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1.0 INTRODUCTION  

 

Orthogonal polynomials are of fundamental importance in many branches of mathematics 

in addition to approximation theory and their applications are numerous but we shall be 

mainly concerned with two special cases, the Legendre polynomials and the Chebyshev 

polynomials. More general applications are however easily worked out once the general 

principles have been understood. 

 

2.0 OBJECTIVE 

 

By the end of this unit, you should be able to: 

 

 define what orthogonal polynomials are; 

 formulate orthogonal and orthonormal polynomials; and 

 handle inner product of functions. 

 

3.0 ORTHOGONAL POLYNOMIALS 

 

We begin this study by giving the definition of orthogonal functions: 

 

Definition 1 
 

A system of real functions φ n (x), φ1(x), ....defined in an interval [a, b] is said to be 

orthogonal in this interval if 

 

 
If λ0 = λ1 =..... = 1 the system is said to be normal. An orthogonal system which is also 
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normal is sometimes referred to as an orthonormal system. 

Note that since φn (x) is real, λn ≥ 0 and we shall assume that each φn (x) is continuous 

and non-zero so that λn > 0. 

 

The advantages offered by the use of orthogonal functions in approximation theory can 

now be 

 

made clear as follows. Suppose {φn,(x)} is an orthogonal system and that f(x) is any 

function and we wish to express f(x) in the form 

 
Thus the coefficients cn in equation (3.1) can be found. These coefficients cn are called 

the Fourier coefficients of f(x), with respect to the system {φn(x)} 

 

3.1 The Inner Products 
 

Let w(x) be the weighting function and let the inner product of two continuous functions 

f(x) and g(x) be defined as 
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where {xk} are the zeroes of the function. 

We remark here that polynomial approximation is one of the best ways to fit solution to 

unknown function f(x). 

 

A good polynomial Pn(x) which is an approximation to a continuous function f(x) in a 

finite range [a, b] must possess oscillatory property. Among such polynomial 

approximation functions include the Chebyshev Polynomials and the Legendre 

Polynomials. We shall examine these polynomials and their properties in our discussion 

in this course as we go along. 

 

Definition 2 (Orthogonality with respect to a weight function) 

 

A series of functions {φn,(x)} are said to be orthogonal with respect to the weight 

function w(x) over (a,b) if 

 
 

The idea and principle of orthogonality properties are now extended to two common 

polynomials in the next few sections. 

 

3.2 Example 
 

The best-known example of an orthogonal system is the trigonometric system 

 

1, cos x, sin x, cos2x, sin2x,… 

 

Over the interval [-π, π]. 

We shall define various combination of integral of product functions of sine and cosine as 

follows: 
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4.0 CONCLUSION  

 

The discussion above has simply illustrated the way to determine where a set of functions 

is orthogonal or otherwise. Other examples can be produced to show the orthogonality 

property. 

 

5.0 SUMMARY 

 

In this unit you have learnt that 

 

(i.) a normal orthogonal system is an orthonormal system 

(ii.) orthogonality of some functions can be obtained by integration 

(iii.) inner product is written as an integral or a sum 

 

6.0 TUTOR MARKED ASSIGNMENT 

 

Verify whether the following functions are orthogonal or not 

(i.) 1, e
x
 , e

2x
 , e

3x
 , . . . . 

(ii.) ln x, ln2x , ln3x , ln4x, . . . 
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1.0 INTRODUCTION 

  

Legendre polynomial is known to possess some oscillatory property among which makes 

it of importance in the field of numerical analysis. The polynomial has its root from the 

Legendre equation which is a second order differential equation. The first set of solutions 

of the Legendre equation is known as the Legendre polynomial. 

 

2.0 OBJECTIVE 

 

By the end of this unit, you should be able to: 

 

 state the necessary formulae for generating the Legendre polynomials; 

 generate the Legendre polynomials; and 

 define the Legendre polynomial as a class of orthogonal series. 

 

3.0 LEGENDRE POLYNOMIAL APPROXIMATION  

 

When we try to find good polynomial approximations to a given function f(x) we are 

trying to represent f(x) in the form 

 

 ( )  ∑   
 

 

   

                                                                                             (   ) 

 

which is of the form of series equation (3.1) of the last unit with φk (x) = xk
 . 

Unfortunately the set 1, x, x
2
,… is not orthogonal over any non-zero interval as may be 

seen at once since, for example 

 

∫  ( )  ( )  

 

 

 ∫    

 

 

   

which contradicts the assertion that {x
k
} is orthogonal. It is however possible to construct 

a set of polynomials P0(x), P1(x), P2(x),… Pn(x),… where Pn(x) is of degree n which are 

orthogonal over the interval [-1, 1] and from these a set of polynomials orthogonal over 

any given finite interval [a, b] can be obtained. 
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The method for finding a set of polynomials which are orthogonal and normal over [-1, 1] 

is a relatively simple one and we illustrate it by finding the first three such polynomials. 

We shall at this junction give a definition of Legendre Polynomial which can be used to 

generate the set of polynomials required. 

 

Definition 1 
The Rodrigues’ formula for generating the Legendre polynomial is given by 

 

  ( )  
 

    

 

   
,(    ) -                                                              (3.2) 

 

From the definition given above, you will observe that an n
th

 derivative must be carried 

out before a polynomial of degree n is obtained. Thus the first few set of Legendre 

polynomials can be obtained as follows: 

 

Po(x) will not involve any derivative since n = 0, hence we have 

 

P0(x) = 1 

 
Also for n = 1, we shall have 
 

 
 

To obtain P3(x) it will require differentiating three times which will become cumbersome 

as n increases. With this difficulty that may be encountered with higher differentiation 

especially as n > 2 in Pn (x) of Rodrigues’ formula (3.2) above, a simpler formula for 

generating the 

 

Legendre polynomials is given by its recurrence relation. This is given next. 
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3.1 Recurrence Formula for Legendre Polynomial 

 

 
 

It is known that the Legendre Polynomial Pn(x) satisfies the following property: 

 

 
 

This is the orthogonality property which permits it to be a polynomial approximation to 

any continuous function within its range [-1, 1]. 

It follows at once from equation (3.4) that {Pn(x)} forms an orthogonal, but not normal, 

set over [-1, 1] with respect to the weight function w(x) = 1 and that the set 

 

*  ( )+  {√
    

 
  ( )}  

 

forms an orthonormal set. 

 

4.0 CONCLUSION  

 

You can observe that the Legendre Polynomials can be obtained from the Rodrigues’ 

formula but much easier by using the recurrence formula generated from the Legendre 

differential equation. 
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5.0 SUMMARY 

 

In this Unit you have learnt 

 

(i) how to use the Rodrigue’s formula to generate Legendre polynomials  

(ii) how to use recurrence relation as alternative formula to derive the same 

Legendre polynomials by simple substitution of previously known polynomials  

(iii) that the orthogonality property of the Legendre Polynomial permits it to be a 

polynomial approximation to an continuous function.  

 

6.0 TUTOR MARKED ASSIGNMENT 
 

Obtain the Legendre Polynomials Pn(x) for n = 5, 6, . . . , 10 using both the Rodrigue’s 

formula and the recurrence relation of the Legendre polynomials. 

 

7.0 FURTHER READING AND OTHER RESOURCES 

  

Francis Scheid. (1989) Schaum’s Outlines Numerical Analysis 2
nd 

ed. McGraw-Hill New 

York.  

 

Turner P. R. (1994) Numerical Analysis Macmillan College Work Out Series Malaysia  

 

Atkinson K. E. (1978): An Introduction to Numerical Analysis, 2
nd

 Edition, John Wiley 

& Sons, N. Y  

 

Leadermann Walter (1981) (Ed.): Handbook of Applicable Mathematics, Vol 3, 

Numerical Analysis, John Wiley, N. Y.  
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1.0 INTRODUCTION 

  

Legendre Polynomials are known to be applicable to least square approximation of 

functions. In this sense, we mean that we can follow the least square approximation 

technique and adapt this to Legendre polynomial. 

 

2.0 OBJECTIVE 

  

By the end of this unit, you should be able to: 

 

 apply Legendre polynomial to least squares procedures; and 

 obtain least square approximation using Legendre polynomial. 

 

3.0 THE PROCEDURE 
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which provides a solution to the least squares polynomial approximation problem. The 

evaluation of the integrals on the right-hand side of (2.9) may have to be done 

numerically. 

The following examples shall be used to illustrate the least squares approximation 

method using the Legendre polynomial. 

 

3.1 Numerical Experiment  

 

Example 1 
 

Find the fourth degree least squares polynomial to |x| over [-1, 1] by means of Legendre 

polynomials. 

 

Solution 
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The expression (3.5) can be converted to normal polynomial form by substituting the 

polynomial form of P0(x), P2(x) and P4(x) as given in the last unit. This ends up giving 

the required polynomial as: 

 

 
 

Which is therefore the least squares polynomial for |x| over [-1, 1] 

 

Verification 
This result may be verified directly by using the least squares method given in the last 

module. 

 

Now the least squares polynomial is  

 

∑   
 

 

   

 

 

 
 



36 

 

 

Example 2  

Given a continuous function e
x
 for x∈[-1,1] fit a linear polynomial c0 + c1x to e

x
 and 

determine its root mean square error 

Solution 
 

Using Equation (3.1) we have 
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4.0 CONCLUSION  

 

The use of Legendre polynomial as a technique for least square approximation shows that 

the same result is achievable from the least square approximation method as well as the 

Legendre Polynomial approach. 

 

5.0 SUMMARY 

 

In this Unit you have learnt 

(i) the technique of using Legendre polynomial to obtain and approximation using the 

least square method. 

(ii) that both Legendre approach and the Least squares approach will often produce the 

same result. 

 

6.0 TUTOR MARKED ASSIGNMENT 
 

Obtain a fourth degree least squares polynomial for f (x) =  

| |

 
over [-1, 1] by means of 

Legendre polynomials. 
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1.0 INTRODUCTION 

  

It is always possible to approximate a continuous function with arbitrary precision by a 

polynomial of sufficient high degree. One of such approach is by using the Taylor series 

method. However, the Taylor series approximation of a continuous function f is often not 

so accurate in 

 

the approximation of f over an interval [a, b]. If the approximation is to be uniformly 

accurate over the entire interval. This may be due to the fact that: 

 

(i) in some cases, the Taylor series may either converge too slowly or not at all.  

(ii) the function may not be analytic or if it is analytic the radius of convergence of the 

Taylor series may be too small to cover comfortably the desired interval. 

 

In addition, the accuracy of the Taylor series depends greatly on the number of terms 

contained in the series. However, a process that was based on the fundamental property 

of Chebyshev polynomial may be considered as alternative and it works uniformly over 

any given interval. We know that there are several special functions used for different 

purposes including approximation, polynomial fittings and solutions of differential 

equations. Some of these special functions include Gamma, Beta, Chebyshev, Hermite, 

Legendre, Laguerre and so on. However, not all these are good polynomial 

approximation to continuous functions. 

 

However, Chebyshev polynomials have been proved to be very useful in providing good 

approximation to any continuous function. 

 

To this end, the Chebyshev polynomial is usually preferable as polynomial 

approximation. The Chebyshev polynomial has equal error property and it oscillates 

between –1 and 1. Due to its symmetric property, a shifted form of the polynomial to half 

the range (0, 1) is also possible. 
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2.0 OBJECTIVE  

 

By the end of this unit, you should be able to: 

 state the necessary formulae for generating the Chebyshev polynomials; 

 obtain Chebyshev polynomials Tn(x) up to n = 10; and 

 classify Chebyshev polynomial as a family of orthogonal series. 

 

3.0 INTRODUCTION TO CHEBYSHEV POLYNOMIALS 
 

As it was earlier stated, Chebyshev polynomials are often useful in approximating some 

functions. For this reason we shall examine the nature, properties and efficiency of the 

Chebyshev polynomial. 

 

Chebyshev Polynomial is based on the function “cosnθ” which is a polynomial of degree 

n in cosθ. Thus we give the following basic definition of the Chebyshev polynomial. 

 

Definition 1 
The Chebyshev polynomial is defined in terms of cosine function as 

 

  ( )     (      
   ) for                                                        (3.1) 

 

This definition can be translated to polynomials of x as it would be discussed very 

soon. Before we do this, if we put x = cosθ , the Chebyshev polynomial defined 

above becomes 

Tn(x) = cos(nθ) 

 

Tn(x) is of the orthogonal family of polynomials of degree n and it has a weighting 

function 

 

 ( )  
 

√    
           

It has an oscillatory property that in 0 ≤ θ ≤ π the function has alternating equal 

maximum and minimum values of ± 1 at the n+1 points. Thus the orthogonality relation 

of the Chebyshev polynomial is given as: 
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3.1 Generating Chebyshev Polynomials 

 

Over the years the function Tn(x) is the best polynomial approximation function known 

for f(x). In order to express Tn(x) in terms of polynomials the definition can be used to 

some extent, but as n value increases, it becomes more difficult to obtain the actual 

polynomial except by some trigonometric identities, techniques and skill. 

For the reason, a simpler way of generating the Chebyshev polynomials is by using the 

recurrence formula for Tn(x) in [-1, 1]. 

 

The recurrence formula for generating the Chebyshev polynomial Tn(x) in [-1, 1] is given 

by 

Tn+1(x)=2xTn(x)−Tn−1(x) ,   n ≥1 (3.4) 

 

Thus to obtain the Chebyshev polynomials, a combination of (3.1) and (3.4) can be used. 

Starting with the definition (3.1), that is 
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You can now derive the next few ones, say up to T10(x), following the same technique. 

 

Note that the recurrence formula is one step higher than the definition for the “n” value 

being used. In other words, when n = 2 in the definition we obtain T2(x), whereas to get 

the same T2(x) from the recurrence formula we use n = 1. The reason is obvious; the 

recurrence formula starts with subscript “n+1” as against “n” in the definition. 

These polynomials are of great importance in approximation theory and in solving 

differential equations by numerical techniques. 

 

3.2 Properties of Chebyshev Polynomials 
 

In the interval –1 ≤ x ≤ 1 the Chebyshev Polynomial Tn(x) satisfies the following 

properties: 

 

 
 

3.3 Derivation of the Recurrence Formula 
 

Now that we have seen the usefulness of the recurrence formula (2.16), it might be 

necessary for us to derive this formula from certain definition. There are two ways to this. 

We can use some trigonometric functions to get this since Chebyshev polynomial is 

defined as a cosine function. However, we can also derive this formula by solving it as a 

difference equation which can be shown to produce the definition (2.13). For the 

purpose of this course, since we are not treating linear difference equation, we shall go 

via the first type, by using some trigonometric functions. 

 

Equation (2.16) is given by 

Tn+1(x) = 2xTn(x)−Tn−1(x) ,   n ≥1 

 

To obtain this formula, we can recall from trigonometric knowledge that 
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4.0 CONCLUSION  

 

The derivation of Chebyshev polynomials has been demonstrated and made simple by 

using the recurrence formula rather than using the basic definition (3.1). we have equally 

given the derivation of the recurrence formula by simply using some trigonometry 

identities, although this derivation can be established by solving the recurrence formula 

as a difference equation from which the basic definition (3.1) is obtained. Other methods 

of derivation equally exist. 

 

5.0 SUMMARY  

 

In this Unit we have learnt that: 

(i) Chebyshev polynomials are special kind of polynomials that satisfy some properties  

(ii) Chebyshev polynomials which are valid within [-1, 1] have either odd indices or 

even indices for Tn(x) depending on whether n is odd or even.  

(iii) Chebyshev polynomials can be obtained from the recurrence formula.  

 

(iv) the recurrence formula for Chebyshev polynomials Tn(x) is more suitable to 

generate the polynomials than its definition.  

 

6.0 TUTOR MARKED ASSIGNMENT  

 

Obtain the Chebyshev polynomials Tn(x) for n = 5, 6, . . . , 10  
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1.0 INTRODUCTION  

 

Chebyshev polynomials can be used to make some polynomial approximations as against 

the use of least square method. The orthogonality properties of the Chebyshev 

polynomial permit the use of the polynomial as approximation to some functions. A case 

of cubic approximation will be considered in this study. 

 

2.0 OBJECTIVE 

 

By the end of this unit you should have learned: 

 

 the form of the function f(x) which permits the use of Chebyshev polynomials as 

approximation to it; and 

 how to apply Chebyshev polynomials to fit a cubic approximation to a function 

f(x).  

 

3.0 APPROXIMATION BY CHEBYSHEV POLYNOMIALS 
 

If we have a function f(x) which we wish to approximate with a series of Chebyshev 

polynomials 
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The evaluation of the integral for cm given by (3.2) will in general have to be done 

numerically and in such cases it is obviously important to ensure that the truncation error 

is sufficiently small or the accuracy available via the Chebyshev approximation to f(x) 

will be reduced. In a few special cases, the integral can be evaluated analytically and the 

problem of truncation error does not arise; the most important of such case is when  

f(x) = x
n
 (n ≥ 0) and we shall deal with this case below; but first we look at an example 

where evaluation of (3.2) is computed numerically. 

 

3.1 Numerical Examples  

 

Example 1 
Find a cubic approximation to e

x
 by using Chebyshev polynomials 

 

Solution 
Let the approximation be 

 

 
Then, from (2.17) 

 

 
 

This is better from a numerical point of view since the integrand no longer contains a 

singularity. In evaluating integrals containing a periodic function as a factor in the 

integrand it is usually best to make use of the simplest quadrature formulae, such as the 

midpoint rule, Simpson rule or trapezium rule. By using any of these methods the 

coefficients cj can be evaluated for a series of decreasing step-sizes and the results 

compared. This will establish some confidence in the accuracy of the results. Thus using 

the trapezoidal (or simply trapezium) rule with step-sizes π/2
k
 (k = 1,2,3,4) 
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When we consider the errors in the two approximations we note that the error from the 

Chebyshev approximation is 

 

ECheby= |             |          

 

While that of the Taylor series is 

 

ETay |             |         

 

The error of the Taylor series is almost 4 times as large as that of Chebyshev 

approximation. For small values of x however the Taylor series cubic will give better 

results e.g. at x = 0.2, The Chebyshev series gives   e
0.2

 = 1.2172  (4 dp) 

While the Taylor series cubic gives e
0.2

 = 1.2213 and in fact the exact value is   

e
0.2

 = 1.2214 which illustrates the point that Chebyshev approximations do not 

necessarily produce the best approximations at any given point in the interval [-1, 1] but 

they do guarantee to minimize the greatest error in the interval. 

 

In general it frequently happens that several approximation formulae are available and 

each will have its own advantages and disadvantages. In particular, different formulae 

may give the best results over different parts of the interval of approximation and it may 

require considerable analysis to decide which to use at any point. 

 

We now consider the special case when f(x) = x
n
 (n ≥ 0). The importance of this case lies 

in its role in the method of economization. It is possible to express the Chebyshev the 

term x
n
 , n = 1, 2, 3, … , in terms of Tn(x). These Chebyshev representations for xn are 

easily obtained by solving the Chebyshev polynomials successively as follows: 
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and so on, Higher powers of x can equally obtained in terms of Tn(x) and the learner is 

encouraged to obtain as far as x
8
 as an exercise. 

 

Now, since we can express x
k
 as a linear combination of Tk(x), Tk – 1(x),…,T0(x) we 

can as well any power series expansion of an arbitrary function f(x) into an expansion in 

a series of Chebyshev polynomials. An example is given next. 

 

Example 2 
Convert the first 5 terms of the Taylor series expansions for e

x
 into Chebyshev 

polynomials 

 

Solution 

 
 

Since both cubic approximations provide some kind of good approximations to e
x
 we 

would expect them to have similar coefficients but they are not identical because 

equation (3.4) is the approximation to e
x
 using the first 4 Chebyshev polynomials 

whereas equation (3.5) is based upon the Chebyshev equivalent of the first 5 terms of the 

Taylor series for e
x 
‘economized’ to a cubic 

 

 

  



50 

4.0 CONCLUSION 

 

It would be observed that as it was done with Legendre polynomials we have similarly 

obtained an approximate functions to f(x) using the Chebyshev polynomials. 

The technique of economization is a very useful one and can lead to significant 

improvements in the accuracy obtainable from a polynomial approximation to a power 

series. In the next section we present the technique in the general case and in passing see 

how (3.5) may be more easily obtained. 

 

5.0 SUMMARY 

 

In this Unit the reader have learnt that: 

(i.) Chebyshev polynomials is a technique for approximation using the least square 

technique. 

(ii.) Chebyshev polynomial approach to fitting of approximation to a function is similar 

to that of Taylor series for the same function. 

 

6.0  TUTOR MARKED ASSIGNMENT 

 

(1) Obtain a cubic polynomial to f(x) = 1/x over [-1, 1] by means of Chebyshev 

polynomials.  

(2) Convert the first 5 terms of the Taylor series expansions for e
–x

 into Chebyshev 

polynomials  

 

7.0 FURTHER READING AND OTHER RESOURCES  
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Y.  
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nd

 Edition, John Wiley 

& Sons, N. Y  

 

Conte S. D. and Boor de Carl Elementary Numerical Analysis an Algorithmic Approach 

2
nd

 ed. McGraw-Hill Tokyo. 

 

Henrici P. (1982): Essential of Numerical Analysis, Wiley, N. Y  

 

Leadermann Walter (1981) (Ed.): Handbook of Applicable Mathematics, Vol 3, 

Numerical Analysis, John Wiley, N. Y.  
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1.0 INTRODUCTION 

 

Often we use Lagrange’s methods to interpolate some set of points defined by f(x). The 

technique is interesting when we involve the use of Chebyshev polynomials. The 

approach will be discussed in this unit with emphasis on terms such as Lagrange and 

Chebyshev polynomials. 

 

2.0 OBJECTIVE 

 

By the end of this unit the learner you should be able to: 

 

 use Lagrange’s formula; 

 interpolate using Chebyshev polynomials; and  

 Compute the error table from the approximation  

 

3.1 INTERPOLATION TECHNIQUE  

 

If the values of a function f(x) are known at a set of points x1 < x2 < … < xn we can 

construct a polynomial of degree (n – 1) which takes the values f(xi) at xi (i = 1,2,…,n). 

The polynomial is unique and can be found in various ways including the use of 

Newton’s divided difference formula or Lagrange’s method. Lagrange’s formula is more 

cumbersome to use in practice but it has the advantage that we can write down the 

required polynomial explicitly as: 
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If f(x) is not a polynomial of degree ≤ (n – 1) the error when we use p(x) for interpolation 

can be shown to be 

 
Where α is some number between x1 and xn. If the values x1, x2,…xn have been fixed we 

can do nothing to minimize E(x) but if we can choose any n points within a specified 

interval it may be worthwhile choosing them in a particular way as we now show 

 

Suppose, for simplicity, that we are interested in values of x lying in the interval  

-1 ≤ x ≤ 1 and that we are free to choose any n points x1, …,xn in this interval for use in 

the interpolation formula (3.1). Now 

 
is a polynomial of degree n with leading coefficient 1 and of all such polynomials the one 

with the minimum maximum value is 2
−(n-1)

. It follows therefore that if we wish to 

minimize (3.1) we should choose the xi so that 

 
And this is equivalent to saying that we should choose x1, x2…,xn to be the n roots of 

Tn(x), that is, we should take 

 
The main disadvantage of Chebyshev interpolation is the need to use the special values of 

xi given by (3.2) rather than integral multiples of a step (such as 0.1, 0.2, . . . ,etc). The 

values, however, are easy to compute for a given n. 
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3.1 Numerical Example 
 

Example 1 

Use Chebyshev interpolation to find a cubic polynomial approximation to (1+x)
2
 over  

[-1, 1] 

 

Solution 
For a cubic polynomial approximation, we need four interpolating points. Hence, 

the four Chebyshev interpolation points from equation (3.2) are 
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The above table displays the accuracy of the Chebyshev approximation to the given 

example. 
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4.0 CONCLUSION  

 

We have been able to demonstrate the use of Lagrange’s method in our interpolation 

technique. We have also seen that Chebyshev polynomials are of great usefulness in the 

interpolation of simple functions. 

 

5.0 SUMMARY 

 

In this Unit you have learnt that: 

(i.) interpolation technique is possible by using Chebyshev polynomials. 

(ii.) Lagrange’s method of interpolating is basic and very useful. 

 

(ii) the difference of the actual and the approximate value is the error  

 

6.0 TUTOR MARKED ASSIGNMENT 
 

Use Chebyshev interpolation technique to find a cubic polynomial approximation to 

(1−x) 
2
 over [-1, 1] 
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