
111 
 

MODULE 5  COMPOSITE DIFFERENTIATION, EULER’S THEOREM, 

IMPLICIT DIFFERENTIATION 
 

Unit 1  Composite differentiation 

Unit 2  Euler’s Theorem 

Unit 3  Implicit differentiation 

 

UNIT 1 COMPOSITE DIFFERENTIATION 

 
CONTENTS 

 

1.0  Introduction 

2.0  Objectives 

3.0  Main Content 

3.1  The chain rule 

3.2  Composites of more than two functions 

3.4  The quotient rule 

3.5  Higher derivative 

3.6  Proof of the chain rule 

3.7  The rule in higher dimension 

4.0  Conclusion 

5.0  Summary 

6.0  Tutor-Marked Assignment 

7.0  References/Further Reading 

 

1.0  INTRODUCTION 
 

In calculus, the chain rule is a formula for computing the derivative of the 

composition of two or more functions. That is, if f is a function and g is a function, 

then the chain rule expresses the derivative of the composite function f ∘ g in 

terms of the derivatives of f and g. 

 

Calculate the derivatives of each function. Write in fraction form, if needed, so 

that all exponents are positive in your final answer. Use the "modified power rule" 

for each. 
 

2.0  OBJECTIVES 
 

At the end of this unit, you should be able to: 
 

 use chain rule to solve mathematical problems; 

 solve composites of more than two functions; 

 use the quotient rule to solve composite functions; 

 identify problems in composite function which could be solve by the use of higher 

derivative; 

 proof the chain rule; and 

 explain the rule in higher dimension. 
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3.0  MAIN CONTENT  
 

Statement of the Rule 
 

The simplest form of the chain rule is for real-valued functions of one re l variable. 

It says that if g is a function that is differentiable at a point c (i.e. the derivative 

g′(c) exists) and f is a function that is differentiable at g(c), then the composite 

function f ∘ g is differentiable at c, and the derivative is 

 

 
 

The rule is sometimes abbreviated as 

 

 
 
If y = f(u) and u = g(x), then this abbreviated form is written in Leibniz notation as: 

 

 
 
The points where the derivatives are evaluated may also be stated explicitly: 

 

 
 

Further examples 

 

The chain rule in the absence of formulas 
 

It may be possible to apply the chain rule even when there are no formulas for the 

functions which are being differentiated. This can happen when the derivatives are 

measured directly. Suppose that a car is driving up a tall mountain. The car's 

speedometer measures its speed directly. If the grade is known, then the rate of 

ascent can be calculated using trigonometry. Suppose that the car is ascending at 

2.5 km/h. Standard models for the Earth's atmosphere implies that the temperature drops 

about 6.5 °C per kilometer ascended (see lapse rate). To find the temperature drop per 

hour, we apply the chain rule. Let the function g(t) be the altitude of the car at time t, and 

let the function f(h) be the temperature h kilometers above sea level. f and g are not 

known exactly: For example, the altitude where the car starts is not known and the 

temperature on the mountain is not known. However, their derivatives are known: 

f′ is −6.5 °C/km, and g′ is 2.5 km/h. The chain rule says that the derivative of the 

composite function is the product of the derivative of f and the derivative of g. 

This is − 6.5 °C/km · 2.5 km/h = −16.25 °C/h. 
 

One of the reasons why this computation is possible is because f′ is a constant 

function. This is because the above model is very simple. A more accurate 

description of how the temperature near the car varies over time would require an 
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accurate mod l of how the temperature varies at different altitudes. This model 

may not have a constant derivative. To compute the temperature change in such a 

model, it would be necessary to know g and not just g′, because without knowing 

g it is not possible to know where to evaluate f′. 

 

Composites of more than t o functions 
 

The chain rule can be applied to composites of more than two functions. To take 

the derivative of a composite of more than two functions, notice that the composite 

of f, g, and h (in that order) is the composite of f with  ∘  . The chain rule says 

that to compute the derivative of  ∘  ∘  , it is sufficient to compute the 

derivative of f and the derivative of  ∘  . The derivative of f can be calculated 

directly, and the derivative of  ∘   can be calculated by applying the chain rule 

again. 
 

For concreteness, consider the function 

 

 
 

This can be decomposed as the composite of three functions:  

   ( )       
    ( )        
   ( )       
 

Their derivatives are: 

 
  

  
   ( )       

 
  

  
   ( )         

 
  

  
   ( )       

 

The chain rule says that the derivative of their composite at the point x = a is: 

 

 
In Leibniz notation, this is: 

 
 

or for short, 
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The derivative function is therefore: 
 

 
 

Another way of computing this derivative is to view the composite function 

 ∘  ∘   as the composite of  ∘   and h. Applying the chain rule to this situation 

gives: 
 

 
 

This is the same as what was computed above. This should be expected because (f 

o g) o h = f o (g o h). 

 

The quotient rule 
 

The chain rule can be used to derive some well-known differentiation rules. For example, 

the quotient rule is a consequence of the chain rule and the product rule. To see this, write 

the function f(x)/g(x) as the product f(x) · 1/g(x). First apply the product rule: 
 

 

 
 

To compute the derivative of 1/g(x), notice that it is the composite of g with the 

reciprocal function, that is, the function that sends x to 1/x. The derivative of the 

reciprocal function is −1/x
2
. By applying the chain rule, the last expression 

becomes: 
 

 
 

which is the usual formula for the quotient rule.  

 

Derivatives of inverse functions 
 

Suppose that y = g(x) has an inverse function. Call its inverse function f so that we 

have x = f(y). There is a formula for the derivative of f in terms of the derivative 

of g. To see this, note that f and g satisfy the formula 
 

f(g(x)) = x. 

 

Because the functions f(g(x) ) and x are equal, their derivatives must be equal. The 

derivative of x is the constant function with value 1, and the derivative o f(g(x)) is 

determined by the chain rule. Therefore we have: 
 

f'(g(x))g'(x) = 1. 
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To express f′ as a function of an independent variable y, we substitute f(y for x 

wherever it appears. Then we can solve for f′. 

 

  ( ( ( ))  ( ( ))     

  ( )  ( ( ))     

  ( )
 

  ( ( ))
   

 

For example, consider the function g(x) = e
x
. It has an inverse which is denoted 

f(y) = ln y. Because g`(x) = e
x
, the above formula says that 

 

 
 

This formula is true whenever g is differentiable and its inverse f is also 

differentiable. This formula can fail when one of these conditions is not true. For 

example, consider g(x) = x
3
. Its inverse is f(y) = y

1/3 
which is not differentiable at 

zero. If we attempt to use the above formula to compute the derivative of f at zero, 

then we must evaluate 1/g′(f(0)). f(0) = 0 and g′(0) = 0, so we must evaluate 1/0, 

which is undefined. Therefore the formula fails in this case. This is not surprising 

because f is not differentiable at zero. 

 

Higher derivatives 

 

Faà di Bruno's formula generalizes the chain rule to higher derivatives. The first 

few derivatives are 

 

 
 

 

 

 

 

 



116 
 

Proofs of the chain rule 
 

First proof 

 

One proof of the chain rule begins with the definition of the derivative: 

 

 
 

Assume for the moment that g(x) does not equal g(a) for any x near a. Then the 

previous expression is equal to the product of two factors: 

 

 
 

When g oscillates near a, then it might happen that no matter how close one gets to 

a, there is always an even closer x such that g(x) equals g(a). For example, this 

happens for g(x) = x
2
sin (1/x) near the point a = 0. Whenever this happens, the 

above expression is undefined because it involves division by zero. To work 

around this, introduce a function Q as follows: 

 

 ( )  {

 ( )  ( ( ))

   ( )
    ( )

  ( ( ))                ( ) 
  

 

We will show that the difference quotient for f 0 g is always equal to: 

 ( ( )) 
 ( )  ( ))

   
  

 

Whenever g(x) is not equal to g(a), this is clear because the factors of g(x) - g(a) 

cancel. When g(x) equals g(a), then the difference quotient for  ∘   is zero 

because f(g(x)) equals f(g(a)), and the above product is zero because it equals 

f′(g(a)) times zero. So the above product is always equal to the difference quotient, 

and to show that the derivative of  ∘   at a exists and to determine its value, we 

need only show that the limit as x goes to a of the above product exists and 

determine its value. 

 

To do this, recall that the limit of a product exists if the limits of its factors exist. 

When this happens, the limit of the product of these two factors will equal the 

product of the limits of the factors. The two factors are Q(g(x)) and (g(x) - g(a))/ 

(x - a). The latter is the difference quotient for g at, and because g is differentiable 

at a by assumption, its limit as x tends to a exists and equals g′(a). 

 

It remains to study Q(g(x)). Q is defined wherever f is. Furthermore, because f is 

differentiable at g(a) by assumption, Q is continuous at g(a) g is continuous at a 

because it is differentiable at a, and therefore  ∘   is continuous at a. So its limit 

as x goes to a exists and equals Q(g(a)), which is f(g(a)) 
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This shows that the limits of both factors exist and that they equal f’(g(a)) g`(a), and 

respectively. Therefore the derivative of  ∘   at a exists and equals f`(g(a)) (g(a)) 

 

Second proof 
 

Another way of proving the chain rule is to measure the error in the linear 

approximation determined by the derivative. This proof has the advantage that it 

generalizes to several variables. It relies on the following equivalent definition of 

differentiability at a point: A function g is differentiable at a if there exists a real 

number g′(a) and a function ε(h) that tends to zero as h tends to zero, and 

furthermore 

 

 
 

Here the left-hand side represents the true difference between the value of g at a 

and at a + h, whereas the right-hand side represents the approximation determined 

by the derivative plus an error term. 

 

In the situation of the chain rule, such a function ε exists because g is assumed to 

be differentiable at a. Again by assumption, a similar function also exists for f at 

g(a). Calling this function η, we have 

 

 
 

The above definition imposes no constraints on η(0), even though it is assumed 

that η(k) tends to zero as k tends to zero. If you set η(0) = 0, then η is continuous at 0. 

 

Proving the theorem requires studying the difference f(g(a + h)) − f(g(a)) as h tends 

to zero. The first step is to substitute for g(a + h) using the definition of 

differentiability of g at a: 

 

f(g(a + h)) − f(g(a)) = f(g(a) + g'(a)h + ε(h)h) − f(g(a)). 

 

The next step is to use the definition of differentiability of f at g(a). This requires a 

term of the form f(g(a) + k) for some k. In the above equation, the correct k varies 

with h. Set kh = g′(a)h + ε(h)h and the right and side becomes f(g(a) + kh) − 

f(g(a)). Applying the definition of the derivative gives: 

 

 
 

To study the behavior of this expression as h tends to zero, expand kh. After 

regrouping the terms, the right-hand side becomes: 
 

  ( ( )  ( )  [  ( ( )) ( )   (  ) 
 ( )   (  ) ( )]   
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Because ε(h) and η(kh) tend to zero as h tends to zero, the bracketed terms tend to zero 

as h tends to zero. Because the above expression is equal to the difference f(g a + h)) − 

f(g(a)), by the definition of the derivative  ∘   is differentiable at a and its derivative 

is f′(g(a))g′(a). 

 
The role of Q in the first proof is played by η in this proof. They are related by the 
equation: 
 

 
 

The need to define Q at g(a) is analogous to the need to define η at zero. However, 

the proofs are not exactly equivalent. The first proof relies on a theorem about 

products of limits to show that the derivative exists. The second proof does not 

need this because showing that the error term vanishes proves the existence of the 

limit directly.  

 

The chain rule in higher dimensions 
 

The simplest generalization of the chain rule to higher dimensions uses the total 

derivative. The total derivative is a linear transformation that captures how the 

function changes in all directions. Let f : R
m→ Rk

 and g: R
n
 → Rm

 be differentiable 

functions, and let D be the total derivative operator. If a is a point in R
n
, then the 

higher dimensional chain rule says that: 
 

 
or for short, 

 
 

In terms of Jacobian matrices, the rule says 
 

 
 

That is, the Jacobian of the composite function is the product of the Jacobians of 

the composed functions. The higher-dimensional chain rule can be proved using a 

technique similar to the second proof given above. 

 

The higher-dimensional chain rule is a generalization of the one-dimensional chain 

rule. If k, m, and n are 1, so that f : R → R and g : R → R, then the Jacobian 

marices of f and g are 1 × 1. Specifically, they are: 
 

 
 

The Jacobian of  ∘   is the product of these 1×1 matrices, so it is f`(g(a)) g`(a), as 

expected from the one-dimensional chain rule. In the language of linear 
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transformations, Da(g) is the function which scales a vector by a factor of g`(a) 

and Dg(a)(f) is the function which scales a vector by a factor of f`(g(a)). The chain 

rule says that the composite of these two linear transformations is the linear 

transformation Da( ∘  ), and therefore it is the function that scales a vector by 

f`(g(a))g`(a). 

 

Another way of writing the chain rule is used when f and g are expressed in terms 

of their components as y = f(u) = (f1(u), ..., fk(u)) and u = g(x) = (g1(x), ..., gm(x)). 

In this case, the above rule for Jacobian matrices is usually written as: 
 

 
 

The chain rule for total derivatives implies a chain rule for partial derivatives. 

Recall that when the total derivative exists, the partial derivative in the ith 

coordinate direction is found by multiplying the Jacobian matrix by the ith basis 

vector. By doing this to the formula above, we find: 

 

 
 

Since the entries of the Jacobian matrix are partial derivatives, we may simplify 

the above formula to get: 

 

 
 

More conceptually, this rule expresses the fact that a change in the xi direction 

may change all of gl through gk, and any of these changes may affect f. 

 

In the special case where k =1, so that f is a real-valued function, then this formula 

simplifies even further: 

  

   
 ∑

  

   

 

   

   

   
 

 

Example 

Given         where       ( ) and       ( )  determine the value of 
  

  
 and 

  

  
 using the chain rule. 

 

  

and  



120 
 

 

Higher derivatives of multivariable functions 

 

Faà di Bruno's formula for higher-order derivatives of single-variable functions 

generalizes to the multivariable case. If is a function of u = g(x) as above, then the 

second derivative of  ∘   is: 

 

  ( ∘  )

      
 ∑

  

   

    

      
 

 ∑
   

      
   

   

   

   

   
 

 

The composite function chain rule notation can also be adjusted for the 

multivariate case: 

 

 
 

Then the partial derivatives of z with respect to its two independent variables are 

defined as:  

 

 
 

Let's do the same example as above, this time using the composite function 

notation where functions within the z function are renamed. Note that either rule 

could be used for this problem, so when is it necessary to go to the trouble of 

presenting the more formal composite function notation? As problems become 

more complicated, renaming parts of a composite function is a better way to keep 

track of all parts of the problem. It is slightly more time consuming, but mistakes 

within the problem are less likely. 
 

Given   (     )  

 

Let    ( )     and    (   )        

 

Then 
  

  
 

  

  
 
  

  
 (   )( )      

 

and 
  

  
 

  

  
 
  

  
 (   )(  )  (  )   
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The final step is the same, rep lace u with function g: 

 
  

  
      (     )   

 
  

  
   ( )  (  )(     )  

 

Multivariate function 
 

The rule for differentiating multivariate natural logarithmic functions, with 

appropriate notation changes is as follows: 

Given  
   ( )    ( )       (   )  
 

Such that z      (   ) 
Then the partial derivatives of z with respect to its independent variables are 

defined as: 

 

 
 

Let's do an example. Find the partial derivatives of the following function: 

 

 
 

The rule for taking partials of exponential functions can be written as: 

 

Given    ( )        (   ) 
Such that     (   ) 

 

Then the partial derivatives of z with respect to its independent variables are 

defined as: 

 
  

  
   (   ) 

  

  
 

 
  

  
   (   ) 

  

  
 



122 
 

 

One last time, we look for partial derivatives of the following using the 

exponential function rule: 

 

    (   )  

 
  

  
   (   ) 

  

  
  (   )  (   )  (   ) (    ) 

 
  

  
   (   ) 

  

  
  (   )  (   )  (   ) (    ) 

 

 

Higher order partial and cross partial derivatives 
 

The story becomes more complicated when we take higher order derivatives of 

multivariate functions. The interpretation of the first derivative remains the same, 

but there are now two second order derivatives to consider. 

 

First, there is the direct second-order derivative. In this case, the multivariate 

function is differentiated once, with respect to an independent variable, holding all 

other variables constant. Then the result is differentiated a second time, again with 

respect to the same independent variable. In a function such as the following: 

 

 
 

There are 2 direct second-order partial derivatives, as indicated by the following 

examples of notation: 

 

 
 

These second derivatives can be interpreted as the rates of change of the slopes of 

the function z. 

 

Now the story gets a little more complicated. The cross-partials, fxy and fyx are 

defined in the following way. First, take the partial derivative of z with respect to 

x. Then take the derivative again, but this time, take it with respect to y, and hold 

the x constant. Specially, think of the cross partial as a measure of how the slope 

(change in z with respect to x) changes, when the y variable changes. The 

following are examples of notation for cross-partials: 
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You'll discuss economic meaning further in the next section, but for now, we'll just 

show an example, and note that in a function where the cross-partials are 

continuous, they will be identical. For the following function: 

 

 
 

Take the first and second partial derivatives. 

 

 
 

Now, starting with the first partials, find the cross partial derivatives: 

 

 
 

4.0  CONCLUSION 
 

In this unit, you have been introduced to the composite differentiation also called 

the chain rule. You have known the Composites of more than two functions. You 

have also known the quotient rule. You have solved problems on higher derivative 

with the use of composite differentiation. You have proof the chain rule and known 

the rule in higher dimension. 

 

5.0  SUMMARY 
 

In this unit, you have studied: 
 

 The chain rule 

 Composites of more than two functions 

 The quotient rule 

 Higher derivative 

 Proof of the chain rule 

 The rule in higher dimension 

 

6.0  TUTOR-MARKED ASSIGNMENT 
 

1.  What are the second – order derivatives of the function  

F(x,y)= xy
2
 + x

3
 y

5 

2.  Express x- and y- derivatives of W(x
3
 y

3
) in terms of x,y.
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. 

3.  What are the second - order derivatives of the function  

F(x,y) = x
4
 y

6 

4.  What are the second – order derivatives of the function  

K(x,y) = ln (2x-3y). 

5. What are the second – order derivatives of the function  

R(x,y) =  
 

   
 

   

6. What are the second – order derivatives of the function  

N(x,y) = tan
-1

 (x, y).  
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1.0  INTRODUCTION 
 

In number theory, Euler's theorem (also known as the Fermat–Euler theorem or 

Euler's totient theorem) states that if n and a are coprime positive integers, then 

 

  ( )    (     )  
 

where φ(n) is Euler's totient function and "... ≡ ... (mod n)" denotes 

congruence modulo n. 

 

2.0  OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 state and prove the Euler’s theorem. 

 

3.0  MAIN CONTENT 
 

The converse of Euler's theorem is also true: if the above congruence holds for 

positive integers a and n, then a and n are coprimes. 

 

The theorem is a generalization of Fermat's little theorem, and is further 

generalized by Carmichael's theorem. 

 

The theorem may be used to easily reduce large powers modulo n. For example, 

consider finding the ones place decimal digit of 7
222

, i.e. 7
222

 (mod 10). Note that 7 

and 10 are coprime, and φ(10) = 4. So Euler's theorem yields 74 ≡ 1 (mod 10), and 

we get 7
222

 ≡ 7
4×55 + 2 

≡ (74
)
55

×7
2 ≡ 155

×7
2 ≡ 49 ≡ 9 (mod 10). 

 

In general, when reducing a power of a modulo n (where a and n are coprime), one 

needs to work modulo φ(n) in the exponent of a: 

if x ≡ y (mod φ(n)), then ax ≡ ay (mod n). 
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Euler's theorem also forms the basis of the RSA encryption system: encryption and 

decryption in this system together amount to exponentiating the original text by 

k(p(n)+1 for some positive integer k, so Euler's theorem shows that the decrypted 

result is the same as the original. 
 

Proofs 
 

1. Leonhard Euler published a proof in 1789. Using modern terminology, one 

may prove the theorem as follows: the numbers b which are relatively 

prime to n form a group under multiplication mod n, the group G of 

(multiplicative) units of the ring Z/nZ. This group has φ(n) elements. The 

element a: = a (mod n) is a member of the group G, and the order o(a) of a 

(the least k > 0 such that a
k
 = 1) must have a multiple equal to the size of G. 

(The order of a is the size of the subgroup of G generated by a, and 

Lagrange's theorem states that the size of any subgroup of G divides the 

size of G.) 
 

Thus for some integer M > 0, M·o(a) = φ(n). Therefore a
φ(n)

 = a
o(a)·M 

= 

(a
o(a)

)
M

 = 1
M

 = 1. This means that a
φ
(n) = 1 (mod n). 

 

2. Another direct proof: if a is coprime to n, then multiplication by a permutes 

the residue classes mod n that are coprime to n; in other words (writing R 

for the set consisting of the φ(n) different such classes) the sets { x : x in R 

} and { ax : x in R } are equal; therefore, the two products over all of the 

elements in each set are equal. Hence, P ≡ a
φ
(n)P (mod n) where P is the 

product over all of the elements in the first set. Since P is coprime to n, it 

follows that a
φ
(n) ≡ 1 (mod 

 

4.0  CONCLUSION 
 

In this unit, you have stated and proved the Euler’s theorem 
 

5.0  SUMMARY 
 

In this unit, you have known the statement of Euler’s theorem and proved Euler’s 

theorem. 

 

6.0  TUTOR-MARKED ASSIGNMENT 
 

State and prove Euler’s theorem. 

 

7.0 REFERENCES/FURTHER READING  
 

Hernandez Rodriguez and Lopez Fernandez, A Semiotic Reflection on the 

Didactics of the Chain Rule, The Montana Mathematics Enthusiast, ISSN 

1551-3440, Vol. 7, nos.2&3, pp.321–332. 

 

Apostol, Tom (1974). Mathematical analysis (2nd ed. ed.). Addison Wesley. 

Theorem 5.5. 
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1.0 INTRODUCTION 
 

Most of our math work thus far has always allowed us to solve an equation for y in 

terms of x. When an equation can be solved for y you call it an explicit function. 

But not all equations can be solved for y. An example is: 

x
3
 + y

3
 = 6xy 

 

This equation cannot be solved for y. When an equation cannot be solved for y, 

you call it an implicit function. The good news is that you can still differentiate 

such a function. The technique is called implicit differentiation. 

 

When you implicitly differentiate, you must treat y as a composite function and 

therefore you must use the chain rule with y terms. The reason for this can be seen 

in Leibnitz notation: 
 

  
. This notation tells you that you are differentiating with 

respect to x. Because y is not native to what are differentiating with respect to, you 

need to regard it as a composite function. As you know, when you differentiate 

composite function you must use the chain rule. 

 

Let’s now try to differentiate the implicit function, x
3
 + y

3
 = 6xy 

 

x
3
 + y

3
 = 6xy  

 

This is a "folium of Descartes" curve. This would be very difficult to solve for y, 

so you will need to use implicit differentiation. 

 
 

  
(             )    

 

Here you show with Leibnitz notation that you are implicitly differentiating both 

sides of the equation. 
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(  )   

 

  
(  )    

 

  
       

 

On the left side you need to individually take the derivative of each term. On the 

right side you have to use the product rule (6x.y) 

 

                     
 

Here you take the individual derivatives. Note: Where did the y’ come from? 

Because you are differentiating with respect to x, you need to use the chain rule on 

the y. Notice that you did use the product rule on the right side. 

 

                    
 

Now you get the y’ terms on the same side of the equation. 

 

  (                     
 

Now you factor y’ out of the expression on the left side. 

 

        

      
 

 (     )

 (     )
             

 

Now you divide both sides by the       factor and simplify. 

 

 

 

 

You can see in a plot of the implicit function that the 

slope of the tan gent line at the point (3,3) does appear to 

be - 1. 

 

 

 

Another example: Differentiate:             

 

Given implicit function 

            
 

Doing implicit differentiation on the function. 

 

   (       )          
Note the use of the product rule on the second term 
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  (      )        
 

You do the algebra to solve for y'. 

   
     

      
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Here you see a portion of plot of the implicit equation with c set equal to 5.. When 

does it appear that the slope of the tangent line will be zero? It appears to be at 

about (2.2,2.2). 

 

You take our derivative, set it equal to zero, and solve. 

 

  
     

      
 

        

    
 

Now putting x = original implicit equation, you find that... 

 

            

            

          
 

You still must use a computer algebra system to solve this cubic equation. The one 

real answer is shown:   

X = y = 2.116343299 

 

This answer does seem consistent with your visual estimate. 
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2.0 OBJECTIVES 

 

At the end of this unit, you should be able to: 

 

 recall the derivatives of Inverse Trigonometric Functions; 

 define and identify Implicit differentiation; 

 recall formula for two variables; 

 appreciate applications in economics; and 

 solve Implicit differentiation problems. 

 

3.0  MAIN CONTENT 
 

Links to other explanations of Implicit Differentiation 

 

Derivatives of Inverse Trigonometric Functions 
 

Thanks to implicit differentiation, you can develop important derivatives that you 

could not have developed otherwise. The inverse trigonometric functions fall 

under this category. You will develop and remember the derivatives of the inverse 

sine and inverse tangent. 

 

           Inverse sine function. 

 

                        This is what inverse sine means. 

 

    
  

  
    You implicitly differentiate both sides of the equation with 

respect to x. Because we are differentiating with respect to x, 

you need to use the chain rule on the left side. 

 
  

  
 

 

    
                  You solve the equation for 

  

  
 

 
  

  
  

 

√       
      This is because of the trigonometric identity,       

        
 
  

  
 

 

√    
            Refer back to the equation in step two above. You have our 

derivative 

 
 

  
(      )  

 

√    
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. 

 

Implicit differentiation   

 

In 

 

y = tan
-1

x  The inverse tangent function 

tan y = x  This is what inverse tangent means 

 

                 

 

 

 

 

 
  

  
 

 

       
            This is because of the trigonometric identity,          

     . 

 
  

  
(      )  

 

    
    Refer back to the equation in step two above. 

You have your derivative. 

 

 In calculus, a method called imp licit differentiation makes use of the chain rule to 

differentiate implicitly defined functions. 

 

As explained in the introduction, y can be given as a function of x implicitly rather 

than explicitly. When you have an equation R(x, y) = 0, you may be able to solve it 

for y and then differentiate. However, sometimes it is simpler to differentiate R(x, 

y) with respect to x and y and then solve for dy/dx. 

 

Examples 

 

1.  Consider for example 

 

y + x + 5 = 0 

 

This function normally can be manipulated by using algebra to change this 

equation to one expressing y in terms of an explicit function: 

 

y = -x – 5, 

where the right side is the explicit function whose output value is y. 

Differentiation then gives 
  

  
     

 

 

 

 

 

 

You implicitly differentiate both sides of the 

equation with respect to x. Because you are 

differentiating with respect to x, you need to use 

the equation for the chain rule on the left side. 
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Alternatively, one can totally differentiate the original equation: 
 

 
 

Solving for 
  

  
 gives: 

 
  

  
   , 

 

the same answer as obtained previously. 

 

2. An example of an implicit function, for which implicit differentiation might 

be easier than attempting to use explicit differentiation, is 

 

 
 

In order to differentiate this explicitly with respect to x, one would have to obtain 

(via algebra) 

 
 

and then differentiate this function. This creates two derivatives: one for y > 0 and 

another for y < 0.  
 

One might find it substantially easier to implicitly differentiate the original 

function:  
 

 
giving, 

 
 

3.  Sometimes standard explicit differentiation cannot be used and, in order to 

obtain the derivative, implicit differentiation must be employed. An 

example of such a case is the equation y − y = x. It is impossible to express 

y explicitly as a function of x and therefore dy/dx cannot be found by 

explicit differentiation. Using the implicit method, dy/dx can be expressed: 
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Where 
  

  
   factoring out dx shows that 

 

 
 

which yields the final answer 

 

 
 

which is defined for    
 

√ 
   

 

Formula for two variables 

 
"The Implicit Function Theorem states that if F is defined on an open disk containing (a,b), 

where F(a,b) = 0,   (   )   , and Fx and Fy are continuous on the disk, then the 

equation F(x,y) = 0 defines y as a function of x near the point (a,b) and the 

function is given by..."
[1]:§ 11.5  

 

 
 

where Fx and Fy indicate the derivatives of F with respect to x and y. 

 

The above formula comes from using the generalized chain rule to obtain the total 

derivative — with respect to x — of both sides of F(x, y) = 0: 

 

 
 
and hence 
 

 
 

Implicit function theorem 

 

It can be shown that if R(x,y) is given by a smooth submanifold M in R
2
, nd (a,b) 

is a point of this submanifold such that the tangent space there is not vertical (that 

is  
  

  
  ),  
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then M in some small enough neighborhood of (a,b) is given by a 

parameterization (x,f(x)) where f is a smooth function. In less technical language, 

implicit functions exist and can be differentiated, unless the tangent to the 

supposed graph would be vertical. In the standard case where we are given an 

equation 

R(x,y) = 0 

 

the condition on R can be checked by means of partial derivatives .  

 

Applications in economics  

 

Marginal rate of substitution 

 

In economics, when the level set R(x,y) = 0 is an indifference curve for the 

quantities x and y consumed of two goods, the absolute value of the implicit 

derivative is interpreted as the marginal rate of substitution of the two goods: how 

much more of y one must receive in order to be indifferent to a loss of 1 unit of x. 

 

IMPLICIT DIFFERENTIATION PROBLEMS 
 

The following problems require the use of implicit differentiation. Implicit 

differentiation is nothing more than a special c se of the well-known chain rule for 

derivatives. The majority of differentiation problems in first-year calculus involve 

functions y written EXPLICITLY as functions of x. For example, f 

 

, 

 

then the derivative of y is 6x – 7cos (7x+5) 

 

However, some functions y are written implicitly as functions of x. A familiar 

example of this is the equation 

 

x
2
 + y

2
 = 25 , 

 

which represents a circle of radius five centered at the origin. Suppose that we 

wish to find the slope of the line tangent to the graph of this equation at the point 

(3, -4).  
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How could we find the derivative of y in this instance? One way is to first write y 

explicitly as a function of x. Thus, 

 

x
2
 + y

2
 = 25 ,   

 

y
2
 = 25 - x

2
 ,  and 

 

, 

 

where the positive square root represents the top semi-circle and the negative 

square root represents the bottom semi-circle. Since the point (3, -4) lies on the 

bottom semi-circle given by 

 

, 

 

the derivative of y is 

 

, 

 

i.e., 

. 

 

Thus, the slope of the line tangent to the graph at the point (3, -4) is 

 

. 

 

Unfortunately, not every equation involving x and y can be solved explicitly for y. 

For the sake of illustration you will find the derivative of y without writing y 
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explicitly as a function of x. Recall that the derivative (D) of a function of x 

squared, (f(x))
2
 , can be found using the chain rule: 

 

 *( ( )) +    ( ) * ( )+    ( )  ( ) 
 

Since y symbolically represents a function of x, the derivative of y
2
 can be found 

in the same fashion:  

 

  
 

Now begin with  

 

x
2
 + y

2
 = 25 . 

 

Differentiate both sides of the equation, getting  

 

D (x
2
 + y

2
) = D (25), 

 

D (x
2
) + D (y

2
) = D (25), and 

 

2x + 2 y y' = 0, 

 

so that 

 

2 y y' = - 2x,   and 

 

, 

 

i.e., 

. 

 

Thus, the slope of the line tan gent to the graph at the point (3, -4) is 
 

. 
 

This second method illustrates the process of implicit differentiation. It is 

important to note that the derivative expression for explicit differentiation 

involves x only, while the derivative expression for implicit differentiation may 

involve both x and y. 

 

The following problems range in difficulty from average to challenging. 
 

PROBLEM 1: Assume that y is a function of x. Find y' = dy/dx for x
3
 + y3 = 4. 
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SOLUTION 1: Begin with x
3
+ y

3
 = 4. Differentiate both sides of the equation, 

getting 
 

D ( x
3
 + y

3
 ) = D ( 4 ) , 

 

D ( x
3
 ) + D ( y

3
 ) = D ( 4 ) , 

 

(Remember to use the chain rule on D (y
3
) .) 

 

3x
2
 + 3y

2
 y' = 0, 

 

so that (Now solve for y' .) 

 

3y
2
 y' = - 3x

2
,     and 

 

 
 

PROBLEM 2: Assume that y is a function of x. Find y
1
 = 

dx
dy  for (x-y)

2
 = x+y

-1
 

 

SOLUTION 2: Begin with (x-y)
2
 = x + y - 1 . Differentiate both sides of the 

equation, getting 

 

D (x-y)
2
 = D ( x + y - 1 ) , 

 

D (x-y)
2
 = D ( x ) + D ( y ) – D ( 1 ) 

 

(Remember to use the chain rule on D (x-y)
2
 .) 

 

, 

 

2 (x-y) (1- y') = 1 + y', 

 

so that (Now solve for y' .) 

 

2 (x-y) - 2 (x-y) y' = 1 + y' , 

 

- 2 (x-y) y' - y' = 1 - 2 (x-y) , 

 

(Factor out y' .) 

 

y' [ - 2 (x-y) - 1 ] = 1 - 2 (x-y) ,   and 
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. 

 

PROBLEM 3 Assume that y is a function of x. Find y
1
 for y = 5 in (3x+4y) 

 

SOLUTION 3: Begin with     (     ). Differentiate both sides of the 

equation, getting 
 

, 

 

(Remember to use the chain rule on)  

 

 , 

, 

 

so that (Now solve for y' .) 

 

, 

 
 

(Factor out y'.) 

 

 and 

 

. 
 

PROBLEM 4:Assume that y is a function of x. Find y
1
 for y = x

2
y

3
+x

3
y

2
 

 

SOLUTION 4: Begin with y = x
2
 y

3
 + x

3
 y

2
 . Differentiate both sides of the equation, 

getting 

 

D(y) = D ( x
2
 y

3
 + x

3
 y

2
 ) ,  

 

D(y) = D ( x
2
 y

3
 ) + D ( x

3
 y

2
 )  

 

(Use the product rule twice.) 

 

, 

 

(Remember to use the chain rule on D ( y
3
 ) and D ( y

2
 ) .) 

 

, 
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y' = 3x
2
 y

2
 y' + 2x y

3
 + 2x

3
 y y' + 3x

2
 y

2
 ,  

 

so that (Now solve for y' .)  

 

y' - 3x
2
 y

2
 y' - 2x

3
 y y' = 2x y

3
 3x

2
 y

2
 ,  

 

(Factor out y' .) 

 

y' [ 1 - 3x
2
 y

2
 - 2x

3
 y ] = 2x y

3
 + 3x

2
 y

2
 ,   and 

 

. 

 

PROBLEM 5: Find y
1
 = 

dx
dy for е

xy
 = е

4x
 – е

5y
 

 

SOLUTION 5: Begin with            . Differentiate both sides of the 

equation, getting 

        

 

 
 

 

 

      

so that (Now solve for y
1
) 

 

 

 
                    

(Factor out y
1
)  

 

  
 

and 

 

 
 

 

. 
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PROBLEM 6: Solve for y
1 

if cos
2
x + cos

2
y = cos(2x+2y) 

 

SOLUTION 6: Begin with                 (     ). Differentiate both 

sides of the equation, getting 

 

 

 

 
 

     (    )       (     )(  )      (     )(     ) 
 

So that (Now solve for y
1
) 

 

 

 
 

(Factor out y
1
) 

 

 

 

 
 

and  

 

 
. 

PROBLEM 7: Assume that y is a function of x
1
. Find y

1
 for = 223 yx   

 

SOLUTION 7: Begin with  223 yxx  . Differentiate both sides of the 

equation, getting 

 

)3()( 22 yxDxD   

 

1 = (1/2)( x
2
 + y

2
 )

-1/2 
D ( x

2
 + y

2
 ) , 

1 = (1/2)( x
2
 + y

2
 )

-1/2
 ( 2x + 2 y' ) , 
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so that (Now solve for y'.) 

 

 

  ,  

 

 

 
 

and  

 

 
 

PROBLEM 8: Find y1 if 2
2

3





x

xy

yx
 

 

SOLUTION 8: Begin with 
    

    
    . Clear the fraction by multiplying both 

sides of the equation by y + x
2
, getting 

 

, 

 

or  

 

x - y
3
 = xy + 2y + x

3
 + 2x

2
 . 

 

Now differentiate both sides f the equation, getting 

 

D ( x - y
3
 ) = D ( xy + 2y + x

3
 + 2x

2
 ) , 

 

D ( x ) - D (y
3
 ) = D ( xy ) + D ( 2y ) + D ( x

3
 ) + D ( 2x

2
 ) , 

 

(Remember to use the chain rule on D (y
3
 ) .) 

 

1 - 3 y
2
 y' = ( xy' + (1)y ) + 2 y' + 3x

2
 + 4x , 

 

so that (Now solve for y' .) 

 

1 - y - 3x
2
 - 4x = 3 y

2
 y' + xy' + 2 y' , 
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(Factor out y'.) 

 

1 - y - 3x
2
 - 4x = (3y

2
 + x + 2)y

’ 

 

and  

 

 
 

 

PROBLEM 9: Find 
dx

dy  for 42

33
yx

y

x

x

y
  

 

SOLUTION 9: Begin with  
 

  
 

 

  
     . Clear the fractions by multiplying both 

sides of the equation by x
3
 y

3
 getting 

 

, 

 
 

y
4
 + x

4
 = x

5
 y

7
 . 

 

Now differentiate both sides of the equation, getting 

 

D ( y
4
 + x

4
 ) = D ( x

5
 y

7
 ) , 

 

D ( y
4
 ) + D ( x

4
 ) = x

5
 D (y

7
 ) + D ( x

5
 ) y

7
 , 

 

(Remember to use the chain rule on D (y
4
 ) and D (y

7
 ) .)  

 

4 y
3
 y' + 4 x

3
 = x

5
 (7 y

6
 y' ) + ( 5 x

4
 ) y

7
 , 

 

so that (Now solve for y' .) 

 

4 y
3
 y' - 7 x

5
 y

6
 y' = 5 x

4
 y

7
 - 4 x

3
 , 

 

(Factor out y' .) 

 

y' [ 4 y
3
 - 7 x

5
 y

6
 ] = 5 x

4
 y

7
 - 4 x

3
 , 

 

and  
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. 

 

 

PROBLEM 10: Assume that y is a function of x. Find y
1
 for (x

2
+y

2
)
3
 = 8x

2
y

2
 

 

SOLUTION 10: Begin with (x
2
+y

2
)

3
 = 8x

2
y

2
. Now differentiate both sides of the 

equation, getting 

 

D (x
2
+y

2
)

3
 = D ( 8x

2
y

2
 ) , 

 

3 (x
2
+y

2
)

2
 D (x

2
+y

2
) = 8x

2
 D (y

2
 ) + D ( 8x

2
 ) y

2
 , 

 

(Remember to use the chain rule on D (y
2
) .) 

 

3 (x
2
+y

2
)

2
 ( 2x + 2 y y' ) = 8x

2
 (2 y y' ) + ( 16 x ) y

2
 , 

 

so that (Now solve for y' .) 

 

6x (x
2
+y

2
)

2
 + 6 y (x

2
+y

2
)

2
 y' = 16 x

2
 y y' + 16 x y

2
,  

 

6 y (x
2
+y

2
)

2
 y' - 16 x

2
 y y' = 16 x y

2
 - 6x (x

2
+y

2
)

2
,  

 

(Factor out y' .) 

 

y' [ 6 y (x
2
+y

2
)

2
 - 16 x

2
 y ] = 1 x y

2
 - 6x (x

2
+y

2
)

2
 ,  

 

and 

 

. 

 

Thus, the slope of the line tan gent to the graph at the point (-1, 1) is 

 

, 

 

and the equation of the tangent line is 

 

y - ( 1 ) = (1) ( x - ( -1 ) ) 

 

or 

 

y = x + 2 
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PROBLEM 11: Find y
1
 for x

2
+(y-x)

3
 = 9. 

 

SOLUTION 11: Begin with x
2
 + (y-x)

3
 = 9 . If x=1, then 

 

(1)
2
 + ( y-1 )

3
 = 9 

 

so that 

 

( y - 1 )
3
 = 8 , 

 

y - 1 = 2, 

 

y = 3, 

 

and the tangent line passes through the point (1, 3) . Now differentiate both sides 

of the original equation, getting  

 

D ( x
2
 + (y-x)

3
 ) = D ( 9 ) ,  

 

D ( x
2
 ) + D (y-x)

3
 = D ( 9 ) ,  

 

2x + 3 (y-x)
2
 D (y-x) = 0 ,  

 

2x + 3 (y-x)
2
 (y'-1) = 0 ,  

 

so that (Now solve for y' .) 

 

2x + 3 (y-x)
2
 y'- 3 (y-x)

2
 = 0 ,  

 

3 (y-x)
2
 y' = 3 (y-x)

2
 - 2x ,  

 

and 

. 

 

Thus, the slope of the line tan gent to the graph at (1, 3) is 

 

, 

 

and the equation of the tangent line is 

 

y - ( 3 ) = (5/6) ( x - ( 1 ) ) , 

 

or 
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y = (7/6) x + (13/6) . 

 

PROBLEM 12: Assume that y is a function of x. Find y
1
 = 

dx
dy for x

2
y+y

4
 = 4+2x  

 

SOLUTION 12: Begin with x
2
y + y

4
 = 4 + 2x. Now differentiate both side s of 

the original equation, getting 

 

D ( x
2
 y + y

4
 ) = D ( 4 + 2x ) , 

 

D ( x
2
 y ) + D (y

4
 ) = D ( 4 ) + D ( 2x ) , 

 

( x
2
 y' + (2x) y ) + 4 y

3
 y' = 0 + 2, 

 

so that (Now solve for y' .) 

 

x
2
 y' + 4 y

3
 y' = 2 - 2x y , 

 

(Factor out y' .) 

 

y' [ x
2
 + 4 y

3
 ] = 2 - 2x y , 

 

and 

 

(Equation 1) 

 

 
 

Thus, the slope of the graph (the slope of the line tangent to the graph) at (-1, 

1) is 

 

. 

 

Since y'= 4/5, the slope of the graph is 4/5 and the graph is increasing at the point 

(-1, 1). Now determine the concavity of the graph at (-1, 1). Differentiate Equation 

1, getting 

 

. 
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Now let x=-1, y=1 , and y'=4/5 so that the second derivative is 

 

 
. 

 

 

 

 

 
 

Since y" < 0, the graph is concave down at the point (-1, 1) 
 

 

4.0  CONCLUSION 
 

In this unit you have studied the derivative of inverse of trigonometric functions. 

You have known the definition of implicit differentiation and have identified 

problems on implicit differentiation. You have also studied the formula for two 

variables and implicit differentiation applications in economics. You have solved 

various examples on implicit differentiation. 
 

5.0  SUMMARY 
 

In this course you have studied 
 

 The derivatives of Inverse Trigonometric Functions 

 Definition and identification f Implicit differentiation 

 The formula for two variables 

 The applications in economic  

 Implicit differentiation problems 

 

6.0 TUTOR-MARKED ASSIGNMENT 

 
Find the equation of the tangent line to the ellipse 25 x

2
 + y

2
 = 109 

 

Find y' if  

 

Find y' if xy
3
 + x

2
y

2
 + 3x

2
 - 6 = 1. 

 

Show that if a normal line to each point on an ellipse passes through the center of 

an ellipse, then the ellipse is a circle. 
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