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1.0 INTRODUCTION

Orthogonal polynomials are of fundamental importance in many branches of mathematics
in addition to approximation theory and their applications are numerous but we shall be
mainly concerned with two special cases, the Legendre polynomials and the Chebyshev
polynomials. More general applications are however easily worked out once the general
principles have been understood.

20 OBJECTIVE

By the end of this unit, you should be able to:

e  define what orthogonal polynomials are;
e formulate orthogonal and orthonormal polynomials; and
e handle inner product of functions.

3.0 ORTHOGONAL POLYNOMIALS
We begin this study by giving the definition of orthogonal functions:
Definition 1

A system of real functions ¢ , (X), $1(x), ....defined in an interval [a, b] is said to be
orthogonal in this interval if

b 0,
J.a P (X) ¢y (x) dx:{i :

i)

m#n
m=n

If Ap= A =..... = 1 the system is said to be normal. An orthogonal system which is also
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normal is sometimes referred to as an orthonormal system.
Note that since ¢, (x) is real, An = 0 and we shall assume that each ¢, (x) is continuous
and non-zero so that An > 0.

The advantages offered by the use of orthogonal functions in approximation theory can
now be

made clear as follows. Suppose {@n,(x)} is an orthogonal system and that f(x) is any
function and we wish to express f(x) in the form

J(xX)=copo(x)+e1d (x)+.. . .+ cpd(x)+.... (3.1)
b b
Then [ f(a(x) de=cy | 03) d =t

since all the other terms on the right-hand side are zero and so

b
en =7 | F@n ) ds 62

Thus the coefficients c, in equation (3.1) can be found. These coefficients c, are called
the Fourier coefficients of f(x), with respect to the system {on(x)}

3.1  The Inner Products

Let w(x) be the weighting function and let the inner product of two continuous functions
f(x) and g(x) be defined as

(1.8)=]] w0 f)g()ds

where f, g are continuous in [a, b], then f{x) and g(x) satisfy the following properties:

(1) <of.g>=<f,ag>=a<f,g> ., oisascalar

@) (fi+f2.8)=(N.8)+{f2.8)

(i) (f g1+82)=(f .81)+(f 82}

(w) {f &)= f)
{

(¥) ff):»ﬂ forall f € C[a,b] and<f f> 0 iff £=0.

The functions f and g are said to be orthogonal if the inner product of f and g 1s zero, that is if

{f. g)=0

In a similar manner we can define the inner product for the discrete case. The mner product of
discrete functions fand g satisfy the orthogonality property given by

(f )= flxr)glx)
k=0

25



where {X} are the zeroes of the function.

We remark here that polynomial approximation is one of the best ways to fit solution to
unknown function f(x).

A good polynomial Pn(x) which is an approximation to a continuous function f(x) in a
finite range [a, b] must possess oscillatory property. Among such polynomial
approximation functions include the Chebyshev Polynomials and the Legendre
Polynomials. We shall examine these polynomials and their properties in our discussion
in this course as we go along.

Definition 2 (Orthogonality with respect to a weight function)

A series of functions {¢n,(x)} are said to be orthogonal with respect to the weight
function w(x) over (a,b) if

2 () () e = {b

Ay » m=n

MFER

The idea and principle of orthogonality properties are now extended to two common
polynomials in the next few sections.

3.2 Example

The best-known example of an orthogonal system is the trigonometric system
1, cos X, sin X, c0S2X, Sin2x,...

Over the interval [-11, T7].

We shall define various combination of integral of product functions of sine and cosine as
follows:

fx cosmrcosmx dx =0 {m = n)

T .
j_fcusmmexdr:ﬂ (m = 1)

26



jir sinpxcosmy dx =0 {m=n)

ff sin pxsinmx dx =0 {m=n)
and ff Cos Rx.sinm dx = 0 (m=n=0)
whereas _:: cosaxcosnx dx =0 {m=n)
= o 2 [Tl
I_I cos” mx dr= _[_‘T 3 {1+ cos2nx) dx

1 1 g i
=5 (x+5-sin 2 ) .
=%{a’+% sin Z.FLT}—%(—;T+ﬁ5iﬂ2ﬂ(—;‘i’)]l=ﬂ'
Also J’fx sinmcsinax de=0  (m=#)

= J:; sin? nx dr= 7 (m=n=0)

and finally forn =0, ffcuslndx=f31?.;ﬁ=2sr (m=n=0)

Comparing this with our Defimtion 1 above, we obtain from these mtegrals the following values

Al=27.p=A3=..=7
It follows therefore that the system
1 cosx sinx cos2xy sinlx
'\I"E | \."E ’ \,"'E ’ \"'E ’ \'I?
15 orthogonal and normal

4.0 CONCLUSION

The discussion above has simply illustrated the way to determine where a set of functions
Is orthogonal or otherwise. Other examples can be produced to show the orthogonality

property.

50 SUMMARY

In this unit you have learnt that

(i)  anormal orthogonal system is an orthonormal system

(i1.)  orthogonality of some functions can be obtained by integration
(iii.) inner product is written as an integral or a sum

6.0 TUTOR MARKED ASSIGNMENT

Verify whether the following functions are orthogonal or not

(i) 1€, e*,e¥, . ...
(i)  Inx, In2x, In3x, In4x, . ..
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7.0  FURTHER READING AND OTHER RESOURCES

Francis Scheid. (1989) Schaum’s Outlines Numerical Analysis 2" ed. McGraw-Hill New
York.

Turner P. R. (1994) Numerical Analysis Macmillan College Work Out Series Malaysia

Atkinson K. E. (1978): An Introduction to Numerical Analysis, 2" Edition, John Wiley
& Sons, N. Y

Leadermann Walter (1981) (Ed.): Handbook of Applicable Mathematics, Vol 3,
Numerical Analysis, John Wiley, N. Y.
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1.0 INTRODUCTION

Legendre polynomial is known to possess some oscillatory property among which makes
it of importance in the field of numerical analysis. The polynomial has its root from the
Legendre equation which is a second order differential equation. The first set of solutions
of the Legendre equation is known as the Legendre polynomial.

20 OBJECTIVE
By the end of this unit, you should be able to:

e  state the necessary formulae for generating the Legendre polynomials;
e  generate the Legendre polynomials; and
e  define the Legendre polynomial as a class of orthogonal series.

3.0 LEGENDRE POLYNOMIAL APPROXIMATION

When we try to find good polynomial approximations to a given function f(x) we are
trying to represent f(x) in the form

F0) =) et 3.1)

k=0

which is of the form of series equation (3.1) of the last unit with ¢, (x) = x* .
Unfortunately the set 1, x, x... is not orthogonal over any non-zero interval as may be
seen at once since, for example

b

f(bl(x)qbg(x)dx = fx“dx >0

a a

which contradicts the assertion that {x“} is orthogonal. It is however possible to construct
a set of polynomials Py(X), P1(X), P2(X),... Pn(X),... where P,(x) is of degree n which are
orthogonal over the interval [-1, 1] and from these a set of polynomials orthogonal over
any given finite interval [a, b] can be obtained.
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The method for finding a set of polynomials which are orthogonal and normal over [-1, 1]
Is a relatively simple one and we illustrate it by finding the first three such polynomials.
We shall at this junction give a definition of Legendre Polynomial which can be used to
generate the set of polynomials required.

Definition 1
The Rodrigues’ formula for generating the Legendre polynomial is given by
Pa(x) = 5= [(x% = D] (32)

n 2Mn! dxn '

From the definition given above, you will observe that an n™ derivative must be carried
out before a polynomial of degree n is obtained. Thus the first few set of Legendre
polynomials can be obtained as follows:

Po(x) will not involve any derivative since n = 0, hence we have
Po(x) = 1

Also for n = 1, we shall have

1 d .92 1
e T _p=lay_
A (x) in dx(I ) 7 2X=X

_ L dfa o
A - = o2 -2

1d? 1d
Py (x)= EEU“ —2x? 4+ =§E[413 —4x)

o2 Ll
_Pz (x)= l;.(l_fix j) 2(3x 1)
To obtain P5(x) it will require differentiating three times which will become cumbersome
as n increases. With this difficulty that may be encountered with higher differentiation

especially as n > 2 in P, (x) of Rodrigues’ formula (3.2) above, a simpler formula for
generating the

Legendre polynomials is given by its recurrence relation. This is given next.
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3.1 Recurrence Formula for Legendre Polynomial

Forn—1wehave Py(x)= {%]br}i o) — % |2 (x)

B@=-Bhx-L)1-3x2-1
Whuch 1s the same as the Py(x) earlier obtained using the Rodnipgues” fornmla (3.2)
Furthermore, for n= 2, we have

AE@-Grr®-ElAw
A =B -1)-B)x
= p(X)= %{5;9 —3x)
Similarly for n= 3 we have
P, =Zlpm-E)nm
Substituting previous results we have
2.(x) =%[351“ —30x" +3 )

Also Ps(x) gives Ps(x) =%{631’ —70x' +15x) etc

The reader may like to generate the Legendre polynomials up to p(x)
One of the properties of the Legendre pobymomial is its orthogonality property.

It is known that the Legendre Polynomial P,(x) satisfies the following property:

1 0 , if m=n
L Py(x)Bp(x) dx=1 - G4

2n+l ° if m=mn,

This is the orthogonality property which permits it to be a polynomial approximation to
any continuous function within its range [-1, 1].

It follows at once from equation (3.4) that {P,(x)} forms an orthogonal, but not normal,
set over [-1, 1] with respect to the weight function w(x) = 1 and that the set

(g, (0} = { =P (x)}

forms an orthonormal set.

4.0 CONCLUSION

You can observe that the Legendre Polynomials can be obtained from the Rodrigues’

formula but much easier by using the recurrence formula generated from the Legendre
differential equation.
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50 SUMMARY
In this Unit you have learnt
Q) how to use the Rodrigue’s formula to generate Legendre polynomials
(i)  how to use recurrence relation as alternative formula to derive the same
Legendre polynomials by simple substitution of previously known polynomials
(iti)  that the orthogonality property of the Legendre Polynomial permits it to be a
polynomial approximation to an continuous function.
6.0 TUTOR MARKED ASSIGNMENT

Obtain the Legendre Polynomials P,(x) forn=35, 6, . . ., 10 using both the Rodrigue’s
formula and the recurrence relation of the Legendre polynomials.

7.0 FURTHER READING AND OTHER RESOURCES

Francis Scheid. (1989) Schaum’s Outlines Numerical Analysis 2" ed. McGraw-Hill New
York.

Turner P. R. (1994) Numerical Analysis Macmillan College Work Out Series Malaysia

Atkinson K. E. (1978): An Introduction to Numerical Analysis, 2" Edition, John Wiley
& Sons, N. Y

Leadermann Walter (1981) (Ed.): Handbook of Applicable Mathematics, Vol 3,
Numerical Analysis, John Wiley, N. Y.
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1.0 INTRODUCTION

Legendre Polynomials are known to be applicable to least square approximation of
functions. In this sense, we mean that we can follow the least square approximation
technique and adapt this to Legendre polynomial.

2.0 OBJECTIVE
By the end of this unit, you should be able to:

e apply Legendre polynomial to least squares procedures; and
e  Obtain least square approximation using Legendre polynomial.

3.0 THEPROCEDURE

H
Let f{x) be any function defined over [-1, 1] and L, (x) = ZakPk(_r)
k=0
be a lmear combination of Legendre polynomials. We shall now deternune what values of the
coefficients {a;} will make L (x) the best approximations in f{x} in the least squares sense over
the mterval [-1, 1]. Our objective is to nunimize

1
Ia,.a ___.,.:z,,)=_[_1 [F)-L, (0 dx (3.1)
and so as in the least squares method, we nmist set
Lo, re0.1.. .. n (3.2)
cay

Usmg equation (3.2) 1 (3.1), we obtain an equivalent term written as

B ﬂ(x}{fix}— S B ()| de=0 =012 .1)
k=0 .

;

= [ RaY@E-Ta ], B@A@d=0

k=0
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Recall from last unit that the Legendre Polynomial Pu(X) satisfies the orthogonality property:
1 0 . if m=zn
B, (x)B,(x) dx= 3
[IRASIAS 2 e G3)
2n+l
when k =1, and by the orthogonality property (3.3) we shall obtain

1 2
[ B (ydx=a, (_ﬁ_J

ar =22 Tﬂx}.Pr::x) &  (=0,12,...,1) G4)

When the coefficients {ar} have been found I o(x) can be re-arranged as desired, as a pelynonnal
in powers of x, that is,

S aB= b x*
k=0

k=0

-

which provides a solution to the least squares polynomial approximation problem. The
evaluation of the integrals on the right-hand side of (2.9) may have to be done
numerically.

The following examples shall be used to illustrate the least squares approximation
method using the Legendre polynomial.

3.1  Numerical Experiment
Example 1

Find the fourth degree least squares polynomial to |x| over [-1, 1] by means of Legendre
polynomials.

Solution

i

Let the polynomial be "By (1)

k=0
Then from equation (2.9)
. =¥Jj MBmE  @=01234
1 ¢t 1t 1
Hence, @, =EL1 x. By (x) dir = = EL xlde->
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3 +1 i 3 +1 Foe0
m==| xBMXdr==| x(dc=
=3[ *A@a=3[ 2
5 ot 5 ptl 321 5pl 3 5
gy ==| xB(x dx=—f (X = {it=—I  —x)dr==
275, B(x) 2 ) {1} 10{3 ) g
7 ¢+l 7 ptl 533
ar=—| xPx -:fr=—j (=20 de=0
3 2 ) B(x) AR ( 5 )
9+l 0rl 354 _30:243 3
ag=—| xPy(x dx=—j (2 Py e
4=5), R d=g| b=k
The required polynomial 1s therefore
FRM-2PE - ) )

The expression (3.5) can be converted to normal polynomial form by substituting the
polynomial form of Py(x), Po(X) and P4(x) as given in the last unit. This ends up giving
the required polynomial as:

1| 2 4
I= —_— -
—123[_15+21{}x 105x*) (3.6)

Which is therefore the least squares polynomial for |x| over [-1, 1]

Verification

This result may be verified directly by using the least squares method given in the last
module.

Now the least squares polynomial is

4
5o
k=0
And by lelaat square method we minimize
2
5= .“1 n_q—(rro+al:r+rr2x2 Ay +a4x4}] dx

Now, setting the respective partial derivatives to zero by equation (3.2), we shall obtain the
normal equations as follows:
cy
ca,

= -[fl [xl —(a,+a)X +a,X" +a;x° +a4x4)]dr =0

@
cs 1 2 3 4
E=j_l x[ﬂ—{an+nlx+a21 +03X° +HA4X )]a‘.r=l]

<5

2a, -[fl x? hx|—{na+al:r+a1x2 +f13_:1j +a4x4}]£tr= 0
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€5 _ Il ¥ [x|—{aa+a1x +r:!23r2 +.513x3 +a4x4)]-ir= 0
5&3 -1

ﬂ:J'l x* ﬂ_‘{‘l—(ﬂ' A X +A4XT 23X +a 14]]£tr=[l
2ar a1 PRaUtis] 3 1

Integrating, we get the following equations:

1,2 12,1 3.1, 4.1 5y
X (@, x50 X7 +3a,X7 H4a5x H3a,x )(_1-0

1
1 -0
1

3

3 1 2,1 .3,1 4,1 5,1 &
11 —(Gagx"+3a,x" +3a,x tsazx +za,x’)

1
1,4 _rl Lo y¥aly o541, 601, .7
X (jauf+za1x +2a,% tga;x Hea,x j_l-u

1
-0
1
-0
Evaluating within the limits we obtain the followimng equations
1 1, -1
dp + 3(]'2 + Sﬂ'd_ 7
1 1
301 +5a3 = g

s 4 5 6 7 8
1”1 1 1 1 +1
3|x| (GAoX +3@ X +4a,X +oa;X +3a,x")

6
1 _rl 531 6,1 711 8,1 9
E|Ii (?anx T X T2a,X H3asx Hoa,x )

1 1 lg, -1
3Hﬂ+5|ﬁ2+?ﬂ4 1

1 |
3a1+?:13—l]

1 1 1 1
LN N, CONELY, R
5 0T FEITRY4 T

Solving these simultaneously, we deduce at once that a; = a3 = 0 and that
do 15 20, 105
° 18 27128 7 YT 128

In agreement with coefficients of equation (3.6)

Example 2
Given a continuous function e* for xe[-1,1] fit a linear polynomial ¢, + ¢;x to €* and
determine its root mean square error

Solution

Using Equation (3.1) we have
1
5= j'_l [F(x)- PP dx

1 2
S=j_llg’—c,,, —clxl dx

For f(x)=e". we can write the linear polynomial as
Px)=a, +mx
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Byusing equation (3 4) we have

1
_1qt S S
a,=5] " ldr=7e 1.1752

-1
_ 3 1 x _ 3 x x 1
a]‘_E—[—lLe {ﬂ'—il:.ﬂ! —&" ) |

Therefore the linear polynonual is
P(x)=11752+1.1036x

=1.1036
1

An average error of approximating f{x) by P(x) on the interval [a, b] is given by
1 | ol 2
E=—| ) —P(xY” dx
[L -2
| (x) - P
- 3.
r— (3.7)
Hence by (3.7), the least square approximation will give a small error on [a, b]. The quantiiv E 1s
called the root mean square error in the approximation of f{x)
7P
Nb—a

We can evaluate E using any of the k-_ 1- | or m- norm
Using the l-norm, we write

e* —{1_1?52+1.1{}36x}"1

Now since

E=

v1+1

e* ‘ — max |1.1752+1.1036x|
—l=x<1

V2

max
—l<x=1

=||2.?1323;2_2?33|| _ 03108
42

Hence the error is as large as 0.3108. If higher approximating polvnomial is used the error will
be smaller that this.

4.0 CONCLUSION

The use of Legendre polynomial as a technique for least square approximation shows that
the same result is achievable from the least square approximation method as well as the
Legendre Polynomial approach.

50 SUMMARY

In this Unit you have learnt

(i) the technique of using Legendre polynomial to obtain and approximation using the
least square method.

(if) that both Legendre approach and the Least squares approach will often produce the
same result.

6.0 TUTOR MARKED ASSIGNMENT

Obtain a fourth degree least squares polynomial for f (x) :éover [-1, 1] by means of
Legendre polynomials.
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& Co Ltd, New Delhi, India

38



UNIT 4: THE CHEBYSHEV POLYNOMIALS

CONTENTS

1.0  Introduction

2.0  Objective
3.1  Generating Chebyshev Polynomials
3.2 Properties of Chebyshev Polynomials
3.3 Derivation of the Recurrence Formula

4.0 Conclusion

5.0 Summary

6.0  Tutor Marked Assignment

7.0  Further Reading And Other Resources

1.0 INTRODUCTION

It is always possible to approximate a continuous function with arbitrary precision by a
polynomial of sufficient high degree. One of such approach is by using the Taylor series
method. However, the Taylor series approximation of a continuous function f is often not
SO accurate in

the approximation of f over an interval [a, b]. If the approximation is to be uniformly
accurate over the entire interval. This may be due to the fact that:

(1) insome cases, the Taylor series may either converge too slowly or not at all.
(if) the function may not be analytic or if it is analytic the radius of convergence of the
Taylor series may be too small to cover comfortably the desired interval.

In addition, the accuracy of the Taylor series depends greatly on the number of terms
contained in the series. However, a process that was based on the fundamental property
of Chebyshev polynomial may be considered as alternative and it works uniformly over
any given interval. We know that there are several special functions used for different
purposes including approximation, polynomial fittings and solutions of differential
equations. Some of these special functions include Gamma, Beta, Chebyshev, Hermite,
Legendre, Laguerre and so on. However, not all these are good polynomial
approximation to continuous functions.

However, Chebyshev polynomials have been proved to be very useful in providing good
approximation to any continuous function.

To this end, the Chebyshev polynomial is usually preferable as polynomial
approximation. The Chebyshev polynomial has equal error property and it oscillates
between —1 and 1. Due to its symmetric property, a shifted form of the polynomial to half
the range (0, 1) is also possible.
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20 OBJECTIVE

By the end of this unit, you should be able to:
e  state the necessary formulae for generating the Chebyshev polynomials;
e  obtain Chebyshev polynomials T,(x) up to n = 10; and
e classify Chebyshev polynomial as a family of orthogonal series.

3.0 INTRODUCTION TO CHEBYSHEV POLYNOMIALS

As it was earlier stated, Chebyshev polynomials are often useful in approximating some
functions. For this reason we shall examine the nature, properties and efficiency of the
Chebyshev polynomial.

Chebyshev Polynomial is based on the function “cosn@” which is a polynomial of degree
n in cosB. Thus we give the following basic definition of the Chebyshev polynomial.

Definition 1
The Chebyshev polynomial is defined in terms of cosine function as

T,(x) =cos(n.cos tx)for—-1<x<1,n=0 (3.1)

This definition can be translated to polynomials of x as it would be discussed very
soon. Before we do this, if we put x = cos8 , the Chebyshev polynomial defined
above becomes

T,(X) = cos(nb)

Tn(x) is of the orthogonal family of polynomials of degree n and it has a weighting
function

1
Vi—x2 '

It has an oscillatory property that in 0 < @ < 17 the function has alternating equal
maximum and minimum values of + 1 at the n+1 points. Thus the orthogonality relation

of the Chebyshev polynomial is given as:

6, =%, =012 ...0
n

w(x) = 1<x<1

s
Fa
or Xp =COE , ©=0,1,2,....0
!.\\H

Thus the orthogonality relation of the Chebryshev polymomial 1s given as:

1 . Q. n=m
I_lﬁfn{x}fm(x}aﬁr= ;;  n=m=0 (3.2)
EH’ . h=m=10
It also has a symmetric property grven by
Tn(-x) = ()" T (x) (3.3)
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3.1 Generating Chebyshev Polynomials

Over the years the function T,(x) is the best polynomial approximation function known
for f(x). In order to express T,(X) in terms of polynomials the definition can be used to
some extent, but as n value increases, it becomes more difficult to obtain the actual
polynomial except by some trigonometric identities, techniques and skill.

For the reason, a simpler way of generating the Chebyshev polynomials is by using the
recurrence formula for T,(x) in [-1, 1].

The recurrence formula for generating the Chebyshev polynomial T,(x) in [-1, 1] is given
by
Tn+l(X):2XTn(X)_Tn—1(X) » N 21 (34)

Thus to obtain the Chebyshev polynomials, a combination of (3.1) and (3.4) can be used.
Starting with the definition (3.1), that is

Fhix)= cos(n.cos_l x)
We obtain the least pohvnomial whenn=0 as

In(x)=cos0=1
Also when n=1, we get n)= cus(cus_l =x
When n=2, T (x) = cos(2cos 1 x)

with x = cosd

I5(x)=cos 27
—2cos? 6-1

2
=2x" -1
Forn=3,4 ... it will be getiitng more difficult to obtan the polynoruals. However if we use
the recurrence formmla (3.4} , we can obtain Ta(x) by putting n=1 so that
I2(x)=2xI1(x)—Top(x)
Substituting fp(x)=1. Ij(x)=x, (from the result earlier obtained), we have

T (x)=2x(x)—1 =2x% -1
This 15 simpler than using the trigonometric identity.

Thus forn=2, 3, ... we obtain the next few polynonmials as follows:
When n = 2, the recurrence formmila gives

I3(x)=2xT2 (x) - T1(x)
=2x(2x% -1 —-x

—4x3 —3x
Similarly for n =3, we obtain
Ty(x)=2xI3(x)—-T2(x)

=2x(4x° —3x0)—(2x2 - 1)
—8x* —8x? +1
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In a similar manner
T5(x) =163 —20x> +5x
We can now write all these polynonuals out for us to see the pattern which they form

Tp(x) =1

h(x)=x )

T (x) = 2x° —1

Ty(x)=4x> —3x b (3.5)
Ty (x)=8x% —8x% +1

T5(x) =16x> —20x° +5x )

You can now derive the next few ones, say up to T,(x), following the same technique.

Note that the recurrence formula is one step higher than the definition for the “n” value
being used. In other words, when n = 2 in the definition we obtain T,(x), whereas to get
the same T,(x) from the recurrence formula we use n = 1. The reason is obvious; the
recurrence formula starts with subscript “n+1” as against “n” in the definition.

These polynomials are of great importance in approximation theory and in solving
differential equations by numerical techniques.

3.2 Properties of Chebyshev Polynomials

In the interval —1 < x < 1 the Chebyshev Polynomial T,(x) satisfies the following
properties:

i) -—1<Tx)<+1
(i) Ta(x)=1at(n+ 1) points xp, X1. . . ., %a, Where :r,-=cus(£] ,r=0,1.2,....n
H

(i) Tp(x)=(-D"
(iv) The leading coefficient in To(x) is 2* "

3.3  Derivation of the Recurrence Formula

Now that we have seen the usefulness of the recurrence formula (2.16), it might be
necessary for us to derive this formula from certain definition. There are two ways to this.
We can use some trigonometric functions to get this since Chebyshev polynomial is
defined as a cosine function. However, we can also derive this formula by solving it as a
difference equation which can be shown to produce the definition (2.13). For the
purpose of this course, since we are not treating linear difference equation, we shall go
via the first type, by using some trigonometric functions.

Equation (2.16) is given by
Thea(X) = 2XTn(X)~Th-1(x) , n21

To obtain this formula, we can recall from trigonometric knowledge that
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ccﬁ.ai+-:o53=2cn5%(.4 +B}m5%{ﬂ—3}

If we put A={n+1)arccosx and B=(n-1)arccosx
Then cos A +cos B =cos{(n+ 1)arccos x} + cos{{n— 1)arccos x}

= 2-:05%[[;: +1+n-1) am:osx].m&%[(n+l—n+1)a.ﬂ::cn5:r]

= Ecus% [(2m) EICCDEI].U.’E%{E arccos x|

= 2 cos(narccos X) . cos(arccos x)
cosA+cosB = 2cos{narccosX) X
cos A = 2xcos(n arccos X) —cos B

That1s cos[(n + 1)arccos x] = 2% cos[n arccos X] — cos[(n— 1)arccos x|
By definttion, 7,(x)= cns{n_cus_l x),
we then have

Tp1 ()} =2xT () — Ty 1 (%)

Thus the recurrence formmla 15 easily established.

4.0

CONCLUSION

The derivation of Chebyshev polynomials has been demonstrated and made simple by
using the recurrence formula rather than using the basic definition (3.1). we have equally
given the derivation of the recurrence formula by simply using some trigonometry
identities, although this derivation can be established by solving the recurrence formula
as a difference equation from which the basic definition (3.1) is obtained. Other methods
of derivation equally exist.

5.0

SUMMARY

In this Unit we have learnt that:

(i)
(i)

(iii)
(iv)

6.0

Chebyshev polynomials are special kind of polynomials that satisfy some properties
Chebyshev polynomials which are valid within [-1, 1] have either odd indices or
even indices for T,(x) depending on whether n is odd or even.

Chebyshev polynomials can be obtained from the recurrence formula.

the recurrence formula for Chebyshev polynomials T,(x) is more suitable to
generate the polynomials than its definition.

TUTOR MARKED ASSIGNMENT

Obtain the Chebyshev polynomials T,(x) forn=5,6,...,10
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UNIT 5: SERIES OF CHEBYSHEV POLYNOMIALS
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5.0 Summary

6.0  Tutor Marked Assignment
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1.0 INTRODUCTION

Chebyshev polynomials can be used to make some polynomial approximations as against
the use of least square method. The orthogonality properties of the Chebyshev
polynomial permit the use of the polynomial as approximation to some functions. A case
of cubic approximation will be considered in this study.

2.0 OBJECTIVE
By the end of this unit you should have learned:

e the form of the function f(x) which permits the use of Chebyshev polynomials as
approximation to it; and
e how to apply Chebyshev polynomials to fit a cubic approximation to a function

f(x).
3.0 APPROXIMATION BY CHEBYSHEV POLYNOMIALS

If we have a function f(x) which we wish to approximate with a series of Chebyshev
polynomials

flx)= —f o taliM)+calp () + ... +epTy(x) ERY)
How we can ﬁm:l the coefficients ¢;?
The theoretical method 1s to nmltiply f{x) by jﬂ and integrate over [-1, 1], thereby making
vl-x

use of the orthogonality property of Tu(x). Thus, if we mmltiply both sides by this factor and
integrate over [-1, 1], we can write

IO 1o [ ) g 3 (1 LOLO)
Il \fr_x I 1-x° Z m{ 1-x?

The only term on the right which doesn’t vamshls ﬂlE one where m =n = 0. In other words if we
use the orthoponality property given by equation (3.2) of the last unt, we have
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J- J )T, (x) (Y}T EIJ _1
)
Il S (x) o
"1 —x?

The evaluation of the integral for cm given by (3.2) will in general have to be done
numerically and in such cases it is obviously important to ensure that the truncation error
is sufficiently small or the accuracy available via the Chebyshev approximation to f(x)
will be reduced. In a few special cases, the integral can be evaluated analytically and the
problem of truncation error does not arise; the most important of such case is when
f(x) = X" (n > 0) and we shall deal with this case below; but first we look at an example
where evaluation of (3.2) is computed numerically.

:Tcm

(32

3.1  Numerical Examples

Example 1
Find a cubic approximation to * by using Chebyshev polynomials

Solution
Let the approximation be

a" =%cﬂ, +o @)+ () + ...+, T, (x)

Then, from (2.17)

e = ""Iﬂ €=0,1,2,3)

\'1 x2
Usmg the substiution x = cosf , we transform this mtegral as follows:
x=cosd o dr=—sinf df=—1-cos20d6 = —y1-x df
whenx=1.8=0 andwhenx=-1 8=n1
substituting mfo the mfegral above, we have

-2 ju —Eme ms(ﬂ}( 'u'ﬁjdﬂ

I

'1
Canceling out the common terms and reversing the imits which eliminates the (-) sign we obtain
T
c, =%I %58 cos(r6) d6 (3)
0

This is better from a numerical point of view since the integrand no longer contains a
singularity. In evaluating integrals containing a periodic function as a factor in the
integrand it is usually best to make use of the simplest quadrature formulae, such as the
midpoint rule, Simpson rule or trapezium rule. By using any of these methods the
coefficients cj can be evaluated for a series of decreasing step-sizes and the results
compared. This will establish some confidence in the accuracy of the results. Thus using
the trapezoidal (or simply trapezium) rule with step-sizes /2% (k = 1,2,3,4)
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Jx) =20, +2)1 +2V + -t 21 + V)
where h 15 the step size. From equation (3.3), we obtain the following estimates for ¢y

2 If cos
co== g =l
¢ xlo

With k=1 we have h=%,andﬁ:-r interval (0, ©) we have three points 0, %, T
Thus we take y = %%

X 0 g

ra| &

v e 1 !

This integral by trapezium rule will grve
Y =2y, + 23 +32)
_2(1 1{ -1]
3(212 le+2(l)+e
= 2.543081

Withk=2_ we have A =%, and for interval (0, m) we have five points 0, %,%, 3T

X 0 g Fid 3_?2' Fil

F] 2 1
v 2718282 [ 20281151 0.4930489 | 0367879

SO =200, + 201 +2y2 +2y3 +14)
= 2{L}E 2718282+ 2(2.008115 +1+ 0.493069) + 0.367879]

= 2532132
K Estimate
I 2.543081 6dp)
2 2532132 (6dp)
3 253213176 (8dp)
4 253213176 (3dp)

And we conclude that cp=2.53213176 to 8d.p

The other coefficients are evaluated similarly and we find (to 8 d p)
c;=113031821, cy=027140534, ¢;=0.04433685

So that the required approximation is

e =1.26606588T, (x)+1.130318217; (x) +0.27149534T5 (x) +0.04433685T3(x)  (3.4)

It 1s not necessary to re-order (3.4) in powers of x for this fornmla may be used directly for the
computation of approximations to e* by using the Chebyshev polynomials Ty(x) earlier obtained
in the last unit. Thus, taking x= 0.8 for an example, we have

T{0.8)=1 , T1{0.8)=08
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Also
Ty(0.8)=2(0.8)(0.8)-1=0.28
and T3(0.8)=2(0.8)(0.28)- 08 = -0352
and equation (2.19) then gives rounded to (4d p)
"8 222307
The correct value to 4d.p 15 2.2255

By comparison the cubic approximation obtained by truncating the Taylor series for e* after 4
teris gives
l1.2,1.3,1.4

X
& =l+x+2x"+ 1+ =X 4+
2 3 24

=1+08+2(0.8)" +1(0.8)° =2.2053

When we consider the errors in the two approximations we note that the error from the
Chebyshev approximation is

Echeny= 12.2255 — 2.2307| = 0.00052
While that of the Taylor series is
Etay= 12.2255 — 2.2307| = 0.0202

The error of the Taylor series is almost 4 times as large as that of Chebyshev
approximation. For small values of x however the Taylor series cubic will give better
results e.g. at x = 0.2, The Chebyshev series gives €%?=1.2172 (4 dp)

While the Taylor series cubic gives e = 1.2213 and in fact the exact value is

e = 1.2214 which illustrates the point that Chebyshev approximations do not
necessarily produce the best approximations at any given point in the interval [-1, 1] but

they do guarantee to minimize the greatest error in the interval.

In general it frequently happens that several approximation formulae are available and
each will have its own advantages and disadvantages. In particular, different formulae
may give the best results over different parts of the interval of approximation and it may
require considerable analysis to decide which to use at any point.

We now consider the special case when f(x) = x" (n = 0). The importance of this case lies
in its role in the method of economization. It is possible to express the Chebyshev the
term x",n=1, 2, 3, ..., in terms of T,(x). These Chebyshev representations for x, are
easily obtained by solving the Chebyshev polynomials successively as follows:
"Tofx}=1 hence x"=1= Tyx)

Ti(x)=x henre x= Ti(x)

Tix)=2x"—1=2% —To(x). hence ix* = 1% [Ta(x) + To(x)]
Tix)=4x 3x=4x —3Ti(x). hence x' =% [T3(x) +3Tu(x)]

Simularly, P %{T 4(x)+ 415 (x)+ 31y (x))
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and so on, Higher powers of x can equally obtained in terms of Tn(x) and the learner is
encouraged to obtain as far as x® as an exercise.

Now, since we can express x* as a linear combination of Tk(x), Tk — 1(x),...,TO(X) we
can as well any power series expansion of an arbitrary function f(x) into an expansion in
a series of Chebyshev polynomials. An example is given next.

Example 2
Convert the first 5 terms of the Taylor series expansions for ¢* into Chebyshev
polynomials

Solution

PR I S S L S

2 6 24

= T () + 1(x)+ 7 (28 + To () + 9 (T30 + 3T () + a5 (T (x)+ 4T () + 3T ()
=a+—+—>rutx}+ﬂ+l}fitx}+( Wh®+, BE+ 1)
e =S+ 3T+ BT () + o B+ g5 T4 ()
If we truncate this result after the term T;(x} we shall obtain
e" =S +3 0+ a0+ () (34)
with the principal error as 25T (1) +.

This approximation can as well be regarded as the cubic expansion for .
If we convert the coefficients of equation (3.3) to decimal form we have

¢ 21265625007, (x) +1.125F(x)+0.2708333 13 (x) +0.041667 T3 (x) (3.5)

Thus we can compare equations (3.4) and (3.5) since both are cubic approximations to e
obtained by the use of Chebyshev polynomials. The coefficients from the two equations are in
the table below.

To(x) Th(x) Ta(x) Ti(x)
Equation (3.4) | 1.26606588 1.13031821 0.27149534 0.04433685
Equation (3.5) | 1.26562500 1.12500000 0.27083333 0.04166667

Since both cubic approximations provide some kind of good approximations to e* we
would expect them to have similar coefficients but they are not identical because
equation (3.4) is the approximation to €* using the first 4 Chebyshev polynomials
whereas equation (3.5) is based upon the Chebyshev equivalent of the first 5 terms of the
Taylor series for e* ‘economized’ to a cubic
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4.0 CONCLUSION

It would be observed that as it was done with Legendre polynomials we have similarly
obtained an approximate functions to f(x) using the Chebyshev polynomials.

The technique of economization is a very useful one and can lead to significant
improvements in the accuracy obtainable from a polynomial approximation to a power
series. In the next section we present the technique in the general case and in passing see
how (3.5) may be more easily obtained.

50 SUMMARY

In this Unit the reader have learnt that:

(i.)  Chebyshev polynomials is a technique for approximation using the least square
technique.

(ii.)  Chebyshev polynomial approach to fitting of approximation to a function is similar
to that of Taylor series for the same function.

6.0 TUTOR MARKED ASSIGNMENT

(1) Obtain a cubic polynomial to f(x) = 1/x over [-1, 1] by means of Chebyshev
polynomials.

(2)  Convert the first 5 terms of the Taylor series expansions for e into Chebyshev
polynomials

7.0 FURTHER READING AND OTHER RESOURCES

Abramowitz M., Stegun I. (eds), (1964): Handbook of Mathematical functions, Dover, N.
Y.

Atkinson K. E. (1978): An Introduction to Numerical Analysis, 2" Edition, John Wiley
& Sons, N. Y

Conte S. D. and Boor de Carl Elementary Numerical Analysis an Algorithmic Approach
2" ed. McGraw-Hill Tokyo.

Henrici P. (1982): Essential of Numerical Analysis, Wiley, N. Y

Leadermann Walter (1981) (Ed.): Handbook of Applicable Mathematics, Vol 3,
Numerical Analysis, John Wiley, N. Y.

50



UNIT 6: CHEBYSHEV INTERPOLATION
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1.0 INTRODUCTION

Often we use Lagrange’s methods to interpolate some set of points defined by f(x). The
technique is interesting when we involve the use of Chebyshev polynomials. The
approach will be discussed in this unit with emphasis on terms such as Lagrange and
Chebyshev polynomials.

2.0 OBJECTIVE
By the end of this unit the learner you should be able to:

e use Lagrange’s formula;
e interpolate using Chebyshev polynomials; and
e  Compute the error table from the approximation

3.1 INTERPOLATION TECHNIQUE

If the values of a function f(x) are known at a set of points X; < X, < ... < X, we can
construct a polynomial of degree (n — 1) which takes the values f(x;) at x; (i = 1,2,...,n).
The polynomial is unique and can be found in various ways including the use of
Newton’s divided difference formula or Lagrange’s method. Lagrange’s formula is more
cumbersome to use in practice but it has the advantage that we can write down the
required polynomial explicitly as:
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P = Zf{x_,}l'[ X4 (3.1)
J=1 ial X5 i
g
The reader should note that ]—[{x x;) 18 a product of function (x—y;),1=1,2. .., n just as
=l
Z{I—I:'} 1s a summation function
il
Thus ﬁ{x—x;-} 15 evaluated or expanded as:
il

[TGE-x)=(r-m)x—x3) - (x—x,)

i=1
If f(x) is not a polynomial of degree < (n — 1) the error when we use p(x) for interpolation
can be shown to be

E() = J0r—x) /)
i=l
Where o is some number between x; and x,. If the values Xj, X»,...x,, have been fixed we

can do nothing to minimize E(x) but if we can choose any n points within a specified
interval it may be worthwhile choosing them in a particular way as we now show

"?’{-:r}

Suppose, for simplicity, that we are interested in values of x lying in the interval
-1 < x <1 and that we are free to choose any n points X,, ...,x, in this interval for use in
the interpolation formula (3.1). Now

[IGx—x)
i=1

Is a polynomial of degree n with leading coefficient 1 and of all such polynomials the one
with the minimum maximum value is 2-™%. It follows therefore that if we wish to
minimize (3.1) we should choose the xi so that

"
[1G-x)=2 V7,0 - 2@
i=1 2
And this is equivalent to saying that we should choose Xi, X,...,x, to be the n roots of
Th(X), that is, we should take
X, =m5F"§—§”-‘r . (m=1,2,....0) G.2)
The main disadvantage of Chebyshev interpolation is the need to use the special values of

X; given by (3.2) rather than integral multiples of a step (such as 0.1, 0.2, . . . ,etc). The
values, however, are easy to compute for a given n.
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3.1  Numerical Example

Example 1
Use Chebyshev interpolation to find a cubic polynomial approximation to (1+x)? over
[_1’ 1]

Solution
For a cubic polynomial approximation, we need four interpolating points. Hence,
the four Chebyshev interpolation points from equation (3.2) are

x=cos(f), X2 =cos(3h) . x3 =cos(3). x4 =cos(ED)
and these valuesare x=002388 , x=0382683, x3=-0382683, x4=-002388
We note that ¥; = — % and x4 =— x;. The cubic can therefore be simplified by combiming terms
involving (x; md ) :uld (xz and x;). Thus, from equation (3.1) we shall obtain

Pl = ZI{IJ}H .
J=1 il X~
s
_ ) (x =% Wx—x3 }x—1x4) (x—x)(x—x3 }(x—x4)
76 " (x — X )0y —X3)(x; —x4) +f{xz}(xz—xl)(l’2—133(12—14)
+ Fx v =3 ) - )X —2y) r I (o — 27 J(x — 207 )(x — x5
(ﬁ‘ﬁ)(ﬁ‘xﬂ(fﬁ. Xy4) (14—11)(1’4 —Xp )Xy —X3)

But x3 = — % and ¥y =— %) , using this we get
G-x)x+x)x+x) %) (r—x)x+xHx+x)

Pixy=F(
®=70a) () — 22 )(xq +x3 ) +x1) 27 (x2 —)(xz +x2)(x2 +27)
+ fl=x3) Or—x)xr—x)x+x) (=x1) (x—x)x—xNx+x2)
(—x2 —)(—x2 —x2 }(—x2 +x7) (0 —x)—x —x2 )(—x +x7)

Now putting f(x) = (L +x)7, we have
PxX)=(1+x) b (x> 12](1'+1'1} +(1+1) Ly (x? —xf ](1’+1-1}

(xf —x3)(2%) (3 —x{)(2%;)
(x? 11 Wx— 1’2} (x? —11)(1' x)
+(1-x) n + (1-x3)° ¢
(x3 —x{ )(=2x3) (xf —x3)(=2x)

53



(x> -0382683%)(x +0.92388)
(0.923887 —0.382683%)(2 2 0.92388)

(x? —0.923887)(x+0.382683)
(0.382683% —0.023887)(2  0.382683)

(x? —0.92388%)(x - 0.382683)
(0.382683" - 0.92388%)(~2 4 0.382683)
(x? —0.382683)(x—0.92388)
(0.02388° 03826837 )(~2 % 0.02388)

P(x) = (1.38702) (x* —0.146446)(x +0.92388)
| (0.853554—0.146446)(1 84776)

(x —0.853554)(x +0.382683)
(0146446 — 0.853554)(0.765366)
(x —0.853554)(x—0.382683)
(0.146446—0.853554)(~0.765366 )
(x> —0.146446)(x—0.92388)
(0.853554—0.146446)(—1 84776 )

P(x)=(1.92388) 2

+(1.92388) 2

+(1-0382683) 1

+ (1-0.382683) 2

+(1.38702)

+ (0.785695) %

+ (0.785605)x

P(x) = (1.0615769) = (x2 —0.146446)(x + 0.92388)
+(~2.5628773) % (x> —0.853554)(x+ 0.382683)
+ (2.6383371) = (x? —0.853554)(x — 0.382683)

+ (-0.6013436)x (x” — 0.146446)(x — 0.92388)

Opening the brackets and sumphifying we shall obtain the cubic polynomial approximation (to 3
decimal places) as:

P(x) = 1.01171 + 0.40084x + 0.21 116 + 0.12047¢ (3.3)

1
Comparison of P{x) in equation (3.3) with f(x)=(1+x)?at x= —% (}3) %2 with the absolute
error E =] fix) — P(x)| is given in Table 1 below:

Table 1
X —0.5 —0.25 0 0.25 0.50
P{x) 0.69732 087378 1.01171 1.12325 1.22052
Fixy=01+ x}% 070711 0.86603 100000 1.11803 1.22475
Abs. Emmor E 0.00979 0.00775 0.00171 0.00522 000423

The above table displays the accuracy of the Chebyshev approximation to the given
example.
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40 CONCLUSION

We have been able to demonstrate the use of Lagrange’s method in our interpolation
technique. We have also seen that Chebyshev polynomials are of great usefulness in the
interpolation of simple functions.

50 SUMMARY

In this Unit you have learnt that:

(i.)  interpolation technique is possible by using Chebyshev polynomials.

(ii.) Lagrange’s method of interpolating is basic and very useful.

(i)  the difference of the actual and the approximate value is the error

6.0 TUTOR MARKED ASSIGNMENT

Use Chebyshev interpolation technique to find a cubic polynomial approximation to
(1-x) 2 over [-1, 1]
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