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1.0 INTRODUCTION 
 

The integral transform method is one of the best methods used in handling problems 

involving mechanical vibrations. The integral transform method is given by 
 

  
b

a
dxxkxfpF ),()()(   

With the inverse, 

  



b

ap

xHpFxf ),()()(   

)(F is the integral transform of )(xf and ),( xk  is called the kernel of the 

transformation.   

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 
 

 state various form of integral transform; 

 state Fourier Sine series and Fourier Cosine series;  
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 apply Fourier transform to solve some fourth, third and second order differential 

equations; and 

 develop techniques and methods through transformation or along with transform 

to be able to solve physical and mechanical problems (vibrations). 

 

3.0     MAIN CONTENT 
 

3.1 Finite Fourier Transform 

 

Let )(xf  be a function defined in the interval bxa   i.e. )(xf  is defined on x -space. Let

),( xk be a function x of and some parameter  . 

 

Then the integral transform method is given by, 

     

   dxxkxfpF
b

a
),()()(      (1) 

)(F is called an integral transform of )(xf and ),( xk is called the kernel of the transform 

 

Symbolically, 

    TfF        (2) 

whereT is an integral operator which means multiply what followsT by ),( pxk and 

integrate the product with respect to x between the limit of ''a and ''b . The new function

)(F can be regarded as the image of )(xf produced byT . 

 

)( pF is defined on p-space/image-space. 

 

For integral transform to be a useful concept, it is necessary that there should exist an 

inverse operator 1T which yields a unique )(tF  from a given )(F . From equation (2) you 

have that:  

 

   )(1 FTf        (3) 

 

Finding the operator 1T is equivalent to solving equation (1) regardless an integral 

equation for )(tf  





 dxHFtf ),()()(     (4) 

 

i.e. )(tF is an integral transform of )(F with kernel ),( xH  .   

A specification of the 1T  operator as in equation (4) is known as Inversion Theorem. 
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3.1 Finite Fourier Transforms 
 

3.1.1   Half Range Fourier Sine Series 
 







1

)(






L

x
Sinbxf    Lx 0  

 

Where  

 dx
L

x

L
xfb

L











0

sin
2

)(


  

 .
2

),(
L

x

L
xk


   

 

The image space is given by all the positive integral values of  . Hence b  rather than

)(b . 

 

3.1.2   Half Range Fourier Sine Series Lx 0  
 







1

0 cos
2

1
)(





L

x
axf  

 

Where 

 dx
L

x

L
xfa

L











0

cos
2

)(


  

 

3.1.3   Ordinary Fourier Series 
 





















L

x
i

eCxf )(  









 



 L

x
C





 exp  

 

Where       LxL   

 

dx
L

x
i

L
xfC

L

L 


















 exp

2

1
)(  
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3.2 The Fourier Transform 
 

3.2.1 Fourier Sine Transforms 
    

dxxxfFS )(sin)(
2

)(
0

2
1




 










      (5) 

 

 x0   

 

With inversion 

 














0
)(sin)(

2
)(

2
1




dxFxf S
    

  
 0  

 

Since kernel for operator and its inversion. 

 

3.2.2   Fourier Cosine Transforms 
    

dxxxfFc )(cos)(
2

)(
0

2
1




 










              (7)  

 

With the inversion 
 

dxxFxf c )(cos)(
2

)(
2

1











              (8) 

 

Same kernel )(cos x  for operator and its inversion.  

 

3.2.3   Ordinary Fourier Transforms 
 

  dxexfF xi )()(2)( 2
1  






       (9) 

 

The kernel xiexk  ),(  

 

With inversion is 

    deFxf xi )()(2)( 2
1 







     

Then )(),( xiexH                    (10) 

   

have ),( xHk                    (11) 

If )(xf is even then )()( xfxf   
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and )()(  cFF                    (12) 

 

But if )(xf is odd then )()( xfxf   and 

 

Thus )()(  ciFF                    (13) 

 

From equation (9) above, you can deduce that; 
 

  dxexfF xi )()()(2 2
1  







     

dxexfdxexf xixi )(

0

)(
0

)()(  




                                         (14) 

 

But if 
    

dtdx

tx

tx

tx









      

0

00
 

 

Thus, you have 

 

dtetfdxexf xixi )(

0

)(
0

)()(  




                              (15) 

    

  dxexfdxexfF xixi )(

0

)(
0

)()()(2 2
1  








               (16) 

 

 

If )(xf is even then )()( xfxf   

 

    Equation (16) becomes 
 

 dxeexf xixi )()(

0
)(  



  for even )(xf  

  )(2)(cos)(2 2
1

0
 Fdxxxf 



                (17) 

  

 

But, for odd )(xf   

 

 dxeexf xixi )()(

0
)(  



  

dxxxfi )(sin)(2
0




                  (18) 

  

 

 

 



MTH 381                                                                                                                                                      MODULE 4 

135 

3.3 Fourier Integral Formular 

dttxtfdxF )(cos)(
1

)(
0

 






                          (19) 

 

Note that from (9) and (10) you have that: 
 

dtetfdexF xixi )()( )(
2

1
)(  

 








                           (20) 

 

You have now prove that equations (19) equals (20) 

Consider equation (19) 
 

dxtxtf )(cos)( 



 is a an even function of   

 

So that (19) can be re-written in the form 
 

dttxtfdxF )(cos)(
1

)(
0

 






               (21) 

 

Since  dgdg 






 )(
2

1
)(

0
 

 )(g is even 

 

Hence    dttxtfd )(sin)(
2

1
0

0
 







               (22) 

 

In other to arrive at equation (19), you have equation (21) equals (22) because 
 

 iei  sincos   

 

  dtetfdxF txi )()(
2

1
)( 







  


 

dtetfde xixi )()( )(
2

1  
 









  

 

Which is equal to (20). 

 

3.4 Transforms of Derivatives 
   
















 dxexyxyFF xi )()(

2

1
))(()(

2
1




               (23)  

 

You shall now transform ))(()( xyFxy   

 














 dxexyxyF xi )()(

2

1
))((

2
1




             (24)  
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Using integration by parts, you have 

 




























dxexyiext xixi )()( )()(
2

1 2
1

 


              (25) 

 

suppose 0)( xy   as x  

 

   




























dxexyidxexy xixi )()( )(

2

1
)(

2

1 2
1

2
1







 

        
))((  Yi  

 

 ))(())((  YixyF  .                (26) 

 














 dxexyxy xi )()(

2

1
)(

2
1




              (27) 

 

Integration by parts,   

 





























dxexyiexy xixi )()( )()(
2

1 2
1

 


                       (28) 

suppose 0)(  xy     

    

Then you have  

 





 dxexyi xi )()(  . 

 

Which    ))(())((  YiixyF   

  )(2  Yi  

  )(2 xy                  (29) 

 

Suppose you have 

 

)(
2

2

xfy
dx

dy

dx

yd
  

0y ,       0y as  x                (30) 

 

In other to arrive at equation (19), you equation (21) 

Because .sincos  iei   

   

 .)(
2

1
)( )( dtetfdxf txi 







  

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.)(
2

1 )()( dtetfde xixi  
 









  

 

Which is equal to (20). 

 
)()( GyyyF   

 )()()()(2  GYiYY   

 1)( 2   iY  













)1(

)(
)(

2 




i

G
Y                  (31) 

 

4.0  CONCLUSION 
 

In this unit, you treated the various forms of integral transform. The Fourier sine and 

cosine series representation were discussed. The inverse theorem was also considered. 

 

5.0 SUMMARY 
 

The general scheme of solving problem by integral transform is summarized below; 

 

 
 

This is the diagrammatic expression of the summary. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

i. State the method of integral transforms and its inverse. State also the Kernels of 

the method and its inverse  

ii. Discuss briefly the inverse theorem. 

iii. State the three theorems of finite Fourier transforms. 

iv. If   














 dxexyxyFF xi )()(

2

1
)()(

2
1




  

use the transformation  )()( xyFxy  , proof that    .)()(  YixyF    
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1.0 INTRODUCTION 
 

Fourier series arises from the task of representing a given periodic function )(xf by 

trigonometric series. The Fourier series coefficients are determined from )(xf by Euler 

formula.  

  

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 
 

 determine Fourier coefficients; 

 find the convergence and sum of Fourier series; and 

 use Euler formula for the Fourier coefficients. 

 

3.0     MAIN CONTENT 
 

3.1 Fourier Series 

 

3.1.1   Euler Formula for the Fourier Coefficients 
 

Let us assume that )(xf  is a periodic function of period 2 that can be represented by a 

trigonometric series  
 

nxbnxaaxf
n

nn sincos)(
1

0 




                          (1) 

 

That is to say, you assume the convergence of the series and has )(xf as its sum. 
 

In any function )(xf of such, you shall determine the coefficients na and nb of the 

corresponding series.  
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(1) To determine 0a ,you shall integrate both sides of the equation 1, from   x  

 

Thus, you have 

dxnxbnxaadxxf
n

nn  































sincos)(

1

0        

  











11

0 sincos
n

n

n

n nxdxbnxdxadxa











 

 






 








11

0 cossin
n

n

n

n nx
n

b
nx

n

a
xa












 

            )cos(cos)sin(sin
1

2
1

0  nnnna
n

a n

n

 




 

 02 a                               (2) 

  

Hence 





 dxxfa )(2 0  

   



dxxfa )(

2

1
0       (3) 

 

To determine naaa ,, 21 using the same procedure. However, multiplying  equation (1) 

by mxcos , when m is any fixed real number, and integrate from   x  

   

 mxdxnxbnxaamxdxxf
n

nn cossincoscos)(
1

0  































  (4) 

  











11

0 sincoscos
n

n

n

n nxdxbnxdxadxmxa











              (5) 

 

Evaluate (5) term by term, you have 

 

0
sin

cos 00 


















 m

mx
adxmxa        (6) 

 

Using trigonometric identities 

   











11

)cos()cos(
2

1
coscos

n

n

n

n xdxxmnxmnamxdxnxa







 (7) 

 

Similarly, 

 

   











11

)sin()sin(
2

1
cossin

n

n

n

n xdxxmnxmnbnxdxnxb







  (8) 
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From (7), you have, 

 

0
)sin(

)cos( 



 



 mn

xmn
xdxmn                           (9) 

 

and 

   

0
)sin(

)cos( 



 



 mn

xmn
xdxmn                         (10) 

 

for mn   

 

but if mn  you have that 

    

.)0cos()cos(  













dxxdxxdxmn  

 

because 10cos   

 

  





2


 xdx                          (11) 

 

From equation (8) you obtain thus 

 

0
)cos(

)sin( 



 



 mn

xmn
xdxmn                         (12) 

and  

 

0
)cos(

)sin( 



 



 mn

xmn
xdxmn                        (13) 

 

Substituting equations (9), (10), and (11) into (7), you have 

    








 




 mn     

mn      0
coscos

1 




n

n mxdxnxa                        (14) 

 

and substituting equations (12), (13), and (14) into (8) gives 

  








 




 mn     

mn      0
cossin

1 




n

n mxdxnxb                         (15) 

 

Then, in view of equations (14), (15) and (6), equation (5) becomes: 
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










1

)0()0(cos)(
n

n

mn

nn baamxdxxf 



 

 ma                   (16) 

 

 mxdxxfam cos)(
1




                          (17) 

 

nbbb ,, 21 can also be obtained in the same manner, by multiplying equation (1) by 

mxsin  and integrate from   x . 

 

Using the trigonometric identities and manipulation, you have 

  

mxdxnxbnxaamxdxxf
n

nn sinsincossin)(
1

0  































           (18) 

 

Integrating term by term, you see that the right hand side becomes 

   








1

sincossinsin)(
n

nn mxdxnxamxdxamxdxxf











 








1

sinsin
n

n mxdxnxb



                                    (19) 

 

Using the same principle as before 

 

 



0sin mxdxan                  (20) 

 

0sincos
1

 





n

n mxdxnxa



                (21) 

 
 ,3,2,1  nfor  

 

but 

                  




   













xdxxmnxmnmxdxnxb

n

n )cos()cos(
2

1
sinsin

1

  

 

0
)(

)sin()1(

2

1

)(

)sin()1(

2

1

mn

xmn

mn

xmn









              (22) 

 

mn   

 

but for   mn   
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







  

dxdx
2

1
)0cos(

2

1
 









 mn     

mn      0
cossin






mxdxnx                (23) 

 

   substituting equation (23) into (19) you obtain thus 

 





nbmxdxxf  sin)(  

  mxdxxfbm sin)(
1




                         (24) 

 

For  ,2,1m  

 

Writing n in place of m in equation (17) and (24) respectively, you have 

    



































mxdxxfb

and

mxdxxfa

dxxfa

n

n

sin)(
1

cos)(
1

)(
2

1
0



















                (25) 

 

This is called the Euler formula. 

  

These numbers given in equation (25) are called the Fourier coefficients of )(xf . 

However, the trigonometric series in equation (1) with coefficients given by (25) is called 

the Fourier series of )(xf . 

  

Example 1 
 

Find the Fourier coefficients of the periodic function )(xf where 

     














x
xf

0   if         1

0x   if      1
)(  

     

and  )()2( xfxf   . 

  

Solution 
  





   







  0

0

0
2

1
)(

2

1
dxdxdxxfa  
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 )(0
2

10
)(

2

1

2

1










 xdx  

2

1
  

 

and 

 

  0
2

1

0
)(

2

1

2

1

0
 









xdx  

2

1
  

 .0
2

1

2

1
  

 

From equation (25) i.e. 

 

nxdxxfan cos)(
1




 

nxdxnxdx cos
1

cos
1

0

0

 




 
 

0
0

sin0sin1


















 n

nx

n

nx
 

 0na  

 

Similarly for 

 

nxdxxfbn sin)(
1




 





   

0

0
sinsin

1






nxdxnxdx  














0

cos0cos1 

 n

nx

n

nx
 

 0coscos)cos(0cos
1

 nxnx
n

 

 )cos(22
1

nx
n




 

 

N.B )cos()cos( nxn    

 

 )cos(1
1




n
n

  

 n

n
)1(1

2



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N.B   nnx )1(cos   

 

 
 nn

bn

4
11

2
  

 
 ,5,3,1   nfor  

  00
2


n

bn  

 
 ,6,4,2   nfor  

 etc  ,
5

4
         ,

3

4
     ,

4
531


 bbb  

 0642  bbb  

 

3.2 Even and Odd Numbers 
 

Fourier coefficients of a function can be avoided if the function is odd or even. You say a 

function )(xgy   is said to be even if  

 

.     )()( xallforxgxg                                      (26) 

  

While a function )(xh is said to be odd if      

 

.     )()( xallforxhxh                  (27) 

 

However, it worth mentioning here that the function nxcos is even, while the function 

nxsin is odd. 

 

If )(xg is an even function, then 

 

.)(2)(
0

dxxgxdxg
LL

L                   (28) 

 

If )(xh is an odd function, then 

 
L

L
dxxh 0)(                   (29) 

 

The product of both odd and even function is odd 

   let    )()()( xhxgxq   

 and )()()( xhxgxq    )()()( xqxhxg   
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3.2.1   Theorem 1 (Fourier Series of Even and Odd Functions) 
  

The Fourier series of an even function )(xf  of periodic 2L is a ―Fourier cosine series‖ 

 







1

0 cos)(
n L

xn
axf


             (30) 

 

with coefficients 

 


L

dxxf
L

a
0

0 )(
1

,          
L

n dx
L

xn
xf

L
a

0
cos)(

2 
 

 
 ,2,1n  

 

Also the Fourier series of an odd function )(xf of period 2L is a ―Fourier sine series‖ 

 







1

sin)(
n

n
L

xn
bxf


                 (31) 

 

with coefficients 

 


L

n dx
L

xn
xf

L
b

0
sin)(

2 
                (32) 

 

In particular, this theorem implies that the Fourier series of an even function )(xf of 

period 22 L  Fourier cosine series. 

  

 xaxaxaaxf 3cos2coscos)( 3210     

  

with coefficients               (33) 

 




 0
0 )(

1
dxxfa , 



 0
cos)(

2
nxdxxfan  

   n 2, 1, 2 ……….             (34) 

 

Similarly, the Fourier series of an odd function )(xf of period 2  is a Fourier sine series. 

  

 xbxbxbxf 3sin2sinsin)( 321  

with coefficients                (35) 

 


L

n nxdxxfb
0

sin)(
2


                          (36) 
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3.2.2   Theorem 2 (Sum of Functions) 
 

The Fourier coefficients of a sum 21 ff  are the sums of the corresponding Fourier 

coefficients of 2f 1f  and 2f . 

 

The Fourier coefficients of a cf are c times the corresponding Fourier coefficients of f. 

 

Example 2 

 

The function )(xf  is the sum of the function  










0          1

x0            1
)(

x
xf




     as in example 1 and the constant 1.  

 

Hence from example 1 and theorem 2, above, you conclude that 

   









 xxxxxf 6sin

6

1
5sin

5

1
3sin

3

1
sin

4
1)(


 

 

Example 3 

 

Find the Fourier series of the function 

 

 xxf )(   if   x  and 

   )()2( xfxf    

 

Solution 

  

Let 21 fff     where    xf 1  and 2f . 

 

The Fourier coefficients of 2f  are zero, except for the one (the constant term), which is . 

 

Hence, by theorem 2, the Fourier coefficients nn ba , are those 1f , except for 0a , which is 

. Since 1f is odd, 0na  for   ,2,1n   

 

and   

 

 


 00
1 sin

2
sin)(

2
nxdxxnxdxxfbn  

 

Integrating by parts you obtain 

 














  dxn

n

nxx
bn







 0
cos

1

0

cos2
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n
n

cos
2

  

 

nn

n 2
)1(

2
  for odd n 

 

n

2
    for even n 

 

Hence, 
2

1
,

3

2
,1,2 4321 bbbb  

 

Therefore the Fourier series of )(xf is given thus; 

 









 xxxxxxf 5sin

5

1
4sin

4

1
3sin

3

1
2sin

2

1
sin2)(   

 

4.0  CONCLUSION 

 

The conclusion of this unit is embedded in the summary as discussed below. 

 

5.0 SUMMARY 
 

A Fourier series of a given function )(xf of period 2 is a series of the form   

nxbnxaa
n

nn sincos
1

0 




  

 

With coefficients given as in equation (25). 

 

Theorem 1 given conditions that is sufficient for this series to converge and at each x to 

have the value )(xf , except at discontinuities of )(xf , where the series equals the 

arithmetic mean of the left-hand and right-hand  limits of )(xf at that point. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

i. Find the Fourier coefficients of the periodic function )(xf where 

 













xk

k
xf

0   if         

0x   if      
)(  

 and )()2( xfxf    

ii. Explain the term odd and even function of a Fourier series 

iii. Find the Fourier series of the function  

  xxf )(   if  x0  and 

 )()2( xfxf    
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iv Find the smallest positive period p of the following function 

 (a) xxxx 2sin,2cos,sin,cos  

v. If )(xf and )(xg have period p , show that  

 )tan,,( tconsbabgafh   has the period p . 

 Thus all functions of period p from a vector space. 

vi. Evaluate the following integrals when 
  ,2,1,0n  

 (a) 
2

0
cos



nxdx   (b) 
2

2

cos



nxdxx  

 (c) 
2

0
cos



nxdxe x  (d) 
2

0

2 cos nxdxx  
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UNIT 3 LAPLACE TRANSFORMS AND APPLICATION 

 

CONTENTS 

 

1.0   Introduction  

2.0    Objectives    

5.0     Main Content 

3.1 The Classical Laplace Transform 

3.1.1 Elementary Applications of the Laplace Transform  

Depend Essentially on Three Basic Properties 

3.1.2   Applications of Laplace 

3.2 Laplace Transforms of Generalized Functions 

3.3 Computation of Laplace Transforms 

4.0    Conclusion  

5.0    Summary  

6.0    Tutor-Marked Assignment  

7.0    References/Further Reading 

  

1.0 INTRODUCTION 
 

The Laplace transform is a method for solving differential equations and corresponding 

initial and boundary value problems. The process of solution consists of three main steps: 
 

In this way the Laplace transformation reduces the problem of solving a differential 

equation to an algebraic problem. 

 

The Laplace transform is the most important method used in solving engineering 

mathematics. 

  

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 
 

 undergo the three main steps of solving initial and boundary value problem. 

 

3.0     MAIN CONTENT 
 

3.1 The Classical Laplace Transform 

 

Let f be a function of the real variable t which is defined for all t  0 and which is either 

continuous or at least sectionally continuous.  The classical Laplace Transform † of f is 

the function F0(s) defined by the formula 

   F0(s)   {f(t)} = ∫


0 e
-st

 f(t) dt.   (1) 

 

This definition of F0(s) clearly makes sense only for those values of s for which the 

infinite integral is convergent.  For many applications it is enough to regard s as a real 

parameter, but in general it should be taken as complex, say s =   + iω .  Thus F0(s) is 
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really a function of a complex variable defined over a certain region of the complex 

plane; the region of definition comprises just those values of s for which the infinite 

integral exists. 

 

3.1.1   Elementary Applications of the Laplace Transform    

  Depend Essentially on Three Basic Properties 

 
i. Linearity.  If the Laplace Transforms of f and g are F0(s) and G0(s) respectively, 

and if a1 and a2 are any (real) constants, then the Laplace Transform of the 

function h defined by 

 

is   h(t) = a1f(t) + a2g(t) 

  H0(s) = a1F0(s) + a2G0(s).    (2) 

  

The proof is trivial. 

 

ii. Transform of a Derivative.  If f is differentiable (and therefore continuous) for 

f  0, then 

= sF0(s) – f(0).     (3) 
  

 Proof 
 

 Using integration by parts you have 

 

   ℓ[f'(t)] =   dttfsetfedttfe ststst )()()(
0

0

 

  

   = - f(0) + s dttfe st )(
0






 

 Since lim e
-st

f(t) = 0 

  

Corollary.  If f is n-times differentiable for t   0, then 

   

ℓ [f
(n)

(t)] = s
n
F0(s) – s

n – 1
f(0) – s

n – 2
 f'(0) …….. – f

(n- 1)
(0). 

 

iii. The Convelution Theorem.  Let f and g have Laplace Transforms F0(s) and G0(s) 

respectively, and define h as follows: 
 

H(t) = ,)()(
0

 dtgf
t

   t0. 

 Then, 

    ℓ [h(t)] = F0(s)G0(s).   (4) 

 

(Recall that h, as defined here, is the convolution of the functions u(t)f(t) and u(t)g(t).  If f 

and g happen to be functions which vanish identically for all negative values of t then the 

above result can be expressed in the form: 
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The Laplace Transform of the convolution of f and g is the product of the individual 

Laplace Transform. 

 

Proof 

 

The Laplace Transform of h is given by 

  H0(s) =  .)()(
0

0 dtdtgf
t

e st









 

   

Now, 

   dtutgfdtgf
t

)()()(
0

)()(
0




   

because u(t -  ) = 1   for all   such that   < t 

and   u(t -  ) = 0   for all   such that   > t. 

 

Hence 

  H0(s) = .)()()(
00

dtdtutgfe st














   

Again, 

  


 detgdtetutg stst  





 )()()(
0

 

because u(t - ) = 1   for all t such that t >  , 

and  u(t - ) = 0   for all t such that t <  . 

 

Thus, 

  H0(s) = .)()(
0




 ddtetgf st














  

And so putting T = t -  , you get 

H0(s) = .)(
0

)(
0

)(   ddTeTgf Ts








 


  

Since T = 0 when t =  . 

That is, 

  H0(s) = ).()()(
0

)(
0

00 sDsFdTeTgdef sTst 




   

Remark 
 

The change in the order of integration in the proof given above is justified by the absolute 

convergence of the integrals concerned. 

 

3.1.2   Applications of Laplace 
 

The most immediate application of these properties is in the solution of ordinary 

differential equations with constants. Consider the case of the general second-order 

equation 
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  f(t)cy
dt

dy
b2

dt

yd
a

2

2

      (5) 

 

Where y(0) =   and d'(0) =  . If  [y(t)] = Y0(s) then 









dt

dy
  = sY0(s) -  ,  and 









2

2

dt

yd
 = 2Y0(s) -  s -  . 

 

Taking Laplace Transforms of both sides of (5.5) therefore gives 

 

  a[s
2
Y0(s) -  s -  ] + 2b [sY0(s) -  ] + cY0(s) = F0(s). 

That is, 

  Y0(s) = 
cbsas

basa

cbsas

sF






 2

)2(

2

)(
22

0 
   (6) 

 

Y0(s) is thus given explicitly as a function of s, and what remains is an inversion 

problem; that is to say you need to determine a function y(t) whose Laplace Transform is 

Y0(s).  The question of uniqueness which naturally arises at this point is not, in practice, a 

serious problem. In brief, if y1 and y2 are any two functions which have the same Laplace 

Transform Y0(s), then they can differ in value only on a set of points which is (in a sense 

which can be made precise) a negligibly small set.  In fact, you have the following 

situation: 

 

if  [y1(t)] =  [y2(t)]  then   


0
|y1(t) – y2(t)| dt = 0. 

 

With this proviso in mind, you admit the slight abuse of notation involved, and write: 
 

 y(t) 






















 

cbsas

basa

cbsas

sF
sY

2

2(

2

)(
)]([

2

1

2

01

0

1 
  (7) 

 

where y is defined for all t > 0. 

 

A more serious problem from the practical point of view is that of implementing the 

required inversion; that is, of division effective procedures which allow us to recover a 

function f(t) given its Laplace Transform F0(s). In a large number of commonly occurring 

cases this can be done by expressing F0(s) as a combination of standard functions of s 

whose inverse transforms are known . 

 

Note that with zero initial conditions, (y(0) = y'(0) = 0), the differential equation (5) can 

be regarded as representing a linear time-invariant system which transforms a given input 

signal f into a corresponding output y.  This output function y is the particular integral 

associated with f and, using the Convolution Theorem, it can be expressed in terms of the 

appropriate impulse response function characterizing the system: 
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   Y(t) = 
00

1

1 )([)()(
0

HsFdthf
t

   

Where   

   H0(s) = 


0
e

-st
h(t) dt = 

cbsas  2

1
2

 

 

Non-zero initial conditions correspond to the presence of stored energy in the system at 

time t = 0. The response of the system to this stored energy is independent of the 

particular input f and is given by the complementary function. The complete solution 

(valid for all t > 0) of the equation (5) can be written in the form. 

 

 Y(t) = )].()]2([)]()([ 0

1

00

1 sHbasasHsF             (8) 

 

In applying the classical Laplace transform technique to (5) you are tacitly assuming that 

the system which it is being taken to represent is unforced for t < 0; that is, that the 

response which you compute from (5) is actually the response to the excitation f(t)u(t).  

This is sometimes expressed by saying that the input is suddenly applied at time t = 0.
 

 

3.2 Laplace Transforms of Generalised Functions 
 

If a is any positive number then there is no specialty in  extending the definition of the 

classical, one-sided,  Laplace Transform to apply to the case of a delta function located at 

t = a, or to any of its derivatives located there; for a direct application of the appropriate 

sampling property gives immediately 

 

sast

a edtateatt  


  )(
0

)}({)}({       (9) 

 

sa

at

stst see
dt

d
dtateat 



 










  )()('

0
)}({ '             (10) 

and so on 

 

Now take the case of a function f defined by a relation of the form 

   

f(t) =  1(t)u(a-t) +  2(t)u(t – a)               (11) 

 

where a > 0, and  1 and  2 are continuously differentiable functions. Using the notation 

 

 f'(t) = '

1 (t)u(a – t) + '

2 (t)u(t – a)   (for all t  a) 

and  

 Df(t) =  '

1 (t)u(a – t) + '

2 (t)u(a – t) + [ 2(a) -  1(a)] (t – a)  

   ).()]()([)(' atafaftf              (12) 
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Using integration by parts to evaluate the Laplace integral you have 

 




0
e

-st
f'(t)dt =  0

a
'

1 (t)e
-st

dt + 


0

'

2 (t)e
-st

dt 

= 





















a

st te )(1 + s  0

a
1 (t)e

-st
dt + 





















a

st te )(2  


a
 2(t)e

-st
dt

 

= s   )0()()()()(
0

11221  






 
 

 aaedtet
a

dtet
a

asstst    

 )()()0()(   afafefssF as

o              (13) 

 

so that a modification of the derivative rule is required when you adhere to the classical 

meaning of the term ―derivative‖ in the case of discontinuous functions. 

 

On the other hand, from (12) you get 

 




0
e

-st
[Df(t)]dt = 



0
e

-st
f'(t)dt + [f(a+) – f(a-)] e

-as
 

= sF0(s) – f(0)                 (14) 

and the usual form of the derivative rule continues to apply. 

 

The result (13) makes sense even when you allow a to tend to zero, for then you get 

 [f'(t)] = 


0

'

2 (t)e
-st

dt = s 


0
 2(t)e

-st
dt -  2(0) 

     

=  sF0(s) – f(0+).                (15) 

 

However, a complication arises with regard to  [Df(t)] when a = 0.  If you have    

 

Then f(t) =  1(t)u(-t) +  2(t)u(t) 

Df(t) = '

1 (t)u(-t)+ [ 2(0) -  1(0)] (t) 

 

and so, 

 [Df(t)]  =  [ '

2 (t)] + [ 2(0) -  1(0)]  [ (t)] 

       = s  [ 2(t)] -  2(0) + [ 2(0) -  1(0)]  (s) 

       sF0(s) – f(0 +) + [f(0+)– f(0 -)]  (s).           (16) 

 

The difficulty is that, as remarked in Sec. 4.5, the Laplace Transform of the delta function 

(which you have denoted by  (s)) is not defined by the Laplace integral 

 

  


0
e

-st
 (t)dt =  


e

-st
u(t)  (t)dt. 
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The role of the delta function as a (generalized) impulse response function suggests that 

you should have  (s) = 1 for all s, and this is the definition most usually adopted.  

However the discussion on the significance of the formal product u(t) (t) shows that 

there are grounds for taking  (s) = 
2

1
, for all s; other values for  (s) have also at the 

issue cannot be resolved simply by an appeal to the definition of  as a limit, nor by 

means of the formulation as a (Riemann) Stieltjes integral.  In the latter case, for 

example, you have for an arbitrary continuous integrand f 

 




0
f(t)duc(t) = (1 – c)f(0)       (17) 

You could therefore obtain  (s) 1 by choosing c = 0 or, equally well,  (s) 
2

1
by 

choosing c =
2

1
.  Whatever value you choose for  (s) the relation (16) is bond to be 

consistent with the behaviour of  as the derivative of the unit step function u. for, since 

 

    [u(t)] = 


0
e

-st
dt = 1/s, 

You have 

   [u'(t)] = [s 








s

1
 - u(0 + )] +  (s)[u(0+) – u(0-)] 

     = (1 – 1) +  (s) (1 – 0) =  (s). 

On the other hand care must be taken to ensure that the correct form of (16) is used when 

a specific definition of  (s) has been decided on.  Thus, for  (s) = 1 you get 

 

   [Df(t)] = sF0(s) – f(0 - )  

       = sF0(s)           (18) 

 

Whenever f(t) = 0 for all t < 0. 

 

But for  (s) = 
2

1
 the result becomes 

   [Df(t)] = sF0(s) - 
2

1
[f(0+) + f(0 -)]. 

 

In what follows, you shall adopt the majority view and define  (s) to be 1 for all values 

of s.  Similarly, you shall take the Laplace Transform of  ' to be s; the analogue of (19) 

then becomes 

 

   [D
2
f(t)] = s

2
F0(s) – sf(0-) – f'(0-)        (19) 

        = s
2
F0(s) 

 

whenever f(t) = 0 for all t < 0.  The convenience of these definitions is readily illustrated 

by the following derivation of the Laplace Transform of a periodic function: 
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Let f be a function which vanishes identically outside the finite interval (0,T).  The 

periodic extension of f, of period T, is the function obtained by summing the translates, 

f(t – kT), for k = 0,  1,  2,…., (see fig. 49) 

 

   fT(t) = 





k

kTtf )(          (20) 

 
 

Fig. 49 

 

You can write fT as a convolution: 
 

fT(t) = 





k

tfkTttf )()]()([  





k

kTt ).(      (21) 

 

further, using the above definition of  (s), you obtain 

 

  











k

kTt ).(  = 











k

kTt ).(  

 

  = 1 + e
-sT

 + e
-2sT

 + e
-3sT

 + … =  
sTe1

1
             (22) 

The summation being valid provided that 

 

  |e
-sT

| = |e
-(

Tie )

| Te  < 1, 

 

That is, for all s such that Re(s) > 0. Hence, appealing to the Conclusion  

 

Theorem for the Laplace transform, (21) and (22) together yield 

 













k

kTt ).( = 
sTe

sF
1

)(0              (23) 
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3.3 Computation of Laplace Transforms 
 

If f is an ordinary function whose Laplace Transform exists (for some values of s) then 

you should be able to find that transform, in principle at least, by evaluating directly the 

integral which defines F0(s). It is usually simpler in practice to make use of certain 

appropriate properties of the Laplace integral and to derive specific transforms from 

them. The following results are easy to establish and are particularly useful in this 

respect: 

 

(L.T.I) The first Translation Property.  If  [f(t)] = F0(s), and if a is any real constant, 

then 

  

 [e
at
f(t)] = F0(s – a). 

 

(L.T.2)  The Second Translation Property.  If  [f(t)] = F0(s), and if a is any positive 

constant, then 

  

 [u(t – a)f(t – a)] = e
-as

F0(s). 

 

(L.T.3) Change of Scale. If  [f(t)] = F0(s), and if a is any positive constant, then 

  [f(at)] = 








a

s
F

a
0

1
. 

 

(L.T.4) Multiplication t. If  [f(t)] = F0(s), then 

  

 [tf(t)] = - 
ds

d
F0(s)   - )('0 sF . 

 

(L.T.5)  Transform of an Integral.  If  [f(t)] = F0(s), and if the function g is defined by 

   

g(t) =  0

t
f( )d  

then  

  [g(t)] = 
s

1
F0(s). 

 

The first three of the above properties follow immediately on making suitable changes of 

variable in the Laplace integrals concerned. For (L.T.4) you have only to differentiate 

with respect to s under the integral sign, while in the case of (L.T.5) it is enough to note 

that g'(t) = f(t) and that g(0) = 0; the result then follows from the rule for finding the 

Laplace Transform of a derivative. Using these properties, an elementary basic table of 

standard transforms can be constructed without difficulty (Table 1). This list can be 

extended by using various special techniques.  In particular, the results for the transforms 

of delta functions derived in the preceding section are of considerable value in this 

connection. 
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Table 1: Basic Table of Standard Transforms 
 

fu(t)(t) F0(s) Region of (absolute) convergence 

u(t) 

   t 

t
n
(n>1) 

e
at
 

 

e
-at

 

 

sinh at 

 

cosh at 

 

sin at 

 

cos at 

1/s 

1/s
2
 

n!/s
n+1 

as 

1
 

as 

1
 

22 as

a


 

22 as

s


 

22 as

a


 

22 as

s


 

Re(s) > 0 

Re(s) > 0 

Re(s) > 0 

 

Re(s) > a 

 

Re(s) > - a 

 

Re(s) > | a | 

 

Re(s) > | a | 

 

Re(s) > 0 

 

Re(s) > 0 

 

Example 1 

 

Find the Laplace transform of the triangular waveform show in fig. 50. 

 

 
 

Fig. 50: Laplace Transform of the Triangle Waveform 
 

You shall obviously expect to use the formula (23) for the Laplace Transform of the 

periodic extension of a function f, but the first need is to establish the transform of this 

function f itself.  In fig. 51 there is shown a decomposition of the required function into a 

combination of ramp functions: 

 

 f(t) = tu(t) – 2(t – 1)u(t – 1) + (t – 2)u(t – 2) 
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Fig. 51 (b) 

 

A straightforward application of the second translation property (L.T.2) immediately 

gives 
 

 F0(s) = .
2

sinh
4121 2

2

2

2

2

22

s
e

ss

e

s

e
e

ss

s
ss

s 


 






 
  

 

Hence, applying (5.23) 

 

 [fT(t)] =  






 

2
sinh

4 2

2

s
e

s

s   








  se 21

1
 = 

22

2 2/tanh

sinh

2/sinh2

s

s

ss

s
 . 

 

4.0  CONCLUSION 
 

In this unit you considered the Laplace transform atum from practical point of view and 

illustrate its use by important engineering problems, many of them related to ordinary 

differential equations. 

 

5.0 SUMMARY 
 

The main purpose of the Laplace transformation is the solution of differential equations 

and systems of such equations, as well as corresponding initial value problems. 
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The Laplace transform f(s) =  (f) of a function f(t) depend by. 
 

F(s)  (f) dttfe st )(
0






 

Further, more discussion, the Laplace of the derivation such that. 

 

   (f)' = s  (f) + f(0) 

   (f") = s
2
  (f) – sf(0) – f(0). 

 

Hence, by taking the transform of a given differential equation 
2

2

dx

yd
 + 

dx

dy
a + by = f(t). 

 

  (y) = y(s) 

Hence, the simple equation becomes 

 

 (s
2
 x as x b) y =  ( ) x s f(0) + f'(0) + a f(0). 

 

Hence,  ( ) the transformation back to hard problem can be gotten from the table 1 – 

unit 3. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

i. Find the Laplace transform of the following function 

 

a. e
at,

 

b. cos wt 

c. cosh bt 

ii. Use Laplace transforms to obtain, for t x0, the solution of the linear differential 

equation 

2

2

dx

yd
 xy = t., which satisfies the condition y(0) = 1, y'(0) = -2 

iii. Use the convolution theorem for the Laplace Transform to solve the integral 

equation y(t) = cost + 2sint +  dty
t

)sin()(
0

  

 for t > 0. 

 

iv. Identify the function whose Laplace Transforms are: 

(a) 
1

22





s

s
 

(b) 
se

scosh
. 
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