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1.0 INTRODUCTION  

 

In calculus, a derivative is a measure of how the function changes as the input 

changes. Loosely speaking, a derivative can be thought of how much one quantity is 

changing in response to changes in some other quantity. For example, the derivative 

of the position of a moving object with respect to time, is the object instantaneous 

velocity. 

 

The derivative of a function at a given chosen input value describe the best linear 

approximation of the function near that input value. For a real valued function of a 

single real variable. The derivative at a point equals the slope of the tangent line to the 

graph of the function at that point. In higher dimension, the derivative of a function at 

a point is linear transformation called the linearization. A closely related notion is the 

differential of a function. The process of finding a derivative is differentiation. The 

reverse is Integration. 

 

The derivative of a function represents an infinitesimal change in the function with 

respect to one of its variables. 

 

The ―simple‖ derivative of a function f with respect to a variable x is denoted either 

       or     
  

  
⁄  
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2.0 OBJECTIVE  

 

In this Unit, you should be able to: 

 

 explain the derivative of a function;

 identify  higher derivative;

 solve problems by computing derivative; and 

 identify  derivative of higher dimension 

 

3.0   MAIN CONTENT 

 

3.1  The Derivative of a Function 
 

Let f be a function that has a derivative at every point a in the domain of f. because 

every point a has a derivative, there is a function that sends the point a to the 

derivative of f at a. This function is written f′(x) and is called the derivative function or 

the derivative of ƒ. The derivative of ƒ collects all the derivatives of ƒ at all the points 

in the domain of ƒ. 

 

Sometimes ƒ has a derivative at most, but not all, points of its domain. The function 

whose value at a equals f′(a) whenever f′(a) is defined and elsewhere is undefined is 

also called the derivative of ƒ. It is still a function, but its domain is strictly smaller 

than the domain of ƒ. 

 

Using this idea, differentiation becomes a function of functions: The derivative is an 

operator whose domain is the set of all functions that have derivatives at every point 

of their domain and whose range is a set of functions. If we denote this operator by D, 

then D(ƒ) is the function f′(x). Since D(ƒ) is a function, it can be evaluated at a point a. 

By the definition of the derivative function, D(ƒ)(a) = f′(a). 

 

For comparison, consider the doubling function ƒ (x) =2x; ƒ is a real-valued function 

of a real number, meaning that it takes numbers as inputs and has numbers as outputs: 

 

The operator D, however, is not defined on individual numbers. It is only defined on 

functions: 

 

1 →  2, 

2 →  4, 

3 →  6. 

 

The operator D, however, is not defined on individual numbers. It is only defined 

functions: 
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Because the output of D is a function, the output of D can be evaluated at a point. For 

instance, when D is applied to the squaring function, 

     
D outputs the doubling function, 

 

     
 

which we named ƒ (x). This output function can then be evaluated to get ƒ (1) = 2,  

ƒ (2) = 4, and so on. 

 

3.2  Higher derivative 
 

Let ƒ be a differentiable function, and let f′(x) be its derivative. The derivative of f′(x) 

(if it has one) is written f′′(x) and is called the second derivative of f. Similarly, the 

derivative of a second derivative, if it exists, is written f′′′(x) and is called the third 

derivative of ƒ. These repeated derivatives are called higher-order derivatives. 

 

If x(t) represents the position of an object at time t, then the higher-order derivatives of 

x have physical interpretations. The second derivative of x is the derivative of x′(t), the 

velocity, and by definition this is the object's acceleration. The third derivative of x is 

defined to be the jerk, and the fourth derivative is defined to be the jounce. 

 

A function ƒ need not have a derivative, for example, if it is not continuous. Similarly, 

even if ƒ does have a derivative, it may not have a second derivative. For example, let 

 

 

 

 

 

Calculation shows that ƒ  is a differentiable function whose derivative is 

 

 

 

 

 

f′(x) is twice the absolute value function, and it does not have a derivative at zero. 

Similar examples show that a function can have k derivatives for any non-negative 

integer k but no (k+ 1)-order derivative.  

 

A function that has k successive derivatives is called k times differentiable. If in 

addition the kth derivative is continuous, then the function is said to be of 

differentiability class C
k
. (This is a stronger condition than having k derivatives.) A 

function that has infinitely many derivatives is called infinitely differentiable. 

 

On the real line, every polynomial function is infinitely differentiable. By standard 

differentiation rules, if a polynomial of degree n is differentiated n times, then it 
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becomes a constant function. All of its subsequent derivatives are identically zero. In 

particular, they exist, so polynomials are smooth functions. 

 

The derivatives of a function ƒ at a point x provide polynomial approximations to that 

function near x. For example, if ƒ is twice differentiable, then 

 

                   
 

 
         

 

in the sense that 

 

   
   

                   
 

 
        

  
   

 

If ƒ  is infinitely differentiable, then this is the beginning of the Taylor series for ƒ. 

 

Inflexion Point 

 

A point where the second derivative of a function changes sign is called an inflexion 

point. At an inflexion point, the second derivative may be zero, as in the case of 

inflection point x=0 of the function y=x
3
, or it may fail to exist, as in the case of the 

inflexion point x=0 of the function y= x
1/3

. At an inflexion point, a function switches 

from being a convex function to being a co ncave function or vice versa. 

 

3.3 Computing the derivative 
 

The derivative of a function can, in principle, be computed from the definition by 

considering the difference quotient, and computing its limit. In practice, once the 

derivatives of a few simple functions are known, the derivatives of other functions are 

more easily computed using rules for obtaining derivatives of more complicated 

functions from simpler ones. 

 

Derivative of Elementary Function 
 

Most derivative computations eventually requires taking the derivative of some 

common functions. The following incomplete list gives some of the most frequently 

used functions of a single real variable and their derivatives. 

 

 Derivative power: if 

 

        
 

wherer is any real number, then 

             
 

wherever this function is defined. For example, if f(x) = x
1 / 4

, then 
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         ⁄   
  

   
 

and the derivative function is defined only for positive x, not for x = 0. When r = 0, 

this rule implies that f′(x) is zero for x≠ 0, which is almost the constant rule (stated 

below). 

 

Exponential and logarithm functions: 

 
 

  
      

 
 

  
            

 
 

  
      

 

 
           

 
 

  
      

 

      
 

 

Trigonometric Functions: 

 
 

  
              

 
 

  
                

 
 

  
               

 

       
           

 

Inverse Trigonometric Function: 

 
 

  
           

 

√    
 

 
 

  
           

 

√    
 

 
 

  
           

 

√    
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Rules for finding the derivative 
 

In many cases, complicated limit calculations by direct application of Newton's 

difference quotient can be avoided using differentiation rules. Some of the most basic 

rules are the following. 

 

Constant rule: if ƒ (x) is constant, then 

 

     
 

Sine rule: 
                for all functions ƒ and g and all real numbers a and b.  

 

Product rule : 

 
             for all functions ƒ  and g. 

 

Quotient rule: 

 

(
 

 
)
 
 

       

  for all functions ƒ  and g where g≠ 0. 

 

Chain rule: If f(x) = h(g(x)), then 

 

        (g(x)).      
 

Example computation 

 

The derivative of                           
 

             
     

  
        

      

  
      

     

  
   

 

          (  )  
 

 
           

Here the second term was computed using the chain rule and third using the product 

rule. The known derivatives of the elementary functions x
2
, x

4
, sin(x), ln(x) and  

exp(x) = e
x
, as well as the constant 7, were also used. 

 

3.4 Derivatives in higher dimensions 
 

Derivative of vector valued function 
 

A vector valued function y(t) of a real variable sends real numbers to vectors in some 

vector space R
n
. A vector-valued function can be split up into its coordinate functions 

y1(t), y2(t), …, yn(t), meaning that y(t) = (y1(t), ...,yn(t)). This includes, for example, 
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parametric curve inR
2
or R

3
. The coordinate functions are real valued functions, so the 

above definition of derivative applies to them. The derivative of y(t) is defined to be 

the vector, called the tangent vector, whose coordinates are the derivatives of the 

coordinate functions. That is, 

 

         
         

      

 

Equivalently, 

 

         
   

           

 
  

 

if the limit exists. The subtraction in the numerator is subtraction of vectors, not 

scalars. If the derivative of y exists for ever y value of t, then y′ is another vector 

valued function. 

 

If e1, …,en is the standard basis for R
n
, then y(t) can also be written as y1(t)e1 + … + 

yn(t)en. If we assume that the derivative of a vector-valued function retains the 

linearity property, then the derivative of y(t) must be 

 

  
           

       

 

because each of the basis vectors is a constant. 

 

This generalization is useful, for example, if y(t) is the position vector of a particle at 

time t; then the derivative y′(t) is the velocity vector of the particle at time t. 

 

 

Partial derivative 

 

Suppose that ƒ  is a function that depends on more than one variable. For instance, 

 

                
 

ƒ  can be reinterpreted as a family of functions of one variable indexed by the other 

variables: 

                      
 

In other words, every value of x chooses a function, denoted fx, which is a function of 

one real number. That is, 

 

     
 

               
Once a value of x is chosen, s ay a, then f(x,y) determines a function fa that sends y to 

a² + ay + y²: 
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In this expression, a is a constant, not a variable, so fa is a function of only one real 

variable. Consequently the definition of the derivative for a function of one variable 

applies: 

 

  
          

 

The above procedure can be performed for any choice of a. Assembling the 

derivatives together into a function gives a function that describes the variation of ƒ in 

the y direction: 

 

  

  
           

 

This is the partial derivative of ƒ with respect to y. Here ∂ is a rounded d called the 

partial derivative symbol. To distinguish it from the letterd,∂is sometimes 

pronounced "der","del", or "partial" instead of "dee". 

 

In general, the partial derivative of a function ƒ (x1, …,xn) in the direction xi at the 

point (a1 …, an) is defined to be: 

 

  

  
             

   

                                 

 
 

 

In the above difference quotient, all the variables except xi are held fixed. That choice 

of fixed values determines a function of one variable 

 

                    
                               

 

and, by definition, 

 

                     

   

     
  

   

          

 

In other words, the different choices of a index a family of one-variable functions just 

as in the example above. This expression also shows that the computation of partial 

derivatives reduces to the computation of one-variable derivatives. 

 

An important example of a function of several variables is the case of a scalar valued 

function ƒ (x1,...xn) on a domain in Euclidean space R
n
(e.g., onR² orR³). In this case ƒ 

has a partial derivative ∂ƒ /∂xj with respect to each variable xj. At the point a, these 

partial derivatives define the vector 
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      (
  

   

      
  

   

   ) 

 

This vector is called the gradient of ƒ at a. If ƒ is differentiable at every point in some 

domain, then the gradient is a vector-valued function  ƒ that takes the point a to the 

vector  f(a). Consequently the gradient determines a vector field. 

 

Generalizations 
 

The concept of a derivative can be extended to many other settings. The common 

thread is that the derivative of a function at a point serves as a linear approximation of 

the function at that point. 

 

4.0 CONCLUSION 
 

In this unit, you have explain the derivative of a function .Through the derivative of 

functions, you have identified higher derivative, and you have solved problems by 

computing derivative through the use of this functions. You have also identified 

derivative of higher dimension. 

 

5.0 SUMMARY  

 

In this unit, you have studied the following:  

 

 the derivative of a function 

 identify  higher derivative 

 solve  problems by Computing derivative 

 identify  derivative  of higher dimension  
 

6.0 TUTOR MARKED ASSIGNMENT  

 

1. Find the derivative of F(x,y) = 3sin(3xy)  

2. Find the derivative of F(x,y)= ( x
3
ln 6)(√  ) 

3. Evaluate the derivative F(x,y) = x
2
 3xy 2 tan( y)  

4. Find the derivative of F(x,y) =
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1.0 INTRODUCTION  

 

Suppose that ƒ is a function of more than one variable. For instance, 

 

                  
 

 

  

 

 

 

 

 

 

 

A graph of z = x
2
 + xy + y

2
. For the partial derivative at (1, 1, 3) that leaves y constant, 

the corresponding tangent line is parallel to the xz-plane. 

 

 

 

 

 

 

 

 

 

 

 

A slice of the graph above y=1 
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The graph of this function defines a surface in Euclidean space. To every point on this 

surface, there are infinite number of tangent lines. Partial differentiation is the act of 

choosing one of these lines and finding its slope. Usually, the lines of most interest are 

those that are parallel to the xz-plane, and those that are parallel to the yz-plane. 

 

To find the slope of the line tangent to the function at (1, 1, 3) that is parallel to the xz-

plane, the y variable is treated as constant. The graph and this plane are shown on the 

right. On the graph below it, we see the way the function looks on the plane y = 1. By 

finding the derivative of the equation while assuming that y is a constant, the slope of 

ƒ at the point (x, y, z) is found to be: 

 

  

  
      

 

So at (1, 1, 3), by substitution, the slope is 3. Therefore 

 

  

  
   

 

at the point. (1,1,3). That is, the partial derivative of z with respect to x at (1,1,3) is 3 

 

2.0 OBJECTIVES 
 

After studying this, you should be able to: 

 

 define Partial derivative; 

 explain the geometric interpretation of partial derivatives; 

 identify anti derivative analogue;

 solve problems on partial derivative for function of several variables; and 

 identify higher order derivatives. 



3.1 MAIN CONTENT  

 

Let us consider a function 

 

1) u = f(x, y, z, p, q, ... )  

 

of several variables. Such a function can be studied by holding all variables except 

one constant and observing its variation with respect to one single selected variable. If 

we consider all the variables except x to be constant, then 

 
  

  
 

        ̂  ̂   ̂  ̂   

  
 

 

represents the partial derivative of f(x, y, z, p, q, ... ) with respect to x (the hats 

indicating variables held fixed). The variables held fixed are viewed as parameters. 
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Definition of Partial derivative 

  

The partial derivative of a function of two or more variables with respect to one of its 

variables is the ordinary derivative of the function with respect to that variable, 

considering the other variables as constants. 

 

Example 1: The partial derivative of 3x
2
y + 2y

2 
with respect to x is 6xy. Its partial 

derivative with respect to y is 3x
2
 + 4y. 

 

The partial derivative of a function z = f(x, y,...) with respect to the variable x is 

commonly written in any of the following ways: 

 

 

 

 

Its derivative with respect to any other variable is written in a similar fashion. 

 

 

 

 

 

 

 

 

 

 

 
Figure: 2.1 

 

Geometric Interpretation: The geometric interpretation of a partial derivative is the 

same as that for an ordinary derivative. It represents the slope of the tangent to that 

curve represented by the function at a particular point P. In the case of a function of 

two variables 

 

z = f(x, y) 

 

Fig. 2.1 shows the interpretation of      ⁄ and     ⁄ .     ⁄  corresponds to the 

slope of the tangent to the curve APB at point P (where curve APB is the intersection 

of the surface with a plane through P perpendicular to the y axis). Similarly, 

     ⁄ corresponds to the slope of the tangent to the curve CPD at point P (where 

curve CPD is the intersection of the surface with a plane through P perpendicular to 

the x axis). 
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Examples 2 

 

 

 

 

 

 

 

 

The volume of a cone depends on height and radius 

 

The volumeV of a cone depends on the cone's heighth and its radius r according to the 

formula 
 

 
 

The partial derivative of V with respect to r is 
 

  

  
 

    

 
  

 

which represents the rate with which a cone's volume changes if its radius is varied 

and its height is kept constant. The partial derivative with respect to h is 

 

  

  
 

   

 
  

 

which represents the rate with which the volume changes if its height is varied and its 

radius is kept constant. 

 

By contrast, the total derivative of V with respect to r and h are respectively 

 

 
  

  

  

  
 

 

  

  
 

    

 
 

   

 

  

  
 

 

and 
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The difference between the total and partial derivative is the elimination of indirect 

dependencies between variables in partial derivatives. 

 

If (for some arbitrary reason) the cone's proportions have to stay the same, and the 

height and radius are in a fixed ratio k, 

 

 
 

This gives the total derivative with respect to r: 

 

 
 

Equations involving an unknown function's partial derivatives are called partial 

differential equations and are common in physics, engineering, and other sciences and 

applied disciplines. 

 

Notation 
 

For the following examples, let f  be a function in x, y and z. 

 

First-order partial derivatives: 

 

  

  
        

 

Second-order partial derivatives: 

 

   

   
          

 

Second-order mixed derivatives: 

 

   

    
 

 

  
(
  

  
)           

 

Higher-order partial and mixed derivatives: 

 

       

         
          

 

When dealing with functions of multiple variables, some of these variables may be 

related to each other, and it may be necessary to specify explicitly which variables are 

being held constant.  
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In fields such as statistical mechanics, the partial derivative of f with respect to x, 

holding y and z constant, is often expressed as 

 

(
  

  
)
   

 

 

Anti-derivative analogue 
 

There is a concept for partial derivatives that is analogous to anti derivatives for 

regular derivatives. Given a partial derivative, it allows for the partial recovery of the 

original function. 

 

Consider the example of 
  

  
        The "partial" integral can be taken with 

respect to x (treating y as constant, in a similar manner to partial derivation): 

 

  ∫
  

  
              

 

Here, the "constant" of integration is no longer a constant, but instead a function of all 

the variables of the original function except x. The reason for this is that all the other 

variables are treated as constant when taking the partial derivative, so any function 

which does not involve x will disappear when taking the partial derivative, and we 

have to account for this when we take the ant derivative. The most general way to 

represent this is to have the "constant" represent an unknown function of all the other 

variables. Thus the set of functions 

 

x
2
+xy+ g(y), where g is any one-argument function, represents the entire set of 

functions invariables x,y that could have produced the x-partial derivative 2x+y. 

 

If all the partial derivatives of a function are known (for example, with the gradient), 

then the antiderivatives can be matched via the above process to reconstruct the 

original function up to a constant 

 

Example 3 
 

For the function 

 

                  

 

find the partial derivatives of f with respect to x and y and compute the rates of change 

of the function in the x and y directions at the point (-1,2). 

 

Initially we will not specify the values of x and y when we take the derivatives; we 

will just remember which one we are going to hold constant while taking the 

derivative. First, hold y fixed and find the partial derivative of f with respect to x: 
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Second, hold x fixed and find the partial derivative of f with respect to y: 

 

Now, plug in the values x = -1 and y = 2 into the equations. We obtain fx (-1,2) = 10 

and fy (-1,2) = 28. 

 

Partial Derivatives for Functions of Several Variables 
 

We can of course take partial derivatives of functions of more than two variables. If f 

is a function of n variables x1, x2, ...,xn, then to take the partial derivative of f with 

respect to xi we hold all variables besides xi constant and take the derivative. 

 

Example 4 
 

To find the partial derivative of f with respect to t for the function 

 

                              

 

we hold x, y, and z constant and take the derivative with respect to the remaining 

variable t. The result is 

 

  

  
                           

 

Interpretation 
 
  

  
 is the rate at which f changes as x changes, for a fixed (constant) y. 

 
  

  
 is the rate at which f changes as y changes, for a fixed (constant) x. 

 

Higher Order Partial Derivatives 
 

If f is a function of x, y, and possibly other variables, then 

 
   

   
 is defined to be 

 

  
*
  

  
+ 

 

 

Similarly, 

 
   

   
 is defined to be  

 

  
*
  

  
+ 
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 is defined to be  

 

  
*
  

  
+ 

 
   

    
 is defined to be  

 

  
*
  

  
+ 

 

The above second order partial derivatives can also be denoted by fxx, fyy, fxy, and fyx 

respectively. 

 

The last two are called mixed derivatives and will always be equal to each other 

when all the first order partial derivatives are continuous. 

 

Some examples of partial derivatives of functions of several variables are shown 

below, variable as we did in Calculus I. 

 

Example 1:  Find all of the first order partial derivatives for the following functions. 

 

(a)            √     

 

(b)                           
 

(c)                 
 

  
 √   

 

 

(d)           (
 

 
)         

 

 

Solution 

 

(a)            √     

 

Let’s first take the derivative with respect to x and remember that as you do so all the 

y’s will be treated as constants. The partial derivative with respect to x is, 

 

            

 

Notice that the second and the third term differentiate to zero in this case. It should be 

clear why the third term differentiated to zero. It’s a constant and you know that 

constants always differentiate to zero. This is also the reason that the second term 

differentiated to zero. Remember that since you are differentiating with respect to x 

here you are going to treat all y’s as constants. That means that terms that only involve 

y’s will be treated as constants and hence will differentiate to zero. 

 

Now, let’s take the derivative with respect to y. In this case you treat all x’s as 

constants and so the first term involves only x’s and so will differentiate to zero, just 

as the third term will. Here is the partial derivative with respect to y. 
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√ 
 

 

(b)                           
 

With this function you’ve got three first order derivatives to compute. Let’s do the 

partial derivative with respect to x first. Since you are differentiating with respect to x 

you will treat all y’s and all z’s as constants. This means that the second and fourth 

terms will differentiate to zero since they only involve y’s and z’s. 
 

This first term contains both x’s and y’s and so when you differentiate with respect to 

x the y will be thought of as a multiplicative constant and so the first term will be 

differentiated just as the third term will be differentiated. 
 

Here is the partial derivative with respect to x. 

 

  

  
        

 

Let’s now differentiate with respect to y. In this case all x’s and z’s will be treated as 

constants. This means the third term will differentiate to zero since it contains only x’s 

while the x’s in the first term and the z’s in the second term will be treated as 

multiplicative constants. Here is the derivative with respect to y. 
 

  

  
                     

 

Finally, let’s get the derivative with respect to z. Since only one of the terms 

involvez’s this will be the only non-zero term in the derivative. Also, the y’s in that 

term will be treated as multiplicative constants. Here is the derivative with respect to 

z. 
 

  

  
         

 

(c)                 
 

  
 √   

 

 

With this one you’ll not put in the detail of the first two. Before taking the derivative 

let’s rewrite the function a little to help us with the differentiation process. 
 

                      
 

  

Now, the fact that you’re using s and t here instead of the “standard” x and y shouldn’t 

be a problem. It will work the same way. Here are the two derivatives for this 

function. 
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   (

  

  
)  

 

 
 
 

 

  
   

 
 

 

 
 
 

 

  

 

        
  

  
                 

 

Remember how to differentiate natural logarithms. 
 

 

  
        

     

    
 

 

(d)           (
 

 
)         

 
 

Now, you can’t forget the product rule with derivatives. The product rule will work 

the same way here as it does with functions of one variable. You will just need to be 

careful to remember which variable we are differentiating with respect to. 
 

Let’s start out by differentiating with respect to x. In this case both the cosine and the 

exponential contain x’s and so you’ve really got a product of two functions involving 

x’s and so you’ll need to product rule this up. Here is the derivative with respect to x. 
 

            (
 

 
) ( 

 

  
)         

    (
 

 
)         

      

  
 

  
   (

 

 
)         

       (
 

 
)         

 

 

Do not forget the chain rule for functions of one variable. You will be looking at the 

chain rule for some more complicated expressions for multivariable functions in a 

latter section. However, at this point you’re treating all the y’s as constants and so the 

chain rule will continue to work as it did back in Calculus I. 
 

Also, don’t forget how to differentiate exponential functions, 

 

 

  
(     )             

 

Now, let’s differentiate with respect to y. In this case you don’t have a product rule to 

worry about since the only place that the y shows up is in the exponential. Therefore, 

since x’s are considered to be constants for this derivative, the cosine in the front will 

also be thought of as a multiplicative constant. Here is the derivative with respect to y. 
 

                    (
 

 
)         
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Example 2:  Find all of the first order partial derivatives for the following functions. 

 

(a)   
  

     
 

 

(b)          
       

  
 

 

(c)   √              
 

Solution 

 

(a)   
  

     
 

 

You also can’t forget about the quotient rule. Since there isn’t too much to this one, 

you will simply give the derivatives. 

 

   
               

        
 

        

        
 

 

 

   
                

        
 

    

        
 

 

In the case of the derivative with respect to v recall that u’s are constant and so when 

you differentiate the numerator you will get zero! 

 

Now, you do need to be careful however to not use the quotient rule when it doesn’t 

need to be used. In this case you do have a quotient, however, since the x’s and y’s 

only appear in the numerator and the z’s only appear in the denominator this really 

isn’t a quotient rule problem. 

 

(b)          
       

  
 

 

Let’s do the derivatives with respect to x and y first. In both these cases the z’s are 

constants and so the denominator in this is a constant and so we don’t really need to 

worry too much about it. Here are the derivatives for these two cases. 

 

          
      

  
             

       

  
 

 

Now, in the case of differentiation with respect to z we can avoid the quotient rule 

with a quick rewrite of the function. Here is the rewrite as well as the derivative with 

respect to z. 
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You went ahead and put the derivative back into the “original” form just so you could 

say that you did. In practice you probably don’t really need to do that. 

 

(c)   √              
 

In this last part we are just going to do a somewhat messy chain rule problem. 

However, if you had a good background in Calculus I chain rule this shouldn’t be all 

that difficult of a problem. Here are the two derivatives, 

 

 

   
 

 
               

  

 
 

  
                

 

 
 

 
               

  

 (   
 

      
) 

 

(  
 

         
)                

  

  

 

   
 

 
               

  

 
 

  
                

 
 

 
               

  

 (
   

      
) 

 

(
  

      
)                

  

  

 

So, there are some examples of partial derivatives. Hopefully you will agree that as 

long as we can remember to treat the other variables as constants these work is exactly 

the same manner that derivatives of functions of one variable do. So, if you can do 

Calculus I derivative you shouldn’t have too much difficulty in doing basic partial 

derivatives. 

 

There is one final topic that you need to take a quick look at in this section, implicit 

differentiation. Before getting into implicit differentiation for multiple variable. 

Functions, let’s first remember how implicit differentiation works for functions of one 

variable. 
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Example 3 find 
  

  
 for           

 

Remember that the key to this is to always think of y as a function of x, or        

and so whenever you differentiate a term involving y’s with respect to x you will 

really need to use the chain rule which will mean that you will add on a  
  

  
 to that 

term. 

 

The first step is to differentiate both sides with respect to x. 

 

    
  

  
       

 

The final step is to solve for 
  

  
 

 

  

  
 

     

    
 

 

Now, you did this problem because implicit differentiation works in exactly the same 

manner with functions of multiple variables. If you have a function in terms of three 

variables x, y, and z you will assume that z is in fact a function of x and y. In other 

words,           Then whenever you differentiate z’s with respect to x you will use 

the chain rule and add on a  
  

  
  

 

Let’s take a quick look at a couple of implicit differentiation problems. 

Example 4 find 
  

  
 and 

  

  
 for each of the following functions 

 

(a)                  

 

(b)                          

 

Let’s start with finding  
  

  
   You first differentiate both sides with respect to x and 

remember to add on a 
  

  
 whenever you differentiate a z 

          
  

  
          

  

  
    

 

Remember that since you are assuming          then any product of x’s and 

z’s will be a product rule! Now, solve for 
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Now you’ll do the same thing for 
  

  
 except this time you’ll need to remember to add 

on a 
  

  
 whenever you differentiate a z 

 

    
  

  
            

  

  
     

 

           
  

  
            

 

  

  
 

          

         
 

 

(b)                               

 

You’ll do the same thing for this function as you did in the previous part.  First let’s 

find 
  

  
 

                         (  
  

  
)            (     

  

  
) 

 

Don’t forget to do the chain rule on each of the trig functions and when you are 

differentiating the inside function on the cosine you will need to also use the product 

rule. Now let’s solve for 
  

  
 

 

              
  

  
                                   

  

  
 

 

                         (                         
  

  
) 

  

  
 

                        

                         
 

 

Now let’s take care of  
  

  
  This one will be slightly easier than the first one. 
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            (   
  

  
)                    (  

  

  
) 

                           
  

  
                    

  

  
 

 

                           
  

  
                        

 

  

  
 

                      

                         
 

 

 

4.0 CONCLUSION  

 

In this unit, you have defined a Partial derivative of a function of several variables. 

You have used the partial derivative of a function of several variables to know the 

geometric interpretation of a function and anti-derivative analogue has been identified. 

You have solved problems on partial derivative for function of several variables and 

identified higher order derivatives. 

 

5.0 SUMMARY  

 

In this unit, you have studied the following: 

 

 the definition of Partial derivative of functions of several variable; 

 

 the geometric interpretation of partial derivative of functions of several 

variables 

 

 the identification of ant derivative analogue of partial derivative of functions of 

several variable 

 

 solve problems on partial derivative for function of several variables 

 

 the identification of higher order derivatives of functions of several variables 

 

TUTOR MARKED ASSIGNMENT 
 

1. Find the partial derivatives fx and fy if f(x , y) is given by 

 

f(x , y) = x
2
 y + 2x + y 

 

2.  Find fx and fy if f(x , y) is given by 

 

f(x , y) = sin(x y) + cos x 
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3. Find fx and fy if f(x , y) is given by 

 

f(x , y) = x e
x y

 

 

 

4. Find fx and fy if f(x , y) is given by 

 

f(x , y) = ln ( x
2
 + 2 y) 

 

 

5. Find fx(2 , 3) and fy(2 , 3) if f(x , y) is given by 

 

f(x , y) = y x
2
 + 2 y 

 

2. Find partial derivatives fx and fy of the following functions 

 

A. f(x , y) = x e
x + y

 

 

B. f(x , y) = ln ( 2 x + y x)  

 

C. f(x , y) = x sin(x - y)  
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UNIT 3  APPLICATION OF PARTIAL DERIVATIVE 
 

CONTENT 
 

1.0 Introduction 

2.0 Objectives 

3.0 Main Content  

3.1 Apply partial derivative of functions of several variable in  

Chain rule. 

3.2 Apply partial derivative of functions of several variable in Curl 

(Mathematics)  

3.3 Apply partial derivative of functions of several variable in Derivatives  

3.4 Apply partial derivative of functions of several variable in D’ Alamber 

operator  

3.5 Apply partial derivative of functions of several variable in Double 

integral  

3.6 Apply partial derivative of functions of several variable in Exterior 

derivative  

3.7 Apply partial derivative of function of several variable in Jacobian 

matrix and determinant  

4.0 Conclusion  

5.0 Summary  

6.0 Tutor-Marked Assignment  

7.0 References/Further Readings  

 

 

1.0 INTRODUCTION 
 

The partial derivative of f with respect to x is the derivative of f with respect to x, 

treating all other variables as constant. 

 

Similarly, the partial derivative of f with respect to y is the derivative of f with 

respect to y, treating all other variables as constant, and so on for other variables. The 

partial derivatives are written as ∂f/∂x, ∂f/∂y, and so on. The symbol "∂" is used 

(instead of "d") to remind us that there is more than one variable, and that we are 

holding the other variables fixed. 

 

2.0 OBJECTIVES 
 

In this Unit, you should be able to: 
 

 apply partial derivative of functions of several variable in chain rule; 

 apply partial derivative of functions of several variable in Curl (Mathematics); 

 apply partial derivative of functions of several variable in derivatives; 

 apply partial derivative of functions of several variable in D’Alamber operator; 

 apply partial derivative of functions of several variable in double integral; 
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 apply partial derivative of functions of several variable in exterior derivative; and 

 apply partial derivative of function of several variable in Jacobian matrix and 

determinant. 

 

3.0 MAIN CONTENT 
 

3.1 Applications of Partial Derivative of Functions in Several Variables. 
 

Chain rule 
 

Composites of more than two functions 
 

The chain rule can be applied to composites of more than two functions. To take the 

derivative of a composite of more than two functions, notice that the composite of f, g, 

and h (in that order) is the composite of f with g∘h. The chain rule says that to 

compute the derivative of f∘g∘h, it is sufficient to compute the derivative of f and the 

derivative of g∘h. The derivative of f can be calculated directly, and the derivative of 

g∘h can be calculated by applying the chain rule again. 

 

For concreteness, consider the function 

 

        
 

 

This can be decomposed as the composite of three functions: 

 

          

 

            

 

          

 

Their derivatives are: 

 

  

  
          

 
  

  
            

 

  

  
          

 

The chain rule says that the derivative of their composite at the point x = a is: 

 

  ∘  ∘          (  ∘      )  ∘          (  ∘      )              
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In Leibniz notation, this is: 

 

  

  
 

  

  
|
         

     
  

  |
      

    
  

  |
   

    

 

or for short, 

 
  

  
 

  

  
 . 

  

  
 
  

  
 

 

The derivative function is therefore: 

 

  

  
       

          

 

Another way of computing this derivative is to view the composite function f∘g∘h as 

the composite of f∘g and h. Applying the chain rule to this situation gives: 
 

  ∘  ∘          ∘                                        

 

This is the same as what was computed above. This should be expected because  

(f∘g) ∘h = f∘ (g ∘ h). 

 

The quotient rule 
 

The chain rule can be used to derive some well-known differentiation rules. For 

example, the quotient rule is a consequence of the chain rule and the product rule. To 

see this, write the function f(x)/g(x) as the product f(x) · 1/g(x). First apply the product 

rule: 

 

 

  
 (

    

    
)  

 

  
(     

 

    
) 

 

       
 

    
      

 

  
(

 

    
) 

 

To compute the derivative of 1/g(x), notice that it is the composite of g with the 

reciprocal function, that is, the function that sends x to 1/x. The derivative of the 

reciprocal function is −1/ x
2
. By applying the chain rule, the last expression becomes: 

 

      
 

    
      ( 

 

    
      )  

                    

     
 

 

which is the usual formula for the quotient rule. 
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Derivatives of inverse functions 
 

Inverse functions and differentiation 
 

Suppose that y = g(x) has an inverse function. Call its inverse function f s o that we 

have x = f(y). There is a formula for the derivative of f in terms of the derivative of g. 

To see this, note that f and g satisfy the formula 

 

f(g(x)) = x. 

 

Because the functions f(g(x)) and x are equal, their derivatives must be equal. The 

derivative of x is the constant function with value 1, and the derivative of f(g(x)) is 

determined by the chain rule. Therefore we have: 

 

f'(g(x))g'(x) = 1. 

 

To express   as a function of an independent variable y, we substitute f( y) for x 

wherever it appears. Then we can solve for   . 

 

  ( (    )  (    ))    

 

                

 

      
 

        
 

 

For example, consider the function g(x) = e
x
. It has an inverse which is denoted f(y) = 

lny. Because g′(x) = e
x
, the above formula says that 

 

 

  
    

 

    
 

 

 
 

 

This formula is true whenever g is differentiable and its inverse f is also differentiable. 

This formula can fail when one of these conditions is not true. For example, consider 

g(x) = x
3
. Its inverse is f(y) = y

1/3
, which is not differentiable at zero.  

 

If we attempt to use the above formula to compute the derivative of f at zero, then we 

must evaluate 1/g′(f(0)). f(0) = 0 and g′(0) = 0, so we must evaluate 1/0, which is 

undefined. Therefore the formula fails in this case. This is not surprising because f is 

not differentiable at zero. 

 

 

 

 

Higher derivatives 
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Faà di Bruno's formula generalizes the chain rule to higher derivatives. The first few 

derivatives are 
 

   ∘   

  
 

  

  

  

  
 

 

    ∘   

   
 

   

   
(
  

  
)
 

 
  

  

   

   
 

 

    ∘   

   
 

   

   
(
  

  
)
 

  
   

   

  

  

   

   
 

  

  

   

   
 

 

    ∘   

   
 

   

   
(
  

  
)
 

  
   

   
(
  

  
)
    

   
 

   

   
{ 

  

  

   

   
  (

   

   
)

 

}  
  

  
 

 

Example 
 

Given        where        and         , determine the value of 
  

  
 and 

  

   
 using the chain rule 

 

Curl (mathematics) 
 

In vector calculus, the curl (or rotor) is a vector operator that describes the 

infinitesimal rotation of a 3-dimensional vector field. At every point in the field, the 

curl is represented by a vector. The attributes of this vector (length and direction) 

characterize the rotation at that point. 
 

The curl of a vector field F, denoted curl F or  × F, at a point is defined in terms of its 

projection onto various lines through the point. If  ̂ is any unit vector, the projection 

of the curl of F onto  ̂ is defined to be the limiting value of a closed line integral in a 

plane orthogonal to  ̂ is the path used in the integral becomes infinitesimally close to 

the point, divided by the area enclosed. 
 

As such, the curl operator maps C
1
 functions from R

3
 to R

3
 to C

0
 functions from R

3
 to 

R
3
. 

 

 

 

 

 

 

 

 

 

Convention for vector orientation of the line integral 
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Implicitly, curl is defined by: 

 

       ̂     
   

∮  
 

   

| |
 

 

The above formula means that the curl of a vector field is defined as th e infinitesimal 

area density of the circulation of that field. To this definition fit naturally (i) the 

Kelvin-Stokes theorem, as a global formula corresponding to the definition, and (ii) 

the following "easy to memorize" definition of the curl in orthogonal curvilinear 

coordinates , e.g. in Cartesian coordinates, spherical, or cylindrical, or even elliptical 

or parabolical coordinates: 

 

          
 

    
        (

       

   
 

       

   
) 

 

If (x1,x2,x3) are the Cartesian coordinates and (u1,u2,u3) are the curvilinear coordinates, 

then 

 

   √∑(
   
   

)

  

   

 

Usage 
 

In practice, the above definition is rarely used because in virtually all case s, the curl 

operator can be applied using some set of curvilinear coordinates, for which simpler 

representations have been derived. 

 

The notation  × F has its origins in the similarities to the 3 dimensional cross product, 

and it is useful as a mnemonic in Cartesian coordinates if we take   as a vector 

differential operator del. Such notation involving operators is common in physics and 

algebra. If certain coordinate systems are used, for instance, polar-toroidal coordinates 

(common in plasma physics) using the notation  × F will yield an incorrect result. 

 

Expanded in Cartesian coordinates (see: Del in cylindrical and spherical coordinates 

for spherical and cylindrical coordinate representations),  × F is, for F composed of 

[Fx, Fy, Fz]: 

 

||

   
 

  

 

  

 

  

      

|| 
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Where i, j, and k are the unit vectors for the x, y, and z-axes, respectively. This 

expands as follows:
[4]

 

 

(
   
  

 
   
  

)   (
   
  

 
   
  

)   (
   
  

 
   
  

)  

 

Although expressed in terms of coordinates, the result is invariant under proper 

rotations of the coordinate axes but the result inverts under reflection. 

 

In a general coordinate system, the curl is given by 

 

                

 

Where ε denotes the Levi-Civita symbol, the metric tensor is used to lower the index 

on F, and the Einstein summation convention implies that repeated indices are 

summed over. Equivalently, 

 

          
        

 

Where ek are the coordinate vector fields. Equivalently, using the exterior derivative, 

the curl can be expressed as: 

 

    [      ]  

 

Here and are the musical isomorphisms, and is the Hodge dual. This formula shows 

how to calculate the curl of F in any coordinate system, and how to extend the curl to 

any oriented three dimensional Riemannian manifold. Since this depends on a choice 

of orientation, curl is a chiral operation.  

 

In other words, if the orientation is reversed, then the direction of the curl is also 

reversed. 
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Directional derivative 
 

The directional derivative of a scalar function 

 

   ⃗               

 

along a unit vector 

 ⃗⃗           

 

is the function defined by the limit 

 

  ⃗⃗⃗   ⃗     
    

   ⃗    ⃗⃗     ⃗ 

 
 

 

(See other notations below.) If the function f is differentiable at  ⃗, t hen the directional 

derivative exists along any unit vector  ⃗⃗ and one has 

 

  ⃗⃗⃗   ⃗      ⃗   ⃗⃗ 

 

where the   on the right denotes the gradient and is the Euclidean inner product. At 

any point  ⃗, the directional derivative of f intuitively represents the rate of change in f 

along  ⃗⃗at the point  ⃗. 

 

One sometimes permits non-unit vector, allowing the directional derivative to be taken 

in the direction  ⃗⃗, where  ⃗ is any nonzero vector. In this case, one must modify the 

definitions to account for the fact that  ⃗ may not be normalized, so one has 

 

  ⃗⃗   ⃗     
    

   ⃗    ⃗     ⃗ 

 | ⃗|
  

 

or in case f is differentiable at  ⃗ , 

 

  ⃗⃗   ⃗      ⃗  
 ⃗

| ⃗|
 

Such notation for non-unit vectors (undefined for the zero vector), however, is 

incompatible with notation used elsewhere in mathematics, where the space of 

derivations in a derivation algebra is expected to be a vector space. 
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Notation 
 

Directional derivatives can be also denoted by: 

 

  ⃗⃗⃗   ⃗  
    ⃗ 

  
   

                     

 

In the continuum mechanics of solids 
 

Several important results in continuum mechanics require the derivatives of vectors 

with respect to vectors and of tensors with respect to vectors and tensors. The 

directional derivative provides a systematic way of finding these derivatives. 

 

The definitions of directional derivatives for various situations are given below. It is 

assumed that the functions are sufficiently smooth that derivatives can be taken. 

 

Derivatives of scalar valued functions of vectors 

 

Let      be a real valued function of the vector v. Then the derivative of      
with respect to v (or at v) in the direction u is the vector defined as 

 
  

  
         [ ]  [

 

  
       ]

   
 

 

For all vectors u 

 

Properties: 

 

1) If                  then 
  

  
    (

   

  
 

   

  
)    

 

2) If                 then 
  

  
    (

   

  
   )            (

   

  
   ) 

 

3)        (     ) then
  

  
   

   

   

 
   

  
    

Derivatives of vector valued functions of vector 

 

Let      be a vector valued function of the vector  . Then the derivative of     with 

respect to v (or at v) in the direction u is the second order tensor defined as 

 

  

  
         [ ]  [

 

  
       ]
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For all vector   

 

Properties: 
 

1) If                  then
  

  
    (

   

  
 

   

  
)    

 

2) If                 then 
  

  
    (

   

  
   )              (

   

  
   ) 

 

3)        (     ) then 
  

  
   

   

   

  (
   

  
   ) 

Derivatives of vector valued functions of second-order tensors 

 

Let      be a real valued function of the vector S. Then the derivative of 

    with respect to S (or at S) in the direction T is the second order tensor 

defined as 
 

1) If                  then
  

  
    (

   

  
 

   

  
)    

 

2) If                 then 
  

  
    (

   

  
   )              (

   

  
   ) 

 

3)        (     ) then 
  

  
   

   

   

  (
   

  
   ) 

Derivatives of tensor valued functions of second-order tensors 

 

Let      be a real valued function of the vector S. Then the derivative of 

    with respect to S (or at S) in the direction T is the fourth order tensor 

defined as 
  

  
         [ ]  [

 

  
       ]

   
 

 

For all second order tensor T 

 

Properties: 

 

1) If                  then
  

  
    (

   

  
 

   

  
)    

 

2) If                     then 
  

  
    (

   

  
   )                   (

   

   
   ) 

3)        (     ) then 
  

  
   

   

   
  (

   

  
   ) 
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4)        (     ) then 
  

  
   

   

   
  (

   

  
   ) 

Exterior derivative 
 

The exterior derivative of a differential form of degree k is a differential form of 

degree k + 1. There are a variety of equivalent definitions of the exterior derivative. 

 

Exterior derivative of a function 
 

If ƒ is a smooth function, then the exterior derivative of ƒ is the differential of ƒ. That 

is, dƒ is the unique one-form such that for every smooth vector field X, dƒ (X) = X ƒ, 

where Xƒ is the directional derivative of ƒ in the direction of X. Thus the exterior 

derivative of a function (or 0-form) is a one-form. 

 

Exterior derivative of a k-form 
 

The exterior derivative is defined to be the unique R-linear mapping from k-forms to 

(k+1)-forms satisfying the following properties: 

 

1. dƒ is the differential o fƒ for smooth functions ƒ. 

2. d(dƒ ) = 0 for any smooth function ƒ. 

3. d(α∧β)  =  dα∧β + (− 1) 
p
(α∧dβ) where α is a p-form. That is to say, d is an anti-

derivation of degree 1 on the exterior algebra of differential forms. 

 

The second defining property holds in more generality: in fact, d(dα) = 0 for any k-

form α. This is part of the Poincarélemm. The third defining property implies as a 

special case that if ƒ is a function and α a k-form, then d(ƒα) = dƒ∧α + ƒ∧dα because 

functions are forms of degree 0. 

 

Exterior derivative in local coordinates 
 

Alternatively, one can work entirely in a local coordinate system ( x
1
,...,x

n
). First, the 

coordinate differentials dx
1
,...,dx

n
 form a basic set of one-forms within th e coordinate 

chart. Given a multi-index I = (i1,...,ik) with 1 ≤ip≤n for 1 ≤p≤k, the exterior derivative 

of a k-form 

 

      
               

               

 

over R
n
 is defined as 

   ∑
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For general k-forms ω = ΣIfIdxI (where the components of the multi-index I run over 

all the values in {1,...,n}, the definition of the exterior derivative is extended linearly.  

 

Note that whenever i is one of the components of the multi-index I then dxi∧dxI = 0 

(see wedge product). 

  

The definition of the exterior derivative in local coordinates follows from the 

preceding definition. Indeed, if ω = ƒI d i1∧...∧dxik, then 

 

    (    
         ) 

 

     (           )     (  
         ) 

 

                  ∑         

 

   

    
                                

 

                  
 

 ∑
   
   

 

  

                

 

Here, we have here interpreted ƒI as a zero-form, and then applied the properties of the 

exterior derivative. 

 

Invariant formula 
 

Alternatively, an explicit formula can be given for the exterior derivative o f a k-form 

ω, when paired with k+1 arbitrary smooth vector fields V1,V2, ..., Vk: 

 

 
 

where [Vi,Vj] denotes Lie bracket and the hat denotes the omission of that element: 

 

 (      ̂      )                         
 

 

In particular, for 1-forms we have: dω(X,Y) = Xω(Y) − Yω(X) − ω([X,Y]), where X and 

Y are vector fields. 
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Examples 

 

1. Consider σ = u dx
1∧dx

2 
over a 1-form basis dx

1
,...,dx

n
. The exterior derivative is: 

 

 

 (∑
  

   
   

 

   

)         

 

 ∑

 

   

(
  

   
           ) 

 

The  last  formula  follows  easily  from  the  properties  of  the  wedge  product.  

Namely,         . 
 

2. For a 1-form σ = u dx + vdy defined over R
2
. We have, by applying the above 

formula to each term (consider x
1
 = x and x

2
 = y) the following sum, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D'Alembert operator 
 

In special relativity, electromagnetism and wave theory, the d'Alembert operator 

(represented by a box: ) also called the d'Alembertian or the wave operator, is the 

Laplace operator of Minkowski space. The operator is named for French 

mathematician and physicist Jean le Rondd'Alembert. In Minkowski space in standard 

coordinates (t, x, y, z) it has the form: 
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Applications 
 

The Klein–Gordon equation has the form 

 
 

The wave equation for the electromagnetic field in vacuum is 
 

 
 

Where A
µ
 is the electromagnetic four-potential. 

 

The wave equation for small vibrations is of the form 

 

 
 

Where u(x,t) is the displacement. 

 

Green's function 
 

The Green's function        for the d'Alembertian is defined by the equation 

 

 
 

Where         is the Dirac delta function and  and   are two points in Minkowski 

space. 

 

Explicitly we have 
 

           
 

  
                   

 

Where  is the Heaviside step function 

 

Double Integral 
 

The double integral of f(x, y) over the region R in the xy-plane is define d as 
 

∬            
 

 

 

= (volume above R and under the graph of f) - (volume below R and above the graph 

of f).  

 

 The following figure illustrates this volume (in the case that the graph of f is 

above the region R). 
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Computing Double Integrals 

 

If R is the rectangle a   x   b and c   y   d (see figure below) then 

 

∬            
 

 ∫ [
 

 

∫         
 

 

]   

 

 ∫ [
 

 

∫         
 

 

]   

 

 
 

If R is the region a  x   b and c(x)   y   d(x) (see figure below) then we integrate 

over R according to the following equation. 

 

∬            
 

 ∫ [
 

 

∫         
    

    

]   
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 forx close to p and where o is the little o-notation (for ) and is the  

distance between x and p. 

Jacobian Matrix 
 

The Jacobian of a function describes the orientation of a tangent plane to the function 

the Jacobian generalizes the gradient of a scalar valued function of multiple variable 

derivative of a scalar-valued function of scalar. Likewise, the Jacobian can also be 

amount of "stretching" that a transformation imposes. For example, if (x2,y2) = f(x1,y1) 

is used to transform an image, the Jacobian of f, J(x1,y1) describes how much the 

image in the neighborhood of (x1,y1) directions. 
 

If a function is differentiable at a point, its derivative is given in coordinates by the 

Jacobian, but a function doesn't need to be differentiable for the Jacobian to be 

defined, since only the partial derivatives are required to exist. 
 

The importance of the Jacobian lies in the fact that it represents the best linear 

approximation to a differentiable function near a given point. In this sense, the 

Jacobian is the derivative of a multivariate function. 

 

If p is a point in R
n
 and F is differentiable at p, then its derivative is given by JF(p). In 

this case, the linear map described by JF(p) is the best linear approximation of F near 

the point p, in the sense that 

 

  

 

 

 

 

 

In a sense, both the gradient and Jacobian are "first derivatives" — the former the first 

derivative of a scalar function of several variables, the latter the first derivative of a 

vector function of several variables. In general, the gradient can be regarded as a 

special version of the Jacobian: it is the Jacobian of a scalar function of several 

variables. 

 

The Jacobian of the gradient has a special name: the Hessian matrix, which in a sense 

is the "second derivative" of the scalar function of several variables in question. 

 

Inverse 

 

According to the inverse function theorem, the matrix inverse of the Jacobian matrix 

of an invertible function is the Jacobian matrix of the inverse function. That is, for 

some function F: R
n
 → R

n
 and a point p in R

n
, 

 

 
 

It follows that the (scalar) inverse of the Jacobian determinant of a transformation is 

the Jacobian determinant of the inverse transformation. 
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Uses 

 

Dynamical systems  
 

Consider a dynamical system of the form x'= F(x), where x' is the (component-wise) 

time derivative of x, and F: nn RR  is continuous and differentiable. If F(x0) = 0, then 

x0 is a stationary point (also called a fixed point). The behavior of the system near a 

stationary point is related to the eigenvalues of JF(x0), the Jacobian of F at the 

stationary point.
 
Specifically, if the eigenvalues all have a negative real part, then the 

system is stable in the operating point, if any eigenvalue has a positive real part, then 

the point is unstable.  

 

Newton's method 

 

A system of coupled nonlinear equations can be solved iteratively by Newton's 

method. This method uses the Jacobian matrix of the system of equations. 

 

The following is the detail code in MATLAB 

 

function s = Jacobian (f, x, tol) % f is a multivariable function handle, x is a starting 

point 

 

ifnargin == 2 

tol = 10
5

 ; 

end 

 

while 1 

% if x and f(x) are row vectors, we need transpose operations here 

y = x' - jacob(f, x)\f(x)';  % get the next point 

if norm(f(y))<tol  % check error tolerate 

s = y'; 

return; 

end 

x = y'; 

end 

 

function j = jacob(f, x) % approximately calculate Jacobian matrix 

 

k = length(x); 

j = zeros(k, k); 

for m = 1: k 

x2 = x; 

x2(m) =x(m)+0.001; 

j(m, :) = 1000*(f(x2)-f(x)); % partial derivatives in m-th row end 
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Jacobian determinant 

 

If m = n, then F is a function from n-space to n-space and the Jacobian matrix is a 

square matrix. We can then form its determinant, known as the Jacobian determinant. 

The Jacobian determinant is sometimes simply called "the Jacobian." 

 

The Jacobian determinant at a given point gives important information about the 

behavior of F near that point. For instance, the continuously differentiable function F 

is invertible near a point p ∈R
n
 if the Jacobian determinant at p is non-zero. This is the 

inverse function theorem. Furthermore, if the Jacobian determinant at p is positive, 

then F preserves orientation near p; if it is negative, F reverses orientation. The 

absolute value of the Jacobian determinant at p gives us the factor by which the 

function F expands or shrinks volumes near p; this is why it occurs in the general 

substitution rule. 
 

Uses 
 

The Jacobian determinant is used when making a change of variables when evaluating 

a multiple integral of a function over a region within its domain. To accommodate for 

the change of coordinates the magnitude of the Jacobian determinant arises as a 

multiplicative factor within the integral. Normally it is required that the change of 

coordinates be done in a manner which maintains an injectivity between the 

coordinates that determine the domain. The Jacobian determinant, as a result, is 

usually well defined. 
 

Examples 
 

Example 1: The transformation from spherical coordinates (r, θ, φ) to Cartesian 

coordinates (x
1
, x

2
, x

3
), is given by the function F: R

+
 → R

3 
with components: 

 
The Jacobian matrix for this coordinate change is 

 

 
 

The determinant is r
2
 sin θ. As an example, since dV = dx1 dx2 dx3 this determinant 

implies that the differential volume element dV = r
2
 sin θ drdθ d. Nevertheless this 

determinant varies with coordinates. To avoid any variation the new coordinates can be 
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defined as    
  

 
               

Now the determinant equals to 1 and 

volume element becomes   

 

Example 2: The Jacobian matrix of the function F : R
3
 → R

4
 with components 

 

 

 
 

This example shows that the Jacobian need not be a square matrix.  

 

Example 3 

 

 
 

The Jacobian determinant is equal to r. This shows how an integral in the Cartesian 

coordinate system is transformed into an integral in the polar coordinate system: 
 

∬      
 

 ∬        
 

 

 

Example 4.The Jacobian determinant of the function F: R
3
→ R

3
with components 

 

 
is 
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From this we see that F reverses orientation near those points where x1 and x2 have the 

same sign; the function is locally invertible everywhere except near points where x1 = 

0 or x2 = 0. Intuitively, if you start with a tiny object around the point (1,1,1) and 

apply F to that object, you will get an object set with approximately 40 times the 

volume of the original one 

 

4.0 CONCLUSION 

 

In this unit you have applied partial derivative of functions of several variables to 

solve chain rule and curl (mathematics). You have also applied partial derivative of 

functions of several variable solve derivatives and D’Alamber operator. You have 

applied partial derivative of functions of several variables in Double integral and 

exterior derivative. You also used partial derivative of function of several variables in 

Jacobian matrix and determinant. 
 

5.0 SUMMARY  

 

In this unit, you have studied the: 

 

 Application of partial derivative of functions of several variable in Chain rule. 

 Application of partial derivative of functions of several variable in Curl 

(Mathematics) 

 Application of partial derivative of functions of several variable in Derivatives 

 Application of partial derivative of functions of several variable in D’ Alamber 

operator 

 Application of partial derivative of functions of several variable in Double 

integral 

 Application of partial derivative of functions of several variable in Exterior 

derivative 

 Application of partial derivative of function of several variable in Jacobian 

matrix and determinant 

 

6.0 TUTOR – MARKED ASSIGNMENT 

 
1. Find the equation of the tangent plane to                      at  

(1, 3) 

2. Find the linear approximation to     
  

  
 

  

 
 

3. Find the absolute minimum and absolute maximum of  

                     on the rectangle given by -1 x 1 and  

-1 y 1 

4. Find the absolute minimum and absolute maximum of 

                 on the disk of radius 4,          

5. Find the partial derivatives of the following in the second order: 

a.                       

b.            
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