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1.0 INTRODUCTION 
 

Since there are various methods of determining the coefficients of a 

Laurent series, without using the integral formulas. We intend (may) use 

the formula for 1b for evaluating complex integrals in a very elegant and 

simple fashion. 1b will be called the residue or )(zf at 0zz  .The 

powerful method may also be applied for evaluation certain real 

integrals, as we shall see in section 3.3 and 3.4 of module 3 and unit 1. 

  

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 determine and explain Residue;  

 use Residue to evaluate integrals; and 

 show that the Residue integration method can be extended to the 

case of several singular points of )(zf inside C.  

 



MTH 381                                                                                                               MODULE 3 

111 

3.0     MAIN CONTENT 
 

3.1 Residues 

 

Let us first explain what a residue is and how it can be used for 

evaluating  Integrals 

   .)( dzzf
C

  

 

There will be counter integral taken around a simple closed path C. 

If )(zf is analytic everywhere on C and inside C, such an integral is zero 

by Cauchy’s integral theorem and we are done. 

 

If )(zf has a singularity at a point 0zz  inside C, but is otherwise 

analytic on C and inside, then )(zf has a Laurent series 
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That converges for all points near 0zz   (except at 0zz  itself), in some 

domain of the form Rzz  00 . Now comes the key idea. The 

coefficient 1b of the first negative power
)(

1

0zz 
of this Laurent series is 

given by the integral formula, with n=1, that is, 
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Since we can obtain Laurent series by various methods, without using 

the integral formulas for the coefficients, we can find 1b by one of these 

methods and then use the formula for 1b for evaluating the integral: 

          

1. 

  

  

 

Here we integrate in the counterclockwise sense around the 

simple closed path that contains 0zz  in its interior. 

 

The coefficient 1b  is called the residue of )(zf at 0zz  and we 

shall denote it by  

 

2. 
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Example1 

 

Evaluation of an Integral by Means of a Residue 

 

Integrate the function 4)(  zzf around the unit circle C in the 

counterclockwise sense. 

 

Solution 

  

We obtain the Laurent series thus:  
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Which converges for   0z  (that is for all ).0z ) This series shows 

that )(zf  has a pole of third order at 0z and the residue of )(zf at 

0z is !.
3

1
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From  (1) we thus obtain the answer  
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Example 2 

 

Use Laurent Series to Integrate )(1)( 43 zzzf  around the circle C: 

21z  in the clockwise sense.  

 

Solution 

 

)1(343 zzzz  Shows )(zf  that 0z and 1z . Now 1z lies outside C.  

 

Hence it is of no interest here. So we need the residue of )(zf at 0. We find it 

from the Laurent series that converges for 10  z that 
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We see it from this residue is 1. Clockwise integration thus yields 
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Caution! Had we use the wrong series (II) say: 

     

 
 65443

1111

zzzzz
  ),1( z  

  

We would have obtained the wrong answer 0. Explain! 

 

3.1.1   Two Formulas for Residues at Simple Poles 
 

Before we continue the integration, we ask the following question: To 

get a residue, a single coefficient of a Laurent series, must we divide the 

whole series or is there a more economical way? For poles, there is. We 

shall derive, once and for all, some formulas for residues at poles, so 

that in this case we no longer need the whole series. 

 

Let )(zf  have a simple pole at 0zz   
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Here 01 b (why?) Multiply both sides by 0zz  we have 
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We now let 0zz  . The right hand side approaches 1b . This gives 
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Example 3 

 

Residue at a Simple Pole  
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Another, sometimes simpler formula for the residue at a simple pole is 

obtained by starting from 
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zq

zp
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with analytic )(zp and )(zq where we assume that 0)( 0 zp and )(zq has a 

simple zero at 0zz  (so that )(zf has a simple pole at 0zz  ad wanted. By 

the definition of a simple zero, )(zq  has a Taylor series of the form 
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This we substitute into qpf  and then f into (3), finding 
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We now see that on the right, a factor 0zz   is cancelled and resulting 

denominator has the limit )( 0zq . Hence our second formula for the 

residue at a pole is 
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Example 4 

 

Residue at a Simple Pole Calculated by Formula (4) 
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Example 5 

 

Another Application of Formula (4) 
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Solution 

 

zzp cos)(  is entire, and 1)( 4  zzq has a simple zero at1,i,-1,-i. 

Hence )(zf has a simple pole at these points (and no further poles).  

 

Since ,4)( 3zzq  we see from (4) that the residue equal the 

value  for 







34

cosh

z

i
at those points, that is, 

.
4)(4

)cosh(
     ,

4

cosh
-    ,

44

cos

4

cosh
    ,8980.2

4

cosh
33

i

i

ii

ii

i











 



MTH 381                                                                                                               MODULE 3 

115 

3.1.2   Two Formulas for Residues at Simple Poles 

 
Let )(zf be analytic function that has pole of any order m>1 at a 

point 0zz  .Then, by the definition of such pole, the Laurent series 

of )(zf  converging near 0zz  (except 0zz  ) is 
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where 0mb . Multiplying both sides by mzz )( 0 , we have 
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We see that the residue 1b of )(zf at 0zz  is now the coefficient of the 

power  1

0 )(  mzz in the Taylor series of the function 
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On the left, with center 0zz  .Thus by Taylor’s theorem, 
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Hence if )(zf  has a pole of mth order at 0zz  , the residue is given by 
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In particular, for a second-order pole (m=2),  
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Example 6 

 

Residue at a Pole of Higher Order 

 

The function 
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has a pole pole of second order at 1z    
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Example 7 

 

Residue from a Partial Fraction 

 

If )(zf is rational, we can also determine its residue from partial 

fractions. In Example 6, 
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This shows that the residue t 1z is 8 (as before),and at z=-4 (simple 

pole)  it is -8. Why is this so?  Consider 1z . There the Laurent has two 

fractions as its principal part and the first fraction as the sum of the other 

part. This first fraction is analytic at 1z , so that it has a Taylor series 

with centre 1z , as it should be. Similarly, at z=4 the first fraction is 

the principal part of the Laurent series. 

 

Example 8 

 

Integration around a Second-order Pole 

 

Counterclockwise integration around any simple closed path C such 

that 1z is inside C and z=4 outside C yields          
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So far we can evaluate integrals of analytic functions )(zf over closed 

curve C when )(zf  has only one singular point inside C . In the next 

section we show that the residue integration method can be readily 

extended to the case of several singular points of )(zf inside C . 

 

3.2 Residue Theorem 

 
So far we are in a position to evaluate contour integrals whose 

integrands have only a single isolated singularity inside the contour of 

integration. We shall now see that our simple method may be extended 

to the case when the integrand has several isolated singularity inside the 

contour. This extension is surprisingly simple, as follows  

 

Residue Theorem 

 

Let )(zf be a function that is analytic inside a simple closed path C and 

on C , except for finitely many singular point kzzz ,,, 21  insideC . Then 
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The integral being taken in the clockwise sense around the path C  

 

Proof:  We enclose each of the singular points zj in a circle Cj with 

radius small enough that k circles and C are all separated (fig. 43).  Then  

         
           Fig. 43:  Residue Theorem 

 

)(zf is analytic in the multiply connected domain D bounded byC and 

nCC 1 and on the entire boundary of D. From the Cauchy’s integral 

theorem we have 
 

 0)()()()(
21

  dzzfdzzfdzzfdzzf
kCCCC

  (2) 

 

the integral along C being taken in the counterclockwise sense and the 

other  integrals in the clockwise sense. We now reverse the sense of 

integration along nCC 1 . Then the signs of the values of these 

integrals change, and we obtain from (2) 
 

 dzzfdzzfdzzfdzzf
kCCCC   )()()()(
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            (3) 

 

All these integrals are now taken in the clockwise sense. By (1) in the 

previous section 

   ),(Re)( zfsdzzf
jj zzC 
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So that (3) yields (1), and the theorem is proved. 

 

This important theorem has various applications with complex and real 

integrals. We shall first consider some complex integrals. 
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Example 9 

 

Integration by the Residue Theorem 

 

Evaluate the following integral counterclockwise around any simple 

close  path such that: 

 

a.        0 and 1 are inside C  

b. 0 is inside, 1outside, 

c. 1 is inside, 0 outside, 

d. 0and1 are outside. 
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Solution 

 

The integrand has simple poles at 0 and 1, with residues 
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Confirm this by (4) Ans.(a). ( ,6)14(2 ii   ) (b). i8 (c). i2  (d). 0 

 

Example 10 

 

Integration by the Residue Theorem 

 

Evaluate the following integral, where C is the ellipse 99 22  yx  

(counterclockwise). 
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Solution 

 

Since 164 z =0 at i2 and 2 , the first term of the integrand has simple 

poles  at i2  inside C , with residues (note: 12 ie  ) 
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and simple poles at 2 which lie outside C , so that they are of no 

interest here.  The second term of the integrand has an essential 
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singularity at 0, with  residue
2

2 as obtained from   
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Ans. .221.30)41()26/1/6(2 22 iii   by the residue theorem. 

  

Example 10 

 

Confirmation of an Earlier Result 

 

Integrate 
mzz )(

1

0
( m a positive integer) in the clockwise sense around 

and simple close path C enclosing point 0zz  . 

 

Solution 
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one- term principal path, and 
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In agreement with Example (2), we thus obtain 
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It should be very surprising to hear that our present complex integration 

method can be used for evaluating real integrals (incidentally, some of 

them difficult to evaluate by other methods). In the next section we 

discuss two methods for accomplishing this goal. 

 

3.3 Evaluation of Real Integral 
 

We want to show that residue theorem also yields a very elegant and 

simple method for evaluating certain classes of complicated real 

integrals. 
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Integrals of Rational fractions of Cos and Sin  

 

We first consider integrals of the type 
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where )sin,(cos F is a real rational fraction of Cos and Sin [for 

example, )cos45()(sin 2   and is finite on the interval of integration. 

Setting ,zei  we  obtain 
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and we see that the integrand becomes a rational function of z, say, 

)(zf . 

 

As ranges from0 to 2 , the variable z ranges once around the unit 

circle  1z in the counterclockwise sense. Since we have izdzd  , 

and the given integral takes the form  
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The integration being taken counterclockwise around the unit circle. 

 

Example 11 

 

An Integral of the Type (1) 

 

Show by the present method that 
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Solution 

 

We use )1(cos
z
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We see that the integrand has two simple poles, one at ,121 z which 

lies outside the unit circle. C: 1z  and is thus of no interest, and the 

other at 122 z inside C, where the residue is  
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Together with   the factor i2 in front of the integral this yields the 

desired result  2)2/1)(/2(2  ii  

   

3.3.1   Improper Integrals of Rational Function 
  

We now consider the real integral of the type 
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Such an integral, for which the interval of integration is not finite, is 

called  an improper integral, and it has the meaning 
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If both limit exist, we may couple the two independent passages to 

 and , and write
 

   
 

   






R

RR
dxxfdxxf )(lim)(             (5b) 

 

We assume that the function )(xf in (4) is a real rational function whose 

denominator is different from zero for all real x and is of degree at least 

two units higher than the degree of denominator. Then the limit in (5a) 

exists, and we may  start from (5b). We may consider the corresponding 

contour integral 

 

    C dzzf )(              (5c) 

 

Around a path C on the diagram below. Since )(xf is rational, )(zf has 

finitely many poles in the upper-half plane, and if we choose R large 

enough, then  
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Fig. 44:  Path C of the Contour Integral in (5*) 

     

C encloses all these poles .By the residue theorem we then obtain 

   

  


)(Re2)()()( zsfidxxfdzzfdzzf
S

R

RC
  

 

When the sun consists of all the residues, of )(zf at the point in the 

upper  half-plane at which )(zf has a pole. From this we have 

    

(6)  
 S

R

R
dzzfzfsidxxf )()( Re2)(      

 

We prove that R ,the value of the integral over the semicircle S 

approaches zero. If we set , ieRz  then S is represented by ,constR  and 

as z ranges along  S, the variable ranges from0 to  .Since, by 

assumption, the degree of the denominator of )(zf is at least two units 

higher than the degree of the numerator, we have 

 

                                       
2

)(
z

k
zf    )( 0RRz   

 

for sufficiently large constants k and 0R . By the ML-inequality 

    
R

k
R

R

k
dzzf

S


  2

)(   )( 0RR   

 

Hence, as R approaches infinity, the value of the integral over 

S approaches zero, and (5) and (6) yield the result 

    

(7)   

  

  

the sum being extended over the residues of )(zf corresponding to the 

poles  of )(zf in the upper half-plane. 

 

 

 



)( Re2)( zfsidxxf 
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Example 12 

 

An Improper Integral from 0 to  
 

Using (7), show that 

   
2210 4







x

dx
 

 

Solution 

 

Indeed,
)1(

1
)(

4z
zf


 has four simple poles at the points 

 

 4

4

43

3

43

2

4

1        ,         ,     , iiii ezezezez    

 

The first two of these poles lie in the upper-half plane. We find 

 

 ,
4

1

4

1

)1(

1
)(Re 43

34

11

1

i

zzzz
zz

e
zz

zfs 























 

 49

34 4

1

4

1

)1(

1
)(Re

22

1

i

zzzz
zz

e
zz

zfs 























 

 

By (1) and (7), in the current section, 

 

 .
224

sin)(
4

2

1

44

4




  






ii ee

i

x

dx
 

Since 1/(1 + x
4
) is an even function, we thus obtain, as asserted, 

 

4 4

0

1

1 2 1 2 2

dx dx

x x


 



 
    

 

 
Fig. 45:  Example 2 
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Example 13 

 

Another Improper Integral  
 

Using (7) show that 

 .
645

1
24

2









 
dx

xx

x
 

 

Solution 

 

The degree of denominator is two units higher than that of the 

numerator, so that our method again applies. Now 

 

 
)1)(4(

1

45

1

)(

)(
)(

22

2

24

2











zz

z

zz

z

zq

zp
zf  

 

has simple poles at i2 and i in the upper-plane (and at i2 and i in the 

lower half-plane, which are of no interest here). We calculate the 

residues from (4), noting that zzzq 104)( 3  , 

 

izz

z
zfs

izz

z
zfs

iz
iz

iz
iz 6

2

104

1
)(Re      ,

12

5

104

1
)(Re

3

2

2

3

2

2




































 

,
6

)3/112/5(2.


  iiiAns  as asserted. 

 

Looking back, we realise that the key ideas of our present methods were 

these. In the first method we mapped the interval of integration on the 

real axis onto a closed curved in the complex plane (the unit circle). In 

the  second method we attached to an interval on the real axis a semi 

circle such  that we got a closed curve in the complex plane, which we 

then ―blew up.‖ This second method can be applied to further types of 

integrals, as we show in the next section, the last in the chapter. 

 

3.4 Further Types of Real Integrals 
  

There are further classes of integrals that can be evaluated by applying 

the residue theorem to suitable complex integrals. In application such 

integral may arise in connection with integral transformations or 

representation of special functions. In the present section we shall 

consider two such classes of integrals. One of them is important in the 

problems involving the Fourier integral representation. The other class 

consists of real integral whose integrand is finite at some point in the 

interval of integration. 
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3.4.1   Fourier Integral 
 

Real integral of the form 

 

1. 



 sxdxxf cos)(  and 




 sxdxxf sin)(   (s real) 

    

occur in connection with the Fourier integral. 

 

If )(xf is a rational function satisfying the assumptions on the degree 

stated  in connection with (4), then the integral (1) may be evaluated in a 

similar to that used for the integral in (4) of the previous section. In fact, 

we may then  consider the corresponding integral 

 

  C
iszdzezf )(                         ( s  real and positive) 

 

Over the contour C in sec 3.3 instead of (7), sec. 3.3, we get 

 

    



 iszisz ezfsidzezf )(Re2)(               ( 0s ) (2) 

 

where the sum consists of the residue of iszezf )( as its pole in the upper 

half-plane. Equating the and imaginary parts on both sides of (2), we 

have 

   

           

( 0s ) (3) 

 

  

 

 

We remember that (7), was established by proving that the value of the 

integral over the semicircle S in fig. approaches zero as R . 

 

To establish (2) we should now prove the same fact for our present contour 

integral. This can be done as follows, Since S lies in the upper half-plane 

0y and 0s , we see that  

 

  1  syisyisxisz eeee               ( 0s ,   0y )

  

From this obtain the inequality 

 

  zfezfezf iszisz (())(              ( 0s ,   0y ) 

which reduces our present problem to that in previous section.  

 

 

 















isz

isz

ezfsisxdxxf

ezfsisxdxxf

)(ReRe2sin)(

,)(ReIm2cos)(




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Continuing as before, we see that the value of the integral under 

consideration approaches zero as R approaches infinity. This establishes 

(2), which implies (3). 

    

Example 14 

 

An Application of (3)    

 

Show that 

 

 0
sin

       ,
cos

2222





 







dx

xk

sx
e

k
dx

xk

sx ks
             )0k   ,0( s  

 

Solution 

 

In fact, 
22 xk

e isz


has only one pole in the upper plane, namely, a simple 

pole  at ikz  , and from (4) we obtain 

 

  .
22

Re
22 
























 ik

e

z

e

zk

e
s

ks

ikz

iszisz

ikz
 

 

Therefore, 

  .
2

2
22

ks
ksisz

e
kik

e
idx

zk

e 
 






  

 

Since ,sincos sxisxeisx  this yields the above results 

 

3.4.2   Types of Real Improper Integrals 
 

Another kind of improper integral is a definite integral 

 

  dxxf
B

A )(               (4) 

 

whose integral becomes infinite at a point a in the interval of 

integration, 

 

   


)(lim xf
ax

 

 

Then the integral (4) means 

 

   dxxfdxxfdxxf
B

a

a

Aa

B

A  











)(lim)(lim)(

0
  (5) 
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where  and  approaches zero independently and through positive 

values. It may happen that neither of these limits exists, if 0,   

independently, 

 

but 

   




   




dxxfdxxf

B

a

a

A 




)()(lim

0
   (6) 

 

exists. This is called the Cauchy principal value of the integral. It is 

written 

   pv.v. .)( dxxf
B

A  

 

For example, 

  pv.v. 0lim
1

31 30

1

1 3









 



 



 x

dx

x

dx

x

dx
 

 

the principal value exists although the integral itself has no meaning. 

The  whole situation is quite similar to that discussed in the second 

part of the previous section. 

 

To evaluate improper integral whose integrands have poles on the real 

axis, we use a part that avoids these singularities by following small 

semi-circles at the singular points; the procedure may be illustrated by 

the following example. 

  

Example 15 

 

An Application 

 

Show that 

  .
2

sin

0






dx
x

x
 

 

(This is the limit of sine integral Si(x) as x ) 

  

Solution 

 

a. We do not consider
z

z)(sin
 because this function does not behave 

suitably at infinity. We consider
z

eiz

, which has a simple pole at 

z=0, and integrate around the contour in figure below. Since 
z

e iz

is 

analytic inside and on C Cauchy’s integral theorem gives 
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    0 dz
z

e

C

iz

     (7) 

 

b. We prove that the value of the integral over the large 

semicircle 1C approaches R as approaches infinity. Setting 




idz

dz
deiRdzeRz ii


 , . and therefore 

  



00

deidedz
z

e iziz

C

iz

    ) ( ieRz   

In the integrant on the right, 

  .sinsincos)sin(cos  RRiRiiRiz eeeee    

 

We insert this,  sin)sin(   to get an integral from 2  to0  , 

and then  2 (when 20   ); to get an integral that we 

can evaluate: 

 

 

          
 

Fig. 46:  Contour in Example 2  

 

           
 

Fig. 47:  Inequality in Example 2 

 

   

   
 

  
 

0 0

2

0

sinsin dedede dRRiz  
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 1

2

0

2 R    as       0)1(2 Ce
R

de RR  







  

Hence the value of the integral over 1C approaches as R  

 

c. For the integral over small semicircle 2C in figure above , we 

have 

  dz
z

e

z

dz
dz

z

e

C

iz

CC

iz





222

1
 

 

The first integral on the right equals i . The integral of the 

second integral is analytic and thus bounded, say, less than some 

constant M in absolute value for all z on 2C  and between 2C and 

the x-axis. Hence by the ML inequality, the absolute value of 

this integral cannot exceed rM . This approaches 0r . Because 

of part (b), from (7) we thus obtain 

 

  dz
z

e
dx

x

e
dz

z

e

C

iz

r

ix

C

iz




 


22 0
limpv.v.  

  



 0pv.v. idx

x

e ix

  

Hence this principal value equals i ; its real part is 0 and its imaginary 

part is 

  



dx

x

xsin
pv.v.      (8) 

 

d. Now the integrand in (8) is not singular at 0x . Furthermore, 

Since for positive x the function x1  decreases, the area under the 

curve of the integrand between two consecutive positive zeros 

decreases in a monotone fashion, that is, the absolute value of the 

integrals 

   


0,1,n                         
sin



n

n
n dx

x

x
I  

 

From a monotone decreasing sequence, and ,, 21 II 0nI as n . 

Since these integrals have alternating sign (why?), it follows from the 

Leibniz test that the infinite series  210 III converges. Clearly, 

the sum of the series is the integral 

 

   




b

b
dx

x

x
dx

x

x

00

sin
lim

sin
 

 

which therefore exists. Similarly the integral from 0 to  exists. Hence 

we need not take the principal value in (8), and  
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   



dx

x

xsin
 

Since the integrand is an even function, the desired result follows. 

In part (c) of example 2 we avoided the simple pole by integrating along 

a small semicircle 2C , and then we let 2C shrink to a point. This process 

suggests the following. 

 

3.4.3   Simple Poles on the Real Axis 
 

thenaxisrealtheonazatpolesimpleahaszIf  ,          )(   

  ).(Re)(lim
20

zfsidzzf
C azr  

   

 

 

                         
  Fig. 48:   Theorem 1   
 

Proof 

 

By the definition of a simple pole the integrand )(zf has at az  the 

Laurent series 

  )(Re          ),()( 1
1 zfsbzg
az

b
zf

az



  

 

where )(zg is analytic on the semicircle of integration 

    0        ,:2

ireazC   

and for all z between 2C and the x-axis. By integration, 

     dzzgdire
re

b
dzzf

C

i

C i   
22

)()(
0

1 



  

 

The first integral on the right equals ib 1 .The second cannot 

exceed rM in absolute value, by the ML-inequality and 0rM as 

0r . 

 

We may combine this theorem with (7) or (3) in this section. 

 

Thus, 

  



)(Re)(Re2)(pv.v. zsfizsfidxxf     (9) 
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(summation over all poles in the upper half-plane in the first sum, and 

on the x-axis in the second), valid for rational )()()( xqxpxf  with 

degree 2 degree  pq , having simple poles on the x-axis. 

 

This is the end of unit 1, which added another powerful general 

integration method to the methods discussed in the chapter on 

integration. Remember that our present residue method is based on 

Laurent series, which we  therefore had to discuss first. 

 

In the next chapter we present a systemic discussion of mapping by 

analytic functions (“conformal mapping”) .Conformal mapping will 

then be applied to potential theory, our last chapter on complex analysis. 

 

4.0  CONCLUSION 

 

In this unit, we have seen that our simple method have been extended to 

the case when the integrand has several isolated singularities inside the 

contour. We also proved the residue theorem. 

 

5.0 SUMMARY 
 

The residue of an analytic function )(zf at a point 0zz   is the 

coefficient of  
0

1

zz 
the power in the Laurent series 








2

0

2

0

1
010

)(
)()(

zz

b

zz

b
zzaazf  of )(zf which 

converges near 0z (except at 0z itself). This residue is given by  the 

integral 3.1 

  
C

dzzf
i

b )(
2

1
1


      (1) 

but can be obtained in various other ways, so that one can use (1) for 

evaluating integral over closed curves. More generally, the residue 

theorem (sec.3.2) states that if )(zf is analytic in a domain D such 

except at finitely many points jz and C is a simple close path in D such 

that no jz lies on C and the full interior of C belongs to D, then 

 

   


j
zzC

zfs
i

dzzf
jj

)(Re
2

1
)(


     (2) 

  

(summation only over those jz that lie inside C ).   

 

This integration method is elegant and powerful. Formulas for the 

residue at poles are ( m order of the pole) 
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  

















,2,1       ,)()(lim

)!1(

1
)(Re 01

1

00

mzfzz
dz

d

m
zfs m

m

m

zzzz
 (3) 

Hence for a simple pole ( 1m ), 

  

          )()(lim)(Re 0
00

zfzzzfs
zzzz




               (3 * ) 

 

Another formula for the case of a simple pole of )()()( zqzpzf   

 
)(

)(
)(Re

0 zq

zp
zfs

zz 



               (3 ** ) 

 

Residue integration involves closed curves, but the real interval of 

integration  20  is transformed into the unit circle by setting 

,iez   so that by residue integration we can integrate real integrals of 

the form   (sec. 3.3) 

 

  


dF
2

0
)sin(cos  

where F  is a rational function of cos and sin ,such as, for instance, 

  ,
cos45

sin 2






etc. 

 

Another method of integrating real integrals by residues is the use of a 

closed contour consisting of an interval RxR  of the real axis and a 

semicircle Rz  . From the residue theorem, if we let ,R we obtain for 

rational )()()( xqxpxf   (with 0)( xq  and 2 degree  pq ) 

 

   



)(Re2)( zsfidxxf     (sec.3.3) 

    




iszezfsdxsx )(ReIm2cos   

    




iszezfsdxsx )(ReIm2sin     (sec.3.4) 

 

(sum of all residues at poles in the upper-half plane). In sec.3.4, we also 

extend this method to real integrals whose integrands become infinite at 

some point in the interval of integration. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

i. Explain the term residues and how it can be used for evaluating 

 integrals. 

ii. Find the residues at the singular points of the following functions; 

 (a) 
4

2cos

z

z
  (b) ztan   (c) 

6)( iz

e z


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iii. Evaluate the following integrals where C is the unit circle  

 (counterclockwise). 

 (a) C zdzcot  (b)  C ze

dz

1
 (c)  



C zz

z

2

1
2

2

 

 

iv. Show that 
  






2
cos2

2

0





d
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