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1.0 INTRODUCTION  
 

This is the most common method for transforming the system function 

Ha (s) of an analogue filter to the system function H(z) of an IIR discrete 

time filter.   It is not the only possible transformation, but a very useful 

and reliable one. 

 

Consider derivative approximation technique:   

 

D(y[n]) = dy(t) /dt  at t = nT    ( y[n]  -  y[n-1]) / T.   

 

D(x[n]) = dx(t) /dt  at t = nT    (x[n] -  x[n-1]) / T.     

 

D'(y[n]) = d
2
y(t)/dt

2
 at t = nT  D(D(y[n]) )  

=  (y[n] - 2y[n-1]+y[n-2])/T
2 

   

D''(y[n]) = d
3
y(t)/dt

3
 at t = nT  D(D'(y[n]) )  

=  (y[n]-3y[n-1]+3y[n-2]-y[n-3])/T
3
 

 

“Backward difference” approximation introduces delay which becomes 

greater for higher orders.  
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Try "forward differences”: D[n]  [y[n+1]  -  y[n]] / T, etc.   

 

But this does not make matters any better.    

Bilinear approximation:  

 

 0.5( D[n] + D[n-1])  (y[n] - y[n-1]) / T and similarly for dx(t)/dt at 

t=nT. 

 

Similar formulae may be derived for d
2
y (t)/dt

2
, and so on. 

 

If D(z) is the z-transform of D[n] : 

 

0.5( D(z) + z
-1

D(z) ) = ( Y(z) - z
-1

Y(z) ) / T 

 D(z)   =    [2 (1 - z
-1

)/ [T(1+z
-1

)] Y(z)   

               = [(2/T) (z-1)/(z+1)] Y(z). 

 

Applying y[n] to [(2/T) (z-1)/(z+1)] produces an approximation to 

dy(t)/dt at t=nT. 

 

In an analogue circuit, applying y(t) to an LTI circuit with system 

function H(s) = s  produces dy(t)/dt since the Laplace Transform of 

dy(t)/dt  is sY(s) . 

 

Therefore, replacing s by [(2/T) (z-1)/(z+1)] is the bilinear 

approximation. 

 

2.0   OBJECTIVES 
 

At the end of this unit, you should be able to:  

 

 explain bilinear transformation; 

 explain design of an IIR low-pass filter by the bilinear 

transformation method; 

 explain higher order IIR digital filters; 

 discuss IIR discrete time high-pass band-pass and band-stop filter 

design; and 

 compare IIR and FIR digital filters. 
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3.0    MAIN CONTENT 
 

3.1    Bilinear Transformation Technique 
 

Definition: Given analogue transfer function H a (s), replace s by: 

 

         
2 1

1T

z

z






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
                                                                          

 

to obtain H(z).   For convenience we can take T=1. 

 

SELF-ASSESSNMENT EXERCISE  
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where 
 RC

k
21

1


   and  

 
 RC

RC
b

21

21
1




  

 

3.2    Properties of Bilinear Transformation  
 

(i)  This transformation produces a function H(z) such that given any 

complex number z,  

      H(z) = Ha(s)   where   s  =  2 (z - 1) / (z + 1) 

(ii)  The order of H(z) is equal to the order of Ha(s) 

(iii)  If Ha (s) is causal and stable, then so is H(z). 

(iv)  H(exp(j)) = H a (j) where  = 2 tan(/2) 

 

Proofs of properties (ii) and (ii) are straightforward but are omitted here. 

 

Proof of property (iv):        When z = exp(j), then 
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Fig 6.1: Frequency warping
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Frequency Warping:    

 

By property (iv) the discrete time filter's frequency response H(exp(j))  

at relative  frequency  will be equal to the analogue  frequency  

response H a (j) with  = 2 tan(/2).  The graph of  against  in fig 

6.1, shows how  in the range - to  is mapped to  in the range - to 

.  The mapping is reasonably linear for  in the range -2 to 2 (giving  

in the range -/2 to /2), but as  increases beyond this range, a given 

increase in  produces smaller and smaller increases in .  Comparing 

the analogue gain response shown in fig 6.2(a) with the discrete time one 

in fig. 6.2(b) produced  by  the transformation,  the  latter becomes more 

and more compressed as    .  This "frequency warping" effect 

must be taken into account when determining a suitable Ha(s) prior to the 

bilinear transformation. 

 

 

 

|Ha(j   )| |H(exp(j     )|





 

Fig 6.2(a): Analogue gain response Fig 6.2(b): Effect of bilinear transformation 
 

Figure 4.1: Frequency Warping 

Figure 4.2 (a): analogue 

Gain Response 
Figure 4.2(b): Effect of Bilinear 

Transformation 



 

MTH 305                                   MODULE 4 
 

 

175 

 

3.3   Design of an IIR Low-pass Filter by the Bilinear 

Transformation Method 
 

Given the required cut-off frequency c in radians/sample:- 

 

(i)    Find H a(s) for an analogue low-pass filter with cut-off   c = 2 

tan( c /2) radians/sec.   

       ( c is said to be the "pre-warped" cut-off frequency). 

(ii)   Replace s by 2(z - 1)/(z + 1) to obtain H(z). 

(iii)  Rearrange the expression for H(z) and realise by bi-quadratic 

sections. 

 

SELF-ASSESSMENT EXERCISE 

 

Design a second order Butterworth-type IIR low pass filter with  

 c =  / 4. 

Solution:   Pre-warped frequency  c = 2 tan ( / 8) = 0.828 

 

For an analogue Butterworth low-pass filter with cut-off frequency 1 

radian/second: 

 

H a (s) = 1 / (1 + 2 s   + s
 2
) 

 

Replace s by s / 0.828, then replace s by 2(z - 1)/(z + 1) to obtain: 
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which may be realised by the signal flow graph in fig 6.5.  Note the extra 

multiplier scaling the input by 0.097. 

 

x[n] y[n]

Fig. 6.3

0.097

20.94

-0.33

         
Figure 4.3 
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3.4   Higher Order IIR Digital Filters  
 

Recursive filters of order greater than two are highly sensitive to 

quantisation error and overflow.  It is normal, therefore, to design higher 

order IIR filters as cascades of bi-quadratic sections. 

 

SLEF-ASSESSMENT EXERCISE  

 

Design a 4
th

 order Butterworth-type IIR low-pass digital filter is needed 

with 3dB cut-off at one sixteenth of the sampling frequency f s. 

  

Solution:    The relative cut-off frequency is C = /8 radians/sample 

The pre-warped cut-off frequency is therefore C = 2 tan (/16) = 0.4 

radians/sec. 

 

Formula for 4th order Butterworth 1 radian/sec low-pass system 

function:  

 

                            







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




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22 85.11

1

77.01

1

ssss
sH a  

 

Scale the analogue cut-off frequency to  c   by replacing s by s / 0.4. 

Then replace s by 2 (z - 1)/(z +1) to obtain: 

 

  

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







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21
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zH  

 

H(z) may be realised in the form of cascaded bi-quadratic sections as 

shown in fig 4.1   

 

x[n]
0.033

21.6

-0.74

0.028
y[n]

21.36

-0.48

Fig. 6.4:  Fourth order IIR Butterworth filter with cut-off  fs/16
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Figure 4.5(a) shows the gain response for the 4th order Butterworth low-

pass filter whose transfer function was used here as a prototype. Fig 

4.5(b) shows the gain response of the derived digital filter which, like 

the analogue filter, is 1 at zero frequency and 0.707 at the cut-off 

frequency.  Note however that the analogue gain approaches 0 as    

whereas the gain of the digital filter becomes exactly zero at  = . The 

shape of the Butterworth gain response is “warped " by the bilinear 

transformation.  However, the 3dB point occurs exactly at  c for the 

digital filter, and the cut-off rate becomes sharper and sharper as    

because of the compression as   . 

 

3.5  IIR Discrete Time High-pass Band-pass and Band-stop 

Filter Design 
 

The bilinear transformation may be applied to analogue system functions 

which are high-pass, band-pass or band-stop.  Such system functions 

may be obtained from an analogue low-pass 'prototype' system function 

(with cut-off 1 radian/second) by means of the frequency band 

transformations introduced in Section 2.   Wide-band band-pass and 

band-stop filters (fU >> 2fL) may be designed by cascading low-pass and 

Figure 4.4: Fourth Order IIR Butterworth Filter with Cut-Off 

fs/16 

Figure 4.5(a): Analogue 4th Order Butterworth Gain Response 

 



 

MTH 305                                                           COMPLEX ANALYSIS 
 

178 
 

high-pass sections, thus avoiding the need to apply frequency band 

transformations, but 'narrow band' band-pass/stop filters (fU  not >> 2fL) 

will not be very accurate if a cascading approach is used. 

 

3.6     Comparison of IIR and FIR Digital Filters 

 

IIR type digital filters have the advantage of being economical in their 

use of delays, multipliers and adders.   They have the disadvantage of 

being sensitive to coefficient round-off inaccuracies and the effects of 

overflow in fixed point arithmetic.  These effects can lead to instability 

or serious distortion. Also, an IIR filter cannot be exactly linear phase.  

 

FIR filters may be realised by non-recursive structures which are simpler 

and more convenient for programming especially on devices specifically 

designed for digital signal processing.  These structures are always 

stable, and because there is no recursion, round-off and overflow errors 

are easily controlled.  A FIR filter can be exactly linear phase.   The 

main disadvantage of FIR filters is that large orders can be required to 

perform fairly simple filtering tasks. 

 

4.0      CONCLUSION 
 

In this closing unit, you learnt how to explain bilinear transformation; 

design an IIR low-pass filter by the bilinear transformation method; 

explain higher order IIR digital filters; IIR discrete time high-pass band-

pass and band-stop filter design and compare IIR and FIR digital filters..  

 

5.0    SUMMARY 
 

We defined bilinear transformation and its properties. 

 

We replaced s by 2(z - 1)/(z + 1) to obtain H(z) and rearranged the 

expression for H(z) and realised by bi-quadratic sections. Therefore, we 

design higher order IIR filters as cascades of bi-quadratic sections. 

 

You also learnt that wide-band band-pass and band-stop filters (fU >> 

2fL) may be designed by Cascading low-pass and high-pass sections, 

thus avoiding the need to apply frequency band Transformations, but 

'narrow band' band-pass/stop filters (fU not >> 2fL) will not be very 

accurate if a cascading approach was used. These effects can lead to 

instability or serious distortion. Also, an IIR filter cannot be exactly 

linear phase. 
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6.0 TUTOR-MARKED ASSIGNMENT 
 

i. By referring to the general formula, show that the system function 

of a third order analogue Butterworth low-pass filter with 3 dB 

cut-off frequency at 1 radian/second is: 

 

 
  11

1
2 


sss

sHa                                      

 

ii.  Confirm from the general formula that the system function for a 

3
nd

 order Butterworth type low-pass analogue filter with cut-off 

frequency C radians per second is:   

  



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
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sss
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

 

  

      Give the corresponding differential equation. 

 

Apply the derivative approximation technique to derive from this 

differential equation a third Order IIR Butterworth-type digital filter 

with cut-off frequency 500 Hz where the sampling Frequency is 10 kHz. 

 

iii. A third order low-pass IIR discrete time filter is required with a 

3dB cut-off frequency of one quarter of the sampling frequency, f 

s.  If the filter is to be designed by the bilinear transformation 

applied to a Butterworth low-pass transfer function, design the 

IIR filter and give its signal flow graph in the form of a second 

order and a first order section in serial cascade.  

 

iv.   Give a computer programme to implement the third order IIR 

filter designed above on a processor with floating point 

arithmetic.  How would it be implemented in fixed point 

arithmetic? 

 

v. A low-pass IIR discrete time filter is required with a cut-off 

frequency of one quarter of the sampling frequency, fs, and a 

stop-band attenuation of at least 20 dB for all frequencies   

greater than 3f s /8 and less than f s /2.  If the filter is to be 

designed by the bilinear transformation applied to a Butterworth 

low-pass transfer function, show that the minimum order required 

is three. Design the IIR filter and give its signal flow graph.   
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Figure 4.6(a): Analogue 4th Order Butterworth Gain Response 


