
MTH 307          NUMERICAL ANALYSIS II 

 

56 

MODULE 3 FURTHER INTERPOLATION TECHNIQUES  
 

Unit 1  Cubic Spline Interpolation  

Unit 2 Hermite Approximations 

 

 

UNIT 1 CUBIC SPLINE INTERPOLATION  
 

CONTENTS 

1.0 Introduction 

2.0 Objectives 

3.0 Main Content  

3.1    Derivation of Cubic Spline  

3.1.1   Alternative Method of Deriving Cubic Spline  

3.2 Numerical Examples 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading  

 

1.0 INTRODUCTION 
 

One of the problems which frequently arises when we try to 

approximate a function by means of a polynomial of high degree is 

that the polynomial turns out to have closed placed maxima and  

minima, thus giving it an undulatory (or ‘wiggly’) character. This 

is very undesirable if the polynomial is to be used for 

interpolation, and disastrous if it is to be used for numerical  

differentiation.  

 

In 1945, I. J. Schoenberg introduced the idea of approximation to 

functions by means of a series of polynomials over adjacent 

intervals with continuous derivatives at the end-points of the  

intervals. Such a set of polynomials he called ‘splines’, pointing  out 

that architects and designers had been using mechanical devices of 

this kind for years. In his paper Schoenberg explains. A  

spline is a simple mechanical device for drawing smooth curves. It is 

a slender flexible bar made of wood or some other elastic materials. 

The spline is placed on the sheet of graph paper and held in place at 

various points..  

 

The mathematical equivalent of this ‘flexible bar’ is the cubic spline 

which has proved to be extremely useful for interpolation, numerical 

differentiation and integration and has been subject of many research 

papers.  
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2.0 OBJECTIVE 
 

At the end of this unit, the learner should be able to: 

 

 define a cubic spline; 

 derive a method of fitting a cubic spline; 

 fit a cubic spline to set of data points; 

 interpolate a function from the fitted cubic spline; and 

 find the error in the cubic spline. 

 

3.0   MAIN CONTENT  
 

To be able to understand this module we shall begin the discussion by 

defining what is meant by splines of degree k and then develop the 

special case of the cubic (k = 3)  

 

Definition 1  

 

A spline function S(x) of degree k with n  nodes,  x1 < x2 < … < xn has 

the properties  

 

(i.) S(x) is given in the interval [xi , xi+1] , i = 0, 1, . . . , n (where xo 

= - ∞ ,  xn+1 = ∞)  by a polynomial of degree at most k (in 

general, a different polynomial is obtained in each interval); 

(ii.) S(x) and all derivatives of orders 1, 2, …, k-1  are continuous 

on (- ∞ , ∞) 

 

In the case k = 3, the polynomials in each of the intervals are at most 

cubics and their first and second derivatives are continuous at the 

end points of the intervals. Such a set of polynomials form a cubic 

spline.  

 

We can narrow down this definition to a cubic spline S(x) as follows:  

 

Definition 2  

 

A Cubic Spline S(x) is a function which satisfies the following 

properties S(x) is a polynomial of degree one for x < x0 and x > xn  

 

S(x) is at most a cubic polynomial in (xi, xi+1) ,  i = 0, 1, 2,. . . , n - 1;  

S(x) , Sc(x) and Ss(x) are continuous at each point (xi , yi) ,  i = 0, 1, 2,. 

. . , n; S(xi) = yi ,   i = 0, 1, 2,. . . , n.  
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3.1   Derivation of Cubic Spline  
 

How can we construct a cubic spline? How many data points or set is 

required? We shall give simple and interesting, with step by step 

procedure of derivation of cubic splines. We proceed as  

follows:  

 

Suppose that we are given a set of points x1 < x2 < … < xn, not 

necessary equally spaced, and a set of values f(x1), f(x2),…, f(xn) at 

these points. Take a particular interval [xi, xi + 1] and fit a cubic over 

the interval which satisfies the definition of a cubic spline. Since the 

cubic may differ from one interval to another let the cubic be 

S(x) =Pi (x) ao + a1x + a2x
2
 + a3x

3
 ,   xi < x < xi+1 (3.1)  

Equation (3.1) contains 4 unknowns. We impose 2 obvious conditions 

P
i (xi

) = y
i , 

 

and P
i+1

(xi) = y
i+1 

 

The remaining 2 conditions are obtained by choosing the coefficients 

so that the first and second derivatives of Pi(x) at x, are equal to the 

first and second derivatives of Pi+1(x) at xi , that is 

 

P'
i
(x

i
) = P'

i+1
(x

i
) 

 

P''
i(xi) = P''

i+1
(x

i
) 

 

There remain special problem at x1 and xn, but we will deal with these 

later. The conditions are now sufficient to determine the (n - 1) cubics 

which collectively constitute the cubic spline S(x) that is: 

 

S(x) = P
i
(x) for x

i < x < x
i+1 

 

How can we solve these equations? The simplest method is to note that 

Ss(x) is linear in x and is also continuous over the whole interval [x1, 

xn]. 

 

Ss (x) can therefore be represented in [xi, xi + 1] by a linear function 

which is only seen to be 

 
We rewrite (3.2) in the form 
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We integrate twice then, putting h = hi =  xi+1 - xi  as usual, the result 

can be written as 

 

 
 

Hence any expression of the form Ax + B may be written as a(x - xi) 

+b(x - xi+1) for suitable choice of a,b provided  xi ≠ xi+1 

 

We now impose the conditions that S(xi) = yi and S(x
i+1) yi+1 

so that 

on putting  x = xi , equation (3.4) becomes  

 

 
 

This expression is valid for the interval xi < x < xi+1 

 

It is worth noting that if in (3.8) we ignore the two terms involving 

Ss(xi) and Ss(xi+1) we obtain the approximation to S(x) 
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which is the result for linear interpolation. We see therefore that the 

terms involving Ss(xi) and Ss(xi+1) can be regarded as correction 

terms obtained by using a cubic instead of a linear approximation. 

Before we can use (3.8) to determine S(x) we must find the values 

Ss(xi) and this we do by using the conditions that the first derivatives 

are continuous at the nodes.  

 

Differentiating (3.8) and putting x = xi we have 

 
If we now replace i by (i – 1 ) in equation (3.8), differentiate and again 

put x = xi , we obtain  

 

 
 

where  in this last equation h = xi - xi-1  = hi-1 

 

The continuity of Ss(x) at xi now requires that the expressions on the 

right of (3.9) and (3.10) are equal and this leads to the equation: 

 

 
 

In the case where the xi are evenly spaced (3.11) is simplified to 

 

  
 

Since h = ho, xi - xi-1 = h ,  xi+1 - xi = h    xi+1 - xi-1 = 2h 

 

We can simply replace S”(xi) = Mi so as to get 

 

 
 

The sets ( n - 1) equations (3.11) and (3.12) contain (n+1) unknowns 

Ss(xi), (i = 0,1,…,n) and in order to obtain a unique solution we must 

impose conditions on S”(x0) and S”(xn) and this is usually done by 

taking the spline in the intervals (- ∞ , xo) and  (xn , f)  (that is,  x< xo  

and  x > xn ) to be a straight line, so that  

 

S”(x0) = 0,     S”(xn) = 0.  
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This corresponds, in physical terms to allowing the spline to assume 

its natural straight shape outside the intervals of approximation. The 

spline S(x) so determined under this condition is called the natural 

cubic spline.  
 

Given these extra two conditions the equations (3.12) are now 

sufficient to determine the Ss(xj) and so Ss(x). The system of linear 

equations which is usually generated from this equation is of tri-

diagonal form and such systems can be solved either by direct 

methods, such as Gaussian elimination or, if n is large, by indirect 

methods such as the Gauss-Seidel. Often foe a small system, simple 

way of solving simultaneous equation is used.  

 

The above procedure is the usual mathematical principle of fitting a 

cubic spline to a set of data points. However, there exist an alternative 

method and this is given as follows:  

 

3.1.1   Alternative Method of Deriving Cubic Spline  
 

In the interval (xi-1 , xi), let S(x) be such that  

 

S(x) Pi(x) aix
3
 +  bix

2
 + cix + di i = 1,2,. . . ,n   (3.13) 

Since each of equation (3.13) has 4 unknowns, then we have 4n 

unknowns  ai, bi , ci , di ¸  i = 1, 2, . . ., n 

 

Using continuity of S(x), Sc(x) , Ss(x0, we get 

 

 
 

equations (3.14) and (3,15) give 2(n - 1) conditions  

 

 
 

Hence, totally we have 4n - 2 conditions.  

 



MTH 307          NUMERICAL ANALYSIS II 

 

62 

Now we have 4n conditions to solve for the 4n unknowns. This will 

give the cubic spline in each subinterval.  

 

If   M0 = 0,   Mn = 0 , we call this cubic spline as natural spline.  

 

These two approaches can be used to obtain a cubic spline.  

 

It is necessary to emphasis that the interval may be uniform or non 

uniform. When the step is uniform, h is constant, but when the 

interval is uneven, then our step is taken as xi - xi-1  = hi for each 

interval.  

 

Some examples are given below to illustrate this method.  

 

3.2 Numerical Examples 
 

Example 1 

 

From the following table 

 

X 1 2 3 
Y -8 -1 18 

 

Obtain the cubic spline and hence by using your cubic spline, compute 

y(1.5)  and yc(1),.  

 

Solution  
 

Here   h = 1,  and   n = 2 . also assume M0 = 0 and   M2 = 0, we have 

 

 ,   for i = 1,2,…,(n – 1) 

 

From this,  

 
 

From equation (6) , for 1 d x d 2 putting I = 1, we get 
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Remark  
 

1.   We can also find S(x) in the interval (2, 3) using the equation 

(3.8) for i = 2  

2.   Since y(1.5)  is required, we have not cared to find S(x) in (2,3)  

3.   Note that  y = x
3
 - 9 also gives the above table values in the 

range (1,3).  

 

Method 2  

We will use the second method and work out the above problem. Let 

the cubic spline be 

 

 
 

Solving (i) to (viii), we obtain  

 

 
 

Hence the cubic splines are: 

 

 
 

The learner is expected to verify this result by solving the 8 equations. 

Now we can interpolate at x = 1.5 from our polynomial, we then obtain 
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All these values tally with tabular values as  x= 1, 2, 3. 

 

Example 2 

 

Find the cubic Spline given the table 

 

x 0 2 4 6 
y 1 9 41 41 

 

where  M0 = 0 , M3 = - 12 

 

Solution 

 

Here h = 2  
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Example 3 

 

Fit a natural cubic spline to the data below and use it to estimate f(55).  

 

x 25 36 49 64 81 
y = f(x) 5 6 7 8 9 

 

Solution  
 

We use (3.11) to form a set of linear equations for Ss(36), Ss(49), 

Ss(64) and we take Ss(25) = Ss(81) = 0. The equations are 

 

 
 

(0).11 2(24)Scc(36)  13S c(49) 

 

Let S”(36) = a , S”(49) = b , S”(64) = c, we re-write the equations in 

terms of a, b, c as 

 

 
 

Solving these equations simultaneously we obtain 

 

a = S”(36) =  - 0.001594 b = S”(49) = - 0.000568, c = S”(64) =  - 

0.000602 

 

The point at which we wish to interpolate, x = 55, lies in the interval 

[49, 64] and we must use the cubic appropriate to that interval, i.e. we 

use equation (3.8) when xi+1 = 64, xi = 49, x = 55 and so we obtain 

 

 
 

So our estimate for f(55) is 7.415764 
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As remarked above the last two terms constitute the linear 

approximation which therefore has the value 

 

 
 

Since the function, f(x) is in fact √  we can check on the accuracy of 

the estimate. 

 

The error E of our cubic spline is obtained by taking the difference 

from the exact value  

 

Now √   7.416198 

 

Hence  E = 7.416198 - 7.415764 = 0.000434  

 

And the error of the linear approximation is  E1 = 7.416198 - 7.4 = 

0.016198  

 

Thus the linear estimate is correct to only 1 d.p. while the cubic spline 

turns out to be correct to 3 d.p. with little error of 4.34 x 10
-4  

 

The result is satisfactory because we are working near the middle of a 

range of a smooth function with a small (absolute) value for its 

second derivative. Remember that we have taken S”(25) = S”(81) = 0.  

 

SELF-ASSESSMENT EXERCISE  

 

1.  Can you find S(x) in the interval (2,3) for i = 2 in Example 1 

above, using the same method.  

 

4.0 CONCLUSION 
 

Cubic spline has a great advantage of fitting polynomial of degree 

three simply by using the above techniques. It will be cumbersome to 

think of fitting a polynomial of higher degree as this will require 

deriving a set of formula as it was done in section 3.1. However, it is 

known that a cubic spline gives a good accuracy to several functions 

that permits polynomial fitting.  
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5.0 SUMMARY 
 

In this Unit we have learnt 

 

 how to derive the cubic spline formula involving set of linear 

equations 

 how to fit a cubic spline or polynomial of degree three to a set 

of data points using cubic spline technique. 

 that cubic spline have good accuracy with minimum error when 

used to fit a function. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

Fit a natural cubic spline to the data below and use it to estimate f(24).  

 

x 10 15 20 25 30 
y = f(x) 8 10 12 15 18 
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1.0 INTRODUCTION 
 

For approximation, or interpolation, of a function defined analytically 

a method due to Hermite is often useful. The method is 

superficially related to the spline method but in fact the two 

methods are very different because fitting of spline involves solving a 

system of linear equations to obtain numerical values for the second 

derivatives. Ss(xi), whereas for Hermite interpolation the values of the 

first derivatives are given, and the second derivatives are not relevant  

Spline are mainly used for fitting polynomials to data, Hermite 

polynomials are mainly used for approximating to functions  

The most commonly used Hermite approximation polynomial is 

the cubic, as in the case of spline and we shall discuss only this case 

in detail, the more general case can be analyzed in a similar manner.  

 

2.0 OBJECTIVE 

 
At the end of this unit, you should be able to: 

 

 distinguish between cubic spline and Hermite polynomial; 

 figure out the Hermite approximation formula; and 

 fit polynomial by Hermite approximation technique and find an 

estimate. 

 

3.0    MAIN CONTENT 
 

Suppose we have an analytic function y = f(x) with values f(xi) and 

derivatives f’(xi) given at n points xi (i = 1,…,n). Across each pair of 

adjacent points xm, xm+1 we fit a cubic pm(x) such that 
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Since pm(x) contains 4 coefficients, then four necessary equations will 

determine it uniquely, and indeed the formula for pm(x) can be 

explicitly stated as: 

 

(3.1)  

 

A cubic Hermite approximation thus consists of a set of cubic 

polynomials; each defined over one interval, with continuity of the 

cubics and their first derivatives at all the nodes. An example will be 

given to illustrate how this is used. This formula is not difficult to 

know, all it required is the placement of each subscript of x.  

 

3.1   Numerical Example  
 

Example 1 

 

Use Hermite cubic interpolation to estimate the value of √  taking 

f(x) = √  , x1 = 49, x2 = 64 

 

Solution  

 

Given f(x) = √   then f’(x) = 
 

 √ 
  

 

From (3.1) with xm = 49, xm+1 = 64,  f(xm) = √       (  )  

 
 

 √  
  

 

  
  

 

Similarly, f (xm+1) √      , f’(xm+1) = 
 

 √  
  

 

  
  

 

we have the Hermite cubic approximation as 

  

This gives the required Hermite polynomial approximation to f (x) = 
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√  . We may simplify this as much as possible. However, since we 

are only to estimate the square root of 55, simplifying this expression 

may not be all that necessary until we have substituted the value for x.  

Hence, putting x = 55 in the last equation obtained yields the estimate  

√     7.416286  

The correct value of √   to 6 d.p is 7416198, so the error is 0.000088 

compared to an error of - .000434 when we used the natural cubic 

spline in Example 3 of Unit 1  

 

4.0 CONCLUSION 
 

In general the errors when we use the Hermite cubic and the natural 

cubic spline on the same problem will not be very different for in both 

cases the error is proportional to h
4
 where h is the step between the 

two relevant nodes. 

 

5.0 SUMMARY 
 

In this Unit we have learnt that: 

 

 Hermite approximation differs from cubic. 

 cubic spline fit a polynomial to a set of data points while 

Hermite approximate a function as a polynomial.  

 Hermite approximation may be more accurate than the cubic 

spline.  

 

6.0  TUTOR-MARKED ASSIGNMENT  
 

Obtain an Hermite approximation of polynomial of degree 3 to the 

function f(x) = ln x for x1 = 2, x2 = 5 and hence estimate the value of 

ln 3.5  
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