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1.0 INTRODUCTION

In scientific problems, often times one discovers that a factor depends
upon several other related factors. For instance, the area of rectangle
depends on its length and breath, hence can say that area is the function
of two variables i.e. its length and breadth. Potential energy of a body
depends on gravity, density and height of the body, hence, we can also
say that potential energy is a function of three variables i.e gravity,
density and height etc. The strength of a material depends upon
temperature, density, isotropy softness etc., here we can say that the
strength of material is a function of many variables i.e. temperature,
density, isotropy softness etc.
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2.0 OBJECTIVES

At the end of this unit, you should be able to:

. use Jacobian change variables in multiple integral;

) determine whether two or more functions are linearly dependent
or independent; and

) identify the functions of two or more variables.

3.0 MAINCONTENT
3.1 Functions of Several VVariables

A function is composed of a domain set, a range set and a rule of
correspondence that assigns exactly one element of the range to each
element of the domain u, is called a function of two variables x and y if
u has one definite value for every pair of variables of x and vy.
Symbolically, it is written as

u=f(xy).
The variables x and y are called independent variables while u is called
the dependent variable.

Similarly, we can define u as a function of more than two variables.
In summary, we have that

u(x) =>a function of a single variable
u(x;, x,) =a function of two variables
U(Xgy Xy Xg e e x,) = a function of several variables.

Example 1

If £(xy)=x2—3xy+6y, find : (a) f(-1,1) and f(2,3).
(@ f(x,y)=x*-3xy+6y

f(=11) = (=1)2 - 3(-1)(1) + 6(1)

f(-11) =1+3+6=10

(b) (23 =22-3(2)(3+6(3
f(23) =4-18+18=4
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3.2 Jacobian

Jacobian is a functional determinant (whose elements are functions)
which is very useful in transformation of variables from Cartesian to
polar, cylindrical and spherical coordinates in multiple integras. Let
u(x,y) and v(x,y) be two given functions of two independent variables x
and y.

The Jacobian of u and v with respect to X,y denoted by

u Vv . . . .
J( jor ou.v) is a second order functional determinant defined as

X y) o(xy)
a
] u v :a(u,v)zﬁx oy
X y) oxy) [N N
oxX oy

Properties of Jacobians

If uand v are the functions of x and y, then

o) oxY) _,
o(x,y) o(u,v)

If u,v are the functions of r,s where r,s are functions of x, y, then,
o(u,v) o(u,v) « o(r,s)

a(x,y) a(r,s) a(xy)

If functions u, v, w of three independent variables X,y,z are not
o(u,v,w)

independent, then, =
o(x,Y,2)

Example 2

o(u,v)
a(x,y)

Find the Jacobian

in each of the following:
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Solution.
au
i y? y? . u v} auv) |ox ay
) u=x+-—, v=-—,using J - _
(1) u X2, V== g (x yj oy | o
ox oy
y:, 2y
J(u Vj:“”"’):a—?) )
a(x, 2
X Y)ay) Yy (&
_2y 2y’ 2y 2y
= N X
Solution
o
1l : u vy o(uyv) |[ox oy
i) u=x*+y?, v=2xy, using J _ _
(i) u=x"+y*, v=2xy g(xyj oy | o
ox oy
_|12x =2y
_2y 2X
= (2x)(2x)-(2y)(-2y)
= 4x% + 4y?
= 4(x* +y?)
Example 3
If u=xyz, v=x*+y*+z?, w=x+y+z find J = o(u,v,w)
a(x,y,2)

Solution

Since u, v,w are explicitly given, so, first we evaluate

v ow
oX OX OX| |yz zx xy
Jza(u,v,w)za_u @ @=2x 2y 2z
oxy2) oy o oy [ .

uovoow

0L 07 o1

= yz(2y-22)-zXx(2x-22)+xy(2x-2y)

=2[yz(y-z)-zx(X-z)*+xy(X-y)]
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=2Ax°y - X"z2-xy* +x2” +y°z-yz’]
=2x*(y - 2) = x(y* +2°) + yz(y - 2)]
=2(y - 2)[X* = x(y +2) + yz]
=2(y-2)[y(z—x) —x(z—X)]
=2(y—2)(z—x)(y—x)

=-2(x—Yy)(y—-2)(z—x) The idea can be easily extended to three or
several variables thus:

avow
OX OX OX
J[u,v,wj_a(u,v,w)_a_u N ow
xy,z) o(xy,z) [0y oy oy
awoow
0z 01 01

Example 4

Jacobian can be applied to polar coordinaterand@, thus, x =rCos@and
y=rSiné.

Then,
oX OX
oxy) _lor o6
J=222r 1
o0 |y @
or 00
But x_ Cosé, o _ —rsiné (2)
or lolv)
¥ =Sin@ and o =rCosé
or 00

Substituting equation (2) into (1) gives

Cos@ —rSind

Sind rCosé
=rCos®d — (-rSin*0)
=r|coc?6+ sin%0)=r

Since Cos?0+Sin%6 =1
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J_oy)
o(r,0)

3.3 Function Dependence and Independence

Two functionsu(x) and v(x) defined on an interval 0 < x <1are said to be

functionally (linearly) dependent on0< x <1if there exist ‘3’ two
constants k, and k, where not  both zero, such that*3°

k,u(x) + k,v(x) =0forx, vx. (i)

However, the two functions u(x)and v(x)defined on interval

0 < x <lare said to be functionally (linearly) independent on 0< x <1, if
the only constantsk, andk, such that‘3’ for allxin the interval where

both constantsk, andk,are zeros i.e, when u or v can not be expressed
as proportional to the other. Otherwise, u and v are linearly dependent if

(i) holds for some k, andk, not both zero.

Example 5

Show that the functionsv(x) =e*andu(x) =e"™are linearly dependent on
the interval. 0 < x<1.

Solution
Suppose ke +k,e™ =0 Wvxin 0<x<1 (1)
Multiplying equation (1) bye ™, we obtain
ke¥e ™ +k,e™e ™ =0 (2)
k, +k,e®?* =0 (3)
differentiating equation (3) we obtain
(b—a)k,e®* =0 (4)
(b—a)e®®* =0 sinceb—a = 0 then it implies that
b=0 (5)

Substituting (5) into (1), and differentiating w.r.t.x, we obtain
k,ae™ =0 (6)
= a=0, since e* #0.

Example 6
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Show that the functionsv(x) =e*andu(x) =e"are linearly independent
on the interval. 0<x<1.

Solution: If
ke™ +k,xe® =0 1)
(k, +k,x)e™ =0 (2)
Sincee* =0, = k, +k,x=0 (3)

Differentiating equation (3) we obtain
k, =0 (4)

Substituting (5) into (1), however

ke*=0 = k, =0.Since e =0 (5)

3.3.1 Testing For Linear Dependence or Otherwise

A method called Wronskian of the function could also be used to test for
linear dependence or otherwise. Thus, consider the functions u(x)and

v(x) and the first derivatives u'(x) andv’(x), therefore we can define the
Wronski determinant or Wroskian:

v(x) u(x)
Vi(x) u'(x)
=v(X)u’'(X) —u(x)v'(x)

Wronskian =W (v(x).u(x)) =

Results:
V(X), u(x) are linearly independent if W =0
Otherwise linearly dependent when W=0.

Example 7

Determine whether the following functions v(x) and u(x) are linearly
dependent or independent.

V(X) =cosbx, u(x) =sinbx with b =0
v(X) =e*, u(x)=e-* with a=0.
Solution
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v(X) = cosbx, V'(x)=-bsinbx, u(x)=sinbx and u’(x) = cosbx.

coshbx  sinbx

v(xX) u(x)
V'(X) u'(x)

(a) W (v(x).u(x)) = -

—sinb bcosbx

=Db(cos” bx +sin®bx)
=b=0

So v(x) and u(x) are linearly independent.

v(x) =e*, V(x) =-ae™, u(x) =e* and u'(x) = —ae ™.

ax —ax

(b) W(V(X)-U(X)) = \\//,(())(()) ;J'(())(()) B aeeax —Ze‘ax
— _ae® —ae°
=—a(e’ +e°)

Witha =0. So v(x) and u(x) are linearly dependent.
SELF ASSESSMENT EXERCISE

Determine whether the following pair of functions are linearly
dependent as the case may be

I. @ ux)=x v(x)=e*
(b) u(x) =2Sinhx, v(x) = Cosx
€  ux=x> vx)=3x*

ii. (@  Show that the function u(x)and v(x) defined by
u(x)=x* v(x)=xx are linearly Independent for the interval
0 < x <1. Compute the Wronskian of these functions.

ii.  If f(x,y)=x"—2xy +4y?,
Find (a) f(-1), (b) f(0,~3) and
©) fxy+k)—f(xy)

12
i 4x+2y
\2 If f(x,y)= ,
Y)= 3 oy
Find (a) f(L-3), (b) f2+ h,sz - (23
v It X =rsinfcosg, y =rsingsing and z=rcosé.

8
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Show that M =r?siné.

or.6.¢)

Vi. |f U= X2,V _ y2’ flnd a(U,V)

a(x,y)
3.4  Multiple Integral

3.4.1 Double Integral

Definition: In this case the integrand is a function f(x,y)that is given
for all (x,y)in a closed bounded region R of the x—y plane.

Let f(x,y) be a single valued continuous function within a region
R bounded by a close curveC . Then the region R is called

The region of integration. However, double integral can be defined thus:
[ f(x yyxdy or [[ £(x,y)dA (L)

3.4.4.1 Evaluation of Double Integrals

Considera<x<band g(x)<y<h(x) so thaty=g(x) andy=h(x)
represents the boundary of R . Then

[[/ 70 y)xdy = f’[ [ y)}dx 2

Similarly, if r can be described thus
c<y<d, v(y)<x<u(y)

So that x=v(y) and x=u(y). Then
jRj f(x,y)dxdy = [° [ jv”(‘yy)) F(x, y)dx}dy 3)

In this case, one first calculates the integral within the square brackets.
Then further integration is then performed.
Properties of Double Integrals

1. j j af (x,y)ds = a j j f(x,y)ds, a=constant

D D

9
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2. [[Ifeey) +g00y)ds = [[ £ (x y)ds+ [[ g(x, y)ds

3. jj f(x, y)ds:ﬂ f(x, y)ds+_Uf(x, y)ds

Were D is the union of disjointed domains D1 and D2
Example 5
Evaluate the integrals

. 1 el

() [ [0 +y?)dydx

. 2 el

(i) L _[O(xz +y?)dydx

Solution

0 E{ [+ yz)dy}dx
=[ by +1y*fox
= o+ 5 -ofpx= [ o+

=[ Ty +4y* Jrox
=[x + 9 -0 = [ (x* + e
1]2 10 2

1.3

=X =

3 31 3 3
8

3

3.44.2 Double Integral in Polar Coordinates

This is defined by

[t (r.0)drde

10
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Example 6

Evaluate the integrals
I 5 IZCOSH r’drdo.
AL

Solution
J~2Cos€ rzdr}de = (1)

0

7
rl

i 3 2Coso
_ fH 40 )
7| 3

. 3
_ _f/ (ZC(;S@) 0

-[ 8 cos*ede 3)
/3

Using trigonometric identity to simplify Cos®@

Thus Cos360 = Cos(260 + 8) = Cos268Cos 8 — Sin265in 9
= (Cos?6—Sin*6)Cosd — (2SindCosH)Sin 9
= Cos°0 — Sin’dCos — 2Sin*6Cos &

= Cos®@ —3Sin’*6Cosé

= Cos®0— 31— Cos?0[cose
=Co0s°9—3Cos@+ Cos’0
= 4Cos°0 —3Cosé

Cos*0 = L Cos30+> Coso 4)
4 4
Hence, substituting (4) into (3) we obtain

| =§j% (100539+§Cosejd9
32 4

%
| = —EF Sin36 + 3Sin 0}
3|3

= —%H% Sin3 7z +3Sin %) — (% Sin(-37)+ BSin(—%)ﬂ (5)

But Sin¥%z=-1, Sin%=1
Similarly, Sin—-%z=-1and Sin—7%=-1 (6)

11
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Substituting (6) into (5)

o LRI
S

__E{§+§}__E(Ej__§
3[373)  3l3) 9

3443 Triple Integral

Definition: A function of three variables is involved in triple integral.
However, in triple integral, integration is carried out thrice. It is then
define as:

m f (x,y,z)dxdydz over the region v
If(x, y,z)dv. This can also be used to find the volume of any

shape.
Example 7

Evaluate
-[—ll Ioz .LX;Z(X + Yy + z)dydxdz
Solution

.[_ll{ L Z ( _[:(x +y+ z)dy)dx}dz

- J‘_ll J: (xy +3y2zy)" dx}dz

= fl_JOZ ([x(x+ 2)+3(x+2)* +z(x+ z)]— [x(x —2)+i(x-2)* +z(x— z)])}dz
= fl _IOZ (4xz +22° )dx}dz

= J._ll[2xzz + 2x22]:dz

1
= J._ll423dz =7*

=1-1=0

12
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=0
Example 8

Evaluate

| = m (3x? +3y? + 322 Jdv by changing to polar coordinate.

Thus x = rSin@Cos¢, y =rSinéCos¢ and z =rCos@.

Solution

| =24 [* [ r¥dr(rsinadg)(rd6)
=%L%Io%a58in6d6d¢

24 .o 7
:?af"fo (—Cos@)0 dg

24 . & 24 .
=—a’-—=—a‘~r

5 2 5
4.0 CONCLUSION

In conclusion, the student should be able to use Jacobian method to
change the variable in multiple integral and to determine whether two
functions are linearly dependent or independent. Also to solve integral,
multiple.

13



MTH 381 MATHEMATICAL III
5.0 SUMMARY
The following are discussed in the unit:

Functions of variable defined thus, u(x;,X,,Xs----+- x.). Jacobian of
(uv) was discussed and extend it to three or several variables, thus

J(u Vj: ouY) o4 J(u,v,wjza(u,v,w)
X y) o(xy) X,y,2) (oXY,12)

Jacobian was also applied to polar coordinate thus

J _ oY) =r.
o(r,0)

The functional dependence of two functionsu(x) and v(x)was discussed
thus:

k,u(x) +k,v(x) =0,Vvx where k,and k,are constants and are not zero.
While the functional independence of two functionsu(x)and v(x)was
also discussed thus:

k,u(x) +k,v(x) =0 Wvx, where k,=k,=0.

Testing for linear (independence) dependent was discussed using
Wronskian method which involves the determinant thus

v(x) u(x)

W(V(X), U(X)) = V(X)U’(X) - U(X)VI(X) = V'(X) U'(X)

Lastly, multiple integral was discussed.

6.0 TUTOR-MARKED ASSIGNMENT

I. Evaluate the double integrals
7
(a) J‘f;r J.—l Xdedy
(b) L i j e’Coshxdydx

() f Lym x> ydxdy

14
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Il Evaluate the following triple integral
T (2 X+Z
@ .f_ J; L_Z (X + y + z)dxdydz

dxdydz 2 22
(b) I”m where x* +y“+z°=a

(c)  Compute the volume of the solid enclosed by

i) X+¥iZ_1 x=0,y=0z=0
a b c

(i) x*+y*-2ax=0, z=0, x*+y*=1z°
iii.  Determine whether the following pair of functions are linearly
dependent or independent as the case may be.
@  u(x)=xv(x)=e*
(b) u(x) = 2Sinhx, v(x) = Cosx
©  ux) =x>v(x)=3x°
Iv. (@) show that the functions u(x)and v(x)defined by
u(x)=x*u(x)=xx| are linearly independent for the interval
0<x<1.
(b)  Compute the Wronskian of the function in 4(a)
v.  Evalute H(x+ y)’dxdy, where R is a region bounded by the

R
parallelogram x+y=0, x+y=2, 3x-2y=0, and 3x-2y=3.
vi.  Evalute [[(x*+y*)dxdy, where R is a region in the first
R

quadrant bounded by x*-y*=a, x*-y®=b, 2xy=d, 0<a<b,
O<c<d
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1.0 INTRODUCTION

Vector function represents vector fields which have various physical and
geometrical applications.

The basic concepts of differential calculus can be extended to vector
function in a simple and natural fashion.

Vector functions are useful for representing and investigating curves and
application in mechanics as path of moving bodies.

Integral theorems will be considered in the later path of this unit’s i.e
Line Integral, Gauss, Stokes and Greens theorems.

2.0

OBJECTIVES

At the end of the unit, you should be able to:

appreciate vector field and vector function;

18
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. understand the vector field theory, using vector function to
investigate curves and their applications in mechanics; and

) use integral theorem to solve some physical problems. Study of
Line Integral, Gauss, Stokes and Greens theorems and their
applications.

3.0 MAIN CONTENT
3.1 Vector Field Theory

A scalar function is a function that is defined at each point of a certain
set of points in space and whose values are real numbers depending only
on the points in real space but not on the particular choice of the
coordinate system.

Furthermore, the distance of f(x,y,z)of any point p from a fixed point
p,in space is a scalar function whose domain of definitionDis the
whole space. f (x,y,z)defines a scalar field in space. Introducing a
Cartesian coordinate x,,Y,,z,. Then the distance

F(X,Y,2) = J(X=X,)2 + (Y = Yo)? +(2 — 2,)?

The temperature distribution in a heated body, density of a body and
potential due to gravity are the examples of a scalar point function.

3.2 Relations between Vector Field and Functions

A vector v(p)is a function that is defined on some point setD in space
I.e. the set of points of a curve, a surface or a three dimensional region

and associates with each point p in D a vectorv(p).
While a vector field is given in D. We introduce Cartesian coordinates

X,y,zthen we may write our vector function in terms of compound
function.

V(% ¥,2) = [vy (% ¥,2), Y, (%, ¥, 2), V5 (%, ¥, 2)]
orusing i, j,k,. Thus
V(X% Y, 2) = Vi (X, Y, 2)i +V, (X, Y, 2) J+ V5 (X, Y, 2)K

But we should keep in mind thatv depends only on that points of its
domain of definition, and at the point defines the same vector for every

19
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choice of the coordinate system. The velocity of a moving fluid,
gravitational force are the examples of vector point function.

Our notation in simple scalar and vector quantities in the pre-requisite
course mathematical methods | and Il are the same with that under
discussion. The only difference is that the components v,,v,,v, of vnow

becomes functions of x, y, zsincev is a function of x, y, z.

3.2.1 Example of Vector Field (Velocity Field)

At any instant, the velocity vectorsv(p)of a rotating body B constitute a

vector field, the so called velocity field of the rotation. If we introduce a
Cartesian coordinate system having the origin on the axis of rotations
then

V(X,Y,z) =Wx[z,y,z]=wx (xi + yj + zk)

N
~ l g
o
—> — O « «—
Fig. 1 Field of Tangent Vectors of
a Curve Fig. 2: Gravitational

Field

et

Fig. 3: A Rotating Body and the
Corresponding Velocity
Field

where x,y,z are the coordinates of any point p of Bat the instant under

consideration. If the coordinates are such that the z-axis of rotation and
w points in the positive direction, then w = wk and

20
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k
= w(-yi + %) = w[- y,x,0]

< O w—.

An example of a rotating body and the corresponding velocity field are
shown in Fig. 3.

Example of Vector Field (Field of Force)

a. If the velocity at any point (X,y,z) within a moving fluid is known
at a certain time, then a vector field is defined.

b. v(x,y,z) = xyi — yz?kj+ x?zk defines a vector field. A vector field
which is independent of time is called a stationary steady-state
vector field.

C. Let a particle Aof massM be fixed at a point p,and let a particle
B of massM to be free to take up various positions pin space.
Then A attracts B. According to Newton’s Law of gravitation, the
corresponding gravitational force pis directed from pto p,, and

its magnitude is proportional to%zwhereris the distance

between p and p,say.

o

GM M
[pl=—

r.2

where G is the gravitational constant.

Hence pdefines a vector field in space. If we introduce Cartesian
coordinate such that p,has the coordinates x,,y,,z,and phas the
coordinates x, y, z, then by Pythagoras theorem.

r:\/(X_Xo)2+(y_YO)2+(Z_Zo)2 (2)
Introducing the vector assuming r > 0then
F=(X=X)i+(y—Yo)i+(z—2,)k 3

we have |r|=rand (—%)is a unit vector in the direction of p; the minus

sign indicates that p is directed from p + p, .Fig. 2.
Hence substituting (1) into (3) we obtain

1 GM M
p=|p|[—;rj=—%r
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=~ CMMe )i (y- 1) i+ 22 K] 4)

Hence, this vector function describes the gravitational force acting on B.
Derivative of a Vector Function

A vector function v(t)is said to be differentiable at a point tif the limit
exists. The vector is called the derivative ofv(t).

v(t + At) —v(t)

GRS
E/\I V()
+ \\\
> >

v\
Partial Derivatives of a Vector Function

The way of introducing partial derivation to vector analysis is obvious.
Indeed, let the components of a vector function.

v=v,ii+Vv,j+v,k be differentiable functions of
nvariablest,,t,,t, - t.. Then the partial derivative of v with respect to

tis denoted by% and is defined as the vector  function.

%_avl +%J+%k

[
ot ot
Example 1

Let r(t,,t,) =aCot,i+aSint, j+3t,k

ar =-aSint,+aCoti,
1

o

ot,
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3.2.2 Line Integrals

Definition: Let f(x)be a single real valued function in the
intervala< x<b. Thus, we can define line integral as

b
L f (x)dx
3.2.3 Evaluation of Line Integral

Evaluation of line integralj:f(x)dxcan be accomplished by two
methods. Thus:

a. A line integral of a vector function F(r) over a curvecis defined
by
b dr
F(r)dr = | F(r(t))—dt 1
JFrdr=[ F(r®) (1)
b. In term of components, with dr = dxi; +dy; +dz,

Then we obtain

[F(r)dr = [ (F.dx+ F,dy + Fdz)

= L(le' +F,y +Fz)dt (2)

dx dy dx
Where x'=—, == 7'=—— 3
dt y dt dt )

It is worth to mention that if the path of integrationC in equation (1)
above is a close curve that is

B A

C
o O
¢ then.

Then instead of L we can also write i

3.2.4 General Properties of Line Integral

a. LkF.dr :kLF.dr where k is a constant
b. L(F+G)-.dr=LF-.dr+LG.dr
C. LF'dr:LlF-.errLf-.dr

Where c=c, +c,
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3.2.5 Examples on Line Integrals

If  A=(3x*+6yji—14yzj +20x2%k, evaluate [A.drfrom (0,0,0) to
(1,1,1) along the following parts C:

The straight lines from (0,0,0) to (1,0,0) then to (1,1,0) and then to
(1,1,2).

The straight line joining (0,0,0) and (1,1,1).
Solution:

[Adr=] [(3x? + 6y i —14yzj + 20x22k | (dxi + dj + dzk)

= L[(3x2 + 6y)dx —14yzdy + 20xz 2dz]

If x=t,y=t?z=t% points (0,0,0) and (1,1,1) correspond to t=0 and
t=1 respectively. Then

=1

[Adr= [ +602 it -1 oo () 200 F o )

t=0

- tIl(gt2 — 28t° + 60t° Hit

t=0
=[3° —at” +6t°f =5

Along the straight line from (0,0,0) to (1,0,0) , y=0, z=0, dy=0 and dz=0
while x varies from 0 to 1. Then the integral over this point of the path is

T(3X2 + 6(0))ix —14(0)(0)(0) + 20x(0)?(0)

x=0

t=1

[3d =D =1
x=0

Along the straight line from (1,0,0) to (1,1,0) , x=1, z=0, dx=0 while
y varies from 0 to 1. Then the integral over this point of the path is

t=1

[3? +6(y)0-14y(0)dy +20(1)(0)*(0) = 0

y=0
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Along the straight line from (1,1,0) to (1,1,1) , x=1, y=1, dx=0, dy=0
while z varies from 0 to 1. Then the integral over this point of the path is

t=1

[Bw? +6@)p-14@)2(0)dy +20()(2)* oz

z=0

! 202 )dz_{ZOt 122_30

Adding jA dr=1+0+20_23

The straight line joining (0,0,0) and (1,1,1) is giving in parametric form
by x=t, z=t. Then

t=1
[[A.dr = [(at? +6tht—14(t)t)d (t)+ 20(0) (¢t

t=0

- tf(3t2 + 6t —14t° + 20t° hit

e 13
= [ (6t —12t* + 20t° hit = =

3.3 Integral Theorem
3.3.1 Divergence Theorem of Gauss

For simplicity, divergence theorem of Gauss can be used to transform
triple integral into surface integral over the boundary surface of a
region in space. This is obvious because surface integral is simpler and
easier to handle compared to triple integral.

Therefore, let T be closed bounded in a region space whose boundary is
a piecewise smooth orient table surface S.

Let f(x,y,z) be a vector function that is continuous and has continuous

first partial derivative in some domain containing T. However, the
transformation is done by the so called divergence theorem which
involves the divergence of a vector function F.
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Where divergence of F

=  divF = (6': + 5 O Jd —ﬂF ndA (2)
ox oy oz
But H F-ndA= H(Fldydz + F,dxdz + F,dxdy) (3)

Where 'n'is the outer unit normal vector of S.

but
F=Fi+Fj+Fk (4)

and n = Cosai + Cosfj + Cos )k (5)

where «,B,and y are the angle between'n'and the positive
X, y,and z axes respectively.

Next, we substitute equation (3) and (4) into (2) so we can obtain

m (aF 8': pe jdxdydz = J. I (F,Cosai + F,Cosfjj + F,Cosyk A (6)

But
Cosa = dzdy, Cos,B = dzdx, Cosy = dxdy
Iﬂ( F2 chz = J‘J. F,dydz + F,dxdz + F,dydx (7)
0z
Example 2

Application of the Divergence Theorem
Harmonic Function

The theory of solution of Laplace gives thus:

OF, OF, OF 4 @)
ox oy oz

and equation (1) is called potential theory.

Vif =

Now, from the divergence theorem formula

jﬂdidev:jsj f -ndA (9)
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Where F=Vf (10)
is gradient of scalar function.
divF =V*f (11)
and F-n=n-Vf
Hence,
[ v*fav = [| L g (12)
T S an
Where
of
n-gradf = —dA (13)
on

we denote the directional derivative of f in the outer normal direction of

of
S by —
yan

However,
f-nzn-szﬂdA (14)
on
3.3.2 Green’s Theorem

This theorem gives the relation between the integral over the boundary
surface which encloses the volume. IfF,F,,F,are three functions of

X, y,zand their derlvatlvesa— % Z—Rare continuous and single valued
X z

functions in a regionV bounded by a closed surface S, then

I (gz 2(3 aafjdv jj PCosa + QCosf3 + RCosy JA

As in (6) above

Where Cosa,Cosppand Cosy are the direction cosines normal to the
surface S.

Example 3

Evaluate the surface integral
| = ﬂ (x3dydz + x%ydzdx + xzzdxdy)
S

where is the surface bounded by z =0,z =b,x* + y* =a”.
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Solution

Using Green’s theorem

| = m (3x? + x? + x? hixdydz

- 4'[0:“(:/W ( Iob dz)dy}xzdx
- j:‘ [ Lﬁ (b)dy}szdx

- 20bj:x2\/a2 — x2dx

Substituting x =aSin@or x =aCosdwe have dx =aCos&ld
= 20b.|‘0a(aZSin26h/a2 —~ aZSinZG)?osédé’
= 20a’b|’ (sin®6v1—sin’0 Fosaio

but v1- Sin?@ =/Cos?6 = Cosé
_ 4(*cin2g 2
| = 20ba* ["(in”0 - Cos0}10

= —20ba* joa cos 2446

- 20ba4{1}
16

=§7za4b
4

3.3.3 Stoke’s Theorem

This is the transformation between surface integrals and line integrals.
Stoke’s theorem involves the curl.

i j ok
_AF 8/ 8 o
Curl F = AxF =|0/ /5’y %, (1)
Fl I:2 F3

Let S be a piecewise smooth oriented surface in space and let the
boundary of S be a piecewise smooth simple close curve C.

Let F(x,y,z)be a continuous vector function that has continuous first
partial derivatives in a domain in space containing S. Then

d
J;I(AXF)-ndA:iF-d—; 2)
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wherenis a unit normal vector of S and, also% Is the unit tangent vector
S

and S the arc length of C.

n
dr
G S
dr n
ds
IIK&@L]N@@N(@LGLJN}M
s|loy oz oz  0OX ox oy
= § (Fdx+ F,dy + F,dz) ®3)
C

3.3.4 Green’s Theorem in the Plane as a Special Case of
Stoke’s Theorem

Let F=Fi+F,j+Fkbe a vector function that is continuously
differentiable in a domain in thex-yplane containing a simply

connected bounded closed region S whose boundary C is a piecewise
smooth simple close curve.

Then from equation (1)

oF, OoF
AXF) n=(AxF) k=2 _—"1
(x)n(x) oX  OX

Then the formula in Stoke’s theorem now takes the form

js | (%—%)dA = i (Fdx+ F,dy)

Hence, Green’s theorem in space is s special case of Stoke’s theorem.
Example 4

Evaluation of line integral by Stoke’s theorem.

Evaluate I(F-ﬁjds,where C is the circlex?*+y*=4, z=-3 oriented
C

ds

counterclockwise as seen by a person standing at the origin, and with
respect to right-handed Cartesian coordinates F = yi + xz*® j — zy°k.

29



MTH 381 MATHEMATICAL 111
Solution

As a surface S bounded by C we can take the plane circular
disc x*+y® =4 in the planez =-3.Then n in Stoke’s theorem points in
the positive z-direction; thus n=k,. Hence(AxF)-nis simply the
component of curl(AxF)in the positive z-direction. Since F
with z = -3has the components F, =y,F, =-27x and F, =3y®, we thus

obtain

(AXF)-n R 17 1108
OX  OX

Hence, the integral over S in Stoke’s theorem equals 128times the area
4 7 of the disk S.

[(AXF)-nl4z = 2847 = -1127
=352

4.0 CONCLUSION

In conclusion, the students must have understood vector field theory and
also be able to relate vector field and vector function together
respectively.

However, the Line Integral, Gauss’s, Stoke’s, and Green’s theorem were
discussed using the knowledge acquired from vector field theory.

5.0 SUMMARY

In summary, double integrals over a region in the plane can be
transformed into line integrals over the boundary C of R by Green’s
theorem in the plane using

J;Jl (% - %jdxdy = i(Fldx +F,dy)

Also Triple integrals taken over a region T in space can be transformed
into surface integrals over the boundary surface S of T by the divergence
theorem of Gauss using,

deidev:jsjf-ndA

wherenis the outer unit normal vector to S which implies Green’s
formulas.
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Likewise, surface integrals over a surface with boundary curve ¢ can be
transformed into line integrals over C by Stokes’s theorem.

6.0

Vi.

Vii.

viii.

XiVv.

Xi.

IS_[(AnF )-ndA = §(F —jds

TUTOR-MARKED ASSIGNMENT

Compute LF(r) -dr where

(@ F=y%i-x"j, cir=ti+t™, for 1<t<3

(b) F=x%i-y%j, c:y=1-x? for —1<x<1

Find the work done by the force F = xi —zj+2yk in the
displacement;

(@) AlongtheyaxisfromOtol

(@  Alongthe curve z=vy*, x=1, from (1,0,1) to (1,1,1).
Evaluate L(x2 +y?)-ds

(@  Over the path y =2x from (0,0) to (1,2)

(@)  Over the path y =—x from (1,-1) to (2,-2)

Evaluate the relations between vector fields and vector functions.

State one example of a rotating body and the corresponding

velocity field.

Let the components of a vector function

r(t,,t,) =aCostji+aSint, j+3t,k be differentiable functions on

variables t andt,. Then find the partial derivatives of r(t;,t,) with

respect to t, andt, denoted bya—andﬂ
o, o,

Evaluate the surface integral

| = _ﬂ (x3dydz + x%ydzdx + xzzdxdy)

S

where is the surface bounded by z =0,z =b,x* + y* =a°
State and prove Stoke’s theorem.

Evaluate I(F -%)ds,where C is the circle x* +y* =4,
C

z = -3,0riented counterclockwise as seen by a person standing at
the origin, and with respect to right-handed Cartesian
coordinates F = yi + xz° j — zy’k.

Show that vector function

F=(2+yzJi+(y? —2x)j+(z2 —xyk is irrotational. Find the
scalar potential

Verify divergence theorem for the function

F=4xzi-y*j+yz
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over the unit cube x=0,x=1y=1andz=0and z=1.
xii.  Prove that div(uxv)=v-Curlu —uCurlv

Xiii. Evaluatej@-dr,where @ = xyi + yzj + zxk and curve L
L

r=ti+t®j+t’k where—1<t <1.
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