MTH 381 MATHEMATICAL I11

MODULE 3

Unit 1

Residue Integration Method

UNIT 1 RESIDUE INTEGRATION METHOD

CONTENTS
1.0  Introduction
2.0  Objectives
3.0 Main Content
3.1 Residues
3.1.1 Two Formulas for Residues at Simple Poles
3.1.2 Formulas for Residues
3.2 Residue Theorem
3.3  Evaluation of Real Integrals
3.3.1 Improper Integral of Rational Functions
3.4  Further Types of Real Integrals
3.4.1 Fourier Integrals
3.4.2 Other Types of Improper Integrals
3.3.4 Theorem 1: Simple poles on the Real Axis
4.0  Conclusion
5.0 Summary
6.0  Tutor-Marked Assignment
7.0  References/Further Reading
1.0 INTRODUCTION

Since there are various methods of determining the coefficients of a
Laurent series, without using the integral formulas. We intend (may) use
the formula for b, for evaluating complex integrals in a very elegant and
simple fashion.b,will be called the residue or f(z)at z=z,.The
powerful method may also be applied for evaluation certain real
integrals, as we shall see in section 3.3 and 3.4 of module 3 and unit 1.

2.0

OBJECTIVES

At the end of this unit, you should be able to:

determine and explain Residue;

use Residue to evaluate integrals; and

show that the Residue integration method can be extended to the
case of several singular points of f(z)inside C.
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3.0 MAINCONTENT
3.1 Residues

Let us first explain what a residue is and how it can be used for
evaluating  Integrals

§ f(2)dz.

Cc

There will be counter integral taken around a simple closed path C.
If f(z)is analytic everywhere on C and inside C, such an integral is zero
by Cauchy’s integral theorem and we are done.

If f(z)has a singularity at a pointz=z,inside C, but is otherwise
analytic on C and inside, then f (z) has a Laurent series

= b b
f(z)=>a,(z-2)" +——+—2+
( ) — n( O) Z—ZO (Z_ZO)Z

That converges for all points near z =z, (except at z =z, itself), in some
domain of the form 0<|z=z|<R. Now comes the key idea. The

coefficient b, of the first negative power of this Laurent series is

(Z = Zo)
given by the integral formula, with n=1, that is,

1
b =—¢ f(2)dz,
X 2ﬂii()

Since we can obtain Laurent series by various methods, without using
the integral formulas for the coefficients, we can find b, by one of these

methods and then use the formula for b, for evaluating the integral:

1. .
if(ndz=2mbr
Here we integrate in the counterclockwise sense around the
simple closed path that contains z =z, in its interior.
The coefficient b, is called the residue of f(z)at z=z,and we
shall denote it by
2. b, =Res f(z)
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Examplel
Evaluation of an Integral by Means of a Residue

Integrate the function f(z)=z"around the unit circle C in the
counterclockwise sense.

Solution

We obtain the Laurent series thus:

sinz 1 1 z 2°
= +
z4 73 31z 5 71

f(2) =

Which converges for [z[>0 (that is for all z=0).) This series shows
that f (z) has a pole of third order atz=0and the residue of f(z)at

z=0ish, :%!.

From (1) we thus obtain the answer

§ T dz = 27ib,= -7
¢z 3

Example 2

Use Laurent Series to Integrate f(z)=1/(z® —z*)around the circle C:
|z|=1/2 in the clockwise sense.

Solution
z® —z* =7°3(Ll—2) Shows f(z) thatz=0andz=1. Now z =1lies outside C.

Hence it is of no interest here. So we need the residue of f(z)at 0. We find it
from the Laurent series that converges for 0 <|z| <1that

1 1 1 1
3_2422_3+_2+_+1+Z+ ~~~~~ 0<|z<1

z

We see it from this residue is 1. Clockwise integration thus yields

dz . i
fc - =—2721F\;SOS f(z)=—2n

112



MTH 381 MODULE 3

Caution! Had we use the wrong series (I1) say:

R R S S (7 <),

We would have obtained the wrong answer 0. Explain!

3.1.1 Two Formulas for Residues at Simple Poles

Before we continue the integration, we ask the following question: To
get a residue, a single coefficient of a Laurent series, must we divide the
whole series or is there a more economical way? For poles, there is. We
shall derive, once and for all, some formulas for residues at poles, so
that in this case we no longer need the whole series.

Let f(z) have a simple pole atz =z,

b
L tra,+a,(z-2,)+a,(z2—2,)% +- 0<|z-2z,|<R
7-1,

f(z) =

Here b, =0 (why?) Multiply both sides by z -z, we have
(z-12,)f(2) =b, +(2—2,)|a° +a,(z—25) ++- -]
We now letz — z,. The right hand side approachesb, . This gives

Resf(z):blzli:rzn(z—zo)f(z) (3)

Example 3

Residue at a Simple Pole

9i+1 . L 9i+1 9z+1
———=Ilim(z-i) — = ;
=2 7(z2°41) = z(z+1) [z(z+1) ],
O
-2

Another, sometimes simpler formula for the residue at a simple pole is
obtained by starting from

)
D=0
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with analytic p(z) and g(z) where we assume that p(z,) = 0andq(z) has a
simple zero at z—z,(so that f (z) has a simple pole at z—z,ad wanted. By
the definition of a simple zero, q(z) has a Taylor series of the form

(Z - 20)2
2!

0(2) = (2-12,)0'(z,) + q"(z,) +- -

This we substitute into f = p/qand then f into (3), finding

Resf(z)_llm(z i)~ P(2) _ =lim (z-2,)p(2) }
a(2) el (2-2)[0'(20) + (2-20)0"(25) [ 2+++] |

We now see that on the right, a factorz-z, is cancelled and resulting
denominator has the limitq'(z,). Hence our second formula for the
residue at a pole is

@) _ p(zo)
e ) “

Example 4

Residue at a Simple Pole Calculated by Formula (4)

— _5i

9z +i 9z +i 10i
Res— ==|— =
=i z7(z° +1) 3z°+1) | . -2

Example 5

Another Application of Formula (4)

COS niZ

t@)="r7

Solution

p(z) =cosazis entire, and q(z)=z'-1has a simple zero atl,i,-1,-i.
Hence f (z) has a simple pole at these points (and no further poles).

Since q’(z) = 4z3,we see from (4) that the residue equal the

cosh i
value for
473

)at those points, that is,

coshz 2.8980, cos_hm _cosz_ 1 cosh7z1 cosh(_—m) _
4i3 —4i 4 4 4(-i)? 4
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3.1.2 Two Formulas for Residues at Simple Poles

Let f (z)be analytic function that has pole of any order m>1 at a
pointz =z,.Then, by the definition of such pole, the Laurent series
of f(z) converging near z =z, (exceptz=z;) is
f(z) = by + b — b, =+ b,
(Z_Zo)m (Z_Zo)m (Z_Zo) Z—1,

m-1

+8,+8,(2-2,) 4

whereb,, = 0. Multiplying both sides by (z-z,)", we have

(Z_ Zo)m f(Z) =bm ""bmfl(z_Zo)""”'bz(z_Zo)m_2 +b1(Z _Zo)m_1

+8y(2-2,)" ++ay(z-2))"" +
We see that the residueb,of f(z)atz=1z,is now the coefficient of the
power (z-z,)""in the Taylor series of the function

9(s)=(z-2))" f(2)

On the left, with center z = z,.Thus by Taylor’s theorem,

(m—l)
P TANC

Hence if f(z) has a pole of mth order atz = z,, the residue is given by

1 ) qmt .
Resf(z)=(m_1) lzl_r;]{ —lz-2,) f(Z)]}- ©)

7=17, dz™*

In particular, for a second-order pole (m=2),
Res f(z) =lim{{(z-z,)2f (z)']}

Example 6
Residue at a Pole of Higher Order

The function
50z

= nem

has a pole pole of second order atz =1

Resf(z)—llm—[(z 12 £ (@)= lim L (ﬂ]=

>1dz\ z+4

115



MTH 381 MATHEMATICAL I11

Example 7
Residue from a Partial Fraction

If f(z)is rational, we can also determine its residue from partial
fractions. In Example 6,

50z -8 8 10

f(2) = = + + .
z+dHz-D* z+4 z-1 (z-1°

This shows that the residue t z=1is 8 (as before),and at z=-4 (simple
pole) itis-8. Why is this so? Considerz =1. There the Laurent has two
fractions as its principal part and the first fraction as the sum of the other
part. This first fraction is analytic at z =1, so that it has a Taylor series
with centre z =1, as it should be. Similarly, at z=4 the first fraction is
the principal part of the Laurent series.

Example 8
Integration around a Second-order Pole

Counterclockwise integration around any simple closed pathC such
that z =1is inside C and z=4 outside C yields

f ‘ -0z = Re s 27 : .
C(z+4)(z-1) 2= (z+4)(z-1)

=27 Ll ~1.0053i
50

So far we can evaluate integrals of analytic functions f (z) over closed
curveC when f(z) has only one singular point insideC. In the next

section we show that the residue integration method can be readily
extended to the case of several singular points of f (z)insideC .

3.2 Residue Theorem

So far we are in a position to evaluate contour integrals whose
integrands have only a single isolated singularity inside the contour of
integration. We shall now see that our simple method may be extended
to the case when the integrand has several isolated singularity inside the
contour. This extension is surprisingly simple, as follows

Residue Theorem

Let f (z) be a function that is analytic inside a simple closed pathC and
on C, except for finitely many singular pointz,,z,, -z, insideC . Then
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§C f(z) = 27ziZk:R£15 f(2), (1)

The integral being taken in the clockwise sense around the pathC

Proof: We enclose each of the singular points z; in a circle C; with
radius small enough that k circles and C are all separated (fig. 43). Then

Fig. 43: Residue Theorem

f (z)1s analytic in the multiply connected domain D bounded by C and
C,-----C,and on the entire boundary of D. From the Cauchy’s integral
theorem we have

§C f(z)dz+§c f(z)dz+§c f(z)dz+--.-+§c f(2)dz =0 (2)

the integral alongC being taken in the counterclockwise sense and the
other integrals in the clockwise sense. We now reverse the sense of
integration alongC,-----C,. Then the signs of the values of these

integrals change, and we obtain from (2)
§C f(2)dz + §C1 f(2)dz + §CZ f(2)dz +---- +§Ck f (2)dz (3)

All these integrals are now taken in the clockwise sense. By (1) in the
previous section

§C_ f(2)dz =Res f(2),

So that (3) yields (1), and the theorem is proved.

This important theorem has various applications with complex and real
integrals. We shall first consider some complex integrals.
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Example 9
Integration by the Residue Theorem

Evaluate the following integral counterclockwise around any simple
close path such that:

a. 0 and 1 are inside C
b. 0 is inside, loutside,
C. 1 is inside, 0 outside,
d. Oand1l are outside.
4-3z
§C 2* -1
Solution

The integrand has simple poles at 0 and 1, with residues

4-3z {4—32} 4-3z [4—32}
es = =4, Res = =1.
=0 7(z-1) z-1 1, =1 7(z-1) z .

Confirm this by (4) Ans.(a). (27i(—4+1) = —67,) (b). —87 (c). 24 (d). 0
Example 10
Integration by the Residue Theorem

Evaluate the following integral, where Cis the ellipse9x*+y* =9
(counterclockwise).

ze™ o2
:f n +12 z
C{z -16 Jd

Since z* -16=0 at +2iand+ 2, the first term of the integrand has simple
poles at +2i insideC, with residues (note: e** =1)

Res ze” = ze” ——i Res ze” = ze” _—i
=2 74 16 | 47° i 16' =2 z*-16 | 47° 2=-2i 16’

and simple poles at +2which lie outsideC, so that they are of no
interest here. The second term of the integrand has an essential

Solution
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singularity at 0, with residue ﬂ% as obtained from

/2 A & 7® 71
26" =7 I+ =+t (S LA T
7z 2z 3z 7 zZ

Ans. 27i(-6/-1/6+ 7°/2) = z(x* —1/4)i = 30.221i.by the residue theorem.

Example 10

Confirmation of an Earlier Result

Integrate #)m(m a positive integer) in the clockwise sense around
)
and simple close path C enclosing pointz =z, .

Solution

ﬁ in its own Laurent series with centre z=z, consisting of this
-1,

one- term principal path, and

Res 1 =1 Res 1

— =0 (m=2,3----).
=1 7 -1, =19 (Z—ZO)

In agreement with Example (2), we thus obtain

{ dz  [27 ifm=1

C(z—1z,)" 1o ifm=23,--

It should be very surprising to hear that our present complex integration
method can be used for evaluating real integrals (incidentally, some of
them difficult to evaluate by other methods). In the next section we
discuss two methods for accomplishing this goal.

3.3 Evaluation of Real Integral
We want to show that residue theorem also yields a very elegant and

simple method for evaluating certain classes of complicated real
integrals.
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Integrals of Rational fractions of Cos@and Sin@
We first consider integrals of the type

| = '[02” F(cos#,sin9)do (1)

where F(cos®,sind)is a real rational fraction ofCos@and Siné [for
example, (sin?#)/(5-4cos#)and is finite on the interval of integration.
Settinge'” =z,we  obtain

cos @ = E(e“g +e%) = l(z +£j

2) 2 2 2
sin@ = i_(e” —e) = i(z —lj
2i 21 2

and we see that the integrand becomes a rational function of z, say,

f(2).

As@ranges from0 to 2z, the variable z ranges once around the unit
circle |z]=1in the counterclockwise sense. Since we havedé = dz/iz,

and the given integral takes the form
dz
I =4 f(z2)—, 3
RICE 3)

The integration being taken counterclockwise around the unit circle.
Example 11
An Integral of the Type (1)

Show by the present method that

27 deo
of ———=2r
I \/5—0050

Solution

We use cosf=(z +%) anddé = % . Then the integral becomes
iz
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\/§+;(z +1J : CC+i2(z2 +2+22 +) _ch (z-2-h(z-V2+D

z

f dz/iz dz 2 dz
C

We see that the integrand has two simple poles, one at z, =+/2 +1,which
lies outside the unit circle. C: |z/=1 and is thus of no interest, and the

other at z, =+/2-1inside C, where the residue is

Res ! :|: L :| 1
=2 (2-N2-1)(z-~2+1) [z-v2-1]_5, 2

Together with  the factor—2/iin front of the integral this yields the
desired result27(-2/i)(-1/2) =2

3.3.1 Improper Integrals of Rational Function

We now consider the real integral of the type

[~ 1 00dx (4)

Such an integral, for which the interval of integration is not finite, is
called an improper integral, and it has the meaning

j_“; f(x)dx = lim jo f(dx+ fim job f (x)dx. (5a)

If both limit exist, we may couple the two independent passages to
—ooandoo, and write

[ (0dx=1lim [ f(ax (5b)

We assume that the function f (x) in (4) is a real rational function whose

denominator is different from zero for all real x and is of degree at least
two units higher than the degree of denominator. Then the limit in (5a)
exists, and we may start from (5b). We may consider the corresponding
contour integral

§C f (2)dz (5¢)
Around a path C on the diagram below. Since f (x) is rational, f (z) has
finitely many poles in the upper-half plane, and if we choose R large

enough, then
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n

-R R

Fig. 44: Path C of the Contour Integral in (5%)

C encloses all these poles .By the residue theorem we then obtain

§C f(2)dz = L f(2)dz + j_RR f (x)dx = 27> Resf (z)

When the sun consists of all the residues, of f(z)at the point in the
upper half-plane at which f (z)has a pole. From this we have

(6) j_RR f(x)dx =27y Res f (2) -], f(2)dz

We prove thatR —co,the value of the integral over the semicircle S
approaches zero. If we setz = Re'?, then S is represented by R = const,and

as zrangesalong S, the variablegranges from0 to z.Since, by
assumption, the degree of the denominator of f(z)is at least two units

higher than the degree of the numerator, we have

|f(z)|<% (4=R>R,)

for sufficiently large constantsk and R, . By the ML-inequality

Usf(z)dz‘<%7zR:% (R>R,)

Hence, asRapproaches infinity, the value of the integral over
S approaches zero, and (5) and (6) yield the result

(7 [ f(x)dx=27i) Res f(2)

the sum being extended over the residues of f (z)corresponding to the
poles of f(z)in the upper half-plane.
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Example 12
An Improper Integral from 0 to

Using (7), show that
o OX Vg
J

1+x* 242

Solution

Indeed, f(z) = ! —~has four simple poles at the points
@+z")

m/4 37i/4 3m/4 —7i/4

e z,e z,8 z,e

The first two of these poles lie in the upper-half plane. We find

Res f(z) = % = is zle_smm,
=7 (1+ z ) 2=2, 4Z =1 4

Resf(z){ﬁ} {%} :%e_gmm
=7 +Z 2, z =2,

By (1) and (7), in the current section,

ro dx4:Z—M(—e”"/“+e”ﬁ/4):7zsinfzi.
=1+x* 4 4 22

Since 1/(1 + x4) Is an even function, we thus obtain, as asserted,

Todx 1% T
-([1+x4 E-[O 1+ x* 242

dhS
A

Fig. 45: Example 2
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Example 13
Another Improper Integral

Using (7) show that
Jm X2 -1 T
== x* +5x° + 4 6

Solution

The degree of denominator is two units higher than that of the
numerator, so that our method again applies. Now

p(z)  z2°-1 7 -1

q(z) z*+5z2%+4 (22 +4)(z* +))

f(z) =

has simple poles at 2iandiin the upper-plane (and at —2iand-iin the
lower half-plane, which are of no interest here). We calculate the
residues from (4), noting that q'(z) = 4z° +10z,

2 2 _ —
Resf(2)=| == | =2, Resf(z)=| 2= | =2
bt 42°+10z |, 12i° = 4z°+10z ], G

Ans.27i(5/12i —1/3i) :%, as asserted.

Looking back, we realise that the key ideas of our present methods were
these. In the first method we mapped the interval of integration on the
real axis onto a closed curved in the complex plane (the unit circle). In
the  second method we attached to an interval on the real axis a semi
circle such  that we got a closed curve in the complex plane, which we
then “blew up.” This second method can be applied to further types of
integrals, as we show in the next section, the last in the chapter.

3.4  Further Types of Real Integrals

There are further classes of integrals that can be evaluated by applying
the residue theorem to suitable complex integrals. In application such
integral may arise in connection with integral transformations or
representation of special functions. In the present section we shall
consider two such classes of integrals. One of them is important in the
problems involving the Fourier integral representation. The other class
consists of real integral whose integrand is finite at some point in the
interval of integration.
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3.4.1 Fourier Integral

Real integral of the form
1. f f(x) =cossxdx and f f (x) =sin sxdx (s real)

occur in connection with the Fourier integral.

If f(x)is a rational function satisfying the assumptions on the degree

stated in connection with (4), then the integral (1) may be evaluated in a
similar to that used for the integral in (4) of the previous section. In fact,
we may then consider the corresponding integral

§C f (2)e™dz (s real and positive)
Over the contour C in sec 3.3 instead of (7), sec. 3.3, we get
[* f(2)e""dz = 220" Res[f (2)e™] (s>0) ()

where the sum consists of the residue of f(z)e™as its pole in the upper

half-plane. Equating the and imaginary parts on both sides of (2), we
have

I‘}f(X)COSSXdX:‘ZMZ'mRes[Hz)eisz} (s>0)(3)
LO f (x)sin sxdx = 271 ReRe s[f (2)e"]

We remember that (7), was established by proving that the value of the
integral over the semicircle S in fig. approaches zero as R — .

To establish (2) we should now prove the same fact for our present contour
integral. This can be done as follows, Since S lies in the upper half-plane
y>0and s >0, we see that

eisz _ eis>< e—isy —e V<1 (S>O, yZO)
From this obtain the inequality
|f(2)e™| =) =|f (z]e™|<|f (7] (s>0, y=>0)

which reduces our present problem to that in previous section.
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Continuing as before, we see that the value of the integral under
consideration approaches zero as R approaches infinity. This establishes
(2), which implies (3).

Example 14

An Application of (3)

Show that
w  COS SX T ©  SIN SX
" dx =g, dx=0 s>0, k>0
J.*°°k2+X2 k J:°°k2+x2 ( )
Solution

In fact, kze—zhas only one pole in the upper plane, namely, a simple
+ X

pole at z=ik, and from (4) we obtain
isz isz —ks

Res——— = | - ==}
=ik K* +7 2z | |2k

isz —ks
J- %dx=2me =£eks.
=K +2 2ik k

Therefore,

Since e = cos sx +isin sx, this yields the above results
3.4.2 Types of Real Improper Integrals
Another kind of improper integral is a definite integral
B
jA f (x)dx (4)

whose integral becomes infinite at a point ain the interval of
integration,

lim| f (x)| =0
Then the integral (4) means

[ (ax = lim ™ F (x)dx -+ lim jB” f (X)dx (5)
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where zand napproaches zero independently and through positive
values. It may happen that neither of these limits exists, if 7,70
independently,

but
|T im)[ [ £ 0odx+ jBU f (x)dx} (6)

exists. This is called the Cauchy principal value of the integral. It is
written

B
PV.V. jA f (X)dx.

For example,
pV.V. _1 ax_ Iim{ X Jd%} =0

1y3 0| 1 x3 e y3

the principal value exists although the integral itself has no meaning.
The whole situation is quite similar to that discussed in the second
part of the previous section.

To evaluate improper integral whose integrands have poles on the real
axis, we use a part that avoids these singularities by following small

semi-circles at the singular points; the procedure may be illustrated by
the following example.

Example 15
An Application

Show that

J‘w Sin de _ z

0 X 2
(This is the limit of sine integral Si(x) as x —x)
Solution

(sinz)
z

a. We do not consider because this function does not behave

suitably at infinity. We considere—, which has a simple pole at
z

z=0, and integrate around the contour in figure below. Since € s
z

analytic inside and on C Cauchy’s integral theorem gives
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{ Sdz=0 (7
Cz
b. We prove that the value of the integral over the large
semicircleC,approachesRas  approaches infinity.  Setting
z=Re".dz=iRe"dé, d_z and therefore
z=1id@
eiz A7 Aiz; 7| iz _ io
[ _er idd] < [[e"]do (z=Re")
In the integrant on the right,
eiz =‘eiR(cost9+isim9) =‘eiRcost9 e—Rsin& =e—Rsin6.

We insert this, sin(z—6)=sin® to get an integral from0tox/2,
and then @ >20/7 (when0<0<x/2); to get an integral that we
can evaluate:

Fig. 46: Contour in Example 2

y=208/m

y=sinf#

d |
0 /2

Y

Fig. 47: Inequality in Example 2

eiz do = L’Te—Rsiane _ L”/Ze—Rsinadee

[
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- ZJ‘On/Ze,zRg/ﬂde :%(1—84{) -0 as R —>OOC1

Hence the value of the integral over C,approaches as R — o

C. For the integral over small semicircle C,in figure above , we
have
e" dz e’ -1
R Iy s
C, 7 C, 7 C, VA

The first integral on the right equals—z . The integral of the
second integral is analytic and thus bounded, say, less than some
constant M in absolute value for all z onC, and between C,and
the x-axis. Hence by the ML —inequality, the absolute value of
this integral cannot exceed Mzr . This approachesr — 0. Because
of part (b), from (7) we thus obtain

L —dz_pvvj —dx+I|m idz

r-04C;, 7
_pvv'[ —dx =0

Hence this principal value equals;zi ; its real part is 0 and its imaginary
part is

pvv|” ﬂdx _ ®)

d. Now the integrand in (8) is not singular at x=0. Furthermore,
Since for positive xthe function 1/x decreases, the area under the
curve of the integrand between two consecutive positive zeros
decreases in a monotone fashion, that is, the absolute value of the
integrals

| :I”’””%dx N=01-

n nrz X

From a monotone decreasing sequence, |l,|,[1,],---and I, —0as n— .

Since these integrals have alternating sign (why?), it follows from the
Leibniz test that the infinite seriesl, +1,+1, +----converges. Clearly,

the sum of the series is the integral

de — lim Ismx

b—)oo

which therefore exists. Similarly the integral from 0 to —ooexists. Hence
we need not take the principal value in (8), and
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Since the integrand is an even function, the desired result follows.
In part (c) of example 2 we avoided the simple pole by integrating along
a small semicircleC,, and then we let C, shrink to a point. This process

suggests the following.

3.4.3 Simple Poles on the Real Axis

If (z) has a simple pole at z = a onthe real axis, then
lim jc f (z)dz = zi Resf (2).

Cy

a-r a a+r X

Fig. 48: Theorem 1
Proof

By the definition of a simple pole the integrand f(z)has at z=athe

Laurent series

by +9(2), b, =Res f(z2)
z—a z-a

f(z) =

where g(z)is analytic on the semicircle of integration
C,:z=a+re’, 0<60=r
and for all z between C, and the x-axis. By integration,

_ " bl L0
LZ f(z)dz_J.0 re“glre d6+jczg(z)dz

The first integral on the right equals—b,zi.The second cannot

exceed Mzr in absolute value, by the ML-inequality and Mar — 0as
r—0.

We may combine this theorem with (7) or (3) in this section.

Thus,
pv.v.f; f(x)dx = 27 > Resf (z) +4 Y Resf (2) (9)
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(summation over all poles in the upper half-plane in the first sum, and
on the x-axis in the second), valid for rational f(x)= p(x)/q(x)with

degree q > degree p+2, having simple poles on the x-axis.

This is the end of unit 1, which added another powerful general
integration method to the methods discussed in the chapter on
integration. Remember that our present residue method is based on
Laurent series, which we therefore had to discuss first.

In the next chapter we present a systemic discussion of mapping by
analytic functions (“conformal mapping”) .Conformal mapping will
then be applied to potential theory, our last chapter on complex analysis.

4.0 CONCLUSION

In this unit, we have seen that our simple method have been extended to
the case when the integrand has several isolated singularities inside the
contour. We also proved the residue theorem.

5.0 SUMMARY

The residue of an analytic function f(z)at a pointz=z, is the

coefficient of the power in the Laurent series

-1,

bl _|_ b2 5 _|_ ceee
2-2, (z-1,)
converges near z, (except at z, itself). This residue is given by the
integral 3.1

f(z)=a,+a,(z—2z))+--+ of f (z)which

1
b, = ﬁi f (z)dz (1)

but can be obtained in various other ways, so that one can use (1) for
evaluating integral over closed curves. More generally, the residue
theorem (sec.3.2) states that if f(z)is analytic in a domain D such

except at finitely many pointsz;and Cis a simple close path in D such
that noz; lies on C and the full interior of C belongs to D, then

1
§CJ f(z)dz = Tmzsﬁf’ f(2) )

(summation only over those z; that lie inside C).

This integration method is elegant and powerful. Formulas for the
residue at poles are (m =order of the pole)
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R:es f(2) = Iim( " [(z -z,)" f(z)]} m=12,-- (3)

(M—1)! 52| dz™*
Hence for a simple pole (m=1),

Res f(z) = lim(z-2,)f(2) (37)

7=z,

Another formula for the case of a simple pole of f(z) = p(z)/q(z)

Resf(z)zE (37)
q'(2)

Residue integration involves closed curves, but the real interval of
integration0<@<2xis transformed into the unit circle by setting
z=¢'’, so that by residue integration we can integrate real integrals of
the form (sec. 3.3)

J.OZ” F(cos@sin 8)do

where F is a rational function of cos@and sin@,such as, for instance,
=2
sin“ @

—— etc.
5—-4cos@

Another method of integrating real integrals by residues is the use of a
closed contour consisting of an interval — R < x < Rof the real axis and a
semicircle|z| = R. From the residue theorem, if we let R — oo, we obtain for

rational f (x) = p(x)/q(x) (withqg(x) =0 andq > degree p+2)
j”; f (x)dx = 274> Resf (2) (sec.3.3)
_f_icos sxdx =-27)_ImRe s[f (z)eisz]

.[_O;sin sxdx =27 ImRe s[f (z)e‘sz] (sec.3.4)

(sum of all residues at poles in the upper-half plane). In sec.3.4, we also
extend this method to real integrals whose integrands become infinite at
some point in the interval of integration.

6.0 TUTOR-MARKED ASSIGNMENT

I. Explain the term residues and how it can be used for evaluating

integrals.
ii. Find the residues at the singular points of the following functions;
C0s 22 e’
a b t c —
@ = (b) tanz O
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ii.  Evaluate the following integrals where C is the unit circle
(counterclockwise).

(@ footzdz  (b) §le'ze : © ;;_*212

\Y2 Show that

J-Zﬂd—e _ 27[
0 J2-coséd
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