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1.0  INTRODUCTION 

 

Functions of Two Variables 

 

Definition of a function of two variables 

 

Until now, we have only considered functions of a single variable. 

 

However, many real-valued functions consist of two (or more) variables. E.g., the area 

of a rectangular shape depends on both its width and its height. And, the pressure of a 

given quantity of gas varies with respect to the temperature of the gas and its volume. 

You define a function of two variables as follows: 

 

A function f of two variables is a relation that assigns to every ordered pair of input 

values x, y in a set called the domain of a unique output value denoted by, f (x, y). The 

set of output values is called the range. 

 

Since the domain consists of ordered pairs, you may consider the domain to be all (or 

part) of the x-y plane. 

 

Unless otherwise stated, you will assume that the variables x and y and the output 

Value f (x, y). 
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2.0  OBJECTIVE 

 

At the end of this unit, you should be able to: 

 

 solve problems on partial derivatives in calculus; 

 solve problems on higher order partial derivative; 

 state and apply clairauts theorem; 

 solve problem on maxima and manima; 

 identify Taylor series of function of two variable; and 

 understand analytical function. 

 

3.0  MAIN CONTENT 

 

Partial Derivatives in Calculus 

 

Let f(x,y) be a function with two variables. If we keep y constant and differentiate f 

(assuming f is differentiable) with respect to the variable x, we obtain what is called 

the partial derivative of f with respect to x which is denoted by  
  

  
       

 

You might also define partial derivatives of function f as follows: 

 

  

  
    

     

 (     )   (   )

 
 

 

  

  
    

     

 (     )   (   )

 
 

 

You now present several examples with detailed solution on how to calculate partial 

derivatives. 

 

Example 1: Find the partial derivatives fx and fy if f(x, y) is given by  

 

f(x , y) = x
2
 y + 2x + y 

 

Solution:  

 

Assume y is constant and differentiate with respect to x to obtain 

 

   
  

  
 

 

  
[        ] 
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[ ]  [   ]  [ ]  [ ]        
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Now assume x is constant and differentiate with respect to y to obtain 

 

   
  

  
 

 

  
[        ] 

 

 
 

  
[   ]  

 

  
[  ]  

 

  
[ ]  [  ]  [ ]  [ ]       

 

Example 2: Find fx and fy if f(x, y) is given by 

 

f(x , y) = sin(x y) + cos x 

 

Solution: 

 

Differentiate with respect to x assuming y is constant 

 

   
  

  
 

 

  
[   (  )      ]      (  )       

 

Differentiate with respect to y assuming x is constant 

 

   
  

  
 

 

  
[   (  )      ]      (  ) 

 

Example 3: Find fx and fy if f(x, y) is given by 

 

f(x , y) = x e
x y

 

 

Solution: 

 

Differentiate with respect to x assuming y is constant 

 

   
  

  
 

 

  
[    ]            (    )    

 

Differentiate with respect to y 

 

   
  

  
 

 

  
[    ]        

 

Example 4: Find fx and fy if f(x, y) is given by 

 

f(x , y) = ln ( x
2
 + 2y) 
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Solution 

 

Differentiate with respect to x to obtain 

 

   
  

  
 

 

  
[  (     )]  

  

     
 

 

Differentiate with respect to y 

 

   
  

  
 

 

  
[  (     )]  

 

     
 

 

Example 5: Find fx(2 , 3) and fy(2 , 3) if f(x , y) is given by  

 

f(x , y) = y x
2
 + 2y 

 

Solution:  

 

You first find fx and fy  

 

fx(x,y) = 2x y  

 

fy(x,y) = x
2
 + 2 

 

We now calculate fx(2 , 3) and fy(2 , 3) by substituting x and y by their given values 

 

fx(2,3) = 2 (2)(3) = 12  

 

fy(2,3) = 2
2
 + 2 = 6 

 

Exercise: Find partial derivatives fx and fy of the following functions  

 

1. f(x , y) = x e
x + y

 

2. f(x , y) = ln ( 2 x + y x) 

3. f(x , y) = x sin(x - y)  

 

Answer to Above Exercise: 

 

1. fx = (x + 1)e
x+ y

 , fy = x e
x+y

 

 

2. fx = 1/ x , fy = 1/ (y + 2) 

 

3. fx = x cos (x - y) + sin (x - ) , fy = -x cos (x - y) 

 

More on partial derivatives and multivariable functions. Multivariable Functions 
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Higher Order Partial Derivatives 
 

Just as you had higher order derivatives with functions of one variable you will also 

have higher order derivatives of functions of more than one variable. However, this 

time you will have more options since you do have more than one variable. Consider 

the case of a function of two variables,  (   ) since both of the first order partial 

derivatives are also functions of x and y you could in turn differentiate each with 

respect to x or y. This means that for the case of a function of two variables there will 

be a total of four possible second order derivatives. Here they are and the notations that 

you’ll use to denote them. 

 

(  )      
 

  
(
  

  
)  

   

   
 

 

(  )      
 

  
(
  

  
)  

   

    
 

 

(  )      
 

  
(
  

  
)  

   

    
 

 

(  )      
 

  
(
  

  
)  

   

   
 

 

The second and third second order partial derivatives are often called mixed partial 

derivatives since you are taking derivatives with respect to more than one variable. 

Note as well that the order that you take the derivatives in is given by the notation for 

each these. If you are using the subscripting notation, e.g. fxy, then you will 

differentiate from left to right. In other words, in this case, you will differentiate first 

with respect to x and then with respect to y. With the fractional notation e.g.  
   

    
, it is 

the opposite. In these cases we differentiate moving along the  

denominator from right to left. So, again, in this case you first differentiate with 

respect to x and then with respect to y. 

 

Let’s take a quick look at an example. 

 

Example 1 Find all the second order derivatives for 

 

 
 

Solution 

 

You’ll first need the first order derivatives so here they are. 

  (   )       (  )        

 

  (   )             
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Now, let’s get the second order derivatives. 

 

         (  )       

            

            

               

 

Notice that you dropped the (x,y) from the derivatives. This is fairly standard and you 

will be doing it most of the time from this point on. You will also be dropping it for the 

first order derivatives in most cases. 

 

Now let’s also notice that, in this case,        . This is not by coincidence If the 

function is “nice enough” this will always be the case. So, what’s “nice enough”? The 

following theorem tells you. 

 

Clairaut’s Theorem 

 

Suppose that f is defined on a disk D that contains the point (a, b). If the functions fxy 

and fyx are continuous on this disk then, 

 

   (   )     (   ) 

 

Now, do not get too excited about the disk business and the fact that you have the 

theorem is for a specific point. In pretty much every example in this class if the two 

mixed second order partial derivatives are continuous then they will be equal. 

 

Example 2 Verify Clairaut’s Theorem for   (   )         
. 

 

Solution 

 

You’ll first need the two first order derivatives. 

  (   )        
            

 

  (   )             
 

 

Now, compute the two fixed second order partial derivatives.  

 

   (   )             
            

            
            

  

 

   (   )             
            

 

 

Sure enough they are the same. 
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So far you have only looked at second order derivatives. There are, of course, higher 

order derivatives as well. Here are a couple of the third order partial derivatives of 

function of two variables. 

 

     (   )  
 

  
(

   

    
)  

   

      
 

     (   )  
 

  
(

   

    
)  

   

     
 

 

Notice as well that for both f these we differentiate once with respect to y and twice 

with respect to x. There is also another third order partial derivative in which you can 

do this, fxxy. There is an extension to Clairaut’s Theorem that says if all three of these 

are continuous then they should all be equal, 

               

 

To this point you’ve only looked at functions of two variables, but everything that 

you’ve done to this point will work regardless of the number of variables that you’ve 

got in the function and there are natural extensions to Clairaut’s theorem to all of these 

cases as well. For instance,    (     )     (     ) provided both of the derivatives 

are continuous. 

 

In general, you can extend Clairaut’s theorem to any function and mixed partial 

derivatives. The only requirement is that in each derivative you differentiate with 

respect to each variable the same number of times. In other words, provided you meet 

the continuity condition, the following will be equal 

 

                    
 

because in each case you differentiate with respect to t once, s three times and r three 

times. 

 

Let’s do a couple of exam les with higher (well higher order than two anyway) order 

derivatives and functions of more than two variables. 

 

Example 3 Find the indicated derivative for each of the following functions. 

 

(a) Find fxxyzz for f(x,y,z) = z
3
y

2
 In (x) 

 

(b)  Find  
   

     
      (   )      

 

Solution 

 

(a) Find fxxyzz  for  (     )        ( )  
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In this case remember that you differentiate from left to right. Here are the derivatives 

for this part. 

   
    

 
 

    
    

  
 

     
    

  
 

      
    

  
 

       
     

  
 

(b) Find for 
   

     
     (   )       

 

Here we differentiate from right to left. Here are the derivatives for this function. 
  

  
      

   

   
       

   

     
              

 

Maxima and minima 
 

For other uses, see Maxima (disambiguation) and Maximum (disambiguation). For use 

in statistics, see Maximum (statistics). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Local and global maxima and minima for                     

 

In mathematics, the maximum and minimum (plural: maxima and minima) of a 

function, known collectively as extrema (singular: extremum), are the largest and 
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smallest value that the function takes at a point either within a given neighborhood 

(local or relative extremum) or on the function domain in its entirety (global or 

absolute extremum). More generally, the maximum and minimum of a set (as defined 

in set theory) are the greatest and least element in the set. Unbounded infinite sets such 

as the set of real numbers have no minimum and maximum. 

 

To locate extreme values is the basic objective of optimization 

 

real-valued function f define on a real line is said to have a local (or relative) 

maximum point at the point x
*
, if there exists some     such that f(x

*
) > f(x) when 

|x − x
*
| <  . The value of the function at this point is called maximum of the function. 

Similarly, a function has a local minimum point at x*, if f(x
*
) ≤ f(x) when |x − x

*
| <  . 

The value of the function at this point is called minimum of the function. A function 

has a global (or absolute) maximum point at x* if f(x
*
) > f(x) for all x. Similarly, a 

function has a global (or absolute) minimum point at x
*
 if f(x

*
) ≤ f(x) for all x. The 

global maximum and global minimum points are also known as the arg max and arg 

min: the argument (input) at which the maximum (respectively, minimum) occurs. 

 

Restricted domains: There may be maxima and minima for a function whose domain 

does not include all real numbers. A r al-valued function, whose domain is any set, can 

have a global maximum and minimum. There may also be local maxima and local 

mini ma points, but only at points of the domain set where the concept of 

neighborhood is define d. A neighborhood plays the role of the set of x such that |x − 

x
*
| <  . 

 

A continuous (real-valued) function on a compact set always takes maxi um and 

minimum values on that set. An important example is a function whose domain is a 

closed (and bounded) interval of real numbers (see the graph above). The 

neighborhood requirement precludes a local maximum or minimum at an endpoint of 

an interval. However, an endpoint may still be a global maxim m or minimum. Thus it 

is not always true, for finite domains, that a global maximum (mini um) must also be a 

local maximum (minim m). 

 

Finding functional maxima and minima 
 

Finding global maxima and minima is the goal of mathematical optimization. If a 

function is continuous on a closed interval, then by the extreme value theorem global 

maxima and minima exist. Furthermore, a global maximum (or minimum) either must 

be a local maximum (or minimum) in the interior of the domain, or must lie on the 

boundary of the domain. So a method of finding a global maximum (or minimum) is to 

look at all the local maxima (or minima) in the interior, and also look at the maxima 

(or mini a) of the points on the boundary; and take the biggest (or smallest) one. 

 

Local extrema can be found by Fermat's theorem, which states that they must occur at 

critical points. One can distinguish whether a critical point is a local maximum or local 

minimum by using the first derivative test and second derivative test. 
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For any function that is defined piecewise, you finds a maxima (or minima) by finding 

the maximum (or minimum) of each piece separately; and then seeing which one is 

biggest (or smallest). 

 

Examples 

 

 
 

The global maximum of √ 
 

 occurs at x = e. 

 

 The function x
2
 has a unique global minimum at x = 0. 

 The function x
3
 has no global minima or maxima. Although the first derivative 

(3x
2
) is 0 at x = 0, this is an inflexion point. 

 The function √ 
 

 has a unique global maximum at x = e. (See figure a right) 

 The function x
-x

 has a unique global maximum over the positive real numbers at 

x = 1/e. 

 The function x
3
/3 − x has first derivative x

2
 − 1 and second derivative 2x. 

Setting the first derivative to 0 and solving for x gives stationary points at −1 

and +1. From the sign of the second derivative we can see that −1 is a local 

maximum and +1 is a local minimum. Note that this function has no global 

maximum or minimum. 

 The function |x| has a global minimum at x = 0 that cannot be found by taking 

derivatives, because the derivative do s not exist at x = 0. 

 The function cos(x) has infinitely many global maxima at 0, ±2π, ±4, ..., and 

infinitely many global minima at ± , ±3π, .... 

 The function 2 cos(x) has infinitely many local maxima and minima, but no 

global maximum or minimum. 

 The function cos(3πx)/x with 0.1 ≤ x ≤ 1.1 has a global maximum at x = 0.1 (a 

boundary) , a global minimum near x= 0.3, a local maximum near x = 0.6, and a 

local minimum near x = 1.0. (See figure above.) 

 The function x
3 

+ 3x
2 
−2x + 1 defined over the closed interval (segment) [−4,2] 

has two extrema: one local maximum at      
√  

 
, one local minimum at 

     
√  

 
, a global maximum at x = 2 and a global minimum at x = −4. 
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Functions of more than one variable 
 

Second partial derivative test 
 

For functions of more than one variable, similar conditions apply. For example, in the 

(enlargeable) figure at the right, the necessary conditions for a local maximum are 

similar to those of a function with only one variable. The first partial derivatives as to z 

(the variable to be maximized) are zero at the maximum (the glowing dot on top in the 

figure). The second partial derivatives are negative. These are only necessary, not 

sufficient, conditions for a local maximum because of the possibility of a saddle point. 

For use of these conditions to solve for a maximum, the function z must also be 

differentiable throughout. The second partial derivative test can help classify the point 

as a relative maximum or relative minimum. 

 

In contrast, there are substantial differences between functions of one variable and 

functions of more than one variable in the identification of global extrema. For 

example, if a bounded differentiable function f defined on a closed interval in the real 

line has a s ingle critical point, which is a local minimum, then it is also a global 

minimum (use the intermediate value theorem and Rolle's theorem to prove this by 

reduction and absurdum). In two and more dimensions, this argument fails, as the 

function shows: 

                                   (   )       (   )                
 

Its only critical point s at (0,0), which is a local minimum with ƒ 0,0) = 0. However, it 

cannot be a global one, because ƒ(4,1) = −11. 

 

 
 

The global maximum is the point at the top Counterexample 

 

In relation to sets 
 

Maxima and minima are more generally defined for sets. In general, if an ordered set S 

has a greatest element m, m is a maximal element. Furthermore, if S is a subset of an 

ordered set T and m is the greatest element of S with respect to order induced by T, m 

is a least upper bound of S in T. The similar result holds for least element, minimal 

element and greatest lower bound. 
 

In the case of a general partial order, the least element (smaller than all other) should 

not be confused with a minimal element (nothing is smaller). Likewise, a greatest 
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element of a partially ordered set (poset) is an upper bound of the set which is 

contained within the set, whereas a maximal element m of a poset A is an element of 

A such that if m < b (for any b in A) then m = b. Any least element or greatest element 

of a poset is unique, but a poset can have several minimal or maximal elements. If a 

poset has more than one maximal element, then these elements will not be mutually 

comparable.  

 

In a totally ordered set, or chain, all elements are mutually comparable, so such a set 

can have at most one minimal element and at most one maximal element. Then, due to 

mutual comparability, the minimal element will also be the least element and the 

maximal element will also be the greatest element. Thus in a totally ordered set we can 

simply use the terms minimum and maximum. If a chain is finite then it will always 

have a maximum and a minimum. If a chain is infinite then it need not ha e a 

maximum or a minimum. For example, the set of natural numbers has no maximum, 

though it has a minimum. If an infinite chain S is bounded, then the closure Cl(S) of he 

set occasionally has a minimum and a maximum, in such case they are called the 

greatest lower bound and the least upper bound of the set S, respectively.  

 

TAYLOR SERIES 
 

The Maclaurin series for any polynomial is the polynomial itself. 

 

The Maclaurin series for (1 − x)
−1

 for |x| < 1 is the geometric series 

 

 
 

so the Taylor series for x− 1 at a = 1 is 

 

 
 

By integrating the above Maclaurin series you find the Maclaurin series for log(1 − x), 

where log denotes the natural logarithm: 

 

 
 

and the corresponding Taylor series for log(x) at a = 1 is 

 

 
 

The Taylor series for the exponential function ex at a = 0 is 
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The above expansion holds because the derivative of e
x
 with respect to x is also e

x
 and 

e
o
 equals 1. This leaves the terms (x− 0)

n
 in the numerator and n! in the denominator 

for each term in the infinite sum. 
 

History 
 

The Greek philosopher Zeno considered the problem of summing an infinite series to 

achieve a finite result, but rejected it as an impossibility: the result was Zeno's paradox. 

Later, Aristotle proposed a philosophical resolution of the paradox, but the 

mathematical content was apparently unresolved until taken up by Democritus and 

then Archimedes. It was through Archimedes's method of exhaustion that an infinite 

number of progressive subdivisions could be performed to achieve a finite result. Liu 

Hui independently employed a similar method a few centuries later 

 

In the 14th century, the earliest examples of the use of Taylor series and closely related 

methods were given by Madhava of Sangamagrama though no record of his work 

survives; writings of later Indian mathematicians suggest that he found a number of 

special cases of the Taylor series, including those for the trigonometric functions of 

sine, cosine, tangent, and arctangent. The Kerala School of astronomy and 

mathematics further expanded his works with various series expansions and rational 

approximations until the 16th century. 

 

In the 17th century, James Gregory also worked in this area and published several 

Maclaurin series. It was not until 1715 however that a general method for constructing 

these series for all functions for which they exist was finally provided by Brook 

Taylor, after whom the series are now named. 

 

The Maclaurin series was named after Colin Maclaurin, a professor in Edinburgh, who 

published the special case of the Taylor result in the 18th century. 

 

Analytic functions 

 

 

 

 

 

 

 

 

 

 

 

The function е
2

1

x


 is not analytic at x = 0: the Taylor’s series is identically 0, although 

the function is not. 
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If f(x) is given by a convergent power series in an open disc (or interval in the real 

line) centered at be, it is said to b analytic in this disc. Thus for x in this disc, f is given 

by a convergent power series 

 

 ( ) ∑   (   ) 

 

   

 

 

Differentiating by x the above formula n times, then setting x=b gives:  

 

 
 

and so the power series expansion agrees with the Taylor’s series. Thus a function is 

analytic in an open disc centered at b if and only if its Taylor’s series converges to the 

value of the function at each point of the disc. 

 

If f(x) is equal to its Taylor’s series everywhere it is called entire. The polynomials and 

the exponential function e
x
 and the trigonometric functions sine and cosine are 

examples of entire functions. Examples of functions that are not entire include the 

logarithm, the trigonometric function tangent, and its inverse arctan. For these 

functions the Taylor’s series do not converge if x is far from a. Taylor’s series can be 

used to calculate the value of a entire function in every point, if the value of the 

function, and of all of its derivatives, are known at a single point. 

 

4.0  CONCLUSION 
 

In this unit, you have been introduced to partial derivative in calculus and some higher 

order partial derivative. Clairauts theorem was stated and applied. You have been 

introduced to Maxima and minima, functions of more than one variable and the 

relation of maxima and minima to set. 

 

5.0  SUMMARY 
 

In this unit you have studied: 

 

 Partial derivatives in calculus 

 Higher order partial derivative 

 Clairauts theorem 

 Maxima and manima 

 Taylor series of function of two variable 

 Analytical function 

 

6.0  TUTOR-MARKED ASSIGNMENT 
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1.0 INTRODUCTION 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the degree of the Taylor’s polynomial rises, it approaches the correct function. This 

image shows sin(x) and its Taylor’s approximations, polynomials of degree 1, 3, 5, 7, 

9, 11 and 13. 
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The exponential function e
x
 (in blue), and the sum of the first n+1 terms of its Taylor’s 

series at 0 (in red). 

 

In mathematics, a Taylor’s series is a representation of a function as an in finite sum 

of terms that are calculated from the values of the function's derivatives at a single 

point. 

 

The concept of a Taylor’s series was formally introduced by the English 

mathematician Brook Taylor’s in 1715. If the Taylor’s series is centered at zero, then 

that series is also called a Maclaurin’s series, named after the Scottish mathematician 

Colin Maclaurin, who made extensive use of this special case of Taylor’s series in the 

18th century. 

 

It is common practice to approximate a function by using a finite number of terms of 

its Taylor’s series. Taylor's theorem gives quantitative estimates on the error in this 

approximation. Any finite number of initial terms of the Taylor’s series of a function is 

called a Taylor’s polynomial. The Taylor’s series of a function is the limit of that 

function's Taylor’s polynomials, provided that the limit exists. A function may not be 

equal of its Taylor’s series, even if its Taylor’s series converges at every point. A 

function that is equal to its Taylor’s series in an open interval (or a disc in the complex 

plane) is known as an analytic function. 

 

2.0 OBJECTIVE 
 

At the end of this unit, you should be able to: 
 

 definition Taylor’s series of functions of two variables; 

 solve problems on analytical problem; 

 use the Taylor’s series to solve analytic function; 

 solve problems that involve approximation and convergence; 

 state Maclaurine’s series of some common functions; 

 calculation of Taylor’s series; use Taylor’s series in calculations; 

 explain Taylors’s series in several variables; and 

 explain Fractional Taylor’s series. 

https://en.wikipedia.org/wiki/Exponential_function
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3.0 MAIN CONTENT  

 

Definition 
 

The Taylor series of a real or complex function ƒ(x) that is infinitely differentiable in a 

neighborhood of a real or complex number a is the power series 

 

 ( )  
  ( )

  
(   )  

   ( )

  
(   )  

 ( )( )

  
(   )    

 

which can be written in the more compact sigma notation as 

 

∑
 ( )( )

  
(   ) 

 

   

 

 

where n! denotes the factorial of n and ƒ
(n) 

(a) denotes the nth derivative o f ƒ evaluated 

at the point a. The zeroth derivative of ƒ is defined to be ƒ itself and (x − a)
0
 and 0! are 

both defined to be 1. In the case that a = 0, the series is also called a Maclaurin’s 

series. 

 

Examples 

 

The Maclaurin’s series for any polynomial is the polynomial itself. 

 

The Maclaurin’s series for (1 − x)
−1

 for |x| < 1 is the geometric series 

 

 
 

so the Taylor series for x−1 at a = 1 is 

 

 
 

By integrating the above Maclaurin’s series we find the Maclaurin’s series for log(1 − 

x), where log denotes the natural logarithm: 

 

 
 

and the corresponding Taylor’s series for log(x) at a = 1 is 
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The Taylor’s series for the exponential function e
x
 at a = 0 is 

 

 
 

The above expansion holds because the derivative of e
x
 with respect to x is also e

x
 and 

e
0
 equals 1. This leaves the terms (x − 0)

n
 in the numerator and n! in the denominator 

for each term in the infinite sum. 

 

Analytic functions 

 

 

 

 

 

 

 

 

 

 

 

The function e
−1/x2

 is not analytic at x = 0: the Taylor’s series is identically 0, although 

the function is not. 

 

If f(x) is given by a convergent power series in an open disc (or interval in the real 

line) centered at b, it is said to b analytic in this disc. Thus for x in this disc, f is given 

by a convergent power series 

 

 ( ) ∑   (   ) 

 

   

  

Differentiating by x the above formula n times, then setting x=b gives:  

 

 
 

and so the power series expansion agrees with the Taylor’s series. Thus a function is 

analytic in an open disc centered at b if and only if its Taylor’s series converges to the 

value of the function at each point of the disc. 

 

If f(x) is equal to its Taylor’s series everywhere it is called entire. The polynomials and 

the exponential function expand the trigonometric functions sine and cosine are 

examples of entire functions. Examples of functions that are not entire include the 

logarithm, the trigonometric function tangent, and its inverse arctan. For these 

functions the Taylor’s series do not converge if x is far from a. Taylor’s series can be 
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used to calculate the value of a entire function in every point, if the value of the 

function, and of all of its derivatives, are known at a single point. 

 

Uses of the Taylor’s series for analytic functions include: 

 

The partial sums (the Taylor’s polynomials) of the series can be used as 

approximations of the entire function. These approximations are good if sufficiently 

many terms are included. 

 

Differentiation and integration of power series can be performed term by term and is 

hence particularly easy. 

 

An analytic function is uniquely extended to a holomorphic function on an open disk 

in the complex plane. This makes the machinery of complex analysis available. 

 

The (truncated) series can be used to compute function values numerically, (often by 

recasting the polynomial into the Chebyshev form and evaluating it with the Clenshaw 

algorithm). 

 

Algebraic operations can be one readily on the power series representation; for 

instance the Euler's formula follows from Taylor’s series expansions for trigonometric 

and exponential functions. This result is of fundamental importance in such fields as 

harmonic analysis. 

 

Approximation and convergence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The sine function (blue) is closely approximated by its Taylor’s polynomial of degree 

7 (pink) for a full period centered at the origin. 
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The Taylor’s polynomials for log(1 + x) only provide accurate approximations in the 

range −1 < x ≤ 1. Note that, for x > 1, the Taylor’s polynomials of higher degree are 

worse approximations. 

 

Pictured on the right is an accurate approximation of sin(x) around the point x = 0. The 

pink curve is a polynomial of degree seven: 

 

 
 

The error in this approximation is no more than |x|
9
/9!. In particular, for − 1 < x < 1, 

the error is less than 0.000003. 

 

In contrast, also shown is a picture of the natural logarithm function log( 1+ x) and 

some of its Taylor’s polynomials around a = 0. These approximations converge to the 

function only in the region −1 < x ≤ 1; outside of this region the higher-degree 

Taylor’s polynomials are worse approximations for the function. This is similar to 

Runge's phenomenon. 

 

The error incurred in approximating a function by its nth-degree Taylor’s polynomial 

is called the remainder or residual and is denoted by the function Rn(x). Taylor's 

theorem can be used to obtain a bound on the size f the remainder. 

 

In general, Taylor’s series need not be convergent at all. And in fact the set of 

functions with a convergent Taylor’s series is a meager set in the Fréchet space of 

smooth functions. Even if the Taylor’s series of a function f does converge, its limit 

need not in general be equal to the value of the function f(x). For example, the function 
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is infinitely differentiable at x = 0, and has all derivatives zero there. Consequently, the 

Taylor’s series of f(x) about x = 0 is identically zero. However, f(x) is not equal to the 

zero function, and so it is not equal to its Taylor’s series around the origin. 

 

In real analysis, this example shows that there are infinitely differentiable functions 

f(x) whose Taylor’s series are not equal to f(x) even if they converge. By contrast in 

complex analysis there are no holomorphic functions f(z) whose Taylor’s series 

converges to a value different from f(z). The complex function e
−z−2

 does not approach 

0 as z approaches 0 along the imaginary axis and its Taylor’s series is thus not defined 

there. 

 

More generally, every sequence of real or complex numbers can appear a coefficients 

in the Taylor’s series of an infinitely differentiable function defined on the real line, a 

consequence of Borel's lemma (see also Non -analytic smooth function and application 

to Taylor’s series). As a result, the radius of convergence of a Taylor’s series can be 

zero. There are even infinitely differentiable functions defined on the real line whose 

Taylor’s series have a radius of convergence 0 everywhere.  

 

Some functions cannot be written as Taylor’s series because they have a singularity; in 

these cases, one can often still achieve a series expansion if one allows also negative 

powers of the variable x; see Laurent’s series. For example, f(x) = e
−x−2

 can be written 

as a Laurent’s series.  

 

There is, however, a generalization of the Taylor’s series that does converge to the 

value of the function itself for any bonded continuous function on (0,∞), using the 

calculus of finite differences. Specifically, one has the following theorem, due to Einar 

Hille, that for any t > 0, 

 

 
 

Here   
  is the n-th finite difference operator with step size h. The series is precisely 

the Taylor’s series, except that divided differences appear in place of differentiation: 

the series is formally similar to the Newton series. When the function f is analytic at a, 

the terms in the series converge to the terms of the Taylor’s series, and in this sense 

generalizes the usual Taylor’s series. 

 

In general, for any infinite sequence ai, the following power series identity holds: 
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So in particular, 

 

 
 

The series on the right is the expectation value of f(a + X), where X is a Poisson 

distributed random variable that takes the value jh with probability e
−t/h

(t/h)
j
/j!. Hence  

 

 
 

The law of large numbers implies that the identity holds.  

List of Maclaurin’s series of some common functions 

 

 
 

The real part of the co sine function in the complex plane. 
 

 
 

An 8th degree approximation of the cosine function in the complex plane. 

 

 

 

 

 

 

 

The two above curves put together. 

 

Several important Maclaurin’s series expansions follow. All these expansions are valid 

for complex arguments x. 
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Exponential function: 

 

 
 

Natural logarithm: 

 

 
 

 
 

Finite geometric series: 

 

 
 

Infinite geometric series: 

 

 
 

 

Variants of the infinite geometric series: 

 

 

 

 

 

 

 

 

 

 

 

 
 

Square root: 
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Binomial series (includes the square root for α = 1/2 and the infinite geometric series 

for α = −1): 

 

 

 

with generalized binomial 

coefficients 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Where the Bs are Bernoulli’s numbers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hyperbolic functions: 

 

 

 

 

https://en.wikipedia.org/wiki/Hyperbolic_function
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. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Lambert's W function: 

 

 
 

The numbers Bk appearing in the summation expansions of tan(x) and tanh(x) are the 

Bernoulli’s numbers. The Ek in the expansion of sec(x) are Euler numbers. 

 

Calculation of Taylor’s series 
 

Several methods exist for the calculation of Taylor’s series of a large number of 

functions. One can attempt to use the Taylor’s series as-is and generalize the form of 

the coefficients, or one can use  manipulations such as substitution, multiplication or 

division, addition or subtraction of standard Taylor’s series to construct the Taylor’s 

series of a function, by virtue of Taylor’s series being power series. In some cases, one 

can also derive the Taylor’s series by repeatedly applying integration by parts. 

Particularly convenient is the use of computer algebra systems to calculate Taylor’s 

series. 

 

First example 
 

Compute the 7th degree Maclaurin polynomial for the function 
 

 
 

First, rewrite the function as 
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. 

You have for the natural logarithm (by using the big O notation) 

 
 

and for the cosine function 

 

 
 

The latter series expansion has a zero constant term, which enables us to substitute the 

second series into the first one and to easily omit terms of higher order than the 7
th

 

degree by using the big O notation 

 

 

 

 

 

 

 

 

 

 

 

Since the cosine is an even function, the coefficients for all the odd powers x, x
3
, x

5
, 

x
7
, ... have to be zero. 

 

Second example 
 

Suppose you want the Taylor series at 0 of the function 

 

 
 

You have for the exponential function 

 

 
 

and, as in the first example, 
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Assume the power series is 

 

 
 

Then multiplication with the denominator and substitution of the series of the cosine 

yields 

 

 

 

 

 

 

 

 

 
 

Collecting the terms up to fourth order yields 

 

 
 

Comparing coefficients with the above series of the exponential function yield the 

desired Taylor series 

 

 
 

Comparing coefficients with the above series of the exponential function yields the 

desired Taylor series 

 

 
 

Third example 
 

Here we use a method called "Indirect Expansion" to expand the given function. This 

method uses the known function of Taylor’s series for expansion. 

 

Q: Expand the following function as a power series of x 

 

(1 + x)e
x
. 

 

 

 

 

 



177 
 

You know the Taylor’s series of function e
x
 is: 

 

 
 

Thus, 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taylor’s series in several variables 

 

The Taylor’s series may also be generalized to functions of more than one variable 

with 

 

 
 

For example, for a function that depends on two variables, x and y, t e Taylor’s series 

to second order about the point (a, b) is: 

 

 
 

where the subscripts denote t e respective partial derivatives. 

 

A second-order Taylor’s series expansion of a scalar-valued function of more than one 

variable can be written compactly as 
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Ere Df (a) is the gradient of f evaluated at x = a and D
2
f(a) is the Hessian matrix. 

Applying the multi-index notation the Taylor’s series for several variables becomes 

 

 
 

which is to be understood as still more abbreviated multi-index version f the first 

equation of this paragraph, again in full analogy to the single variable case. 

 

Example 

 

 

 

 

 

 

 

Second-order Taylor’s series approximation (in gray) of a function f(x,y) = e
x
log (1 + 

y) around origin. 

 

Compute a second-order Taylor’s series expansion around point (a,b) = (0,0) of a 

function 

 

 
 

Firstly, we compute all partial derivatives we need 
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The Taylor’s series is 

 

 

 

 

which in this case becomes 

 

 

 

 

 

 

Since log(1 + y) is analytic in y| < 1, we have 

 

 

 

 

for |y| < 1. 

 

Fractional Taylor series 
 

With the emergence of fractional calculus, a natural question arises about what the 

Taylor’s Series expansion would be. Odibat and Shawagfeh answered this in 2007. By 

using the Caputo fractional derivative,      , and x| indicating the limit as we 

approach x from the right, the fractional Taylor’s series can be written as 

 

 
 
4.0  CONCLUSION  
 
In this unit, you have defined tailors series of function of two variables. You have 

studied analytical function and have used Taylors’s series to solve problem s that 

involve analytical functions. You have studied approximation and convergence. You 

have also studied the list of Maclaurine’s series of some common functions and have 

done some calculation of Taylor’s series. You have also studied Taylors in several 

variables and the fractional Taylor’s series. 

 

5.0 SUMMARY 
 

In this unit, you have studied the following: 
 

 Definition Taylor’s series of functions of two variables 

 Solve problems on analytical problem 

 Use the Taylor’s series to solve analytic function 

 Solve problems that involve approximation and convergence 

 The list of Maclaurine’s series of some common functions 



180 
 

 Calculation of Taylor’s series 

 Taylor’s series in several variables 

 Fractional Taylor’s series 

 

6.0 TUTOR – MARKED ASSIGNMENT 
 

1. Use the Taylor’s series to expand F(z) = 
 

   
 about the point z = 1 ,and find the 

values of z for which the expansion is valid. 

2. Use the Taylor’s series to expand F(x) = 
 

   
 about the point x = 1, and find the 

values of z for which the expansion is valid. 

3. Use the Taylor’s series to expand F(x) = 
 

    
  about the point x = 2, and find the 

values of z for which the expansion is valid. 

4. Use the Taylor’s series to expand F(x) = 
 

    
 about the point x = 2, and find the 

values of z for which the expansion is valid. 

2. Use the Taylor’s series to expand F(b) = 
 

    
  about the point b = 1 ,and find the 

values of z for which the expansion is valid. 
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UNIT 3  APPLICATIONS OF TAYLOR’S SERIES 
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1.0  Introduction 

2.0  Objectives 

3.0  Main Content 

3.1  Evaluating definite integrals 

3.2  Understanding the asymptotic behaviour   

3.3  Understanding the growth of functions   

3.4  Solving differential equations 

4.0  Conclusion 

5.0  Summary 

6.0  Tutor-Marked Assignment 

7.0  References/Further Readings 

 

1.0  INTRODUCTION 

 

You started studying Taylor’s Series because you said that polynomial functions are 

easy and that if you could find a way of representing complicated functions as series 

("infinite polynomials") then maybe some properties of functions would be easy to 

study too. In this section, you'll show you a few ways in Taylor’s series can make life 

easy. 

 

2.0  OBJECTIVES 
 

At the end of this unit, you should be able to: 
 

 evaluate definite integrals with Taylor’s series; 

 understand the asymptotic behaviour with Taylor’s series; 

 understand the growth of functions with Taylor’s series; and 

 solve differential equations with Taylor’s series. 

 

3.0  MAIN CONTENT 
 

Evaluating definite integrals 
 

Remember that you've said that some functions have no anti derivative which can be 

expressed in terms of familiar functions. This makes evaluating definite integrals of 

these functions difficult because the Fundamental Theorem of Calculus cannot be 

used. However, if you have a series representation of a function, you can often times 

use that to evaluate a definite integral. 

 

Here is an example. Suppose you want to evaluate the definite integral 
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The integrand has no anti derivative expressible in terms of familiar functions. 

However, you know how to find its Taylor’s series: you know that 

 

 
 

Now if you substitute t = x
2
, you have 

 

Sin(x
2
) = x

2
 - ...

!7!5!3

14106


xxx

 

 

In spite of the fact that you cannot anti differentiate the function; you can anti 

differentiate the Taylor’s series:  

 

 
 

Notice that this is an alternating series so you know that it converges. If you add up the 

first four terms, the pattern becomes clear: the series converges to 0.31026. 

 

Understanding asymptotic behaviour 

 

Sometimes, a Taylor’s series can tell you useful information about how a function 

behaves in an important part of its domain. Here is an example which will 

demonstrate. 

 

A famous fact from electricity and magnetism says that a charge q generates an 

electric field whose strength is inversely proportional to the square of the distance from 

the charge. That is, at a distance r away from the charge, the electric field is 

 

 
 

where k is some constant of proportionality. 

 

Often times an electric charge is accompanied by an equal and opposite charge nearby. 

Such an object is called an electric dipole. To describe this, you will put a charge q at 

the point x = d and a charge -q at x = - d.  

 

Along the x axis, the strength of the electric fields is the sum of the electric fields from 

each of the two charges. In particular, 
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If you are interested in the electric field far away from the dipole, you can consider 

what happens for values of x much larger than d. You will use a Taylor’s series to 

study the behaviour in this region. 

 

 
 

Remember that the geometric series has the form 

 

 
 

If we differentiate this series, you obtain 

 
 

(   ) 
                  

 

Into this expression, you can substitute      
 

 
  to obtain 

 

In the same way, if you substitute      
 

 
, we have 

 

 
 

Now putting this together gives 

 

 
 

In other words, far away from the dipole where x is very large, you see that the electric 

field strength is proportional to the inverse cube of the distance. The two charges 

partially cancel one another out to produce a weaker electric field at a distance. 
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Understanding the growth of functions 
 

This example is similar is spirit to the previous one. Several times in this course, you 

have used the fact that exponentials grow much more rapidly than polynomial. You 

recorded this by saying that 

   
   

  

  
   

 

for any exponent n. Let's think about this for a minute because it is an important 

property of exponentials. The ratio 
  

  
is measuring how large the exponential is 

compared to the polynomial. If this ratio was very small, you would conclude that the 

polynomial is larger than the exponential. But if the ratio is large, you would conclude 

that the exponential is much larger than the polynomial. The fact that this ratio 

becomes arbitrarily large means that the exponential becomes larger than the 

polynomial by a factor which is as large as you would like. This is what you mean 

when you say "an exponential grows faster than a polynomial." 

 

To see why this relationship holds, you can write down the Taylor’s series for e
x
.  

 

  

  
 

    
  

  
 

  

  
  

  

  
 

    
(   ) 

  

  
 

 

 
 

  
 

 

    
   

 

  
 

 

(   ) 
   

 

 
 

(   ) 
 

 

Notice that this last term becomes arbitrarily large as x →  . That impl………… 

are interested in does as well: 

   
   

  

  
   

 

Basically, the exponential e
x
 grows faster than any polynomial because it behaves like 

an infinite polynomial whose coefficients are all positive. 

 

Solving differential equations 
 

Some differential equations cannot be solved in terms of familiar functions (just as 

some functions do not have anti derivatives which can be expressed in terms of 

familiar functions). 

 

However, Taylor’s series can come to the rescue again. Here you will present two 

examples to give you the idea. 
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Example 1: You will solve the initial value problem 

 

 
 

Of course, you know that the solution is y(x) = e
x
, but you will see how to discover this 

in a different way. First, you will write out the solution in terms of its Taylor’s series: 

 
 

 

Since this function satisfies the condition y(0) = 1, you must have y(0) = a0 = 1. 

 

You also have 
  

  
             

      
   

 

Since the differential equation says that 
  

  
  , you can equate these two Taylor’s 

series: 

 

 
 

If we now equate the coefficients, you obtain: 

 

 

 

      
  

  
 

  

  
  

  

  
       

 

This means that as you expect. 

 

Of course, this is an initial value problem you know how to solve. The method is in 

studying initial value problems that you do not know how to solve 

 

Example 2: Here we will study Airy's equation with initial conditions: 

 

       

 ( )    

  ( )    
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This equation is important in optics. In fact, it explains why a rainbow appears the way 

in which it does! As before, you will write the solution as a series: 

 

 
 

Since you have the initial conditions,  y(0) = a0 = 1 and y’(0) = a1 = 0. 

 

Now you can write down the derivatives: 

 

 
 

The equation then gives 

 
 

Again, you can equate the coefficients of x to obtain 

 

 
 

This gives you the first few terms of the solution: 

 

 
 

If you continue in this way, you can write down many terms of the series perhaps you 

see the pattern already?) And then draw a graph of the solution. This looks like this: 

 

Notice that the solution oscillates to the left of the origin and grows like exponential to 

the right of the origin. Can you explain this by looking at the differential equation. 

 

4.0  CONCLUSION 
 

In this unit, you have been introduced to the application of Taylor’s series and some 

basic ways of using Taylor’s series such as the evaluating of definite integrals, 

understanding the asymptotic behaviour, understanding the growth of functions and 

solving differential equations. Some examples where used to illustrate the applications. 
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5.0 SUMMARY 
 

Having gone through this unit, you now know that; 
 

In this section, you show you ways in which Taylor’s series can make life easy 

 

 In evaluating definite integrals, you used series representation of evaluate some 

functions that have no anti derivative. 
  

Suppose you want to evaluate the definite integral 

 

∫    (  )  
 

 

 

 

The integrand has no anti derivative expressible in terms of familiar functions. 

However, you know how to find its Taylor’s series: you know that 

 

 
 

Now if you substitute t = x
2
, you have 

 

sin(x
2
) = x

2
 - ...

!7!5!3

14106


xxx

  

 

 

 
 

In spite of the fact that you cannot anti differentiate the function, you can anti 

differentiate the Taylor’s series: 

 

 We used Taylor’s series to understand asymptotic behaviour of functions that 

behave in the important part of the domain. And some examples are shown to 

demonstrate, 

 

 Taylor’s series is used to understand the growth of functions. Because you 

know the fact that exponentials grow much more rapidly than polynomials. You 

recorded this by saying that 

 

   
   

  

  
   

 

for any exponent n. 

 

 You used Taylor’s series to solve problems which could not be solved 

ordinarily through differential equations. 
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6.0 TUTOR-MARKED ASSIGNMENT 

 

1. Compute a second-order Taylor series expansion around point (a,b) = (0,0) of a 

function F(x,y)= e
x
 log(2+y) 

 

2.  Show that the Taylor series expansion of f(x,y) = e
xy

 about the point (2,3) . 
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