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1.0 INTRODUCTION 
 

This article is an overview o the term as used in calculus. For a less technical overview of 

the subject, see Differential calculus. For other uses, see Derivative (disambiguation). 

 

 
 

The graph of a function, drawn in black, and a tangent line to that function, drawn in red. 

The slope of the tangent line is equal to the derivative of the function at the ma ked point. 

 

In calculus, a branch of mathematics, the derivative is a measure of how a function 

changes as its input changes. Loosely speaking, a derivative can be thought of as how 

much one quantity is changing in response to changes in some other quantity; for 

example, the derivative of the position of a moving object with respect to time is the 

object's instantaneous velocity. 

 

The derivative of a function at a chosen input value describes the best linear 

approximation of the function near that input value. For a real-valued function of a single 
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real variable, the derivative at a point equals the slope of the tangent line to the graph of 

the function at that point. In higher dimensions, the derivative of a function at a point is a 

linear transformation called the linearization. A closely related notion is the differential 

of a function. 

 

The process of finding a derivative is called differentiation. The reverse process is 

called anti-differentiation. The fundamental theorem of calculus states that anti-

differentiation is thesame as integration. Differentiation and integration constitute the 

two fundamental operations in single-variable calculus. 

 

2.0 OBJECTIVES 

 
At the end of this unit, you should be able to: 

 

 Solve directional derivatives; 

 Use derivative to solve total derivative, total differential; and Jacobian matrix. 

 

3.0 MAIN CONTENT 
 

Directional derivatives 

 

If ƒ is a real-valued function on R
n
, then the partial derivatives of ƒ measure its variation 

in the direction of the coordinate axes. For example, if ƒ is a function of x and y, then its 

partial derivatives measure the variation in ƒ in the x direction and the y direction. They 

do not, however, directly measure the variation of ƒ in any other direction, such as along 

the diagonal line y = x. These are measured using directional derivatives. Choose a vector 
 

 
 
The directional derivative of ƒ in the direction of v at the point x is the limit 

 

 
 

In some cases it may be easier to compute or estimate the directional derivative after 

changing the length of the vector. Often this is done to turn the problem into the 

computation of a directional derivative in the direction of a unit vector. To see how this 

works, suppose that v = λu. Substitute h = k/λ into the difference quotient. The difference 

quotient becomes: 

 

 
 

This is λ times the difference quotient for the directional derivative of Furthermore, 

taking the limit as h tends to zero is the same as taking zero because h and k are multiples 
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of each other. Therefore Dv(ƒ) = λDu (rescaling property, directional derivatives are 

frequently considered only for unit vector. 

 

If all the partial derivatives of ƒ exist and are continuous at x, then they determine the 

directional derivative of ƒ in the direction v by the formula: 

 

 
 

This is a consequence of the definition of the total derivative. It follows that the 

directional derivative is linear in v, meaning that Dv + w(ƒ) = Dv(ƒ) + Dw(ƒ). 

 

The same definition also works when ƒ is a function with values in R
m
. The above 

definition is applied to each component of the vectors. In this case, the directional 

derivative is a vector in R
m

. 
 

Total derivative, total differential and Jacobian matrix 
 

When ƒ is a function from an open subset of R
n 
to R

m
, then the directional derivative of ƒ 

in a chosen direction is the best linear approximation to ƒ at that point and in that 

direction. But when n > 1, no single directional derivative can give a complete picture of 

the behavior of ƒ. The total derivative, also called the (total) differential, gives a 

complete picture by considering all directions at once. That is, for any vector v starting at 

a, the linear approximation formula holds: 
 

 
_ 

Just like the single-variable derivative, ƒ  (a) is chosen so that the error in this 

approximation is as small as possible. 

 

If n and m are both one, then the derivative ƒ  (a) is a number and the expression 

ƒ  (a)v is the product of two numbers. But in higher dimensions, it is impossible for 

ƒ  (a) to be a number. If it were a number , then ƒ  (a)v would be a vector in R
n
while 

the other terms would be vectors in R
m

, an therefore the formula would not make sense. 

For the linear approximation formula to ma ke sense, ƒ  (a) must be a function that 

sends vectors in R
n
 to vectors in Rm, and ƒ  (a)v must denote this function evaluated at 

v. 

 

To determine what kind of function it is, notice that the linearapproximation formula can 

berewritten as 
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Notice that if we choose another vector w, then this approximate equation determines 

another approximate equation by substituting w for v. It determines a third approximate 

equation by substituting both w for v and a + v for a. By subtracting these two new 

equations, we get 

 

 
 

If we assume that v is small and that the derivative varies continuously in a, then ƒ  (a + 

v) is approximately equal to ƒ  (a), and therefore the right-hand side is approximately 

zero. The left-hand side can be rewritten in a different way using the linear 

approximation formula with v + w substituted for v. The linear approximation formula 

implies: 

 

 
 

This suggests that ƒ  (a) is a linear transformation from the vector space R
n
 to the vector 

space R
m
. In fact, it is possible to make this a precise derivation by measuring the error in 

the approximations. Assume that the error in these linear approximation formula is 

bounded by a constant times ||v||, where the constant is independent of v but depends 

continuously on a. Then, after adding an appropriate error term, all of the above 

approximate equalities can be rephrased as inequalities. In particular, ƒ  (a) is a linear 

transformation up to a small error term. In the limit as v and w tend to zero, it must 

therefore be a linear transformation. Since we define the total derivative by taking a limit as 

v goes to zero, ƒ  (a) must be a linear transformation. 

 

In one variable, the fact that the derivative is the best linear approximation is expressed 

by the fact that it is the limit of difference quotients. However, the usual difference 

quotient does not make sense in higher dimensions because it is not usually possible to 

divide vectors. In particular, the numerator and denominator of the difference quotient are 

not even in the same vector space: The numerator lies in the co domain R
m 

while the 

denominator lies in the domain R
n
. Furthermore, the derivative is a linear transformation, 

a different type of object from both the numerator and denominator. To make precise the 

idea that ƒ  (a) is the best linear approximation, it is necessary to adapt a different 

formula for the one-variable derivative in which these problems disappear. If ƒ: R  R, 

then the usual definition of the derivative may be manipulated to show that the derivative 

of ƒ at a is the unique number ƒ  (a) such that 

 

 
 

This is equivalent to 
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because the limit of a function tends to zero if and only if the limit of the absolute value 

of the function tends to zero. This last formula can be adapted to the many-variable 

situation by replacing the absolute values with norms. 

 

The definition of the total derivative of ƒ at a, therefore, is that it is the unique linear 

transformation ƒ  (a) : R
n
 - R

m
 such that 

 

 
 

Here h is a vector in R
n
, s the norm in the denominator is the standard length on R

n
. 

However, ƒ′(a)h is a vector in R
m
, and the norm in the numerator is the standard length 

on R
m
. If v is a vector starting at a, then ƒ  (a)v is called the push forward of v by ƒ and 

is sometimes written ƒv. 

 

If the total derivative exists at a, then all the partial derivatives and directional derivatives 

of ƒ exist at a, and for all v, ƒ  (a)v is the directional derivative of ƒ in the direction v. If 

we write ƒ using coordinate functions, so that ƒ = (ƒ1, ƒ2, ...,ƒm), then the total derivative 

can be expressed using the partial derivatives as a matrix. This matrix is called the 

Jacobian matrix of ƒ at a: 

 

 
 

The existence of the total derivative ƒ′(a) is strictly stronger than the existence of all the 

partial derivatives, but if the partial derivatives exist and are continuous, then the total 

derivative exists, is given by the Jacobian, and depends continuously on a. 

 

The definition of the total derivative subsumes the definition of the derivative in one 

variable. That is, if ƒ is a real-valued function of a real variable, then the total derivative 

exists if and only if the usual derivative exists. The Jacobian matrix reduces to a 1×1 

matrix whose only entry is the derivative ƒ′(x). This 1×1 matrix satisfies the property that 

ƒ(a + h) − ƒ(a) − ƒ  (a)h is approximately zero , in other words that 

 

 
Up to changing variables, this is the statement that the function

 is the best linear approximation to ƒ at a. 

 

The total derivative of a function does not give another function in the same way as the 

one-variable case. This is because the total derivative of a multivariable function has to 
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record much more information than the derivative of a single-variable function. Instead, 

the total derivative gives a function from the tangent bundle of the source to the tangent 

bundle of the target. 

 

The natural analog of second, third, and higher-order total derivatives is not a linear 

transformation, is not a function on the tangent bundle, and is not built by repeatedly 

taking the total derivative. The analog of a higher-order derivative, called a jet, cannot be 

a linear transformation because higher-order derivatives reflect subtle geometric 

information, such as concavity, which cannot be described in terms of linear data such as 

vectors. It cannot be a function on the tangent bundle because the tangent bundle only has 

room for the base space and the directional derivative s. Because jets capture higher-order 

information, they take as arguments additional coordinates representing higher-order 

changes in direction. The space determined by these additional coordinates is called the 

jet bundle. The relation between the total derivative and the partial derivatives of a 

function is paralleled in the relation between the kth order jet of a function and its partial 

derivatives of order less than or equal to k. 

 

4.0 CONCLUSION 
 

In this unit, you have used derivative to solve problems on directional derivatives and 

have also solve problems on total derivative, total differentiation and Jacobian matrix. 

 

5.0 SUMMARY 
 

In this unit you have studied: 

 

 Solve directional derivatives 

 Use derivative to solve problems on total derivative, total differentiation d 

Jacobian matrix. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Evaluate the derivative of F(x,y,z) = 3(x
3
 + y) sin (z

2
) 

2. Find the derivative of F(x,y,z) = xy
3
 + z

4


3. Let F(x,y,z) = x
5
 + y

4
z

3
sin z

2
,find the derivative.

4. Evaluate the derivatives of F(x,y,z) = x
2
- xy+ z

4


5. Find the derivative of F(x,y,z) =
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1.0  INTRODUCTION 
 

In the mathematical field of differential calculus, the term total derivative has a number 

of closely related meanings. 

 

The total derivative (full derivative) of a function f, of several variables, e.g., t, x, y, etc., 

with respect to one of its input variables, e.g., t, is different from the partial derivative 

( ).Calculation of the total derivative of f with respect to t does not assume that the other 

arguments are constant while t varies; instead, it allows the other arguments to depend on 

t. The total derivative adds in these indirect dependencies to find the overall dependency 

of f on t. For example, the total derivative of f(t,x,y) with respect to t is 

 

 
 

Consider multiplying both sides of the equation by the differential : 

 

 
 

The result will be the differential change df in the function f. Because f depends on t, 

some of that change will be due to the partial derivative of f with respect to t. However, 

some of that change will also be due to the partial derivatives of f with respect to the 

variables x and y. So, the differential dt is applied to the total derivatives of x and y to 

find differentials dx and dy, which can then be used to find the contribution to df. 
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 It refers to a differential operator such as 

 

,
1 yj

f

dx

dyj

x

f

dx

df k

j 







 



 

 

which computes the total derivative of a function (with respect to x in this case). 

 

 It refers to the (total) differential df of a function, either in the traditional language 

of infinitesimals or the modern language of differential forms. 

 

 A differential of the form 

 
 

 
 

is called a total differential or an exact differential if it is the differential of a 

function. Again this can be interpreted infinitesimally, or by using differential 

forms and the exterior derivative. 

 

 It is another name for the derivative as a linear map, i.e., if f is a differentiable 

function from R
n
 to R

m
, then the total derivative (or differential) of f at x∈R

n
 is the 

linear map from R
n 
to R

m
 whose matrix is the Jacobian matrix of f at x. 

 

 It is a synonym for the gradient, which is essentially the derivative of a function 

from R
n
 

 

 It is sometimes used as a synonym for the material derivative, 
  

  
, in fluid 

mechanics. 

 

2.0  OBJECTIVE 
 

At the end of this unit, you should be able to: 

 

 differentiate with indirect dependent; 

 find the derivative via differentials; 

 solve total derivative as a linear map; and 

 explain total differential equation. 
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3.0  MAIN CONTENT 
 

Differentiation with indirect dependencies 

 

Suppose that f is a function of two variables, x and y. Normally these variables are 

assumed to be independent. However, in some situations they may be dependent on each 

other. For example y could be a function of x, constraining the domain of f to a curve in 

R
2
. In this case the partial derivative of f with respect to x does not give the true rate of 

change of f with respect to changing x because changing x necessarily changes y. The 

total derivative takes such dependencies into account. 

 

For example, suppose 

 

f(x,y) = xy. 

 

The rate of change of f with respect to x is usually the partial derivative of f with respect 

to x; in this case, 

 

 
 

However, if y depends on x, the partial derivative does not give the true rate of change of 

f as x changes because it holds y fixed. 

 

Suppose we are constrained t the line 

 

y = x 

 

then 

 

f(x,y) = f(x,x) = x
2
. 

 

In that case, the total derivative of f with respect to x is 

 

 
 

Notice that this is not equal to the partial derivative: 
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While one can often perform substitutions to eliminate indirect dependencies, the chain 

rule provides for a more efficient and general technique. Suppose M(t, p1, ..., pn) is a 

function of time t and n variables pi which themselves depend on time. Then, the total 

time derivative of M is 

 

 
 

This expression is often used in physics for a gauge transformation of the Lagrangian, as 

two Lagrangians that differ only by the total time derivative of a function of time and t 

generalized coordinates lead to the same equations of motion. The operator in brackets 

(in the final expression) is also called the total derivative operator (with respect to t). 

 

For example, the total derivative of f(x(t), y(t)) is 

 

 
 

Here there is no ∂f / ∂t term since f itself does not depend on the independent variable 

tdirectly 

 

The total derivative via differentials 
 

Differentials provide a simple way to understand the total derivative. For instance, 

suppose  (         ) is a function of time t and n variables p
i
 as in the previous 

section. Then, the differential of M is 

 

 
 

This expression is often interpreted heuristically as a relation between 

infinitesimals.However, if the variables t and pl are interpreted as functions, and

 interpreted to mean the composite of M with these functions, then the 

above expression makes perfect sense as an equality of differential 1-forms, and is 

immediate from the chain rule for the exterior derivative. The advantage of this point of 

view is that it takes into account arbitrary dependencies between the variables. For 

example, if   
       then                    in particular, if the variables pl are 

all functions of t, as in the previous section, then 
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The total derivative as a linear map 
 

Let      be an open subset. Then a function       
 is said to be (totally) differentiable 

at a point  ∈  , if there exists a linear map      
     denoted Dpf or Df(p)) such that 

 

 
 

The linear map dfp is called the (total) derivative or (total) differential of f at p. A 

function is (totally) differentiable if its total derivative exists at every point in its domain. 

 

Note that f is differentiable if and only if each of its components fi : U →  is 

differentiable. For this it is necessary, but not sufficient, that the partial derivatives of 

each function fj exist. However, if these partial derivatives exist and are continuous, then 

f is differentiable and its differential at any point is the linear map determined by the 

Jacobian matrix of partial derivatives at that point. 

 

Total differential equation 
 

A total differential equation i s a differential equation expressed in terms of total 

derivatives. Since the exterior derivative is a natural operator, in a sense that can be given 

a technical meaning, such equations are intrinsic and geometric. 

 

4.0 CONCLUSION 
 

In this unit, you have know how to differentiate with indirect dependent. You have 

used total derivative via differentials and have known the total derivative as a linear map. 

 

5.0 SUMMARY 

 

In this unit, you have studied the following: 

 

 Differentiation with indirect dependent 

 The total derivative via differentials 

 The total derivative as a linear map 

 The total differential equation 

 

6.0 TUTOR – MARK ASSIGNMENT 
 

1. Find the total derivative for the second – order of the function 

 F(x,y,z)= x
3
 + y

4
 −z

3
 

2. Find the total derivative for the function 

F(x,y,z)= x
2
 y

3
 + z

3


3. Solve the total derivative to the third - order of the function  

F(x,y,z)= x
3
 y

4
+ x

2
 y + y

3
 x

4
 z

4 
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1.0 INTRODUCTION 

 
Let us consider a function 

 

1) u = f(x, y, z, p, q, ...) 

 

of several variables. Such a function can be studied by holding all variables except one 

constant and observing its variation with respect to one single selected variable. If we 

consider all the variables except x to be constant, then 

 

  

  
 

  (   ̂  ̂  ̂  ̂  )

  
 

 

represents the partial derivative of f(x, y, z, p, q, ... ) with respect to x (the hats indicating 

variables held fixed). The variables held fixed are viewed as parameters. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 apply total derivative on chain rule for functions of functions; 

 apply total derivative to find directional derivative; 

 apply total derivative to solve differentiation under integral sign; and 

 apply total derivative on lebnitz rule. 
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3.0 MAIN CONTENT  

 
APPLICATION OF TOTAL DERIVATIVES 
 

Chain rule for functions of functions 
 

If w = f(x, y, z, ...) is a continuous function of n variables x, y, z, ..., with continuous 

partial derivatives     ⁄      ⁄      ⁄ ,... and if x, y, z, ... are differentiable 

functions x = x(t),y = y(t) , z = z(t), etc. of a variable t, then the total derivative of w with 

respect to t is given by 

 

2) 
  

  
 

  

  

  

  
 

  

  

  

  
 

  

  

  

  
 

 

This rule is called the chain rule for the partial derivatives of functions of functions. 
 

Similarly, if w = f(x, y, z,...) is a continuous function of n variables x, y, z, ..., with 

continuous partial derivatives     ⁄      ⁄      ⁄ ,... and if x, y, z, ... are 

differentiable functions of m independent variables r, s, t ..., then 

 
  

  
 

  

  

  

  
 

  

  

  

  
 

  

  

  

  
   

 
  

  
 

  

  

  

  
 

  

  

  

  
 

  

  

  

  
      

 

This rule is called the chain rule for the partial derivatives of functions of functions. 

 

Similarly, if w = f(x, y, z, ...) is a continuous function of n variables x, y, z, ..., with 

continuous partial derivatives    ⁄      ⁄      ⁄ ,... and if x, y, z, ... are 

differentiable functions of m independent variables r, s, t..., then 

 
  

  
 

  

  

  

  
 

  

  

  

  
 

  

  

  

  
   

 
  

  
 

  

  

  

  
 

  

  

  

  
 

  

  

  

  
      

 

Note the similarity between total differentials and total derivatives. The total derivative 

above can be obtained by dividing the total differential 

 

   
  

  
   

  

  
   

  

  
  by dt 

As a special application of the chain rule let us consider the relation defined by the two 

equations 
 

z = f(x, y); y = g(x) 
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Here, z is a function of x and y while y in turn is a function of x. Thus z is really a 

function of the single variable x. If we apply the chain rule we get 

 

 
 

which is the total derivative of z with respect to x. 

 

Definition of Scalar point function 

 

A scalar point function is a function that assigns a real number (i.e. a scalar) to each point 

of some region of space. If to each point (x, y, z) of a region R in space there is assigned a 

real number u =  (x, y, z), then   is called a scalar point function. 

 

Examples. 1. The temperature distribution within somebody at a particular point in time. 

2. The density distribution within some fluid at a particular point in time. 

 

Directional derivatives. Let  (x, y, z) be a scalar point function defined over some region 

R of space. The function  (x, y, z) could, for example, represent the temperature 

distribution within some body. At some specified point P(x, y, z) of R we wish to know 

the rate of change of   in a particular direction. The rate of change of a function   at a 

particular point P, in a specified direction, is called the directional derivative of  at P in 

that direction. We specify the direction by supplying the direction angles or direction 

cosines of a unit vector e pointing in the desired direction. 

 

Theorem. The rate of change of a function CD(x, y, z) in the direction of a vector with 

direction angles (α, β, γ) is given by 

 

3) 
  

  
 

  

  
     

  

  
     

  

  
     

 

where s corresponds to distance in the metric of the coordinate system. That direction for 

which the function   at point P has its maximum value is called the gradient of   at P. 

 

 
 

We shall prove the theorem shortly. First let us consider the same problem for two 

dimensional space. 



91 
 

Let  (x, y) be a scalar point function defined over some region R of the plane. At some 

specified point P(x, y) of R we wish to know the rate of change of   in a particular 

direction. We specify the direction by supplying the angle a that a unit vector e pointing 

in the desired direction makes with the positive x direction. See Fig. 4. The rate of change 

of function  at point P in the direction of e corresponding to angle a is given by 

 

4)      
  

  
 

  

  
     

  

  
     

 

where s corresponds to distance in the metric of the coordinate system. We show this as 

follows: 

 

Let 

 

T = f(x, y) 

 

 
 

where T is the temperature at any point of the plate shown in Fig. 5. We wish to derive 

expression 4) above. In other words, we wish to derive the expression for the rate of 

change of T with respect to the distance moved in any selected direction. Suppose we 

move from point P to point P'. This represents a displacement  x in the x-direction and 

 y in the y-direction. The distance moved along the plate is 

 

       √(  )  (  )  

 

The direction is given by the angle   that PP' makes with the positive x-direction. The 

change in the value of T corresponding to the displacement from P to P' is 

 

   
  

  
   

  

  
    √(  )  (  )  

 

where ε is a quantity that approaches 0 when  x and  y approach 0. 

If we divide  T by the distance moved along the plate, we have 

Fig. 5 
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From Fig. 5 we observe that  x/ s = cos  and  y/ s = sin  . Making these substitutions 

and letting P' approach P along line PP', we have 

 

 
 

This is the directional derivative of T in the direction a. 

A geometric interpretation of a directional derivative in the case of a function z = f(x, y) is 

that of a tangent to the surface at point P as shown in Fig. 6. 

 

Def. Directional derivative. The directional derivative of a scalar point function  (x, y, 

z) is the rate of change of the function  (x, y, z) at a particular point P(x, y, z) as 

measured in a specified direction. 

 

Tech. Let  (x, y, z) be a scalar point function possessing first partial derivatives 

throughout some region R of space. Let P(x0, y0, z0) be some point in R at which we wish 

to compute the directional derivative and let P'(x1, y1, z1) be a neighboring point. Let the 

distance from P to P' be As. Then the directional derivative of   in the direction PP' is 

given by 

 

5) 
  

  
        

 [  (        )]  [ (        )]

  
 

 

where P' approaches P along the line PP' and  s approaches 0. 
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Using this definition, let us now derive 3) above. In moving from P to P' the function   

will change by an amount 

 

   
  

  
   

  

  
   

  

  
                  

 

where 1,  2,  3 are higher order infinitesimals which approach zero as P' approaches P i.e. 

as  x,  y and  z approach zero. If we divide the change    by the distance  s we obtain 

a measure of the rate at which  changes as we move from P to P': 
 

6)   

 

 

We now observe that  x/ s,  y/ s,  z/ s are the direction cosines of the line segment 

PP'. They are also the direction cosines of a unit vector e located at P pointing in the 

direction of '. If the direction angles of e are  , β, γ, then  x/ s,  y/ s,  z/ s are equal to 

cos  , cosβ, and cosγ, respectively. Thus 6) becomes 

 

  

  
 

  

 
     

  

 
     

  

 
       

  

  
   

  

  
   

  

  
 

 

and 
 

7) 
  

  
        

  

 

  

 
     

  

 
     

  

 
     

 

Let us note that 7) can be written in vector form as the following dot product: 

 

 

8) 
  

  
 [

  

  

  

  

  

 
]  [            ]  [

  

  

  

  

  

 
]    

 

 The vector 

 

[
  

  

  

  

  

 
] 

 

is called the gradient of  . Thus the directional derivative of   is equal to the dot product 

of the gradient of  and the vector e. In other words, 

 

(
  

  
)
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where 

 

(
  

  
)
 
 

 

is the directional derivative of Φ in the direction of unit vector e. 

 

If the vector e is pointed in the same direction as the gradient of Φ then the directional 

derivative of Φ is equal to the gradient of Φ. 

 

Differentiation under the integral sign. Leibnitz’s rule. We now consider 

differentiation with respect to a parameter that occurs under an integral sign, or in the 

limits of integration, or in both places. 

 

Theorem 1. Let 

 

 ( )  ∫  ( )  
 

 

 

 

where a< x <b and f is assumed to be integrable on [a, b]. Then the function F(x) is 

continuous and F’(x) = f(x) at each point where f(x) is continuous. 

 

Theorem 2. Let f(x, α) and ∂f/∂α be continuous in some region  

R: (a< x< b, c< α <d) of the x-α plane. Let 

 

9)  ( )  ∫  (   )                         
 

 
 

 

Then 

 

 
 

Theorem 3. Leibnitz’s rule. Let 

 

 
 

where u1 and u2 are functions of the parameter α i.e. 

 

u1 = u1(α) 

u2 = u2(α). 
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Let f(x, α) and ∂f/∂α be continuous in both x and α in a region R of the x-α plane that 

includes the region u1< x< u2, c< α< d. Let u1 and u2 be continuous and have continuous 

derivatives for c< α< d. Then 

 

12)    
  

  
 ∫

  (   )

  

  

  
    (    )

   

  
  (    )

   

  
 

 

where f(u1, α) is the expression obtained by substituting the expression u1(α) for x in f(x, 

α). Similarly for f(u2, α). The quantities f(u1, α) and  

f(u2, α) correspond to ∂G/u1 and ∂G/u2 respectively and 12) represents the chain rule. 

 

Order of differentiation. For most functions that one meets 

 

 
 

However, in some cases it is not true. Under what circumstances is it true? It is true if 

both functions fyx and fxy are continuous at the point where the partials are bein taken. 

 

Theorem. Let the function f(x, y) be defined in some neighborhood of the point (a, b). 

Let the partial derivatives fx, fy, fxy, and fyx also be defined in this neighborhood. Then if 

fxy and fyx are both continuous at (a,), fxy(a, b) = fyx(a, b). 

 

 
 

 

4.0 CONCLUSION 
 

In this unit, you have applied total derivative on chain rule. You have solved problems 

directional derivatives using total derivative. You have used total derivative to solve 

differentiation under integral sign and leibnitz rule. 
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5.0 SUMMARY 
 

In this unit, you have studied the following: 

 

 The application of total derivative on chain rule 

 The application of total derivative on directional derivative 

 The application of total derivative on differentiation under integral sign 

 The application of total derivative on leibnitz rule.  

 

6.0 TUTOR - MARKED ASSIGNMENT  
 
1. Find all directional derivatives of the function 

F(x,y) – (        )
 

  

 

where (x,y) ∈R2), in the point (0,0) 

 

2.  Find the integral of the function 

F(x,y,z) = 3x
2
 + 2xyz  

In the point (0,1) 

 

3. Find the total derivative of the function 

 F(xy) = 3xy + 4y
2
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