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1.0  INTRODUCTION  
 

Jacobian 
 

The Jacobian of functions ƒi(x1,x2, ...,xn),i= 1, 2, ...,n, of real variables xi is the 

determinant of the matrix whose ith row lists all the first-order partial derivatives of the 

function ƒi(x1,x2, ...,xn). Also known as Jacobin an determinant. 

 

(or functional determinant), a determinant |aik|
 

 
  with elements aik = ∂yi/∂xk where yi = 

fi(x1, . .., xn),1 < i < n, are functions that have continuous partial derivatives in some 

region Δ. It is denoted by 

 

          

          
 

 

The Jacobian was introduced by K. Jacobi in 1833 and 1841. If, for example, n = 2, then 

the system of functions 

 

(1)  yl = f1(x1, x2) y2 = f2(x1, x2) 

 

defines a mapping of a region Δ, which lies in the plane x1x2, onto a region of the plane 

y1y2. The role of the Jacobian for the mapping is largely analogous to that of the 

derivative for a function of a single variable. Thus, the absolute value of the Jacobian to 

some point M is equal to the local factor by which areas at the point are altered by the 

mapping; that is, it is equal to the limit of the ratio of the area of the image of the 
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neighborhood of M to the area ofthe neighborhood as the dimensions of the 

neighborhood approach zero. The Jacobian at M is positive if mapping (1) does not 

change the orientation in the neighborhood of M, and negative otherwise. 

 

2.0 OBJECTIVE 
 

At the end of this unit, you should be able to: 

 

 recognise the Jacobian rule; and 

 how to use the Jacobian 

 

3.0 MAIN CONTENT 
 

If the Jacobian does not vanish in the region A and if  (y1, y2) is a function defined in the 

region Δ1 (the image of Δ), then 

 

∬  
  

              ∬  
  

[                   ] |
        

        
|        

 

(the formula for change of variables in a double integral). An analogous formula obtains 

for multiple integrals. If the Jacobian of mapping (1) does not vanish in region A, then 

there exists the inverse mapping 

 

x1 =  (y1, y2) x2 =  2(y1, y2)  

 

and 

 
        

        
   

        

        
 

 
(an analogue of the formula for differentiation of an inverse function). This assertion finds 

numerous applications in the theory of implicit functions. 

 

In order for the explicit expression, in the neighborhood of the point 

  (  
        

           ) of the functions y1, . . . .ym that are implicitly defined by the 

equations 

 

(2)  Fk(x1. . . .,xn, y1. . .,ym) = 0     i< k < m 

 
to be possible, it is sufficient that the coordinates of M satisfy equations (2), that the functions Fk 

have continuous partial derivatives, and that the Jacobian 

 

          

          
 

 
be nonzero at M. The Jacobian is been classified into two: 
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The Jacobian matrix and the Jacobian determinant. 

 

Examples1.Let F:R
2
 R

2
 be the mapping defined by 

 

       ( 
    

   ) (
      

      
) 

 

Find the Jacobian matrix Jf(p) for p = (1,1) 
 

The Jacobian matrix at an arbitrary point (x,y) is 
 

 

(

 
 

  

  

  

  
  

  

  

  )

 
 

 (
    

        ) 

 

Hence when x=1 ,y=1, you find Jf( 1, 1) = (
  
  

) 

2. Let F :R
2
 R

3
be the mapping defined by 

 

       (

  
    
   

) 

 

Find       at the point   (     
 

 
). 

 

The Jacobian Matrix at an arbitrary point       

 

        (

  
     
     

) 

 

Hence,   (     
 

 
)  (

 

 
 

   
    

) 

 

4.0 CONCLUSION 
 

In this unit, you have been able to recognise the Jacobian rule and how to use the 

formular. 
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5.0 SUMMARY 
 

In this unit, you have studied the basic concept of Jacobian with the identification of the 

formula below as: 

 

          

          
 

 

be nonzero at M. 

 

6.0 TUTOR – MARKED ASSIGNMENT 

 
1. Define the Jacobian matrix and the Jacobian determinant. 

2. Compute the Jacobian matrix of the following cases below: 

a. F(x,y) = (x+y, x
2
y )  

b. F(x,y) = (sinx, cosxy) 

c. F(x,y,z) = (xyz, x
2
z) 

 

7.0 REFERENCES/FURTHER READING  

 
D.K. Arrowsmith and C. M. Place, Dynamical Systems, Section 3.3, Chap an & Hall, 

London, 1992. ISBN 0-412-39080-9. 

 

Taken from http://www.sjcrothers.plasmaresources.com/schwarzschild.pd - On the 

Gravitational Field of a Mass Point according to Einstein’s Theory by K. S 

chwarzschild - arXiv:physics/9905030 v1 (text of the original paper, in 

Wikisource). 

  

http://www.sjcrothers.plasmaresources.com/%20schwarzschild.%20pd
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1.0 INTRODUCTION 
 

The Jacobian of functionsfi(x1, x2, ..., xn), i = 1, 2, ..., n, of real variables xi is the 

determinant of the matrix whose ith row lists all the first-order partial derivatives of the 

function fi(x1, x2, ..., xn).Also known as Jacobian determinant. 

 

In vector calculus, the Jacobian matrix: is the matrix of all first-order partial derivatives 

of a vector- or scalar-valued function with respect to another vector. Suppose F: Rn → Rm 

is a function from Euclidean n-space to Euclidean m-space. Such a function is given by m 

real-valued component functions, y1(x1,...,xn), ..., ym(x1,...,xn). The partial derivatives of all 

these functions (if they exist) can be organized in an m-by-n matrix, the Jacobi n matrix J 

of F, as follows: 
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This matrix is also denoted by JF(x1, …., xn) and 
),.....(

),.....,(

1

1

n

m

xx

yy




.  If (x1,…,xn) usual orthogonal 

Cartesian coordinates, the ith row (i = 1, ..., n) of this mthe gradient of the i
th

 component 

function yi:   . Note that some books define the Jacobian as the transpose of t e matrix 

given above. 

The Jacobian determinant (often simply called the Jacobian) is the determinant of the 

Jacobian matrix (if m = n). 

 

These concepts are named after the mathematician Carl Gustav Jacob Jacobi. 

 

2.0 OBJECTIVE 
 

At the end of this unit, you should be able to: 

 

 apply the Jacobian concept; 

 explain the Jacobian matrix; 

 apply the inverse transformation; and 

 solve problems on Jacobian determinant. 

 

3.0 MAIN CONTENT  
 

Jacobian matrix 
 

The Jacobian of a function describes the orientation of a tangent plane to the function at a 

given point. In this way, the Jacobian generalizes the gradient of a scalar valued function 

of multiple variables which its lf generalizes the derivative of a scalar-valued function of 

a scalar. Likewise, the Jacobian can also be thought of as describing the amount of 

"stretching" that a transformation imposes. For example, if (x2,y2) = f(x1,y1) is used to 

transform an image, the Jacobian of f, J(x1,y1) describes how much the image in the 

neighborhood of (x1,y1) isstretched in the x and y directions. 

 

If a function is differentiable at a point, its derivative is given in coordinates by the 

Jacobian, but a function doesn't need to be differentiable for the Jacobian to be defined, 

since only the partial derivatives are required to exist. 

 

The importance of the Jacobi n lies in the fact that it represents the best linear 

approximation to a differentiable function near a given point. In this sense, the Jacobian i 

the derivative of a multivariate function. 

 

If p is a point in R
n
 and F is differentiable at p, then its derivative is given by JF(p). In 

this case, the linear map describe by JF(p) is the best linear approximation of F near the 

point p, in the sense that  
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For x close to p and where o is the little o-notation (for x → p) and || x – p|| is the distance 

between x and p. 

 

In a sense, both the gradient and Jacobian are "first derivatives" — the former the first 

derivative of a scalar function of several variables, the latter the first derivative of a 

vector function of several variables. In general, the gradient can be regarded as a special 

version of the Jacobian: it is the Jacobian of a scalar function of several variables. 

 

The Jacobian of the gradient has a special name: the Hessian matrix, which in a sense is 

the "second derivative" of the scalar function of several variables in question. 

 

Inverse 
 

According to the inverse function theorem, the matrix inverse of the Jacobian matrix of 

an invertible function is the Jacobian matrix of the inverse function. That is, for some 

function F: R
n
 - R

n
 and a point p in R

n
, 

 

 
 

It follows that the (scalar) inverse of the Jacobian determinant of a transformation is the 

Jacobian determinant of the inverse transformation. 

 

Examples 
 

Example 1: The transformation from spherical coordinates (r, θ,  ,) to C rtesian 

coordinates (x1, x2, x3) , is given by the function F : R
+
 × [0,π] × [0,2π) → R

3
 with 

components: 

 

 
 

The Jacobian matrix for this coordinate change is 

 

 
 

The determinant is r
2
 sin θ. As an example, since dV = dx1 dx2 dx3 this determinant 

implies that the differential volume element dV = r
2
 sin θdrdθ. Nevertheless this 

determinant varies with coordinates. To avoid any variation the new coordinates can be 

defined as 
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Now the determinant equals to 1 and volume element 

becomes  

 

Example 2: The Jacobian matrix of the function F: R
3→ R4

 with components 

 

y1 = x1  

 

 
 

is 

 
 
This example shows that the Jacobian need not be a square matrix. 

 
Example 3: 

 

 
 
The Jacobian determinant is equal to r. This shows how an integral in the Cartesian coordinate 

system is transformed into an integral in the polar coordinate system: 
 

 
 

Example 4: The Jacobian determinant of the function F: R
3→ R3

 with components 

 
 

is 
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From this we see that F reverses orientation near those points where x1 and x2 have the 

same sign; the function is locally invertible everywhere except near points where x1 = 0 

or x2 = 0. Intuitively, if you start with a tiny object around the point (1,1,1) and apply F to 

that object, you will get an object set with approximately 40 times the volume of the 

original one. 

 

4.0 CONCLUSION 
 

In this unit, you have studied the application of the Jacobian concept. You have known 

the Jacobian matrix and the application of the inverse transformation of Jacobian 

determinants. You have solved problems on Jacobian determinant. 

 

5.0 SUMMARY  
 

In this unit; 

 you have studied application of the Jacobian concept 

 you have known the Jacobi n matrix 

 you have known the inverse transformation of Jacobian determinant 

 you have solve problems o Jacobian determinant such as ; 

 The Jacobian matrix of thefunction F : R3 → R4 with components 

 

 
 

is 

 
 

This example shows that the Jacobian need not be a square matrix. 
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6.0 TUTOR-MARKED ASSIGNMENT 

 
1. In each of the following cases, compute the Jacobian matrix of F, and evaluate at 

the following points; 

 

F(x,y) = (sinx,cosxy) at points (1,2)   

 

F(x,y,z) = (sinxyz,xz) at points (2,-1,-1)   

 

F(x,y,z) =(xz,xy,yz) at points (1,1,-1) 

 

2.  Transform the following from spherical coordinates (r, θ, ɸ) to Cartesian 

coordinate (x1,x2,x3) by the function 

F:R
+ (0, )   (0,2 ) → R

3
 with components : 

 

r1= r tan θcosθ 

 

r2= r sinθ tan θ 

 

r = rsinθ1 

 

3. The Jacobian matrix of the function F: R
3
 → R

4
 with components 

 

y1= x2 

 

y2= 4x1 

 

y3 =    
   4x3 

  

y4 = x1 sinx3 

 

4. The Jacobian matrix of the function F: R
3
 → R

3
 with components 

 

y1= 4  
     sin x2 x3 

 

y2=3 x2 

 

y3 = x23x3  

 

The Jacobian matrix of the function F: R
3
 →R

3
 with components 

 

x=rtan ɸ 

 

y=rcosɸ 
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1.0 INTRODUCTION 

 

If m = n, then F is a function from m-space to n-space and the Jacobian matrix is a square 

matrix. You can then form its determinant, known as the Jacobian determinant. The 

Jacobian determinant is sometimes simply called "the Jacobian." 

 

2.0 OBJECTIVE 
 

3.0 MAIN CONTENT  

 

Dynamical systems 
 

Consider a dynamical system of the form x' = F(x), where x' is the (component-wise) 

time derivative of x, and F: R
n
 → R

n
 is continuous and differentiable. If F(x0) = 0, then x0 

is a stationary point (also called a fixed point). The behavior of the system near a 

stationary point is related to the eigenvalues of JF(x0), the Jacobian of F at the stationary 

point. Specifically, if the eigenvalues all have a negative real part, then the system is 

stable in the operating point, if any eigenvalue has a positive real part, then the point is 

unstable. 

 

The Jacobian determinant at a given point gives important information about the behavior 

of F near that point. For instance, the continuously differentiable function F is invertible 

near a point p∈R
n
 if the Jacobian determinant at p is non-zero. This is the inverse 

function theorem. Furthermore 

 

If the Jacobian determinant at p is positive, then F preserves orientation near p; if it is 

negative, F reverses orientation. The absolute value of the Jacobian determinant at p 

gives us the factor by which the function F expands or shrinks volumes near p; this is 

why it occurs in the general substitution rule. 
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Uses 
 

The Jacobian determinant is used when making a change of variables when evaluating a 

multiple integral of a function over a region within its domain. To accommodate for the 

change of coordinates the magnitude of the Jacobian determinant arises as a 

multiplicative factor within the integral. Normally it is required that the change of 

coordinates be done in a manner which maintains an injectivity between the coordinates 

that determine the domain. The Jacobian determinant, as a result, is usually well defined. 

 

Newton's method 

 

A system of coupled nonlinear equations can be solved iteratively by Newton's method. 

This method uses the Jacobian matrix of the system of equations 

 

4.0 CONCLUSION 
 

In this unit, you have known the application of Jacobian concept. You have studied the 

application of Jacobian matrix. You have used Jacobian in the application of inverse 

transformation and have also solved problems on Jacobian determinant. 

 

5.0 SUMMARY 
 

In this unit, you have studied the following: 

 

 Application of the Jacobian concept 

 Application of Jacobian on the Jacobian matrix 

 Application of the Jacobian o the inverse concept 

 Application of the Jacobian to solve problems on Jacobian determinant 

 

6.0 TUTOR – MARK ASSIGNMENTS 
 

1. Find the Jacobian determinant of the map below, and determine all the points 

where the Jacobian determinants is equal to zero(0). 

a. F(x,y,z) = (xy,y,xz)   

b. F(x,y) = (e
xy

,x) 

c. F(x,y) = (xy, x
2
) 

 

2. The transformation from spherical coordinates (r, θ, φ) to Cartesian coordinates 

(x1, x2, x3), is given by the function 

F: R
+
 × [0,π] × [0,2π) → R

3
 with components: 
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3. The Jacobian determinant of the function F: R
3
 → R

4
 with components 

 

 
 

 
 

4. The Jacobian determinant of the function F: R
3
 → R

4
with components 

 

 
 

5. The Jacobian determinant of the function F: R
3
 → R

3
with components 
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