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1.0  INTRODUCTION  

 
Def. Stationary (or critical) point. For a function y = f(x) of a single variable, a 

stationary (or critical) point is a point at which dy/dx = 0; for a function u = f(x1, x2, ... ,xn) 

of n variables it is a point at which 

 

1. 
  

   
   

  

   
   … 

  

   
   

 

In the case of a function y = f(x) of a single variable, a stationary point corresponds to a 

point on the curve at which the tangent to the curve is horizontal. In the case of a function 

y = f(x, y) of two variables a stationary point corresponds to a point on the surface at 

which the tangent plane to the surface is horizontal. 
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In the case of a function y = f(x) of a single variable, a stationary point can be any of the 

following three: a maximum point, a minimum point or an inflection point. For a function 

y = f(x, y) of two variables, a stationary point can be a maximum point, a minimum point 

or a saddle point. For a function of n variables it can be a maximum point, a minimum 

point or a point that is analogous to an inflection or saddle point. 

 

2.0  OBJECTIVE 

 
At the end of this unit, you should be able to: 

 

 recognise problems on maximum and minimum functions of several variables; 

 know the necessary condition for a maxima or minima function of several 

variable; 

 know the Sufficient condition for a maxima or minima function of several 

variable; 

 identify the maxima and minima of functions subject to constraints; 

 know the method of finding maxima and minima of functions subject to 

constraints; 

 identify the different types of examples of maxima and minima functions of 

several variables; and 

 solve problems on maxima and minima functions of several variables. 

 

3.0 MAIN CONTENT  

 

Maxima and minima of functions of several variables 

 

A function f(x, y) of two independent variables has a maximum at a point (x0, y0) if f(x0, 

y0) >f(x, y) for all points (x, y) in the neighborhood of (x0, y0). Such a function has a 

minimum at a point (x0, y0) if f(x0, y0) < f(x, y) for all points (x, y) in the neighborhood 

of (x0, y0). 

 

A function f(x1, x2, ... , xn) of n independent variables has a maximum at a point (x1', x2', 

... ,xn') if f(x1', x2', ... , xn')  f(x1, x2, ... , xn) at all points in the neighborhood of (x1', x2', ... 

, xn').Such a function has a minimum at a point (x1', x2', ... ,xn') if f(x1', x2', ... , xn')f(x1, x2, 

...,xn) at all points in the neighborhood of (x1', x2', ... , xn'). 

 

Necessary condition for a maxima or minima: A necessary condition for a function f(x, 

y) of two variables to have a maxima or minima at point (x0, y0) is that 

 
  

  
   , 

  

  
   

 

at the point (i.e. that the point be a stationary point). 

 

In the case of a function f(x1, x2, ... ,xn) of n variables, the condition for the function to 

have a maximum or minimum at point (x1', x2', ... , xn') is that 
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  ,…, 

  

   
   

 

at that point (i.e. that the point be a stationary point). 

 

To find the maximum or minimum points of a function you first locate the stationary 

points using (1) above. After locating the stationary points you then examine each 

stationary point to determine if it is a maximum or minimum. To determine if a point is a 

maximum or minimum you may consider values of the function in the neighborhood of 

the point as well as the values of its first and second partial derivatives. You also may be 

able to establish what it is by arguments of one kind or other. The following theorem may 

be useful in establishing maximums and minimums for the case of functions of two 

variables. 

 

Sufficient condition for a maximum or minimum of a function  
 

z = f(x, y). Let z = f(x, y) have continuous first and second partial derivatives in the 

neighborhood of point (x0, y0). If at the point (x0, y0) 

 
  

  
   , 

  

  
   

 

and 

 

  (
   

    
)

 

 
   

   
   

   
   

 

then there is a maximum at (x0, y0) if 

 

   

   
   

 

and a minimum if 

 

   

   
   

 
 

If Δ >0 , point (x0, y0) is a saddle point (neither maximum nor minimum). If Δ = 0 , the 

nature of point (x0, y0) is undecided. More investigation is necessary. 

 

Example. Find the maxima and minima of function z = x
2
 + xy + y

2
 - y.  
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Solution.. 

 

  

  
           

  

  
        

 

   

   
       

   

    
        

   

   
   

 

2x + y = 0  

 

x + 2y = 1 

 

x = -1/3, y = 2/3 

 

This is the stationary point. At this point Δ > 0 and 

 

   

   
   

 

and the point is a minimum. The minimum value of the function is - 1/3. 

 

 
 

Fig. 1 

 

Maxima and minima of functions subject to constraints. Let us set ourselves the 

following problem: Let F(x, y) and G(x, y) be functions defined over some region R of 

the x-y plane. Find the points at which the function F(x, y) has maximums subject to the 

side condition.  

 

G(x, y) = 0. Basically you are asking the question: At what points on the solution set of 

G(x, y) = 0 does F(x, y) have maximums? The solution set of G(x, y) = 0 corresponds to 

some curve in the plane. See Figure 1. The solution set (i.e. locus) of G(x, y) = 0 is 

shown in red. Figure 2 shows the situation in three dimensions where function z = F(x, y) 

is shown rising up above the x-y plane along the curve G(x, y) = 0. The problem is to find 

the maximums of z = F(x, y) along the curve  
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G(x, y) = 0. 

 

 
 

Fig. 2 

 

 
 

Fig. 3 

 

Let us now consider the same problem in three variables. Let F(x, y, z) and G(x, y, z) be 

functions defined over some region R of space. Find the points at which the function F(x, 

y, z) has maximums subject to the side condition G(x, y, z) = 0. Basically we are asking 

the question: At what points on the solution set of G(x, y, z) = 0 does F(x, y, z) have 

maximums? G(x, y, z) = 0 represents some surface in space. In Figure 3, G(x, y, z) = 0 is 

depicted as a spheroid in space. The problem then is to find the maximums of the 

function F(x, y, z) as evaluated on this spheroidal surface. 

 

Let us now consider another problem. Suppose instead of one side condition we have 

two. Let F(x, y, z), G(x, y, z) and H(x, y, z) be functions defined over some region R of 

space. Find the points at which the function F(x, y, z) has maximums subject to the side 

conditions 

 

G(x, y, z) = 0 

H(x, y, z) = 0. 
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Fig. 4 

 
 

Here we wish to find the maximum values of F(x, y, z) on that set of points that satisfy 

both equations 2) and 3). Thus if D represents the solution set of G(x, y, z) = 0 and E 

represents the solution set of H(x, y, z) = 0 we wish to find the maximum points of F(x, y, 

z) asevaluated on set F = D  E (i.e. the intersection of sets D and E). In Fig. 4 G(x, y, z) 

= 0 is depicted as an ellipsoid and H(x, y, z) = 0 as a plane. The intersection of the 

ellipsoid and the plane is the set F on which F(x, y, z) is to be evaluated. 

 

The above can be generalized to functions of n variables  

F(x1, x2, ... ,xn), G(x1, x2, ... , xn), etc. and m side conditions. 

 

Methods for finding maxima and minima of functions subject to constraints 

 

1. Method of direct elimination. Suppose you wish to find the maxima or minima 

of a function F(x, y) with the constraint  

 (x, y) = 0. Suppose you are so lucky that  (x, y) = 0 can be solved explicitly for 

y, giving y = g(x). You can then substitute g(x) for y in F(x, y) and then find the 

maximums and minimums of F(x, g(x)) by standard methods. In some cases, it 

may be possible to do this kind of thing. You express some of the variables in the 

equations of constraint in terms of other variables and then substitute into the 

function whose extrema are sought, and find the extrema by standard methods. 

 

2. Method of implicit functions. Suppose you wish to find the maxima or minima of 

a function u = F(x, y, z) with the constraint  (x, y, z) = 0. You note that  (x, y, z) 

= 0 defines z implicitly as a function of x and y i.e. z = f(x, y). You thus seek the 

extrema of the quantity 

 

u = F(x, y, f(x, y)). 

 

 

 

 



MTH 311        MODULE 7 

 

199 

The necessary condition for a stationary point, as given by (1) above, becomes 

 

4)  

 

(where F1 represents the partial of F with respect to x, etc.)  

Taking partials of   with respect to x and y it follows that 

 

5)  

 

(since the partial derivative of a function that is constant is zero). 

From the pair of equations consisting of the first equation in 4) and 5) you can 

eliminate     giving 

 

6) F1ɸ3 - F3ɸ1 = 0 

 

From the pair of equations consisting of the second equation in 4) and 5) you can 

eliminate       giving 

 

7) F2ɸ3 - F3ɸ2 = 0 

 

Equations 6) and 7) can be written in determinant form as 

 

 
 

 

Equations 8) combined with the equation Φ(x, y, z) = 0 give you three 

equations which you can solve simultaneously for x, y, z to obtain the 

stationary points of function F(x, y, z). The maxima and minima will be 

among the stationary points. 

 

This same method can be used for functions of an arbitrary number of variables 

and an arbitrary number of side conditions (smaller than the number of variables). 

 

Extrema for a function of four variables with two auxiliary equations: 

Suppose you wish to find the maxima or minima of a function 

 

u = F(x, y, z, t) 

 

with the side conditions 

 

9) Φ(x, y, z, t) = 0 ψ(x, y, z, t) = 0. 
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Equations 9) define variables z and t implicitly as functions of x and y i.e. 

 

10) z = f1(x,y) t = f2(x, y) . 

 

We thus seek the extrema of the quantity 

 

u = F(x, y, f1(x, y), f2(x, y)) . 

 

The necessary condition for a stationary point, as given by 1) above, becomes 

 

 
 

Taking partials of Φ with respect to x and y it follows that 

 

 
 

Taking partials of ψ with respect to x and y it follows that 

 

 
 

From 12) and 13) we can derive the conditions 

 

14)    |

      
      
      

|       |

      
      
      

|    

 

Equations 14) combined with the auxiliary equations Φ(x, y, z, t) = 0 and ψ(x, y, z, 

t) = 0 give you four equations which you can solve simultaneously for x, y, z, t to 

obtain the stationary points of function F(x, y, z, t). The maxima and minima will 

be among the stationary points. 

 

Extrema for a function of n variables with p auxiliary equations. 

The p equations corresponding to equation 14) above for the case of a function of 

n variables 

 

u = F(x1, x2, ... .xn) 

 

and p auxiliary equations (i.e. side conditions) 

Φ(x1, x2, ... ,xn) = 0   

Ψ(x1, x2, ... , xn) = 0 

................................. 

Ω(x1, x2, ... ,xn) = 0 
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are 

 

15)     |

           
  

 

      
 

  

 

          

|                 

 

 

These p equations along with the p auxiliary equations 

 

Φ(x1, x2, ... ,xn) = 0   

Ψ(x1, x2, ... , xn) = 0 

................................. 

Ω(x1, x2, ... ,xn) = 0 

 

can be solved simultaneously for the n variables x1, x2, ... .xn to obtain the 

stationary points of F(x1, x2, ... .xn). The maxima and minima will be among the 

stationary points. 

 

Geometrical interpretation for extrema of functionF(x, y, z) with a constraint: 
We shall now present a theorem that gives a geometrical interpretation for the case 

of extrema values of functions of type F(x, y, z) with a constraint. 

 

Theorem 1: Suppose the functions F(x, y, z) and 0(x, y, z) have continuous first 

partial derivatives throughout a certain region R of space. Let the equation 0(x, y, 

z) = 0 define a surface S, every point of which is in the interior of R, and suppose 

that the three partial derivatives ɸ1, ɸ2, ɸ3 are never simultaneously zero at a point 

of S. Then a necessary condition for the values of F(x, y, z) on S to attain an 

extreme value (either relative or absolute) at a point of S is that F1, F2, F3 be 

proportional to ɸ1, ɸ2, ɸ3 at that point. If C is the value of F at the point, and if the 

constant of proportionality is not zero, the geometric meaning of the 

proportionality is that the surface S and the surface F(x, y, z) = C are tangent at the 

point in question. 

 

Rationale behind theorem: From 8) above, a necessary condition for F(x, y, z) to 

attain a maxima or minima (i.e. a condition for a stationary point) at a point P is 

that 

 

F1ɸ3 - F3ɸ1 = 0 F2ɸ3 - F3ɸ2 = 0   

 

or 

 

16)   
  

  
 

  

  

  

  
 

  

  
 . 
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Thus at a stationary point the partial derivatives F1, F2, F3and   ,   ,    are 

proportional. Now the partial derivatives F1, F2, F3and 01, 02, 03 represent the 

gradients of the functions F and  ; and the gradient, at any point P, of a scalar 

point function y(x, y, z) is a vector that is normal to that level surface of  (x, y, z) 

that passes through point P. If C is the value of F at the stationary point P, then the 

vector (F1, F2, F3) at point P is normal to the surface F(x, y, z) = C at P. Similarly, 

the vector (  ,   ,   ) at point P is normal to the surface  (x, y, z) = 0 at P. Since 

the partial derivatives F1, F2, F3and   ,   ,   are proportional, the normals to the 

two surfaces point in the same direction at P and the surfaces must be tangent at 

point P. 

 

Example. Consider the maximum and minimum values of F(x, y, z) = x
2
 + y

2
 + z

2
 

on the surface of the ellipsoid 

 

 
 

Since F(x, y, z) is the square of the distance from (x, y, z) to the origin, it is clear 

that we are looking for the points at maximum and minimum distances from the 

center of the ellipsoid. The maximum occurs at the ends of the longest principal 

axis, namely at ( 8, 0, 0). The minimum occurs at the ends of the shortest 

principal axis, namely at (0, 0, 5). Consider the maximum point (8, 0, 0). The 

value of F at this point is 64, and the surface F(x, y, z) = 64 is a sphere. The sphere 

and the ellipsoid are tangent at (8, 0, 0) as asserted by the theorem. In this case the 

ratios G1:G2:G3 and F1:F2:F3 at (8, 0, 0) are 1/4 : 0 : 0 and 16 : 0 : 0 respectively. 

 

This example brings out the fact that the tangency of the surfaces (or the 

proportionality of the two sets of ratios), is a necessary but not a sufficient 

condition for a maximum or minimum value of F, for you note that the condition 

of proportionality exists at the points (0, 6, 0), which are the ends of the principal 

axis of intermediate length. But the value of F in neither a maximum nor a 

minimum at this point. 

 

Case of extrema of function F(x, y) with a constraint: A similar geometrical 

interpretation can be given to the problem of extremal values for F(x, y) subject to 

the constraint Φ(x, y) = 0. Here you have a curve defined by the constraint, and a 

one-parameter family of curves F(x, y) = C. At a point of extremal value of F the 

curve F(x, y) = C through the point will be tangent to the curve defined by the 

constraint. 

 

Lagrange’s Method of Multipiers: Let F(x, y, z) and Φ(x, y, z) be functions 

defined over some region R of space. Find the points at which the function F(x, y, 

z) has maximums and minimums subject to the side condition Φ(x, y, z) = 0. 

Lagrange’s method for solving this problem consists of forming a third function 

G(x, y, z) given by 
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17) G(x, y, z) = F(x, y, z) + λΦ(x, y, z) , 

 

where λ is a constant (i.e. a parameter) to which you will later assign a value, and 

then finding the maxima and minima of the function G(x, y, z). A reader might 

quickly ask, ―Of what interest are the maxima and minima of the function G(x, y, 

z)? How does this help us solve the problem of finding the maxima and minima of 

F(x, y, z)?‖ The answer is that examination of 17) shows that for those points 

corresponding to the solution set of Φ(x, y, z) = 0 the function G(x, y, z) is equal 

to the function F(x, y, z) since at those points equation 17) becomes 

 

G(x, y, z) = F(x, y, z) + λ· 0 

 

Thus, for the points on the surface Φ(x, y, z) = 0, functions F and G are equal so 

the maxima and minima of G are also the maxima and minima of F. The procedure 

for finding the maxima and minima of G(x, y, z) is as follows: You regard G(x, y, 

z) as a function of three independent variables and write down the necessary 

conditions for a stationary point using 1) above: 

 

18) F1 + λΦ1 = 0  F2 + λΦ2 = 0  F3 + λΦ3 = 0 

 

We then solve these three equations along with the equation of constraint Φ(x, y, 

z) = 0 to find the values of the four quantities x, y, z, λ. More than one point can 

be found in this way and this will give you the locations of the stationary points. 

The maxima and minima will be among the stationary points thus found. 

 

Let us now observe something. If equations 18) are to hold simultaneously, then it 

follows from the third of them that λ must have the value    
  

Φ 
. 

  

If you substitute this value of λ into the first two equations of 18) we obtain 

 

F1Φ3 - F3Φ1 = 0 F2Φ3 - F3Φ2 = 0 

 

or 

 

 
 

You note that the two equations of 19) are identically the same conditions as 8) 

above for the previous method. Thus using equations 19) along with the equation 

of constraint Φ(x, y, z) = 0 is exactly the same procedure as the previous method 

in which you used equations 8) and the same constraint. 

 

One of the great advantages of Lagrange’s method over the method of implicit 

functions or the method of direct elimination is that it enables you to avoid making 

a choice of independent variables. This is sometimes very important; it permits the 
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retention of symmetry in a problem where the variables enter symmetrically at the 

outset. 

 

Lagrange’s method can be used with functions of any number of variables and any 

number of constraints (smaller than the number of variables). In general, given a 

function F(x1, x2, ... ,xn) of n variables and h side conditions Φ1 = 0, Φ2 = 0, .... , 

Φh = 0, for which this function may have a maximum or minimum, equate to zero 

the partial derivatives of the auxiliary function F + λ1Φ1 + λ2Φ2 +…+ λhΦh with 

respect to x1, x2, ... , xn, regarding λ1, λ2,…,λhas constants, and solve these n 

equations simultaneously with the given h side conditions, treating the λ’s as 

unknowns to be eliminated. 

 

The parameter λ in Lagrange’s method is called Lagrange’s multiplier.  

 

Further examples 

 

Example 1 

 

Let us find the critical points of 

 

 
The partial derivatives are 

 

 
 

fx= 0 if 1-x
2
=0 or the exponential term is 0. fy=0 if -2y=0 or the exponential term is 0. 

The exponential term is not 0 except in the degenerate case. Hence you require 1 - x
2
=0 

and -2y=0, implying x=1 or x=-1 and y=0. There are two critical points (-1,0) and (1,0) 

 

The Second Derivative Test for Functions of Two Variables 

 

How can we determine if the critical points found above are relative maxima or minima? 

You apply a second derivative test for functions of two variables. 

 

Let (xc,yc) be a critical point and define 

 

 (     )     (     )   (     )  [   (     )]
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You have the following cases: 

 

 If D>0 and fxx (xc , yc) ˂ 0, then f(x,y) has a relative maximum at  

 xc,yc . 

 If D>0 and fxx (xc ,yc) ˂0, then f(x,y) has a relative minimum at xc,yc . 

 If D<0, then f(x,y) has a saddle point at xc,yc 

 If D=0, the second derivative test is inconclusive. 

 

An example of a saddle point is shown in the example below. 

 

Example: Continued 

 

For the example above, we have 

 

 
 

For x=1 and y=0, we have D(1,0)=4exp(4/3)> 0 with  

fxx(1,0)=-2exp(2/3)<0. Hence, (1,0) is a relative maximum.  

For x=-1 and y=0, we have D(-1,0)=-4exp(-4/3)<0. Hence, (-1,0) is a saddle point. 

 

Example 2: Maxima and Minima in a Disk 

 

Another example of a bounded region is the disk of radius 2 centered at the origin. You 

proceed as in the previous example, determining in the 3 classes above. (1,0) and (-1,0) 

lie in the interior of the disk. 

 

The boundary of the disk is the circle x
2
+ y

2
=4. To find extreme points on the disk you 

parameterize the circle. A natural parameterization is  

x=2cos(t) and y=2sin(t) for 0   t   2 . You substitute these expressions into z=f(x,y) 

and obtain 

 

   (   )   (   ( )    ( ))     ( 
 

 
                  )   ( ) 

 

On the circle, the original functions of 2 variables is reduced to a function of 1 variable. 

You can determine the extrema on the circle using techniques from calculus of one 

variable. 
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In this problem there are not any corners. Hence, you determine the global max and min 

by considering points in the interior of the disk and on the circle. An alternative method 

for finding the maximum and minimum on the circle is the method of Lagrange 

multipliers. 

 

4.0  CONCLUSION 
 

You have been introduced to maximum and minimum functions of several variables, 

necessary condition for a maxima or minima function of several variables, problems on 

maximum and minimum functions of several variables etc. 

 

5.0  SUMMARY 
 

A summary of maximum and minimum functions of several variables are as follows: 

 

A function f(x, y) of two independent variables has a maximum at a point (x0, y0) if f(x0, 

y0) >f(x, y) for all points (x, y) in the neighborhood of (x0, y0). Such a function has a 

minimum at a point (x0, y0) if f(x0, y0)  <f(x, y) for all points (x, y) in the neighborhood 

of (x0, y0). 

 

Solve the following problem, Find the maxima and minima of function  

z = x
2
 + xy + y

2
 - y . 

 

Solution 
 

. 

 

2x + y = 0 , x + 2y = 1 

 

x = -1/3 , y = 2/3 

 

This is the stationary point. At this point Δ > 0 and 

 

 
 

and the point is a minimum. The minimum value of the function is - 1/3. 

 

6.0 TUTOR-MARKED ASSIGNMENT 

 
1. Determine the critical points and locate any relative minimum, maxima and saddle 

points offunctions f defined by 

 

F(x,y) = 2x
2
 − 2xy + 2 y

4
 − 6x 
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2. Determine the critical points and locate any relative minimum, maxima and saddle 

points of functions f defined by 

 

F(x, y) = 2x
4
 − 4xy + y

3
 +4 

 

3. Determine the critical points and locate any relative minimum, maxima and saddle 

points of functions f defined by 

F(x,y)= x
4
– y

4
+ xy. 

 

Determine the critical points of the functions below and find out whether each point 

corresponds to a relative minimum, maximum and saddle point, or no conclusion can be 

made 

 

4. F(x,y)= x
2
+ 3 y

2
 − 2xy − 8x 

 

5.  F(x,y)=x
3
 + 12x + y

3
 + 3y

2
−9y 
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UNIT 2  LAGRANGE MULTIPLIERS  
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6.0  Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION 

 

 
 

Figure 1: Find x and y to maximize f(x,y) subject to a constraint (shown in red) g(x,y) = c. 

 

 
 

 

Figure 2: Contour map of Figure 1. The red line shows the constraint g(x,y) = c. The blue 

lines are contours of f(x,y). The point where the red line tangentially touches a blue 

contour is your solution. 
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In mathematical optimization, the method of Lagrange multipliers (named after Joseph 

Louis Lagrange) provides a strategy for finding the maxima and minima o f a function 

subject to constraints. 

 

For instance (see Figure 1), consider the optimization problem 

 

maximize 

subject to 

 

We introduce a new variable (λ) called a Lagrange’s multiplier, and study the Lagrange’s 

function defined by 

 

 
 

where the λ term may be either added or subtracted. If f(x,y) is a maximum for the 

original constrained problem, then there exists λ such that (x,y,λ) is a stationary point for 

the Lagrange’s function (stationary points are those points where the partial derivatives of 

Λ are zero). However, not all stationary points yield a solution of the original problem. 

Thus, the method of Lagrange’s multipliers yield a necessary condition for optimality in 

cons trained problems 

 

2.0 OBJECTIVES 

 
After studying this unit, you should be able to: 

 

 identify problem which could be solve by languages multiplier; 

 explain single and multiple constraints; 

 explain the interpretation of language’s multiplier; and 

 solve problems with the use of language’s multiplier. 

 

3.0  MAIN CONTENT 
 

One of the most common problems in calculus is that of finding maxima or minima (in 

general, "extrema") of a function, but it is often difficult to find a closed form for the 

function being extremized. Such difficulties often arise when one wishes to maximize or 

minimize a function subject to fixed outside conditions or constraints. The method of 

Lagrange’s multipliers is a powerful tool for solving this class of problems without the 

need to explicitly solve the conditions and use them to eliminate extra variables. 
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Consider the two-dimensional problem introduced above: 

 

maximize  

 

subject to  

 
We can visualize contours of f given by 

 

 
 

for various values of d, and the contour of g given by g(x,y) = c. 

 

Suppose you walk along the contour line with g = c. In general the contur lines of f and g 

may be distinct, so following the contour line for g = c one could intersect with or cross 

the contour lines of f. This is equivalent to saying that while moving along the contour 

line for g = c the value of f can vary. Only when the contour line for g = c meet contour 

lines of f tangentially, do you not increase or decrease the value of f — that is, when the 

contour lines touch but do not cross 

 

The contour lines of f and g touch when the tangent vectors of the contour lines are 

parallel. Since the gradient of a function is perpendicular to the contour lines, this is the 

same as saying that the gradients of f and g are parallel. Thus you want points (x,y) where 

g(x,y) = c and 

 

 
 

where 

 
and 

 
 

are the respective gradients. The constant λ is required because although the two gradient 

vectors are parallel, the magnitudes of the gradient vectors are generally not equal. 

 

To incorporate these conditions into one equation, you introduce an auxiliary function 
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and solve 

 

 
 

This is the method of Lagrange’s multipliers. Note that   implies g(x,y) =c 

 

Not necessarily extrema 

 

The constrained extrema of f are critical points of the Lagrangian Λ, but they are not 

local extrema of Λ (see Example 2 below). 

 

One may reformulate the Lagrangian as a Hamiltonian, in which case the solutions are 

local minima for the Hamiltonian. This is done in optimal control theory, in the form of 

Pontryagin's minimum principle. 

 

The fact that solutions of the Lagrangian are not necessarily extrema also poses 

difficulties for numerical optimization. This can be addressed by computing the 

magnitude of the gradient, as the zeros of the magnitude are necessarily local minima, as 

illustrated in the numerical optimization example. 

 

Handling multiple constraints 

 

 
 

 

A paraboloid, some of its level sets (aka contour lines) and 2 line constraints. 
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Zooming in on the levels sets and constraints, you see that the two constraint lines 

intersect to form a "joint" constraint that is a point.  

 

Since there is only one point to analyze, the corresponding point on the paraboloid is 

automatically a minimum and maximum. Yet the simplified reasoning presented in 

sections above seems to fail because the level set definitely appears to "cross" the point 

and at the same time its gradient is not parallel to the gradients of either constraint. This 

shows you must refine our explanation of the method to handle the kinds of constraints 

that are formed when you have more than one constraint acting at once. 

 

The method of Lagrange’s multipliers can also accommodate multiple constraints. To see 

how this is done, you need to reexamine the problem in a slightly different manner 

because the concept of ―crossing‖ discussed above becomes rapidly unclear when you 

consider the types of constraints that are created when you have more than one constraint 

acting together. 

 

As an example, consider a paraboloid with a constraint that is a single point (as might be 

created if we had 2 line constraints that intersect). The level set (i.e., contour line) clearly 

appears to ―cross‖ that point and its gradient is clearly not parallel to the gradients of 

either of the two line constraints. Yet, it is obviously a maximum and a minimum because 

there is only one point on the paraboloid that meets the constraint. 

 

While this example seems a bit odd, it is easy to understand and is representative of the 

sort of ―effective‖ constraint that appears quite often when you deal with multiple 

constraints intersecting. Thus, you take a slightly different approach below to explain and 

derive the Lagrange’s Multipliers method with any number of constants. 

 

Throughout this section, the independent variables will be denoted by x1, x2, …,xN as a 

group, you will denote them as p = (x1 x2,…, xn). Also, the function being analyzed will 
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be denoted by and the constraints will be represented by the equations g1 (p) = 0, g2 (p) = 

0, …,gM (p) = 0. 

 

The basic idea remains essentially the same: if we consider only the points that satisfy the 

constraints (i.e. are in the constraints), then a point (p, f (p))is a stationary point (i.e. a 

point in a ―flat‖ region) of f if and only if the constraints at that point do not allow 

movement in a direction where f changes value. 

 

Once you have located the stationary points, you need to do further tests to see if you 

have found a minimum, a maximum or just a stationary point that is neither.  

 

You start by considering the level set of fat (p, f (p)). The set of vectors {uL} the 

directions in which you can move and still remain in the same level set are the directions 

where the value of f does not change (i.e. the change equals zero). Thus, for every vector 

v in {vL}, the following relation must hold: 

 

 
 

where the notation vxk above means the xK-component of the vector v. The equation 

above can be rewritten in a more compact geometric form that helps our intuition:  

 

 
 

This makes it clear that if you are at p, then all directions from this point that do not 

change the value of f must be perpendicular to   ( ) the gradient of f at p). 

 

Now let us consider the effect of the constraints. Each constraint limits the directions that 

you can move from a particular point and still satisfy the constraint. You can use the 

same procedure, to look for the set of vectors {vC} containing the directions in which you 

can move and still satisfy the constraint. As above, for every vector v in {vC}, the 

following relation must hold: 
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From this, you see that at point p, all directions from this point that will still satisfy 

thisconstraint must be perpendicular to   ( ). 
 

Now you are ready to refine our idea further and complete the method: a point on f is a 

constrained stationary point if and only if the direction that changes f violates at least one 

of the constraints. (You can see that this is true because if a direction that changes f did 

not violate any constraints, then there would a ―legal‖ point nearby with a higher or lower 

value for f and the current point would then not be a stationary point.) 

 

Single constraint revisited 

 

For a single constraint, you use the statement above to say that at stationary points the 

direction that changes f is in the same direction that violates the constraint. To determine 

if two vectors are in the same direction, you note that if two vectors start from the same 

point and are ―in the same direction‖, then one vector can always ―reach‖ the other by 

changing its length and/or flipping to point the opposite way along the same direction 

line. In this way, you can succinctly state that two vectors point in the same direction if 

and only if one of them can be multiplied by some real number such that they become 

equal to the other. So, for your purposes, you require that: 

 

 
 

If yu now add another simultaneous equation to guarantee that you only perform this test 

when you are at a point that satisfies the constraint, you end up with 2 simultaneous 

equations that when solved, identify all constrained stationary points: 

 

 
 

Note that the above is a succinct way of writing the equations. Fully expanded, there are 

N + 1 simultaneous equations that need to be solved for the N + 1 variables which are λ 

and x1, x2, …,xN: 

 

 
 

 

: 
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Multiple constraints 

 

For more than one constraint, the same reasoning applies. If there is more than one active 

together, each constraint contributes a direction that will violate it. Together, these 

―violation directions‖ form a ―violation space‖, where infinitesimal movement in any 

direction within the space will violate one or more constraints. Thus, to satisfy multiple 

constraints you can state (using this new terminology) that at the stationary points, the 

direction that changes f is in the ―violation space‖ created by the constraints acting 

jointly. 

 

The violation space created by the constraints consists of all points that can be reached by 

adding any combination of scaled and/or flipped versions of the individual violation 

direction vectors. In other words, all the points that are ―reachable‖ when you use the 

individual violation directions as the basis of the space. Thus, you can succinctly state 

that v is in the space defined by b1, b2,…,bM if and only if there exists a set of 

―multipliers‖  1,  2,…, M such that:  
 

 
 

which for our purposes, translates to stating that the direction that changes f at p is in 

the―violation space‖ defined by the constraints g1, g2,…,gMif and only if  

 

 
 

As before, you now add simultaneous equation to guarantee that you only perform this 

test when you are at a point that satisfies every constraint, you end up with simultaneous 

equations that when solved, identify all constrained stationary points: 

 

 

The  method is complete now (from the standpoint of solving the 

 

 
 

problem of finding stationary points) but as mathematicians delight in doing, these 

equations can be further condensed into an even more elegant and succinct form. 

Lagrange must have cleverly noticed that the equations above look like partial derivatives 

of some larger scalar function L that takes all the x1, x2,…, xN and all the 1,  2,…, M as 

inputs. Next,he might then have noticed that setting every equation equal to zero is 
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exactly what one would have to do to solve for the unconstrained stationary points of that 

larger function. Finally, he showed that a larger function L with partial derivatives that 

are exactly the ones you require can be constructed very simply as below: 

 

 
 

Solving the equation above for its unconstrained stationary points generates exactly the 

same stationary points as solving or the constrained stationary points of f under the 

constraints g1, g2,…,gM 

 

In Lagrange’s honor, the function above is called a Lagrangian, the scalars  1,  2,…, M 

are called Lagrange Multipliers and this optimization method itself is called The Method 

of Lagrange’s Multipliers. 

 

The method of Lagrange’s multipliers is generalized by the Karush–Kuhn Tucker 

conditions, which can also take into account inequality constraints of the form h(x) ≤ c . 

 

Interpretation of the Lagrange’s multipliers 
 

Often the Lagrange’s multipliers have an interpretation as some quantity of interest. To 

see why this might be the case, observe that: 

 

 
 

So, λk is the rate of change f the quantity being optimized as a function of the constraint 

variable. As examples, in Lagrangian mechanics the equations of motion are derived by 

finding stationary points of the action, the time integral of the difference between kinetic 

and potential energy. Thus, the force on a particle due to a scalar potential, F = -   , can 

be interpreted as a Lagrange’s multiplier determining the change in action (transfer of 

potential to kinetic energy) following a variation in the particle's constrained trajectory. 

In economics, the optimal profit to a player is calculated subject to a constrained space f 

actions, where a Lagrange’s multiplier is the increase in the value of the objective 

function due to the relaxation of a given constraint (e.g. through an increase in income or 

bribery or other means) – the marginal cost of a constraint, called the shadow price. 
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In control theory this is formulated instead as costate equations. 

 

Examples 

 

Example 1 

 

 
 

Fig. 3:  Illustration of the constrained optimization problem 

 
Suppose you wishes to maximize f(x,y) = x + y subject to the constraint x

2
 + y

2
 = 1. The 

feasible set is the unit circle, and the level sets of f are diagonal lines (with slope-1), so 

you can see graphically that the maximum occurs at (√2/2,√2/2), and the minimum 

occurs (-√2/2,- √2/2), 

 
Formally, set g(x,y) − c = x

2
 + y

2
 – 1, and  

Λ(x,y,λ) = f(x,y) + λ(g x,y) − c) = x + y + λ(x
2
 + y

2
 − 1) 

 
Set the derivative dΛ = 0, which yields the system of equations: 
 

 
 

As always, the    equation ((iii) here) is the original constraint. 

 

Combining the first two equations yields x = y (explicitly,   , otherwise (i) yields 1 = 

0, so you have x = − 1 / (2 ) = y. 
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Substituting into (iii) yields 2x
2
 = 1, so x = y = √   and  

 =  √            the stationary points are(√   , √   ) and  

(-√     √   ) . Evaluating the objective function f on these yield  (√    √   )  

 √     ( √     √    )    √   thus the maximum is √2, which is attained at 

(√    √   ), and the minimum is - √  , which is attained at (√     √   ). 

 

Example 2 

 

 
 

Fig. 4.  Illustration of the constrained optimization problem 

 

Suppose you wants to find the maximum values of  

 

F(x,y) = x
2
y 

 

with the condition that the x and y coordinates lie on the circle around the origin with 

radius √3, that is, subject to the constraint 

 

g(x,y) = x
2
 + y

2
 = 3. 

 

As there is just a single constraint, you will use only one multiplier, say λ. 

 

The constraint g(x, y)-3 is identically zero on the circle of radius √3. So any multiple of 

g(x, y)-3 may be added to f(x, y) leaving f(x, y) unchanged in the region of interest 

(above the circle where our original constraint is satisfied). Let 
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The critical values of Λ occur where its gradient is zero. The partial derivatives are 

 

 
 

Equation (iii) is just the original constraint. Equation (i) implies x = 0 or λ = −y. In the 

first case, if x = 0 then you must have y = √  by (iii) and then by (ii) λ= 0. In the second 

case, if λ = −y and substituting into equation (ii) you have that, 

 

x
2
 – 2y

2
 = 0. 

 

Then x
2
 = 2y

2
. Substituting into equation (iii) and solving for y gives this value of y: 

 

y = 1.  

 

Thus there are six critical points: 

 

 
 

Evaluating the objective at these points, you find 

 

 
 

Therefore, the objective function attains the global maximum (subject to the constraints) 

at (√2,1) and the global minimum at (√2, - 1). The point (0,√3) is a local minimum and 

(0,√3) is a local maximum, as may be determined by consideration of the Hessian matrix 

of Λ.   

 

Note that while (√2, 1, - 1) is a critical point of Λ, it is not a local extremum. You have

Givenany neighborhood of

, you can choose a small positive ∈ and a small δ of either sign to get Λ 

values both greater and less than 2. 

 

Example: Entropy 
 

Suppose you wish to find the discrete probability distribution on the point {x1,x2,…,xn} 

with maximal information entropy. This is the same as saying that you wish to find the 

least biased probability distribution on the points{x1,x3,…,xn}. In other words, you wish to 

maximize the Shannon entropy equation: 
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For this to be a probability distribution the sum of the probabilities pi at each point xi  

must equal 1, so our constraint is g( ⃗)     

 
 

You use Lagrange multipliers to find the point of maximum entropy, ⃗  across all discrete 

probability distributions ⃗on {x1,x2,…,xn}. You require that: 

 

 
 

which gives a system of n equations, k = 1,…,n, such that: 

 

 
 

Carrying out the differentiation of these n equations, you get 

 

 
 

This shows that all   
  are equal (because they depend on   only). By using the constraint 

Σjpj= 1, you find 

 

  
   

 

 
  

Hence, the uniform distribution is the distribution with the greatest entropy, among 

distributions on n points. 
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Example: Numerical optimization 

 

Lagrange’s multipliers cause the critical points to occur at saddle points. 

 

 
 

 

The magnitude of the gradient can be used to force the critical point to occur at local 

minima. 

 

With Lagrange’s multipliers, the critical points occur at saddle points, rather than at local 

maxima (or minima). Unfortunately, many numerical optimization techniques, such as 

hill climbing, gradient descent, some of the quasi-Newton methods, among others, are 

designed to find local maxima (or minima) and not saddle points. For this reason, you 

must either modify the formulation to ensure that it's a minimization problem (for 

example, by extremizing the square of the gradient of the Lagrangian as below), or else 

use an optimization technique that finds stationary points (such as Newton's method 

without an extremum seeking line search) and not necessarily extrema. 

 

As a simple example, consider the problem of finding the value of x that minimizes f(x) = 

x
2
, constrained such that x

2
 = 1. (This problem is somewhat pathological because there 

are only two values that satisfy this constraint, but it is useful for illustration purposes 

because the corresponding unconstrained function can be visualized in three dimensions.) 

 

Using Lagrange’s multipliers, this problem can be converted into an unconstrained 

optimization problem: 

 

Λ(x,λ) = x
2 
+ λ(x

2
 − 1)  

 

The two critical points occur at saddle points where x = 1 and x = − 1. 
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In order to solve this problem with a numerical optimization technique, you must first 

transform this problem such that the critical points occur at local minima. This is done by 

computing the magnitude of the gradient of the unconstrained optimization problem. 

 
First, you compute the partial derivative of the unconstrained problem with respect to 

each variable: 

 

 
 

If the target function is not easily differentiable, the differential with respect to each 

variable can be approximated as 

 

 
 

where ∈ is a small value. 

 

Next, you compute the magnitude of the gradient, which is the square root of the sum of 

the squares of the partial derivatives: 

 

 
 

(Since magnitude is always non-negative, optimizing over the squared-magnitude is 

equivalent to optimizing over the magnitude. Thus, the  square root  may be omitted from 

these equations with no expected difference in the results of optimization.) 

 

The critical points of h occur at x = 1 and x = − 1, just as in Λ. Unlike the critical points 

in Λ, however, the critical points in h occur at local minima, so numerical optimization 

techniques can be used to find them. 

 

4.0 CONCLUSION 
 

In this unit, you have studied how to identify problem which could be solve by langrage’s 

multiplier. You studied single and multiple constraints. You have studied the 

interpretation of Lagrange’s multiplier. You could solve problems with the use of 

Lagrange’s multiplier.   
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5.0 SUMMARY 
 

In this unit, you have: 

 

 identified problems which could be solved by Lagrange’s multipliers 

 known single and multiple constraints 

 known the interpretation of Lagrange’s multiplier 

 solved problems with the use of Langrage’s multiplier 

 

Problems 
 

Problem 1. Let  be our objective function. (Note that the 

coefficients are decimals 0 .3 and 0 .4 and not 3 and 4.) Let and the ellipse g(x, y) = 1 be 

your constraint. Find the maximum and the minimum values of h(x, y) subject to g(x, y) = 

1 following the steps below. 

 

(a)  Plot the 3d graph of the function h(x, y), the ellipse g(x, y) = 1 in the xy-plane and 

the curve on the graph z = h(x, y), corresponding to the values of h(x, y), in one 

coordinate system. Use a parametric representation of the ellipse that you should 

know from last semester. How many solutions you will expect the Lagrangian 

system of equations to have, explain your reasoning. 

 

(b) Define the Lagrangian function for the optimization problem and set up the 

corresponding system of equations. 

 

(c) Find solutions to the system using the solve command. Check that you didn't 

obtain any extraneous solutions. Is the number of solutions what you expected? 

 

(d) Using results of (c), find the minimum and the maximum values of h(x, y) subject 

to the constraint g(x, y) = 1. 

 

6.0 TUTOR-MARKED ASSIGNMENT 

 

1.  Find the maximum and minimum of f(x, y) = 5x – 3y subject to the constraint x
2
 + 

y
2
 = 136 

 

2.  Find the maximum and minimum values of f(x, y, z) = xyz subject to the constraint 

x + y + z =1. Assume that x, y, z, > 0 

 

3.  Find the maximum and minimum values of f(x,y) = 4x
2
 + 10y

2
 on the disk x

2
 + y

2
< 

4 

 

4.  Find the maximum and minimum of f(x, y, z) = 4y – 2z subject to the constraints 

2x – y – z = 2 and x
2
 + y

2
 = 1 
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UNIT 3 APPLICATIONS OF LANGRANGES MULTIPLIER  
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5.0  Summary 

6.0  Tutor-Marked Assignment 

7.0  References/Further Reading 

 

1.0  INTRODUCTION 
 

Optimization problems, which seek to minimize or maximize a real function, play an 

important role in the real world. It can be classified into unconstrained optimization 

problems and constrained optimization problems. Many practical uses in science, 

engineering, economics, or even in our everyday life can be formulated as constrained 

optimization problems, such as the minimization of the energy of a particle in physics; 

how to maximize the profit of the investments in economics. In unconstrained problems, 

the stationary points theory gives the necessary condition to find the extreme points of the 

objective function f (x1; ¢ ¢ ¢ ;xn). The stationary points are the points where the gradient 

rf is zero, that is each of the partial derivatives is zero. All the variables in f (x1; ¢ ¢ ¢ ;xn) 

are independent, so they can be arbitrarily set to seek the extreme of f. However when it 

comes to the constrained optimization problems, the arbitration of the variables does not 

exist. The constrained optimization problems can be formulated into the standard form. 

 

2.0  OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 apply the lagranges multiplier on a pringle surface; 

 apply Lagrange’s multiplier on Economics; 

 apply Lagrange’s multiplier on control theory; and 

 solve problems with the application of Lagrange’s multiplier. 

 

3.0 MAIN CONTENT 
 

There are many cool applications for the Lagrange’s multiplier method. For example, you 

will show how to find the extrema on the world famous Pringle surface. The Pringle 

surface can be given by the equation 

 

 (   )        
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Let us bound this surface by the unit circle, giving us a very happy pringle. :) In this case, 

the boundary would be 

 

 (   )          

 

The first step is to find the extrema on an unbounded f.  

 

Economics 

 

Constrained optimization plays a central role in economics. For example, the choice 

problem for a consumer is represented as one of maximizing a utility function subject to a 

budget constraint. The Lagrange’s multiplier has an economic interpretation as the 

shadow price associated with the constraint, in this example the marginal utility of 

income. 

 

Control theory 

 

In optimal control theory, the Lagrange’s multipliers are interpreted as costate variables, 

and Lagrange’s multipliers are reformulated as the minimization of the Hamiltonian, in 

Pontryagin's minimum principle. 

 

Example 1 Find the dimensions of the box with largest volume if the total surface area is 

64 cm
2
. 

 

You first need to identify the function that you’re going to optimize as well as the 

constraint. Let’s set the length of the box to be x, the width of the box to be y and the 

height of the box to be z. Let’s also note that because you’re dealing with the dimensions 

of a box it is safe to assume that x, y, and z are all positive quantities. 

 

You want to find the largest volume and so the function that you want to optimize is 

given by, 

 

f(x,y,z) = xyz Next you know that the surface area of the box must be a constant 64. So 

this is the constraint. The surface area of a box is simply the sum of the areas of each of 

the sides so the constraint is given by, 

2xy + 2xz + 2yz = 64   xy + xz + yz = 32 

 

Note that you divided the constraint by 2 to simplify the equation a little. Also, you get 

the function  (     ) from this. 

 

 (     )           

 

Here are the four equations that you need to solve. 

 

(1)     (   )  (      ) 
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(2)     (   )  (      ) 

            ( (     )    ) 
 

(3)     (   )  (      )  

 

(4) There are many ways to solve this system. You’ll solve it in the following way. 

Let’s multiply equation (1) by x, equation (2) by y and equation (3) by z. This 

gives, 

 

      (   ) 
 

(5)       (   )      (   ) 
 

(6)       (   ) 
 

(7) Now notice that you can set equations (5) and (6) equal. Doing this gives, 

 

  (   )      (   ) 
 

  (     )   (     )    

 

  (     )                     
 

This gave two possibilities. The first,           is not possible since if this was 

the case equation (1) would reduce to 

 

           or     

 

Since you are talking about the dimensions of a box neither of these are possible so you 

can discount   = 0. This leaves the second possibility. 

 

 
 

Since you know thatz ≠ 0(again since you are talking about the dimensions of a box) you 

can cancel the z from both sides. This gives,  

x = y (8) 

 

Next, let’s set equations (6) and (7) equal. Doing this gives, 
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As already discussed you know that   = 0 won’t work and so this leaves, 

 

 
 

You can also say that z ≠ 0 since you are dealing with the dimensions of a box so you 

must have, 

 

(9)     

 

Plugging equations (8) and (9) into equation (4) you get, 

 

 

 
 

However, you know that y must be positive since you are talking about the dimensions of 

a box. Therefore the only solution that makes physical sense here is 

 

            

 

So, it looks like you’ve got a cube here. 

 

You should be a little careful here. Since you’ve only got one solution you might be 

tempted to assume that these are the dimensions that will give the largest volume. The 

method of Lagrange’s Multipliers will give a set of points that will either maximize or 

minimize a given function subject to the constraint, provided there actually are 

minimums or maximums. 

 

The function itself  (     )      will clearly have neither minimums nor maximums 

unless you put some restrictions on the variables. The only real restriction that you’ve got 

is that all the variables must be positive. This, of course, instantly means that the function 

does have a minimum, zero. 

 

The function will not have a maximum if all the variables are allowed to increase without 

bound. That however, can’t happen because of the constraint, 
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Here you’ve got the sum of three positive numbers (because x, y, and z are positive) and 

the sum must equal 32. So, if one of the variables gets very large, say x, then because 

each of the products must be less than 32 both y and z must be very small to make sure 

the first two terms are less than 32. So, there is no way for all the variables to increase 

without bound and so it should make some sense that the function, 

 (     )     , will have a maximum. 

 

This isn’t a rigorous proof that the function will have a maximum, but it should help to 

visualize that in fact it should have a maximum and so you can say that you will get a 

maximum volume if the dimensions are:            

 

Notice that you never actually found values for   in the above example. This is 

fairlystandard for these kinds of problems. The value of   isn’t really important to 

determining if the point is a maximum or a minimum so often you will not bother with 

finding a value for it. On occasion you will need its value to help solve. 

 

Example 2 

Find the maximum and minimum of  (     )        subject to the constraint 

 

          
 

Solution 

 

This one is going to be a little easier than the previous one since it only has two variables. 

Also, note that it’s clear from the constraint that region of possible solutions lies on a disk 

of radius √    which is a closed and bounded region and hence by the Extreme Value 

Theorem you know that a minimum and maximum value must exist. 

 

Here is the system that you need to solve. 

 

 
 

Notice that, as with the last example, you can’t have     since that would not satisfy 

thefirst two equations. So, since you know that    , you can solve the first two 

equationsfor x and y respectively.  

 

This gives, 
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Plugging these into the constraint gives, 

 

  

   
 
 

   
 
  

   
     

 

We can solve this for  

 

   
 

  
                  

 

 
 

 

Now, that you know  you can find the points that will be potential maximums 

and/orminimums. 

 

If     
 

 
 you get,      ,     

 

and if 

 

    ,      

 

To determine if you have maximums or minimums you just need to plug these into the 

function. Also recall from the discussion at the start of this solution that you know these 

will be the minimum and maximums because the Extreme Value Theorem tells you that 

minimums and maximums will exist for this problem. 

 

Here are the minimum and maximum values of the function. 

 

 (     )                                  (     ) 
 

 (     )                                  (     ) 
 

Example 3 

 

 Set up equations for the volume and the cost of building the silo. 

 Using the Lagrange’s multiplier method, find the cheapest way to build the silo. 

 Do these dimensions seem reasonable? Why? 

 

Next, you will look at the cost of building a silo of volume 1000 cubic meters. The 

curved surface on top of the silo costs $3 per square meter to build, while the walls cost 

$1 per square meter. 

 

Of course, if all situations where this simple, there would be no need for the Lagrange’s 

multiplier method, since there are other methods for solving 2 variable functions that are 

much nicer. However, with a greater number of variables, the Lagrange’s multiplier 

method is much more fun. 
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For the next example, imagine you are working at the State Fair (since you're so 

desperate for money that you can't even buy a bagel anymore). You find yourself at the 

snowcone booth, and your boss, upon hearing that you are good at math, offers you a 

bonus if you can design the most efficient snowcone. You assume the snowcone will be 

modelled by a half-ellipsoid perched upon a cone. 

 

Your boss only wants to use 84 square centimeters of paper per cone, and wants to have it 

hold the maximum amount of snow. This can be represented in 3 variables: r (the radius 

of the cone), h (the height of the cone), and s (the height of the half-ellipsoid). In order to 

keep the snow from tumbling off the cone, s cannot be greater than 1.5*r. You have 

provided hints for the equations if you need them. 

 

4.0 CONCLUSION 
 

In this unit, you should be able to apply the Lagrange’s multiplier on a pringle surface, 

apply Lagrange’s multiplier on Economics, apply Lagrange’s multiplier on control theory 

and solve problems with the application of lagrange multiplier 

 

5.0 SUMMARY 
 

The Lagrange’s multipliers method is a very sufficient tool for the nonlinear optimization 

problems which are capable of dealing with both equality constrained and inequality 

constrained nonlinear optimization problems. Many computational programming 

methods, such as the barrier and interior point method, penalizing and augmented 

Lagrange method, The Lagrange’s multipliers method and its extended methods are 

widely applied in science, engineering, economics and our everyday life. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Find the dimensions of the box with largest volume if the total surface area is 64 

cm
2
. 

 

2. Consider two curves on the xy-plane: y = e
x
 and y = - (x−2)

2
. Find two points 

(x,y),(X,Y) on each of the two curves, respectively, whose distance apart is as 

small as possible. Use the method of Lagrange’s multipliers. Make a graph that 

illustrates your solution. 

 

3. Find the maximum and minimum values of  (     )     subject to the 

constraint         Assume that         

 

4. Find the maximum and minimum values of 

 (   )          on the disk         

 

5. Find the maximum and minimum of (     )       subject to the constraints 

         and         
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