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1.0 INTRODUCTION 

 

What is a Boundary Value Problem? 

 

This is a kind of problem that is related to differential equations. A differential equation 

can be an Ordinary Differential Equation (ODE) or a Partial Differential Equation (PDE). 

However, an ODE can be classified into two, viz: 

 

(i.)  Initial Value Problem (IVP) and 

(ii)  Boundary Value Problem (BVP). 

 

These two classes of differential equations are of great importance and so their numerical 

solutions are equally studied under Numerical Analysis. We shall give the definition of 

the two. 

 

2.0 OBJECTIVE 

 

At the end of this lesson, you should be able to 

 distinguish between Initial Value Problem and Boundary Value Problem; 

 derive finite difference scheme for solving BVP; and 

 solve BVP using a finite difference scheme. 

 

3.0 DISTINCTION BETWEEN IVP AND BVP 

 

There is a distinction between an Initial Value Problem and a Boundary Value Problem. 

As the name goes, one is prescribed with an initial condition while the other is prescribed 

with boundary conditions. For a better understanding we shall define both ordinary 

differential equation and partial differential equation before distinguish between IVP and 

BVP. We hereby give the following definitions. 
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Definition 1 

 

A differential equation involving ordinary derivatives (or total derivatives) with 

respect to a single independent variable is called an ordinary differential equation. 

Some examples of ODEs are given below. 

 

 
 

Definition 2 

 

A differential equation involving partial derivatives of one or more dependent variables 

with respect to more than one independent variable is called a Partial Differential 

Equation (PDE) Some examples of PDEs are given below. 

 

Definition 3: (Initial Value Problem) 

 

An Initial Value Problem (IVP) can be defined as an Ordinary Differential Equation with 

a condition specified at an initial point. 

 

 

Where x0 and y0 are initial point of the equation. This example is simple enough as this 

involves only a single first order ODE. It is possible to have a system of first order ODEs 

with initial conditions all through for each of the equations. 

 

However we may have some other differential equations with some conditions specified 

either at the derivative or at the boundary of the problem being defined. This leads to the 

next definition. 

 

Definition 4: (Boundary Value Problem) 

 

A Boundary Value Problem (BVP) is a differential equation either an Ordinary 

Differential Equation (ODE) or Partial Differential Equation (PDE) with at least two 

specified conditions at the boundary points. 

 

The boundary points often will contain an initial point and the other at the end point of 

the problem. The two serve as the boundary to the problem. 

For example for an Ordinary Differential Equation a simple example of a BVP will be: 
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The above equation is a second order differential equation which is solvable for the 

specified range of values of x. Two conditions are specified at the extremes or the 

boundaries. That is the conditions are given at x = x0 and x = xn. 

 

Example of a BVP involving a PDE will be given later when discussing the methods of 

solving Partial Differential Equations. 

There are several numerical methods available today for solving first order ODEs with an 

initial condition. This is a course on its own as the subject is wide, though not so tasking. 

However, the focus of this course and Module is to expatiate on methods of solving 

BVPs. Hence, we shall in limit our discussion to the numerical methods for solving the 

BVPs of ordinary differential equations. 

 

3.2 Solution of BVP of ODE  

 

The numerical solution of a second order Ordinary Differential Equation usually will 

involve solving system of equations. To do this, some approximations are put in place to 

replace the derivative function involved in the given differential equation. 

 

Suppose we are to solve the differential equation (3.2) using a numerical method, Two 

popular methods among other methods of solving this equation are either by Finite 

Difference Method (FDM) or by Shooting method. 

We shall in this unit discuss the Finite Difference Method for solving equation (3.2). 

Consider the Taylor series expansion of the function y(x+h) where h is regarded as the 

step length to be used in the problem. Then we shall obtain 

 
where O(h

3
) is called error of order 3 representing the truncation error of where the 

expansion is terminated. 

We can obtain a first derivative approximation from this expansion by writing 

 
 

Dividing through by h we obtain 

 

 
This shows that for small step length h, the error in approximating   ( ) is proportional 

to h. Furthermore if we expand the function y(x – h) we equally get 

 
We can also obtain a first derivative approximation from this expansion as 
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Equations (3.4) and (3.6) are approximations to   ( ) which can be used to replace the 

function as it may be required. Equation (3.4) is the forward difference representation 

while equation (3.6) is the backward difference representation. 

 

Now suppose we take the difference of equations (3.3) and (3.5) we shall obtain  

 

y(x + h) − y(x − h)=2hy′(x)+(h
3
) 

 

This reduces to 

 

 
 

Equation (3.7) is a central difference approximation to y′(x). It would be observed that the 

error in the last equation is smaller than that of the two equations (3.4) or (3.6), since for 

small h, h
2
 will be smaller than h. 

On the other hand if we add equations (3.3) and (3.5) we shall obtain 

 

 
This is a standard representation for the second derivative. Thus equations (3.4) and (3.8) 

can be substituted into scheme for solving that equation. 

 

Recall the differential equation (3.2) 

 

 
 

Substituting (3.4) and (3.8) we have 
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Equations (3.9) and (3.10) are numerical schemes that can be used to solve equation 

(3.2). Either of these will yield the desire result with slight difference in accuracy. On 

applying the boundary conditions in (3.2) and writing the resulting equations for  

n = 1, 2, . . . , k-1, we obtain a system of equations with equal number of unknowns. The 

above shall be illustrated by the next example. 

 

3.2 Numerical Examples 

 

Solution 

 

 
 

Thus x0 = 0 and x4 = 1 (that is : x1 = 0.25 x2 = 0.5 x3 = 0.75 )  

The boundary condition y(0) = 1 and y(1) = 0 simply transform to y0 = 1 and y4 = 0  

Since n = 0 will be invalid as we will not be able to evaluate y-1 then the reasonable thing 

to do as in the theory above is to substitute n = 1,2,3,4. Hence, we obtain  

With n = 1, the formula above becomes 
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Thus the values corresponding to y1, y2, y3 are the results of the differential equation at 

points x1, x2, x3. 
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4.0 CONCLUSION  

 

We have seen that the finite difference scheme is systematic and dynamic in producing 

solution to BVP. The resulting technique led to system of linear equations which can be 

solved by any available methods used for solving such system. The learner can also 

check other texts for other method of solving BVP in ODE, such as the shooting method 

earlier mentioned. 

 

5.0 SUMMARY 

 

In this Unit you have learnt 

 

(i) distinction between BVP and IVP  

(ii) how to derive the Finite Difference scheme for solving BVP  

(iii) how to implement the Finite Difference Method on a BVP.  

 

6.0 TUTOR MARKED ASSIGNMENT 
 

Solve the boundary value problem x
2
y′′ + xy′ − y = 2x, satisfying the boundary conditions 

y(0) = 1 and y(1) = 0, use a step length h = 0.25. 

 

7.0 FURTHER READING AND OTHER RESOURCES 

 

Francis Scheid. (1989) Schaum’s Outlines Numerical Analysis 2
nd 

ed. McGraw-Hill New 

York.  

 

Kandassamy P., Thilagarathy K., & Gunevathi K. (1997): Numerical Methods, S. Chand 

& Co Ltd, New Delhi, India  

 

Turner P. R. (1994) Numerical Analysis Macmillan College Work Out Series Malaysia  
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1.0 Introduction  

 

As earlier stated, a Boundary Value Problem (BVP) could be a Partial Differential 

Equation (PDE) with two specified points at the initial point and at the boundary point. 

In scientific computing many problems are governed by non linear differential equation 

which requires a solution in a region R subject to exact condition on the boundary. 

Unlike the BVP involving an ODE, most BVPs usually occur from problems involving 

rate of change with respect to two or more independent variables. Such problems lead to 

PDEs. The two dimensional second order Partial Differential Equation is generally of the 

form 

 

 
 

where u is a function of two variables x and y, that is, u = u(x, y). The solution of this 

equation subject to prescribed conditions is generally obtained through some analytical 

methods by separating the variables x and y. However, the numerical solution of equation 

(1.1) can be obtained either by the finite difference method or the finite element method. 

 

2.0 OBJECTIVE 

 

At the end of this lesson, you should be able to 

 define a second order PDE; 

 define a Boundary Value Problem (BVP) involving a partial differential equation; 

 classify various types of PDEs; 

 classify types of boundary conditions among PDEs; and 

 derive finite difference schemes for PDEs. 
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3.0 Types of Partial Differential Equations 

  

A number of mathematical models describing the physical system are the special cases of 

general second order PDE 

 
 

The following definitions are given with respect to equation (3.1). 

Equation (3.1) is said to be semi-linear, if A, B and C are functions of independent 

variables x and y only. 

 

If A, B and C are functions of x, y, u, ux and uy, then (3.1) is termed to be quasi-

linear. However, when A, B and C are functions of x and y and H is a linear function 

of u, ux and uy, then (3.1) is said to be linear. 

 

Hence, the most general second order linear PDE in two independent variables can be 

written as 

A(x, y)uxx+ B(x, y)uxy+ C(x, y)u yy+ D(x, y)ux+ E(x, y)u y+ F(x, y)u + G(x, y) = 0 (3.2) 

 

When G(x, y) = 0, then equation (3.2) is known as a linear homogenous second order 

PDE. A solution of equation (3.1) or (3.2) will be of the form 

u = u(x, y) 

 

Which represents a surface in (x, y, u) space called the integral surface. 

 

If on the integral surface, there exist curves across which the derivatives uxx, uyy and 

uxy are discontinuous or indeterminate then the curves are called “characteristics”. 

 

For this, we assume the solution of equation (3.1) is passing through a curve C whose 

parametric Equations are: 

 

x = x(s) , y = y(s) and u = u(s) (3.3)  

 

Furthermore, let each point (x, y, u) of curve C and the partial derivates ux and uy be 

known since the solution is of the form (3.3) at each point of x, y of curve C. 

 

3.1 Classification of Partial Differential Equations 
 

Thus there are two families of curve which can be obtained from equation (3.1) along 

which the second order derivatives will not be determined in a definite or finite manner. 

There are called characteristics curves which are classified according to the following 
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conditions. If 

 

B
2
 – 4AC > 0 , then we have real and distinct roots  

B
2
 – 4AC < 0, then we have imaginary roots 

B
2
 – 4AC = 0 , then we have real and coincidence or equal roots  

 

Hence, the Partial Differential Equation (3.1) or (3.2) is said to be: 

 

Parabolic, if B
2
 – 4AC = 0  

It is Elliptic if B
2
 –4 AC < 0 

and it is Hyperbolic, if B
2
 – 4AC > 0 

 

Few examples are given below to illustrate these classifications. 

 

Examples 
1. The wave equation is given by  

 
This equation is a Hyperbolic equation, since A = 1, B = 0, C = -1 so that,  

B
2
 – 4AC = 4 > 0 

 

2. The heat flow equation is given by  

 
Comparison with equation (3.1), we note that: A = 0, B = 0, C = -1 so that B

2
 – 4AC = 0, 

Hence the heat flow equation is a Parabolic equation. 

 

3. The Laplace equation is also given by  

 
Comparison with equation (3.1), shows that: A = 1, B = 0, C = 1 so that  

B
2
 – 4AC = – 4 < 0. Thus the Laplace equation is an Elliptic equation. 

 

3.3 Classification of Boundary Conditions for PDE  

 

The parabolic and hyperbolic types of equations are either IVP or initial BVP whereas 

the elliptic equation is always a BVP. There are three types of boundary conditions. 

These are given below as follows: 

 

i) Dirichlet Conditions 

Here the function (say u(x,y)) is prescribed along the boundary. If the function 
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takes on zero value along the boundary, the conditions is called homogenous 

dirchlet condition otherwise it is called inhomogenousdirichlet boundary 

conditions. 

 

ii) The Neumann Boundary Condition  

Here the derivative of the function is specified along the boundary. We may 

also have homogenous or inhomogenous boundary conditions  

 

iii) Mixed Boundary Conditions  

Here the function and its derivatives are prescribed along the boundary. We 

may also have homogenous and inhomogenous conditions.  

 

3.4 Finite Difference Scheme  

 

Most PDEs are solved numerically by Finite Difference Method (FDM), although another 

known method is the Finite Element Method (FEM). Hence, there is the need to develop 

schemes of finite differences for derivatives of some functions. 

 

In ODE of the second order which was discussed earlier, the function y is a function of a 

single variable x. The treatment of the finte difference method was easier. However a 

similar technique and analogy will be employed for the development of the finite 

difference schemes (FDS) of a second order PDE. The difference now is u being a 

function of two variables x and y. 

 

In this regard, finite difference schemes or methods required that the (x, y) region of the 

problem to be examined be divided into smaller regions by rectilinear grid, mesh or 

lattice of discrete points with co-ordinates (xi, yj) given by 

 

 
This shows that each axis is divided into set of equal intervals by node points. 

Usually we shall represent δx =h ,δy = k as our step lengths in x and y 

directions 

 

respectively. Hence, 

xn+r = xn + rh, yn+r = yn+rk 

 

Consider a function u(x, y) of two variables, with an increment δx in x 

yield u(x +δx, y) = u(x + h, y) 

 

If this is expanded by Taylor series, we shall obtain 
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Equations (3.5) and (3.6) are forward difference approximation of ux and uy respectively. 

Similarly, truncating at third time we shall obtain the second derivative approximation. 

This can be achieved by taking the sum of equations (i) and (ii), to get 
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Equations (3.7) and (3.8) are the finite difference approximation for the second 

derivatives uxx and uyy. They are sometimes called the second central difference 

approximations. These approximations are often used to develop the finite difference 

schemes which are tools for solving BVPs numerically. 

 

4.0 CONCLUSION  

 

We have seen that the subject of BVP is wide. Partial differential equations with 

boundary conditions differ depending on the type of boundary conditions. This will 

invariably affect the scheme which will be developed for its solution. We remark here 

that the basic differentiation formula as we have in analysis is the same used here for the 

development of the finite differences for the partial derivatives. 

 

5.0 SUMMARY 

  

In this Unit you have learnt 

 

(i) the definition for various types of PDEs,  

 

(ii) about types of boundary conditions  

 

(iii) how to derive the finite differences for first and second partial derivatives.  

 

 

6.0 TUTOR MARKED ASSIGNMENT 

 

Write a finite difference for 
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7.0 FURTHER READING AND OTHER RESOURCES  

 

Conte S. D. and Boor de Carl Elementary Numerical Analysis an Algorithmic 

Approach2
nd

 ed. McGraw-Hill Tokyo. 

 

Francis Scheid. (1989) Schaum’s Outlines Numerical Analysis 2
nd 

ed. McGraw-Hill New 

York.  

 

Kandassamy P., Thilagarathy K., &Gunevathi K. (1997): Numerical Methods, S. Chand 

& Co Ltd, New Delhi, India  

 

Leadermann Walter (1981) (Ed.): Handbook of Applicable Mathematics, Vol 3, 

Numerical Analysis, John Wiley, N. Y.  
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1.0 INTRODUCTION 

 

There are various technique required when developing finite difference schemes for 

partial differential equations. The type of PDE depends on the type of scheme that will be 

obtained, whether it is parabolic, elliptic or hyperbolic in nature. One PDE that is simple 

to develop a finite difference scheme for is the Laplace equation. We shall in this unit 

provide a Finite Difference Method for the Laplace equation and its method of solution. 

 

2.0 OBJECTIVE 

  

At the end of this lesson, you should be able to 

 

 define a second order PDE;  

 define a Boundary Value Problem (BVP) involving a partial differential equation;  

 classify various types of PDEs;  

 classify types of boundary conditions among PDEs; and 

 derive finite difference schemes for PDEs.  

 

3.0 LAPLACE EQUATION IN A RECTANGULAR BOUNDARY 
 

Consider the Laplace equation 

 

 
 

where D is the domain in (x, y) plane, and C is its boundary. For simplicity, the domain D 

is chosen to be a rectangle such that  

 

D ≡ {(x, y): 0< x < a, 0 < y < b} 
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with its boundary composed by  

 

C ≡ {(x, y): x =0, a;  y = 0, b} 

 

 
 

 

Hence, the interior points to D are called  

 

DδDδ={(xi, y j) : 1≤ i ≤ n , 1≤ j ≤ m} 

 

The net points on boundary C with exception of the 4 corners of the rectangle are called 

   

 
We shall seek an approximate solution u(xi, yj) of (1) at the net points Dδ+Cδ . The PDE 

(3.1) is replaced by a central second difference quotients obtained in the last unit. This 

will be illustrated by the following example. 

 

3.1 Numerical Example 
 

Solve Laplace equation 
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Solution 
For simplicity we shall choose the meshes to be uniform and equal on both the x- and 

y- axes; that is, let δx = δy = h 

 

 

 
Hence, there are 4 internal points in domain D to be determined, since other points are on 

the boundary (Figure 2) 
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Solving for the four u’s, we obtain 

u1 = u2 = u3 = u4 = ½ 

Thus the four internal points for this problem are ½ each. 

The internal points may be increased by increasing the number of meshes and different 

result will be obtained. Note that the results obtained are numerical values which serve as 

the solution to the BVP (3.1) at the node points. 

 

4.0 CONCLUSION  

 

It is expected that the learner should be able to use the simple approach given above to 

solve elementary BVPs with simple boundary conditions. 

 

5.0 SUMMARY 

 

In this Unit you have learnt how to 

 

(i) develop finite different scheme for the Laplace equation, 

(ii) solve Laplace equation using the finite difference scheme. 
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6.0 TUTOR MARKED ASSIGNMENT 

 

Solve the Laplace equation 

 
 

Subject to the boundary conditions: 

 

u(x, 0) = 1 , u(0, y) = 0 , u(1, y) = 0 , u(x,1)=1 ; 0 ≤  x ≤ 1 , 0 ≤  y ≤ 1 

 

Use h = ¼ on both axes 

 

7.0 FURTHER READING AND OTHER RESOURCES  
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Numerical Analysis, John Wiley, N. Y.  

 

Turner P. R. (1994) Numerical Analysis Macmillan College Work Out Series Malaysia 

 


