(x) is irreducible in F[x], then <f(x)> is a 

maximal ideal of F[x]. 

 

Now, by Eisenstein‟s criterion, x
3
 – p is irreducible since p  satisfies the conditions given 

in Theorem 3. Therefore, <x
3 
– p> is a maximal Ideal of Q[x]. 

 

From Unit 12 you also know that if R is a ring, and M is a maximal ideal of R. then R/M 

is a field. 

 

Thus, Q[x] / <x
3
 – p> is a field. 

 

In this example we have brought out an important fact. We ask you to prove it in the 

following exercise. 

 

E 3) For any n  N and prime number p, show that x
n
 – p is irreducible over Q[x].note 

that this shows us that we can obtain irreducible polynomials of any degree over 

Q[x]. 

 

Now let us look at another example of an irreducible polynomial. While solving this we 

will show you how Theorem 3 can be used indirectly. 

 

Example 3 

 

Let p be a prime number. Show that  

 

f(x) = x
p-1

 + x
p-2

 + … + x + 1 is irreducible in Z[x]. f(x) is called the pth cyclotomic 

polynomial. 

 

Solution 
 

To start with we would like you to note that f(x) = g(x) h(x) in Z[x] iff f(x+1) = g(x+1) 

h(x+1) in Z[x]. Thus, f(x) is irreducible in Z[x] iff f(x+1) is irreducible in Z[x]. 

Now, f(x) = 
1

1





x

x p
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 f(x+1) = 
x

x p 11 
 

 

= ),11...(
1

1

1

1  

 xCxCx
x

p

pppp (by the binomial theorem) 

 

= x
p-1

 + px
p-2

 + 
p
C2x

p-3
 +… + 

p
Cp-2 x + p. 

Now apply Eisenstein‟s criterion taking p as the prime. We find that f(x+1) is irreducible. 

Therefore, f(x) is irreducible. 

 

You can try these exercises now. 

E 4) If a0 + a1x + … + an x
n
  Z[x] is irreducible in Q[x], can you always find a prime 

p that satisfies the conditions (i), (ii) and (iii) of Theorem 3? 

 

E 5)  Which of the following elements of Z[x] are irreducible over Q? 

 

a) x
2
-12 .. 

 

b)  8x
3
 + 6x

2
 -9x+ 24 . 

 

c)  5x + 1 

 

E 6)  Let p be a prime integer. Let a be a non-zero non-unit square-free integer, i.e., b
2
 /  

a for any b  Z. Show that Z[x]/<x
p
+a> is an integral domain. 

 

E 7)  Show that x
P
 + a Zplx] is not irreducible for any it" E Zp' (Hint: Does E 13 of 

Unit 13 help?) 

 

So far we have used the fact that if f(x) E Z[x] IS irreducible over. Z. then it is also 

irreducible over Q, Do you think we can have a similar relationship between 

irreducibility in Q[x] and R[x]? To answer this consider f(x) = x
2
- 2. This is irreducible in 

Q[x], but f(x) = (x - )2  (x + )2 ) in R[x]. Thus, we cannot extend irreducibility over Q 

to irreducibility over R.  

 

But we can generalise the fact that irreducibility in Z[x] implies irreducibility in Q[x]. 

This is not only true for Z and Q; it is true for any UFD R and its field of quotients F (see 

Sec. 12.5). Let us state this relationship explicitly. 
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Theorem 4 
 

Let R be a UFD with field of quotients F. 

 

i)  If f(x)  R[x] is an irreducible primitive polynomial, then it is also irreducible in 

F[x]. 

 

ii)  (Eisenstein's Criterion) Let f(x) = a0 + alx + … + an x
n
  R[x] and p  R be a 

prime element such that p  |  an, p
2
  |  a0 and p | ai for 0 < i < n. Then f(x) is 

irreducible in F[x]. 

 

The proof of this result is on the same lines as that of Theorems 2 and 3. We will not be 

doing it here. But if you are interested, you should try and prove the result yourself.  

 

Now, we have already pointed out that if F is a field and f(x) is irreducible over F, then 

F[x]/<f(x)> is a field. How is this field related to F? That is part of what we will discuss 

in the next section. 

 

3.2  Field Extensions 
 

In this section we shall discuss subfields and field extensions. To start with let us define 

these terms. By now the definition may be quite obvious to you. 

 

Definition 
 

A non-empty subset S of a field F is caned a subfield of F if it is a field with respect to 

the operations on F. If S F, then S is called a proper subfield of F. 

 

A field K is called a field extension of F if F is a subfield of K. Thus, Q is a subfield of 

R and R is a field extension of Q. Similarly, C is a field extension of Q as well as of R. 

 

Note that a non-empty subset S of a field F is a subfield of F iff  

 

i)  S is a subgroup of (F,+), and . 

ii)  The 'set of all non-zero elements of S forms a subgroup of the group of non-zero 

elements of F under multiplication. 

 

Thus, by Theorem 1 of Unit 3, we have the following theorem. 
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Theorem 5 
 

A non-empty subset S of a field F is a subfield of F if and only if 

 

i)  a  S, b  S  a-b  S, and 

 

ii)  a  S, b  S, b  0 ab
-l
  S. 

 

Why don't you use Theorem 5 to do the following exercise now.  

 

E 8) Show that 

 

a) Q + iQ is a subfield of C 

b) Z + 2 Z is not a subfield or R.  

 

Now, let us look at a particular field extension of a field F. Since F[x] is an integral 

domain, we can obtain its field of quotients (see Module 3 Unit 2). We denote this field 

by F(x). Then F is a subfield of F(x). Thus, F(x) is a field extension of F. Its elements are 

expressions of the form 
)(

)(

xg

xf
, where f(x), g(x)  F[x} and g(x)  o. 

 

There is another way of obtaining a field extension of a field F from F[x]. We can look at 

quotient rings of F[x] by its maximal ideals. You know that an ideal is maximal in F[x] 

iff it is generated by an irreducible polynomial over F. So, F[x]/<f(x), 1s a field iff f(x) is 

irreducible over F. 

 

Now, given any f(x)  F[x], such that deg f(x) > 0, we will show that there is a field 

monomorphism from F into F[x]/<f(x). This will show that F[x)/<f(x» contains an 

isomorphic copy of F; and hence, we can say that it contains F.  

 

So, let us define : F F[x]/<f(x)>:  (a) = a + <f(x». 

 

Then,   (a+b) =   (a) +   (b), and 

 

  (ab) =   (a)   (b) 

 

Thus,   is a ring homomorphism. 

 

What is Ker   ?). 

 

 



MTH 211                                                                                                                         MODULE 2 

200 

 

 

Ker   = {a  F | a + <f(x)> = <f(x)>} 

 

 = {a  F | a +  <f(x)>} 

 

= {a  F | f(x) | a} 

 

= {0}, since deg f > 0 and deg a < 0. 

 

Thus,   is 1-1, and hence an inclusion.  

 

Hence, F is embedded in F[x]/<f(x)> 

Thus, if f(x) is irreducible in F[x], then F[x]/<f(x)> is a field extension of F. 

 

Now for a related exercise! 

 

E 9)  Which of the following rings are field extension of Q? 

 

a)  Q[x]/<x
3
 + 10>, 

b)  R[x]/<x
2
 + 2>, 

c)  Q, 

d)  Q[x]/<x
2
-5x + 6>. 

 

Well, we have looked at field extensions of any field F. Now let us look at certain fields, 

one of which F will be an extension of. 

 

3.2.1 Prime Fields 
 

Let us consider any field F. Can we say anything about what its subfields look like? Yes, 

we can say something about one of its subfields. Let us prove this very startling and 

useful fact. Before goi1lg into the proof we suggest that you do a quick revision of 

Theorems 3. 4 al1d 8 of Unit 12. Well, here‟s the result.  

 

Theorem 6 
 

Every field contains a subfield isomorphic to Q or to Zp, for some prime number p. 

 

Proof 
 

Let F be a field. Define a function  

 

f : Z  F : f(n) =  n.1 = 1 + 1 + … + 1 (n times). 
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In E 11) of Module 3 Unit 2 you have shown that f is a ring homomorphism and Ker f = 

pZ, where p is the characteristic of F. 

 

New, from Theorem 8 of Unit 12 you know that char F = 0 or char F = p, a prime. So let 

us look at these two cases separately. 
 

Case 1  
 

(Char F – 0): In this case f is one-one,  Z = f(Z). Thus, f(Z) is an integral domain 

contained in the field F. Since F is a field, it will also contain the field of quotients of 

f(Z). This will be isomorphic to the field of quotients of Z, i.e., Q. Thus, F has a subfield 

which is isomorphic to Q. 
 

Case 2  
 

(Char F = p, for some prime p) :  

 

Since,p1s a prime number, Z/pZ is a field. 

 

Also, by applying the Fundamental Theorem of Homomorphism to f, we get Z/pZ ~ f(Z). 

 

Thus, f(Z) is isomorphic to Zp and is contained in F. Hence, F has subfield isomorphic to 

Zp. 

 

Let us reword Theorem 6 slightly. What it says is that : 

 

Let F be a field. 

 

i) If char F = 0, then F has a subfield isomorphic to Q. 

ii) If char F = p, then F has a subfield isomorphic to Zp. 

 

Because of this property of Q and Zp (where p is a prime number) we call these fields 

prime fields. 

 

Thus, the prime fields are Q, Z2, Z3, Z5 etc. 

 

We call the subfield isomorphic to a prime field (obtained in Theorem 6), the prime 

subfield of the given field. 

 

Now, suppose a field F is an extension of a field K. Are the prime subfields of K and F 

isomorphic or not? To' answer this let us look at char K and char F. We want to know if 

char K = char F or not. Since F ~s a field extension of K, the unity of F and K is the 

same, namely, 1. Therefore, the least positive integer "such that n.l = 0 is the same for F 
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as well as K. Thus, char K = char-F. Therefore, the prime subfields of K and F are 

isomorphic. 

 

So, now can you do the following exercises? 

 

E 10)  Show that the smallest subfield of any field is its prime subfield. 

 

E 11) Let F be a field which has no proper subfields. Show that F is isomorphic to a 

prime field.  

 

E 12) Obtain the prime subfields of R, Zs and the field given in E 15 of Unit 12. 

 

E 13) Show that given any field, if we know its characteristic then we can obtain its 

prime subfield and vice versa. 

 

A very important fact brought out by E 10 and E 11 is that: a field is a prime field iff it 

has no proper subfields. 

 

Now let us look at certain field extensions of the fields Zp. 

 

You have dealt a lot with the finite fields Zp. Now we will look at field extensions of 

these fields. You know that any finite F has characteristic p, for some prime p. And then 

F is an extension of Zp. Suppose F contains q elements. Then q must be a power of p. 

That is what we will prove now. 

 

Theorem 7  
 

Let F be a finite field having q elements and characteristic p. Then q = p
n
, for some 

positive integer n.  

 

The proof of this result uses the concepts of a vector space and its basis. These are 

discussed in Block 1 of the Linear Algebra course. So, if you want to go through the 

proof, we suggest that you quickly revise Units 3 and 4 of the Linear Algebra course. If 

you are not interested in the proof, you may skip it. 

 

Proof of Theorem 7  
 

Since char F = p, F has a prime subfield which is isomorphic to Zp. We lose nothing if 

we assume 1hat the prime subfield is Zp. We first show that F is a vector space over Zp 

with finite dimension. 
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Recall that a set V is a vector space over a field K if 

 

i) we can define a binary operation + on V such that (V. +) is an abelian group,  

 

ii)  we can define a „scalar multiplication‟ : K x V  V such that  a, b  K and v,w 

 V, 

 

a. (v + w) = a.v +a.w 

 

(a + b). v =a.v + b.v 

 

(ab). V = a. (b. v) 

 

1.v = v. 

Now, we know1hat (P, +)'is an abelian group. We also know that the multiplication in F 

will satisfy till the conditions that the scalar multiplication should satisfy. Thus, F is a 

vector space over Zp. Since F is a finite field, it has a finite dimension over Zp. Let 
pZdim

F = n. Then we can find al,…, an  F such that 

 

F = Zpal + Zpa2 + ..+ Zpan. 

We will show that F has p
n
 elements. 

 

Now, any element of F is of the form 

 

blal + b2a2 +...+ bnan, where bl,..., bn  Zp, 

 

Now, since o(Zp) = p, b1 can be anyone of its p elements. 

 

Similarly, each of b2, b3, ... , bn has p choices. And, corresponding to each of these 

choices we get a distinct element of F. Thus, the number of elements in F is p x p 

x…xp(n times) = p
n
. 

 

The utility of this result is something similar to that of Lagrange‟s theorem. Using this 

result we know that, for instance, no field of order 26 exists. But does a field of order 25 

exist? Does Theorem 7 answer this question? It only says that a field of order 25 can 

exist. But it does not say that it does exist. The following exciting result, the proof of 

which is beyond the scope of this course, gives us the required answer. This result was 

obtained by the American mathematician E.H. Moore in 1893. 
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Theorem 8  
 

For any prime number p and n N, there exists Ii field with p
n
 elements. Moreover, any 

two finite fields having the same number of elements, are isomorphic 

 

Now, you call utilize your knowledge of finite fields to solve tile following exercises. 

The first exercise is a generalization of E 13 in Unit 13. 

 

E 14. Let F be a finite field with p
n
 elements. Show that 

npa = a   F. And hence, 

 

show that 
npx - x = 

Fai 


 (x-ai). 

 

(Hint: Note that (F \ {0},.) is a group of order p
n
-l.) 

 

E 15) Let F be a finite field with p
n
 elements. Define f : F  F : f(a) = a

P
. Show that f is 

anutomorphism of F of order n; i e., f is an isomorphism such that f n = I, and f
r
  

1 for r < n. 

 

E 16) Let F be a field such that a  F iff a is a root of x
27

 – x   

 

a)  What is char F?  

b)  Is Z  F? 

c)  Is Q  F? 

d)  Is F  Q? Why? 

 

E 11)  Any two infinite fields are isomorphic. True or false? Why? Remember that 

isomorphic structures must have the same algebraic properties. 

 

We close our discussion on field extensions now. Let us go over the points that we have 

covered in this unit. 

 

4.0 CONCLUSION  

 

5.0 SUMMARY  
   

We have discussed the following points in this unit. 

 

1) Gauss; lemma, i.e., the 'product of primitive polynomials is primitive. 
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2)  Eisenstein‟s criterion for polynomials over Z and Q. This states that if f(x) = a0 + 

a1 x + ... + anx
n
 Z[x] and there is a prime p  Z such that  

 

i)  p | ai  i = 0,.1, ..., n-1. 

 

ii)  p  |  an, and  

 

iii) p
2
  |  a0, 

 

then f(x) is irreducible over Z (and hence over Q) 

 

3)  For any n  N, we can obtain an irreducible polynomial over Q of degree n. 

 

4)  Definitions and examples of subfields and field extensions 

 

5) Different ways of obtaining field extensions of a field F from F[x]. 

 

6) Every field contains a subfield isomorphic to a prime field. 

 

The prime fields are Q or Zp, for some prime p. 

 

7) The number of elements in a finite field F is p
n
, where char F = p and 

PZdim F = n. 

8)  Given a prime number p and n  N, there exists a field containing p
n
 elements. 

Any two finite fields with the same number of elements are isomorphic. 

 

9)  If F is a finite field with p
n
 elements, then xp

n
 -x is a product of p

n
 linear 

polynomials over F. 

 

Now we have reached the end of this unit as well as this course. We hope that we have 

been able to give you a basic understanding of the nature of groups, rings and fields. We 

also hope that you enjoyed going through this course. 

 

ANSWER TO SELFASSESSMENT EXERCISE  

 

1. a) 1,  b) 7, c) 5 

 

2. Let f(x) = a0 + a1 x + … + anx
n
 and let the content of f(x) be d. Let ai = dbi  I = 0, 

1, …, n. Then the g.c.d of b0,b1,…, bn is 1. Thus, g(x) = b0 + b1 x + … + bnx
n
 is 

primitive. Also, f(x) = db0 + db1 x + … +dbnx
n
 = d(b0 + b1 x + … + bnx

n
) = d g(x). 

 

3.  f(x) = x
n
 – P = a0 + al x + … + anx

n
,  
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where a0 = p, al = 0 = … = an-1, an = 1  

 

Thus, p | ai  i = 0, 1, … , n – l, p
2
  | a0, p  | an. 

 

So, by the Eisenstein criterion, f(x) is' irreducible over Q. 

 

4. Not necessarily 

 

For example, there is no p that satisfies the conditions for f(x) in Example 3.  

 

5.  All of them (a) and (b), because of Eisenstein's criterion; and (c), because any 

linear polynomial is irreducible. 

 

6.  Since a  0,  1,  a prime q such that q | a. Also q
2
  |  a, since a is square-free. 

Then, using q as the prime, we can apply Eisenstein's criterion to find that x
p
 + a is 

irreducible in Z[x]. Thus, it is a prime element of Z[x]. Hence, <x
P
 + a> is a prime 

ideal of Z[x]. 

 

Hence the result, 

 

7.  By E 13 of Unit 13 we know that a
P
 = a a   Zp. Now consider 

 

X
p
 + a Zp[x] 

 

ap   is a zero of this polynomial, since  

 

( ap  )
p
 + a  = ap   + a  = p = 0  Zp 

 

Thus, xP + a  is reducible over Zp. 

 

8a.  Q + iQ is a non-empty subset of C. 

 

Now, let a + ib and c + id be in Q+iQ. 

 

Then (a + ib) -(c + id) = (a – c) + i (b – d)  Q + iQ.  

 

Further, let c + id  0, so that c
2
 + d

2
  0. 

 

Then (c + id) 
– 1 

 = 
22 dc

idc




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Thus, (a + ib) (c + id)
-1

 = (a + ib) 
22

)(

dc

idc




 

 

= .
)()(

2222
QQ i

dc

bdac
i

dc

bdac










 

 

Thus, Q + iQ is a subfield of C. 

 

b.) 2  Z + 2 Z but 2
–1 

  Z + 2 Z. Therefore,  

Z + 2 Z is not a field, and hence not a subfield of R.  

 

9.  (a), (b) and (c). 

 

10.  Let F be a field ~d K be a subfield of F. Then, .we have just seen that both K and F 

have isomorphic prime subfields. 

 

Thus, K contains the prime subfield of F. 

 

Thus, we have shown that every subfield of F must contain its prime subfields. Hence, 

this is the smallest subfield of F. 

 

11.  F must contain a prime subfield. But it contains no proper subfield be its own 

prime subfield. That is, F must be isomorphic to a prime field. 

 

12.  Q, Z5, Z2, since their characteristic's are 0,5 and 2, respectively.  

 

13.  F be a field. Firstly, let us assume that char F = p is known. Then, by Theorem 6, 

we know the prime subfield of F. Conversely, let K be the prime subfield of F. 

Then we know char K, and as shown before E 10, char F = char K. So we know 

char F. 
 

14.  Since (F\{0},.) is a group of order p
n
 -1, 

nPa  -1 = 1  

 

 a  F \ {0}. 

 ap
n
 = a  a  F\ {0}. Also 

nP0 = 0. 
 

Thus, 
nPa  =  a  a  F. 

 

Now, 
nPx  - x  F[x] can have at the most p

n
 roots in F (by Theorem 7 of Unit 13). 
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Also, each of the p
n
 elements of F is a root. Thus, these are all the roots of 

nPx  - x. 
 

 
nPx - x = 

Fai 


(x – ai) 

 

15. f(a + b) = (a + b)P = a
P
 + b

P
 (using E 10 of Unit 12) 

 

= f(a) + f(b). 
 

f(ab) = (ah)P = a
P
 b

P 
= f(a) f(b). 

 

f is 1 – 1, by E 10(c) of Unit 12. 

 

Hence, Im f has the same number of elements as the domain of f, i.e., F. Further, Im 1  

F  Im f = F, i.e., f is onto. 

 

Hence, f is an automorphism. 

 

Now, f
n
(a) = [f(a)]

n
 = (a

p
)

n
 = 

nPa  = a  a  F. 

 

 f
n
 = I. 

 

Also, for r < n, f 
r
 (a) = 

rPa  

 

Now, we can't have 
rPa  = a  a  F, because this would mean that the polynomial 

nPx - x 

 F[x] has more than pf roots. This would contradict Theorem 7 of Unit 13. Thus, f
r
 (a)  

a for some a  F. f
r
  I if r < n. 

 

Hence, o(f) = n. 

 

E 16) a  F iff a
27

 = a, i.e., a
33

 = a 

 

a)  Char F = 3. 

b)  No, since char Z2  char F. 

c)  No. 

e) No, since F  Q  char F = char Q = 0. 

 

17.  False.  

 

For example, Q and R are both infinite, but Q has no proper subfields, while R does. 

Thus, Q and R are not isomorphic. 
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