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1.0 INTRODUCTION 
 

In scientific problems, often times one discovers that a factor depends 

upon several other related factors. For instance, the area of rectangle 

depends on its length and breath, hence can say that area is the function 

of two variables i.e. its length and breadth. Potential energy of a body 

depends on gravity, density and height of the body, hence, we can also 

say that potential energy is a function of three variables i.e gravity, 

density and height etc. The strength of a material depends upon 

temperature, density, isotropy softness etc., here we can say that the 

strength of material is a function of many variables i.e. temperature, 

density, isotropy softness etc. 
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2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 use Jacobian change variables in multiple integral; 

 determine whether two or more functions are linearly dependent 

or independent; and 

 identify the functions of two or more variables. 

 

3.0     MAIN CONTENT 
 

3.1 Functions of Several Variables 

 

A function is composed of a domain set, a range set  and a rule of 

correspondence that assigns exactly one element of the range  to each 

element of the domain u, is called a function of two variables x and y if  

u has one definite value for every pair of variables of x and y. 

Symbolically, it is written as 

 

 ),( yxfu  . 

The variables x and y are called independent variables while u is called 

the dependent variable. 

 

Similarly, we can define u  as  a function of more than two variables.  

 

In summary, we have that 

 

)(xu a function of a single variable 

),( 21 xxu a function of two variables  

 ),,( 321 nxxxxu  a function of several variables. 

 

Example 1 

 

If  yxyxyxf 63),( 2  , find : (a) f(-1,1) and f(2,3). 

(a)  yxyxyxf 63),( 2   

        )1(6)1)(1(3)1()1,1( 2 f  

        10631)1,1( f  

 

(b)   )3(6)3)(2(32)3,2( 2 f  

         418184)3,2( f  

 

 

 

 



MTH 381                                                                                                               MODULE 1 

3 

3.2 Jacobian 
 

Jacobian is a functional determinant (whose elements are functions) 

which is very useful in transformation of variables from Cartesian to 

polar, cylindrical and spherical coordinates in multiple integras. Let  

u(x,y) and v(x,y) be two given functions of two independent variables x 

and y. 

 

The Jacobian of u and v with respect to x,y denoted by  

),(

),(

y    

    v

yx

vu
or

x

u
J












 is a second order functional determinant defined as  

 

y

v

x

v

y

u

x

u

yx

vu

x

u
J































),(

),(

y    

    v
 

 

Properties of Jacobians 

 

If u and v are the functions of x and y, then 

 

1
),(

),(

),(

),(










vu

yx
x

yx

vu
 

          

If u,v are the functions of r,s where r,s are functions of x, y, then, 

),(

),(

),(

),(

),(

),(

yx

sr
x

sr

vu

yx

vu













 

 

If functions u, v, w of three independent variables x,y,z are not 

independent, then, 0
),,(

),,(






zyx

wvu
   

 

Example 2 
 

Find the Jacobian 
),(

),(

yx

vu




 in each of the following: 

 

(i)       
x

y
xu

2

 , 
x

y
v

2

  

 

(ii)       22 yxu  , xyv 2  
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Solution. 

(i) 
x

y
xu

2

 , 
x

y
v

2

 , using  

y

v

x

v

y

u

x

u

yx

vu

x

u
J































),(

),(

y    

    v
 

)
2

()(

)
2

()1(

),(

),(

y    

    v

2

2

2

2

x

y

x

y
x

y

x

y

yx

vu

x

u
J


















 

                
x

y

x

y

x

y

x

y 2222
3

3

3

3

  

 

Solution  

(ii) 22 yxu  , xyv 2 , using  

y

v

x

v

y

u

x

u

yx

vu

x

u
J































),(

),(

y    

    v
 

xy

yx
J

22

22 
  

    = (2x)(2x)-(2y)(-2y) 

    = 22 44 yx   

)(4 22 yx   

 

Example 3 

 

If u=xyz, 222 zyxv  , w=x+y+z ,find  
),,(

),,(

zyx

wvu
J




  

 

Solution 
 

Since  u, v,w are explicitly given, so , first we evaluate 

 

111

222
),,(

),,(
zyx

xyzxyz

z

w

z

v

z

u

y

w

y

v

y

u
x

w

x

v

x

u

zyx

wvu
J 








































  

 

  = yz(2y-2z)-zx(2x-2z)+xy(2x-2y) 

  

 =2[yz(y-z)-zx(x-z)+xy(x-y)] 
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][2 222222 yzzyxzxyzxyx   

   

 )]()()([2 222 zyyzzyxzyx   

    

])()[(2 2 yzzyxxzy   

    
)]()()[(2 xzxxzyzy   

   
  ))()((2 xyxzzy   

    

  ))()((2 xzzyyx  The idea can be easily extended to three or 

several variables thus: 

 

 

z

w

z

v

z

u

y

w

y

v

y

u
x

w

x

v

x

u

zyx

wvu

zyx

wvu
J


















































),,(

),,(

,,

,,
 

 

Example 4 

 

Jacobian can be applied to polar coordinate r and , thus, rCosx  and 

rSiny  . 

 

Then,  

  



























y

r

y

x

r

x

r

yx
J

),(

),(
     (1) 

But  


 sin   , r
x

Cos
r

x










      (2) 

 Sin
r

y





 and  


rCos

y





 

 

Substituting equation (2) into (1) gives 

  

 




rCosSin

rSinCos
J


  

     )( 22  rSinrCos   

        rSinCocr   22   

 

Since 122   SinCos  
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      r
r

yx
J 






),(

),(


 

 

3.3 Function Dependence and Independence 

 

Two functions )(xu and )(xv defined on an interval 10  x are said to be 

functionally (linearly) dependent on 10  x if there exist ‘ ’ two 

constants 1k and 2k where not both zero, such that‘ ’ 

 0)()( 21  xvkxuk for x , x .                                  (i) 

 

 

 

However, the two functions )(xu and )(xv defined on interval 

10  x are said to be functionally (linearly) independent on 10  x , if 

the only constants 1k  and 2k such that‘ ’ for all x in the interval where 

both constants 1k  and 2k are zeros  i.e, when u or v can not be expressed 

as proportional to the other. Otherwise, u and v are linearly dependent if  

(i) holds for some 1k  and 2k  not both zero. 

  

Example 5 

 

Show that the functions axexv )( and bxexu )( are linearly dependent on 

the interval. 10  x .  

 

Solution 

  

Suppose  021  bxax ekek    x in 10  x     (1) 

Multiplying equation (1) by axe , we obtain 

 021   axbxaxax eekeek        (2) 

 0)(

21   xabekk        (3) 

 

differentiating equation (3) we obtain 

 0)( )(

2   xabekab        (4) 

 0)( )(   xabeab  since 0 ab  then it implies that 

 0b           (5) 

 

Substituting (5) into (1), and differentiating w.r.t.x, we obtain 

01 axaek          (6) 

     0a , since .0axe  

 

 

Example 6 
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Show that the functions axexv )( and bxexu )( are linearly independent 

on the  interval. 10  x . 

 

Solution: If 

 

 021  axax xekek        (1)

  

 0)( 21  axexkk        (2) 

 

Since 0axe ,     021  xkk       (3) 

 

 

Differentiating equation (3) we obtain 

 01 k          (4) 

 

Substituting (5) into (1), however 

 

 01 axek     01 k .Since 0axe      (5) 

 

 

3.3.1   Testing For Linear Dependence or Otherwise 
 

A method called Wronskian of the function could also be used to test for 

linear dependence or otherwise. Thus, consider the functions )(xu and 

)(xv and the first derivatives )(xu and )(xv , therefore we can define the 

Wronski determinant or Wroskian: 

 

Wronskian  
)()(

)()(
)().(

xuxv

xuxv
xuxvW


  

                     )()()()( xvxuxuxv   

 

Results: 

v(x), u(x) are linearly independent if  0W  

Otherwise linearly dependent when W=0. 

 

Example 7 

 

Determine whether the following functions v(x) and u(x) are linearly 

dependent or independent. 

 

v(x) =cosbx,  u(x) = sinbx  with  0b  

v(x) = axe ,   axexu )(   with   0a . 

Solution 
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bxxv cos)(  ,  bxbxv sin)(  , bxxu sin)(   and bxxu cos)(  . 

 

(a)   
bxbb

bxbx

xuxv

xuxv
xuxvW

cossin

sincos

)()(

)()(
)().(





  

                                             

                                                  = )sin(cos 22 bxbxb   

                                                  = 0b  

 

So v(x) and u(x) are linearly independent. 

 
axexv )( ,  axaexv  )( , axexu )(  and axaexu  )( . 

 

 

(b)   
axax

axax

aeae

ee

xuxv

xuxv
xuxvW











)()(

)()(
)().(  

      00 aeae   

      )( 00 eea   

 

With 0a . So v(x) and u(x) are linearly dependent. 

 

SELF ASSESSMENT EXERCISE 
 

Determine whether the following pair of functions are linearly 

dependent as the case may be 

 

i.  (a) xexvxxu 2)(     ,)(   

(b) CosxxvSinhxxu  )(     ,2)(  

(c) 33 3)(     ,)( xxvxxu    

 

ii.  (a) Show that the function )(xu and )(xv  defined by  

xxxvxxu  )(     ,)( 2  are linearly Independent for the interval 

10  x . Compute the Wronskian of these functions. 

 

iii. If    24 42, yxyxyxf  ,  

Find (a)  1,1f , (b)   3,0 f  and  

 (c) 
12

),(),( yxfkyxf 
 

iv. If  
xy

yx
yxf

22

24
,




 , 

 Find (a)  3,1f , (b)  
h

fhf )3,2()3,2( 
 

v. If  cossinrx  ,  sinsinry   and  cosrz  . 
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 Show that 
 
 

.sin
,,

,, 2 


r
r

zyx





 

vi. If  ,, 22 yvxu   find  
),(

),(

yx

vu




 

 

 

3.4  Multiple Integral 
 

3.4.1   Double Integral 
 

Definition: In this case the integrand is a function ),( yxf that is given 

for all ),( yx in a closed bounded region R of the yx plane. 

 

Let ),( yxf  be a single valued continuous function within a region 

R bounded by a close curveC . Then the region R is called 

 

The region of integration. However, double integral can be defined thus: 

 

   
d

c

b

a
dxdyyxf ),(  or 

r

dAyxf ),(     (1) 

 

3.4.4.1    Evaluation of Double Integrals 
 

Consider bxa  and )()( xhyxg   so that )(xgy   and )(xhy   

represents the boundary of R . Then 

  

dxyxfdxdyyxf
R

b

a

xh

xg   





)(

)(
),(),(       (2) 

 

Similarly, if R can be described thus 

 

 dyc  , )()( yuxyv    

 

So that )(yvx   and )(yux  . Then 

  

dydxyxfdxdyyxf
R

d

c

yu

yv   





)(

)(
),(),(      (3) 

 

In this case, one first calculates the integral within the square brackets. 

Then  further integration is then performed. 

Properties of Double Integrals 

 

1.  
D D

dsyxfadsyxaf ),(),( ,     a =constant 
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2.   
DD D

dsyxgdsyxfdsyxgyxf ),(),()],(),([  

 

3.  
21

),(),(),(
DDD

dsyxfdsyxfdsyxf  

 

Were D is the union of disjointed domains D1 and D2 

 

Example 5 

 

Evaluate the integrals 

 

(i)   
1

0

1

0

22 )( dydxyx  

(ii)   
2

1

1

0

22 )( dydxyx  

 

Solution 

 

(i) dxdyyx  



 

1

0

1

0

22 )(  

  dxyyx 1

0

1

0

3

3
12

   

  dxxdxx  
1

0 3
12

1

0 3
12 )(0)(  

3

1

3

1

0

1

3

1

3

1 3  xx  

3

2
  

(ii) dxdyyx  



 

2

1

1

0

22 )(  

  dxyyx 1

0

1

0

3

3
12

   

  dxxdxx  
2

1 3
12

2

1 3
12 )(0)(  

3

2

3

10

1

2

3

1

3

1 3  xx  

3

8
  

 

3.4.4.2  Double Integral in Polar Coordinates 
 

This is defined by 

 

   
1

2

1

2

),(





r

r
drdrf  
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Example 6 

 

Evaluate the integrals 

  

.
2

2 0

2
2

 








Cos

drdr  

 

Solution 

  Iddrr
Cos








 






2

2

2

0

2      (1) 

  





d

r
Cos2

0

3
2

2 3 







       (2) 

  



d

Cos


2

2 3

)2( 3

  

  



dCos

2

2

3

3

8
      (3) 

 

Using trigonometric identity to simplify 3Cos  

  

Thus  SinSinCosCosCosCos 22)2(3   

          SinCosSinCosSinCos )2()( 22   

          CosSinCosSinCos 223 2  

           CosSinCos 23 3  

             CosCosCos 23 13   

            33 3 CosCosCos   

            CosCos 34 3   

       CosCosCos
4

3
3

4

13       (4) 

 

Hence, substituting (4) into (3) we obtain 

  





dCosCosI  









2

2 4

3
3

4

1

3

8
 

2

2

33
3

1

3

2














 SinSinI  

 
























 )(3)(

3

1
3

3

1

3

2
22

3
22

3   SinSinSinSin   (5) 

  

But  12
3 Sin ,   12 Sin  

 

Similarly, 12
3  Sin  and  12  Sin      (6) 
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Substituting (6) into (5) 

 


























 )1(3)1(

3

1
3)1(

3

1

3

2
I  


























 3

3

1
3

3

1

3

2
 

9

32

3

16

3

2

3

8

3

8

3

2


















  

9

5
3I  

 

3.4.4.3  Triple Integral 
 

Definition: A function of three variables is involved in triple integral.  

However, in triple integral, integration is carried out thrice. It is then 

define  as: 

 

 
v

dxdydzzyxf ),,(  over the region v  

 
v

dvzyxf ),,( . This can also be used to find the volume of any 

 shape. 

  

Example 7 

 

Evaluate  

 

  






1

1 0
)(

z zx

zx
dydxdzzyx  

 

Solution 
 

dzdxdyzyx
z zx

zx  



 










 

1

1 0
)(  

  dzdxzyyxy
z zx

zx 



 



 

1

1 0

2

2
1  

 

     dzzxzzxzxxzxzzxzxx
z

  



 

1

1 0

2

2
12

2
1 )()()()()()(  

   



 

1

1 0

224 dzdxzxz
z

 

  dzxzzx
z

0

1

1

22 22   

011
1

1
4

1

1

43 


  zdzz  
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0  

 

Example 8 

 

Evaluate  

 

  
v

dvzyxI 222 333 by changing to polar coordinate.  

 

Thus CosrSinx  , CosrSiny   and rCosz  . 

 

Solution 

 

  
2 2

0 0 0

2 ))((24
 


a

rddrSindrrI  

 
2 2

0 0

5

5

24  

 ddSina  






dCosa
2

2

00

5 )(
5

24
   

.
5

24

25

24 55 


aa   

 

4.0  CONCLUSION 
 

In conclusion, the student should be able to use Jacobian method to 

change the variable in multiple integral and to determine whether two 

functions are  linearly dependent or independent. Also to solve integral, 

multiple. 
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5.0 SUMMARY 
 

The following are discussed in the unit: 

 

Functions of variable defined thus, ),,( 321 nxxxxu  . Jacobian of 

)(uv was discussed and extend it to three or several variables, thus 

    

),(

),(

y    

    v

yx

vu

x

u
J













 and 

),,(

),,(

,,

,,

zyx

wvu

zyx

wvu
J













 

 

Jacobian was also applied to polar coordinate thus  

    

  r
r

yx
J 






),(

),(


. 

 

 

 

The functional dependence of two functions )(xu and )(xv was discussed 

thus: 

 

0)()( 21  xvkxuk , x  where 1k and 2k are constants and are not zero. 

While the functional independence of two functions )(xu and )(xv was 

also discussed thus: 

 

   0)()( 21  xvkxuk  x , where 1k = 2k =0. 

 

Testing for linear (independence) dependent was discussed using 

Wronskian method which involves the determinant thus 

  

 
)()(

)()(
)()()()()(),(

xuxv

xuxv
xvxuxuxvxuxvW


  

Lastly, multiple integral was discussed. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

i. Evaluate the double integrals 

 (a)   





1

1
xydxdy  

 (b)  
2

1

x

x

yCoshxdydxe  

 (c)  
2

1

1
2

2y

y
ydxdyx  
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ii. Evaluate the following triple integral 

 (a)   










2

0
)( xdydzdzyx

zx

zx
 

 (b)     222 zyx

dxdydz
 where azyx  222  

  

(c) Compute the volume of the solid enclosed by 

  (i) ,1
c

z

b

y

a

x
  0,0,0  zyx  

  (ii)  ,0222  axyx    ,0z  222 zyx   

iii. Determine whether the following pair of functions are linearly 

 dependent or independent as the case may be. 

 (a) xexvxxu 2)(,)(   

 (b) CosxxvSinhxxu  )(,2)(  

 (c) 33 3)(,)( xxvxxu    

iv. (a) show that the functions )(xu and )(xv defined by 

.)(,)( 2 xxxuxxu   are linearly independent for the interval 

.10  x  

 (b)  Compute the Wronskian of the function in 4(a) 

v. Evalute   
R

dxdyyx 2)( , where R is a  region bounded by the 

parallelogram x+y=0,  x+y=2,  3x-2y=0, and  3x-2y=3. 

vi. Evalute   
R

dxdyyx )( 22 , where R is a  region in the first 

quadrant bounded by ayx  22 ,  byx  22 ,  2xy=d,  0<a<b, 

0<c<d 
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UNIT 2 VECTOR FIELD THEORY 
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7.0    References/Further Reading 

 

1.0 INTRODUCTION      
 

Vector function represents vector fields which have various physical and 

geometrical applications. 

 

The basic concepts of differential calculus can be extended to vector 

function in a simple and natural fashion. 

 

Vector functions are useful for representing and investigating curves and 

application in mechanics as path of moving bodies. 

 

Integral theorems will be considered in the later path of this unit’s i.e 

Line Integral, Gauss, Stokes and Greens theorems.  
 

2.0 OBJECTIVES 
 

At the end of the unit, you should be able to: 

 

 appreciate vector field and vector function; 
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 understand the vector field theory, using vector function to 

investigate curves and their applications in mechanics; and 

 use integral theorem to solve some physical problems. Study of 

Line Integral, Gauss, Stokes and Greens theorems and their 

applications. 

 

3.0 MAIN CONTENT 
 

3.1 Vector Field Theory 
 

A scalar function is a function that is defined at each point of a certain 

set of points in space and whose values are real numbers depending only 

on the  points in real space but not on the particular choice of the 

coordinate system.   

 

Furthermore, the distance of ),,( zyxf of any point p from a fixed point 

0p in space is a scalar function whose domain of definition D is the 

whole  space. ),,( zyxf defines a scalar field in space. Introducing a 

Cartesian coordinate 000 ,, zyx . Then the distance  

     

 2

0

2

0

2

0 )()()(),,( zzyyxxzyxf   

 

The temperature distribution in a heated body, density of a body and 

potential due to gravity are the examples of a scalar point function. 

 

3.2 Relations between Vector Field and Functions 
 

A vector )( pv is a function that is defined on some point set D in space 

i.e. the set of points of a curve, a surface or a three dimensional region 

and associates with each point p in D a vector )( pv . 

 

While a vector field is given in D . We introduce Cartesian coordinates 

zyx ,, then we may write our vector function in terms of compound 

function.  

 

 ),,(),,,(),,,(),,( 321 zyxvzyxvzyxvzyxv   

 

or using kji ,, ,. Thus 

 

 kzyxvjzyxvizyxvzyxv ),,(),,(),,(),,( 321   

 

But we should keep in mind that v  depends only on that points of its 

domain of definition, and at the point defines the same vector for every 
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choice of the coordinate system. The velocity of a moving fluid, 

gravitational force are the examples of vector point function. 

 

Our notation in simple scalar and vector quantities in the pre-requisite 

course mathematical methods I and II are the same with that under 

discussion. The only difference is that the components 321 ,, vvv of v now 

becomes functions of zyx ,, since v is a function of zyx ,, .  

 

3.2.1   Example of Vector Field (Velocity Field) 
  

At any instant, the velocity vectors )( pv of a rotating body B constitute a 

vector field, the so called velocity field of the rotation. If we introduce a 

Cartesian coordinate system having the origin on the axis of rotations 

then 

    

  )(,,),,( zkyjxiwzyzwzyxv   

 

     
 

                        
where zyx ,,  are the coordinates of any point p of B at the instant under 

consideration. If the coordinates are such that the z-axis of rotation and 

w points in the positive direction, then w = wk and 

 

Fig. 3:  A Rotating Body and the 

Corresponding Velocity 

Field 

Fig. 1 Field of Tangent Vectors of 

a Curve 
 

                  

Fig. 2: Gravitational 

 Field 
 

          Fig. 2 
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   0,,)(00 xywxjyiw

zyx

w

kji

v   

 

An example of a rotating body and the corresponding velocity field are 

shown in Fig. 3. 

 

Example of Vector Field (Field of Force) 

 

a. If the velocity at any point (x,y,z) within a moving fluid is known 

at a certain time, then a vector field is defined. 

b.   zkxkjyzxyizyxv 22,,   defines a vector field. A vector field 

which is independent of time is called a stationary steady-state 

vector field. 

c. Let a particle A of mass M be fixed at a point 0p and let a particle 

B of mass M to be free to take up various positions p in space. 

Then A attracts B. According to Newton’s Law of gravitation, the 

corresponding gravitational force p is directed from p to 0p , and 

its magnitude is proportional to 2
1

r
where r is the distance 

between p and 0p say. 

 

d.  
2r

MGM
p BA  

where G is the gravitational constant. 

 

Hence p defines a vector field in space. If we introduce Cartesian 

coordinate such that 0p has the coordinates 000 ,, zyx and p has the 

coordinates zyx ,, , then by Pythagoras theorem. 

   
2

0

2

0

2

0 )()()( zzyyxxr       (2) 

 

Introducing the vector assuming 0r then 

  

kzzjyyixxr )()()( 000        (3) 

 

we have rr  and  
r

1 is a unit vector in the direction of p ; the minus 

sign indicates that p is directed from 0pp  .Fig. 2.  

Hence substituting (1) into (3) we obtain 

 

 r
r

MGM
r

r
pp BA

3

1









  
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  kzzjyyixx
r

MGM BA )()()( 0003
    (4) 

 

Hence, this vector function describes the gravitational force acting on B. 

 

Derivative of a Vector Function 

  

A vector function )(tv is said to be differentiable at a point t if the limit 

exists. The vector is called the derivative of )(tv . 

    

t

tvttv
tv

t 






)()(
lim)(

0
 

            

  
Partial Derivatives of a Vector Function 

 

The way of introducing partial derivation to vector analysis is obvious.  

Indeed, let the components of a vector function. 

 

   kvjvivv 321   be differentiable functions of 

n variables ntttt 321 ,, . Then the partial derivative of v  with respect to 

t is denoted by
t

v




and is defined as the vector  function. 

 

  k
t

v
j

t

v
i

t

v

t

v


















 321  

 

Example 1 

 

Let ktjaSiaCotttr 21121 3int),(    

 ,int 11

1

iaCotaS
t

r





 

 k
t

r
3

2





 

 

 

V
1
(t) 

V (t) 

V
 (

t 
+

 p
t)
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3.2.2  Line Integrals 
 

Definition: Let )(xf be a single real valued function in the 

interval bxa  . Thus, we can define line integral as  

   
b

a
dxxf )(  

 

3.2.3  Evaluation of Line Integral 
 

Evaluation of line integral 
b

a
dxxf )( can be accomplished by two 

methods. Thus: 

 

a. A line integral of a vector function )(rF over a curve c is defined 

by 

    
b

ac
dt

dt

dr
trFdrrF .)()(       (1) 

b. In term of components, with kji dzdydxidr    

 Then we obtain 

 

   
cc

dzFdyFdxFdrrF )()( 321  

      dtzFyFxF
c  )( 321     (2) 

 Where    
dt

dx
z

dt

dy

dt

dx
x        ,y     ,     (3) 

 

It is worth to mention that if the path of integration C in equation (1) 

above  is a close curve that is  

           then. 

 

Then instead of c we can also write c  

 

3.2.4 General Properties of Line Integral 
 

a.  
cc

drFkdrkF ..  where k  is a constant . 

b.   
c cc

drGdrFdrGF ..)(   

c.    
1 2

..
c cc

drFdrFdrF    

 Where  21 ccc   

A 
C 

A 
B C B 
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3.2.5 Examples on Line Integrals 

 

If     kxzyzjiyxA 22 201463  , evaluate c drA.. from )0,0,0(  to 

)1,1,1( along the following parts C: 

 

.,, 32 tztytx   

 

The straight lines from (0,0,0) to (1,0,0) then to (1,1,0) and then to 

(1,1,1). 

 

The straight line joining (0,0,0) and (1,1,1). 

 

Solution: 

 

   ).(201463.. 22 dzkdyjdxikxzyzjiyxdrA
cc

   

 

             =    
c

dzxzyzdydxyx 22 201463  

If  .,, 32 tztytx  ,points (0,0,0) and (1,1,1) correspond to t=0 and 

t=1 respectively. Then 

 

          323232

1

0

22 201463.. tdtttdttdtttdrA

t

t
c

 




 

 

 dtttt

t

t








1

0

962 60289  

 

  5643
1

0

1073  ttt  

 

Along the straight line from (0,0,0) to (1,0,0) ,  y=0, z=0, dy=0 and dz=0 

while x varies from 0 to 1. Then the integral over this point of the path is 

  )0()0(20)0)(0)(0(14)0(63 2

1

0

2 xdxx

t

x






 

 

1][3 1

0

9

1

0

2 




xdxx

t

x

 

 

Along the straight line from (1,0,0) to (1,1,0) ,  x=1, z=0, dx=0 while         

y varies from 0 to 1. Then the integral over this point of the path is 

 

      0)0()0)(1(20)0(140)(6)1(3 2

1

0

2 




dyyy

t

y
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Along the straight line from (1,1,0) to (1,1,1) ,  x=1, y=1, dx=0 , dy=0 

while z varies from 0 to 1. Then the integral over this point of the path is 

 

      dzzdyz

t

z

2

1

0

2 ))(1(20)0()1(140)1(6)1(3 




 

 

 
3

20

3

20
20

1

0

1

0

3
2 














t

z

t
dzz  

 

Adding  
3

23

3

20
01.. c drA  

 

 The straight line joining (0,0,0) and (1,1,1) is giving in parametric form 

by x=t, z=t. Then 

       dttttdttdtttdrA

t

t
c

))((201463.. 2

1

0

2  




 

 

             dttttt

t

t








1

0

322 201463  

 

            
3

13
20116

1

0

32  




dtttt

t

t

 

 

3.3 Integral Theorem  
 

3.3.1   Divergence Theorem of Gauss  
 

For simplicity, divergence theorem of Gauss can be used to transform 

triple  integral into surface integral over the boundary surface of a 

region in space. This is obvious because surface integral is simpler and 

easier to handle compared to triple integral. 

 

Therefore, let T be closed bounded in a region space whose boundary is 

a piecewise smooth orient table surface S. 

 

Let ),,( zyxf  be a vector function that is continuous and has continuous 

first partial derivative in some domain containing T. However, the 

transformation is done by the so called divergence theorem which 

involves the divergence of a vector function F. 
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Where divergence of F 

 

         div F  























s

ndAFdv
z

F

y

F

x

F 321    (2) 

 

But    
ss

dxdyFdxdzFdydzFndAF 321    (3) 

 

Where ''n is the outer unit normal vector of S. 

 

but 

  kFjFiFF 321         (4) 

 

and  kCosjCosiCosn        (5) 

 

where ,, and   are the angle between ''n and the positive 

,, yx and z axes respectively. 

 

Next, we substitute equation (3) and (4) into (2) so we can obtain 

        

 dAkCosFjCosFiCosFdxdydz
z

F

y

F

x

F

ST

 





















 321

321  (6) 

 

But 
 dxdyCosdzdxCosdzdyCos   ,,  

   






















ST

dydxFdxdzFdydzFcdz
z

F

y

F

x

F
321

321   (7) 

 

Example 2 

  

Application of the Divergence Theorem 

 

Harmonic Function 

 

The theory of solution of Laplace gives thus: 

 03212 















z

F

y

F

x

F
f       (8) 

and equation (1) is called potential theory.  

 

Now, from the divergence theorem formula 

    
T S

ndAfdivFdv      (9) 
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Where  fF                  (10) 

 

is gradient of scalar function. 

   fdivF 2                 (11) 

 and  fnnF    

 

Hence,   

    



T S

dA
n

f
fdv2                (12) 

 

Where 

  dA
n

f
gradfn




                (13) 

we denote the directional derivative of f in the outer normal direction of 

S  by
n

f




 

 

However,  

  dA
n

f
fnnf 




                         (14) 

  

3.3.2   Green’s Theorem  
 

This theorem gives the relation between the integral over the boundary 

surface which encloses the volume. If 321 ,, FFF are three functions of 

zyx ,, and their derivatives
z

R

y

Q

x

P












,, are continuous and single valued 

functions in a regionV bounded by a closed surface S, then 

   

       dARCosQCosPCosdv
z

R

y

Q

x

P

SV

 





















  

 

As in (6) above 

 

Where Cos , Cos and Cos are the direction cosines normal to the 

surface S. 

  

Example 3 

 

Evaluate the surface integral 

    
S

zdxdyxydzdxxdydzxI 223  

where is the surface bounded by 222,,0 ayxbzz  . 
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Solution 

 

Using Green’s theorem 

 

 dxdydzxxxI
V

  2223  

dxxdydz
a xa b

2

0 0 0
54

22

   
















 

  dxxdyb
a xa

2

0 0
5

22

  











 

dxxaxb
a

22

0

220    

 

Substituting aSinx  or aCosx  we have daCosdx   

   dCosSinaaSinab
a

 
0

2222220  

   dCosSinSinba
a

 
0

224 120  

 

but  CosCosSin  221   

   dCosSinbaI
a

 
0

22420   


a

dba
0

4 2cos20   











16
20 4 

ba  

ba4

4

5
  

 

 3.3.3 Stoke’s Theorem 
 

This is the transformation between surface integrals and line integrals. 

Stoke’s theorem involves the curl. 

 

 Curl

321 FFF

zyx

kji

xFF








      (1) 

 

Let S be a piecewise smooth oriented surface in space and let the 

boundary of S be a piecewise smooth simple close curve C. 

 

Let ),,( zyxF be a continuous vector function that has continuous first 

partial derivatives in a domain in space containing S. Then 

     
CS

ds

dr
FndAxF      (2) 
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where n is a unit normal vector of S and, also
ds

dr
is the unit tangent vector 

and S  the arc length of C. 

 

n 

    dr 

s c  ds   s c 

     

 

 dr          n 

 ds 

    

     dudvN
y

F

x

F
N

x

F

z

F
N

z

F

y

F

R

 




























































3

12
2

31
1

23  

   
C

dzFdyFdxF 321                  (3) 

 

3.3.4 Green’s Theorem in the Plane as a Special Case of 

Stoke’s Theorem 
 

Let kFjFiFF 321  be a vector function that is continuously 

differentiable in a domain in the yx plane containing a simply 

connected bounded closed region S whose boundary C is a piecewise 

smooth simple close curve. 

 

Then from equation (1) 

    
x

F

x

F
kxFnxF









 12  

 

Then the formula in Stoke’s theorem now takes the form 

 

   

















CS

dyFdxFdA
x

F

x

F
21

12  

 

Hence, Green’s theorem in space is s special case of Stoke’s theorem. 

 

Example 4 

  

Evaluation of line integral by Stoke’s theorem. 

Evaluate  









C

ds
ds

dr
F , where C is the circle 422  yx , ,3z oriented 

counterclockwise as seen by a person standing at the origin, and with 

respect to right-handed Cartesian coordinates .33 kzyjxzyiF   
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Solution 

 

As a surface S bounded by C we can take the plane circular 

disc 422  yx  in the plane .3z Then n  in Stoke’s theorem points in 

the positive z-direction; thus n=k,. Hence   nxF  is simply the 

component of curl  xF in the positive z-direction. Since F 

with 3z has the components xFyF 27, 21   and 3

3 3yF  , we thus 

obtain 

  12811712 










x

F

x

F
nxF  

 

Hence, the integral over S in Stoke’s theorem equals 128times the area 

4 of the disk S. 

 

      
  

352

1124284



 nxF
 

 

4.0 CONCLUSION 
 

In conclusion, the students must have understood vector field theory and 

also be able to relate vector field and vector function together 

respectively. 

 

However, the Line Integral, Gauss’s, Stoke’s, and Green’s theorem were 

discussed using the knowledge acquired from vector field theory. 

 

5.0 SUMMARY 
 

In summary, double integrals over a region in the plane can be 

transformed  into line integrals over the boundary C of R by Green’s 

theorem in the plane using 

 

    

















CS

dyFdxFdxdy
x

F

x

F
21

12  

 

Also Triple integrals taken over a region T in space can be transformed 

into surface integrals over the boundary surface S of T by the divergence 

theorem of Gauss using, 

   

   
T S

ndAfdivFdv  

where n is the outer unit normal vector to S which implies Green’s 

formulas. 
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Likewise, surface integrals over a surface with boundary curve c can be 

transformed into line integrals over C by Stokes’s theorem. 

   

   









CS

ds
ds

dr
FndAnF  

  

6.0 TUTOR-MARKED ASSIGNMENT 
 

i. Compute  
c

drrF )(  where 

 (a) ,42 jxiyF    ,: 1 ttirc  for  31  t   

 (b) ,22 jyixF    ,1: 2xyc   for  11  x   

ii. Find the work done by the force ykzjxiF 2 in the  

 displacement; 

 (a) Along the y axis from 0 to 1 

 (a) Along the curve  1,  x,4  yz from (1,0,1) to (1,1,1). 

iii. Evaluate  
c

dsyx )( 22  

 (a) Over the path xy 2  from (0,0) to (1,2) 

 (a) Over the path xy   from (1,-1) to (2,-2) 

iv. Evaluate the relations between vector fields and vector functions. 

v. State one example of a rotating body and the corresponding 

velocity field. 

vi. Let the components of a vector function 

ktjaSiaCostttr 21121 3int),(  be differentiable functions on 

variables 1t and 2t . Then find the partial derivatives of ),( 21 ttr with 

respect to 1t and 2t denoted by
1t

r




and

2t

r




. 

vii. Evaluate the surface integral  

   
S

zdxdyxydzdxxdydzxI 223  

 where is the surface bounded by 222,,0 ayxbzz   

viii. State and prove Stoke’s theorem.  

xiv. Evaluate  









C

ds
ds

dr
F , where C is the circle 422  yx ,    

,3z oriented counterclockwise as seen by a person standing at 

the origin,  and with respect to right-handed Cartesian 

coordinates .33 kzyjxzyiF   

x. Show that vector function 

     kxyzjzxyiyzxF  222  is irrotational. Find the 

scalar   potential 

xi. Verify divergence theorem for the function 

 yzjyxziF  34  
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 over the unit cube 1,1,0  yxx and 0z and 1z . 

xii. Prove that div   vuCurluCurlvvu   

xiii. Evaluate  
L

dr, where zxkyzjxyi  and curve L  

 ktjttir 32  where 11  t . 
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