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1.0 INTRODUCTION

The integral transform method is one of the best methods used in handling problems
involving mechanical vibrations. The integral transform method is given by

F(p) =[] £ 09K (x, p)ox
With the inverse,
f00 =Y F(MH(X.P)

F(p)is the integral transform of f(x)and k(x,p) is called the kernel of the
transformation.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. state various form of integral transform;

. state Fourier Sine series and Fourier Cosine series;
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o apply Fourier transform to solve some fourth, third and second order differential
equations; and
) develop techniques and methods through transformation or along with transform

to be able to solve physical and mechanical problems (vibrations).
3.0 MAIN CONTENT
3.1 Finite Fourier Transform

Let f (x) be a function defined in the intervala<x<b i.e. f(x) is defined onx -space. Let
k(x, p) be a function x of and some parameter p .

Then the integral transform method is given by,

b
F(p)= [ f(OK(x, p)dx (1)
F(p)is called an integral transform of f (x) andk(x, p) is called the kernel of the transform

Symbolically,
F=Tf (2)
whereT is an integral operator which means multiply what followsT byk(x, p)and

integrate the product with respect to x between the limit of 'a‘and'b'. The new function
F (p) can be regarded as the image of f (x) produced byT .

F(p) is defined on p-space/image-space.

For integral transform to be a useful concept, it is necessary that there should exist an
inverse operator T *which yields a unique F(t) from a given F(p). From equation (2) you
have that:

f=T(F) (3)

Finding the operatorT "is equivalent to solving equation (1) regardless an integral
equation for f (t)

£ = ['F(o)H (o, dp (4)

I.e. F(t)is an integral transform of F () with kernel H (o, x).
A specification of the T operator as in equation (4) is known as Inversion Theorem.
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3.1 Finite Fourier Transforms

3.1.1 Half Range Fourier Sine Series

f(x)=2bp5in% 0<x<L
p=1

Where
bp = J'OL f (x){%sin %}dx

The image space is given by all the positive integral values of o . Hence bp rather than

b(p).
3.1.2 Half Range Fourier Sine Series 0<x<L

F(x) = 2a,x Y cos 2%
20T

Where
L 2 7X
ap = L f(x){t Ccos 'OT}dx

3.1.3 Ordinary Fourier Series

iéﬁfj

f(x) = icpe[ :

p=—o

Seml

p=—0
Where —-L<x<L

P7X

Cp= LLL f (x){z—ll_ exp(— i Tj}dx
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3.2 The Fourier Transform

3.2.1 Fourier Sine Transforms

0<x<w

With inversion

2" s .
(%) {;) [ Fu(psin p(x)dp

0<p<w
Since kernel for operator and its inversion.

3.2.2 Fourier Cosine Transforms

2\ ¢
F.(p)= (;] [ f(9cos p(x)dx

With the inversion

T

2 %
f(x) = H F. () 008 p(X)d

Same kernel cos p(x) for operator and its inversion.

3.2.3 Ordinary Fourier Transforms
F(p)=(27)" f; f (x)e*dx

The kernel k(x, p) =e"*

With inversion is
f09=(27) [ Flpe™dp
Then H =(p, x)e "™
havek = H(p, X)
If f(x)iseventhen f(-x)= f(x)
133
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and F(p) = F,(p)

But if f(x)isodd then f(—x)=-f(x) and

Thus F(p) =iF, (p)

From equation (9) above, you can deduce that;
(27" F(p) = j“; f (x)e "M dx

= £ Wax+ [ f (e dx

But if

X =t

=>x=0=>1t=0

X=—0=t=0
dx = —dt

Thus, you have

[ £ k=" f (-t at

(27) " F(p) = I_Ow f (x)e "™ dx + J': f (=x)e "W dx

If f(x)iseventhen f(—x)= f(x)

Equation (16) becomes

I: f(X)[eip(X) +e—ip(x) }jX for even f(X)

2 L " £ (x)cos p(x)dx = (27) F(p)

But, for odd f (x)

J‘: f (x)[e‘”(x) PO ]dx

=2i j: f (x)sin p(x)dx
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3.3  Fourier Integral Formular
1 00 00
FO) == LO dp jo f (t) cos p(x —t)dt

Note that from (9) and (10) you have that:

_ 1w * ip(x)
F(x)_gj_we " f (R Mdt

You have now prove that equations (19) equals (20)

Consider equation (19)
f f (t) cos p(x —t)dx is a an even function of p

So that (19) can be re-written in the form
F(X) =1j°“ dpj‘” f (t) cos p(x —t)dt
T J—° 0

1

S 9(e)p

Since j: 9(p)dp =
g(p)iseven

1 (o = .
Hence ozzj_wdpjo f (t)sin p(x —t)dt

MODULE 4

(19)

(20)

(21)

(22)

In other to arrive at equation (19), you have equation (21) equals (22) because

cos@=isin@=e"

_ 1 (= o —ip(x-t)
FO9=—— LC dp LO f (t)e PVt

1 00 - 00 .
=— | e f (1) dt
o). ol f®

Which is equal to (20).

3.4 Transforms of Derivatives

_% . -
(o) =00 =[5 | [ v0eroax

You shall now transform y’(x) = F(y'(x))
%
SR~ 5] Ty eer
2 -
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Using integration by parts, you have

1 i ip(X)
(Zj {t(x)e

suppose y(x) >0 as x — =+

o ipr y(x)e‘p(x)dx}
_w —00

D . '(x)e" X—_i()— . x)e"”dx

=ip(Y(p))
F(Y/09) = in(Y (o).
7% 00 -
=[] [ yeray

Integration by parts,

LY
(Zj {y (x)e

suppose y'(x) — 0

© o[ y’(x)e‘p(x)dx}
J— w —00

Then you have
—ipf y'(x)e”Mdx.

Which — p[F(y'(x)] = ip(=ip(Y ()
=-ip?[Y ()]
=—p*(y(x))

Suppose you have

2
diy  dy
dx®  dx
y—>0, y'—>0as X—+owo

+y="1(x)

In other to arrive at equation (19), you equation (21)
Because cos@=isind=e""’.

) _ 1 = 0 —ip(x-t)
- f(x)_zj_wdpj_wf(t)e POD gt
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1 o . ” .
=—| e"™g f ()e”™Mdt.
o) R0

Which is equal to (20).

F(Y"+Yy' +Yy)=G(p)
S =P (p)—iY (p)+Y (p) =G(p)
Y(p)-p? —ip+1]

_ G(p)
Y= L(p2 +ip—1)} (D

4.0 CONCLUSION

In this unit, you treated the various forms of integral transform. The Fourier sine and
cosine series representation were discussed. The inverse theorem was also considered.

5.0 SUMMARY

The general scheme of solving problem by integral transform is summarized below;

Physical problems —
modeled it terms of Application of Equivilent .
ecuation invalving §x) sutable inte gt al equation Fip); . 301@3
and difficult to solve transform using 9 now easy to gratin —
ordinatily operator T solve
Solution ity
terms of F(m)

Applying
Itrrerze tthlnrem —_» Salve for f5)
opetator T

This is the diagrammatic expression of the summary.

6.0 TUTOR-MARKED ASSIGNMENT

. State the method of integral transforms and its inverse. State also the Kernels of
the method and its inverse

ii. Discuss briefly the inverse theorem.

lii.  State the three theorems of finite Fourier transforms.

%

iv. If F(p)=F(y(x)= (ij Jm y(x)e"”™dx
2 —
use the transformation y'(x) = F(y"(x)), proof that F(y'(x))=ip[Y (o)}
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1.0 INTRODUCTION

Fourier series arises from the task of representing a given periodic function f(x) by
trigonometric series. The Fourier series coefficients are determined from f (x) by Euler
formula.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. determine Fourier coefficients;
. find the convergence and sum of Fourier series; and
. use Euler formula for the Fourier coefficients.

3.0 MAINCONTENT
3.1 Fourier Series

3.1.1 Euler Formula for the Fourier Coefficients

Let us assume that f(x) is a periodic function of period 2z that can be represented by a
trigonometric series

f(x) =a, + Y a,cosnx+b, sinnx (1)
n=1

That is to say, you assume the convergence of the series and has f (x) as its sum.

In any function f(x)of such, you shall determine the coefficientsa,and b, of the
corresponding series.
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1)

To determine a,,you shall integrate both sides of the equation 1, from—-z <x<x
Thus, you have
[ feodx=]" {ao + {Z a, cosnx+b, sin nxﬂdx

T - el

= Lr a,dx + Z a, L{cos nxax + Z b, Lsm nxdx

[°e} bn
=a,X +Z_1:75mnx ﬂ—nz_;?cosnx _
_27za0+z [ (sinnz —sin(-nz))—(cos nz —cos(—nx))]
=27y (2)

Hence
27, = j f (x)dx

1 4
= = [" f(dx ®3)

To determine a,,a,, ----a, using the same procedure. However, multiplying equation (1)
by cosmx, when m is any fixed real number, and integrate from-z<x<r

: f f (x) cos mxdx = _[” {ao + {i a, cosnx +b_sin nxﬂ cos mxdx (4)
T - oy
=a, fﬂcos mxdx + i a, J:cos nxdx + i b, fﬁsin nxdx (5)
n=1 n=1

Evaluate (5) term by term, you have

a, fﬂcos mxdx = ao{sm mx} =0 (6)

m

Using trigonometric identities

Za I COS NX COS Mxdx = Za I [cos(n +m)x + cos(n — m)x]xdx (7)
Similarly,

ibn J._”sin nx cos nxdx = %ibn J.” [sin(n +m)x + sin(n — m)x [xdx (8)
n=1 " n=1 7
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From (7), you have,

r cos(n+m)xdx:Mﬁ:O 9)
-~ n+m |z

and

r cos(n —m)xdx = sin(n =m)x |z _ 0 (10)
- n-m |z

forn=m
but if n = myou have that
f cos(n — m)xdx = f cos(0)xdx = f dx.

because cos0=1

— o (11)

I_ﬂdx:x -

T

From equation (8) you obtain thus

r sin(n+m)xdx = _cos(n+myx\z 0 (12)
- n+m |z

and

r sin(n —m)xdx = _cos(n-—mx\z _, (13)
- n-m |z

Substituting equations (9), (10), and (11) into (7), you have

2 z 0 n=m
D a, I COS NX COS MXdx = { ” (14)
= T n=m

n=1

and substituting equations (12), (13), and (14) into (8) gives

n+m

© /r 0
>'b, .[ sin nx cos mxdx = { (15)
n=1 - VA n=m

Then, in view of equations (14), (15) and (6), equation (5) becomes:
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[ t(9cosmxdx=a, Q)+ Y a,7+3.b,(0)
—ar 7 7 (16)

. a, zlr f (x) cos mxdx (17)
7Z' —7T

b,,b,,----b,can also be obtained in the same manner, by multiplying equation (1) by
sinmx and integrate from-z<x<r.

Using the trigonometric identities and manipulation, you have

f f (x)sinmxdx = f {ao + {z a, cosnx+b, sin nxﬂsin mxdx (18)

n=1

Integrating term by term, you see that the right hand side becomes

T . T . e T .
I f (x)sin mxdx = j a, sinmxdx + ZJ' a, Cos nxsin mxadx
7T -7 =1 -

+2J:bnsin nx sin mxdx (19)

Using the same principle as before

f a,sinmxdx =0 (20)
ian f cos nxsinmxdx =0 (21)
n=1 .

forn=21,23,----
but

if b, sin nxsin mxdx = %Dﬂ [cos(n—m)x —cos(n + m)x]xdx}
= -

(=Dsin(n—m)x 1 (=1)sin(n+m)x

(n—m) 2 (n+m) (22)

1
2

nm

but for n=m
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1 ¢z 1 ¢z

> [ cos(O)dx =5 [(dx=x
z 0 n=#m

I sin nx cos mxdx = { ” (23)
- £ n=m

substituting equation (23) into (19) you obtain thus

f f(x)sinmxdx =b, 7

= b, = lr f (x) sin mxdx (24)
7z' -

For m=12,---

Writing nin place of min equation (17) and (24) respectively, you have

1 ¢x
8= j f (x)dx

a, = iJ‘” f (x) cos mxdx
72' -
and

(25)

b, = lr f (x)sin mxdx
72' =T

This is called the Euler formula.

These numbers given in equation (25) are called the Fourier coefficients of f(x).
However, the trigonometric series in equation (1) with coefficients given by (25) is called
the Fourier series of f (x).

Example 1

Find the Fourier coefficients of the periodic function f(x)where

£(x) = -1 ?f —-r<x<0
1 if O<x<ux

and  f(x+27)=f(x).

Solution
1 T 1 0 T
=" 1 00x - Z[ [ e+ | dx}
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1 o 1 0 1

27["1” X 27r( X)‘—ﬁ 27r[ (”)]
_ 1

2

and

1 o= 1 T 1
EJ.O dX—Z(X)‘O —Z[ﬂ'—O]

o= 1 + 1 =0.
2 2
From equation (25) i.e.

a, zlr f (x) cos nxdx
V4 -

10 1 o
=—I —cosnxdx+—j cos nxdx
T T T 0

_ 1| =sinnx|0  sinnx|z _0
V4 n |-z n |0
a, =0
Similarly for

b, = lr f (x)sin nxdx
V4 /4

- EU_O —sin nxdx + Lﬂsin nxdx}

T
_1]|cosnx[0  cosnx|z
T n |-7& n |0

_ 1 [cos 0 — cos(—nx) — cos nx +cos 0]
nz

_ 1 [2—2cos(nx)]
nz
N.B cos(—nx) = cos(nx)

:i[l—cos(nﬂ)]
nz

-2 -1y

Nz
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N.B cosnx=(-1)"

b, == [+1]= -
nz Nz
for n=135,---
2
b,=—10]|=0
=20
for n=246,----
b=2 b=2 b= ec
V/d 3z S5z
b,=b, =b, =0

3.2 Even and Odd Numbers

Fourier coefficients of a function can be avoided if the function is odd or even. You say a
function y = g(x) is said to be even if

g(=x)=g(x) forall x. (26)
While a function h(x) is said to be odd if
h(—x) =—h(x) for all x. (27)

However, it worth mentioning here that the functioncosnxis even, while the function
sinnxis odd.

If g(x)is an even function, then

j_LL g(xdx) = 2 jOL g(x)dx. (28)

If h(x)is an odd function, then
[ h(dx=0 (29)
The product of both odd and even function is odd

-~ let g(x) = g(xh(x)
and q(-x) = g(-x)h(-x) = g()[-h(x)]=-a(x)
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3.2.1 Theorem 1 (Fourier Series of Even and Odd Functions)

The Fourier series of an even function f (x) of periodic 2L is a “Fourier cosine series”
f(x)=a, + ZcosnTﬂX (30)
n=1
with coefficients
1L 2L N7zx

a, =Ij0 f (x)dx, a, =Ej0 f () cos == dx
n=1,2,---
Also the Fourier series of an odd function f (x) of period 2L is a “Fourier sine series”
H@:ZQmJ? (31)

n=1
with coefficients

b = % [, f09sin ”T”de (32)

In particular, this theorem implies that the Fourier series of an even function f (x) of
period 2L =2z Fourier cosine series.

f(x)=a,+a,cosx+a,CoS2X+a, CoS3X+-----

with coefficients (33)

1 T 2 T
a, :;_[O f(x)dx, a, :;_[0 f (X) cos nxdx
n2,1,2.......... (34)

Similarly, the Fourier series of an odd function f (x) of period 2 is a Fourier sine series.

f (x) =b sinx+b, sin2x+b, sin3x +-----
with coefficients (35)

b, = EIL f (x)sin nxdx (36)
T 90
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3.2.2 Theorem 2 (Sum of Functions)

The Fourier coefficients of a sum f, + f,are the sums of the corresponding Fourier
coefficients of f, f, and f, .

The Fourier coefficients of a cf are ¢ times the corresponding Fourier coefficients of f.
Example 2

The function f " (x)is the sum of the function

1 O<x< .
f(x)= " as in example 1 and the constant 1.
-1 —r<x<0

Hence from example 1 and theorem 2, above, you conclude that

Example 3
Find the Fourier series of the function

f(X)=x+7x if —r<x<z and
f(x+27) = f(x)

Solution
Let f=f+f, where f =xand f,=xr.
The Fourier coefficients of f, are zero, except for the one (the constant term), which is .

Hence, by theorem 2, the Fourier coefficients a,,b,are those f,, except fora,, which is =
. Since f,isodd, a, =0 for n=12,-.-

and

2 T . 2 7 -
b, = ;_[0 f, (X)sinnxdx = ;L Xsin nxdx

Integrating by parts you obtain

ﬂ}l[rcosndx}
0 7 LYo

b :3{—xcosnx
n
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2
=—Ccosnz
n

:g(—l)" _2 for odd n
n n

2
=—= forevenn
n
2 1
Hence, b, =2,b, =-1b, ==,b, =—=-----
1 2 3 3 4 2

Therefore the Fourier series of f(x)is given thus;
f(X)=7+2 sin x—lsin 2x+lsin3x—lsin 4x+lsin5x
2 3 4 5

4.0 CONCLUSION

The conclusion of this unit is embedded in the summary as discussed below.
5.0 SUMMARY

A Fourier series of a given function f (x) of period 2 is a series of the form

a, + »_a, cosnx +b, sinnx
n=1

With coefficients given as in equation (25).

Theorem 1 given conditions that is sufficient for this series to converge and at each X to
have the value f(x), except at discontinuities of f(x), where the series equals the

arithmetic mean of the left-hand and right-hand limits of f (x) at that point.

6.0 TUTOR-MARKED ASSIGNMENT

I. Find the Fourier coefficients of the periodic function f (x) where
f(x):{_k ?f —7<x<0
k if O<x<nxz
and f(x+27z) = f(x)
ii. Explain the term odd and even function of a Fourier series
Ii. Find the Fourier series of the function
f(X)=x+7x iIf 0<x<x and
f(x+27) = f(X)
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v Find the smallest positive period p of the following function
@) COS X, Sin X, CoS 2X, Sin 2X

V. If f (x) and g(x) have period p, show that
h = af +bg(a,b,constant) has the period p .
Thus all functions of period p from a vector space.

Vi, Evaluate the following integrals when
n=012,---
7 iz
a cos nxdx b X €0Ss nxdx
@ | ® [
(c) IO% e* cos nxdx (d) jo * X% cos nxdx

7.0 REFERENCES/FURTHER READING
Hildraban, F. B. Advanced Calculus for Application.

Murray, R. Spieg (1974). Schaums Outline Series or Theory and Problem of Advanced
Calculus. Great Britain: McGraw-Hill Inc.

Stephenor, G. (1977). Mathematical Methods for Science Students. London: Longman,
Group Limited.

Stroud, K.A. (1995). Engineering Maths. 5" Edition Palgraw.

Verma, P.D.S. (1995). Engineering Mathematics. New Delhi: Vikas Publishing House
PVT Ltd.

149



MTH 381 MODULE 4

UNIT 3 LAPLACE TRANSFORMS AND APPLICATION
CONTENTS

1.0  Introduction
2.0  Objectives
5.0 Main Content
3.1  The Classical Laplace Transform
3.1.1 Elementary Applications of the Laplace Transform
Depend Essentially on Three Basic Properties
3.1.2  Applications of Laplace
3.2  Laplace Transforms of Generalized Functions
3.3  Computation of Laplace Transforms
4.0  Conclusion
50 Summary
6.0  Tutor-Marked Assignment
7.0  References/Further Reading

1.0 INTRODUCTION

The Laplace transform is a method for solving differential equations and corresponding
initial and boundary value problems. The process of solution consists of three main steps:

In this way the Laplace transformation reduces the problem of solving a differential
equation to an algebraic problem.

The Laplace transform is the most important method used in solving engineering
mathematics.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

o undergo the three main steps of solving initial and boundary value problem.
3.0 MAIN CONTENT
3.1 The Classical Laplace Transform

Let f be a function of the real variable t which is defined for all t > 0 and which is either
continuous or at least sectionally continuous. The classical Laplace Transform + of f is
the function Fy(s) defined by the formula

Fo(s) =/ {£(0)} =1, e f(t) dt. (1)

This definition of Fy(s) clearly makes sense only for those values of s for which the
infinite integral is convergent. For many applications it is enough to regard s as a real
parameter, but in general it should be taken as complex, say s = o +io. Thus Fy(s) is
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really a function of a complex variable defined over a certain region of the complex
plane; the region of definition comprises just those values of s for which the infinite
integral exists.

3.1.1 Elementary Applications of the Laplace Transform
Depend Essentially on Three Basic Properties

I. Linearity. If the Laplace Transforms of f and g are Fy(s) and G(s) respectively,
and if a; and a, are any (real) constants, then the Laplace Transform of the
function h defined by

is h(t) = a.f(t) + a.9(t)
Ho(s) = a1Fo(s) + a2Go(s). (2)

The proof is trivial.

. Transform of a Derivative. If f is differentiable (and therefore continuous) for
f > 0, then
= sFo(s) — f(0). 3)

Proof
Using integration by parts you have

ofF=| ;Oe-st FOdt = [e F (O] se ™ f (t)at
o0
=-f(0) + U (t)dt
O +s [ e™f()
Since lim e*'f(t) = 0
Corollary. If fis n-times differentiable fort > 0, then
LT = s"Fo(s) — 8" H(0) —s" 2 F(0) ........ — ().

ii.  The Convelution Theorem. Let f and g have Laplace Transforms Fy(s) and Gg(S)
respectively, and define h as follows:

H(t) = jgf(f)g(t—r)dr, t>0.

Then,
eLh(®)1 = Fo(s)Go(s). 4)

(Recall that h, as defined here, is the convolution of the functions u(t)f(t) and u(t)g(t). If f
and g happen to be functions which vanish identically for all negative values of t then the
above result can be expressed in the form:
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The Laplace Transform of the convolution of f and g is the product of the individual
Laplace Transform.

Proof

The Laplace Transform of h is given by

Ho(s) = Iy e“{ j :)f (r)g(t—r)dr}dt.

Now,
[ @9 -0dr = [T (Dt - u(t-)d
0 7)g 7)d7 = 0 7)g T T)dr
because u(tt- £)=1 forall r suchthat r <t
and u(tt- z)=0 forall r suchthat r >t.
Hence
0 | p©
Ho(s) = joe ‘DO f(r)g(t—r)u(t—r)dr}dt.
Again,
o0 Q0
[ gtt-rut—r)edt=[ gt-r)e'dz
0 T
because utt-z)=1 foralltsuchthatt> z,
and utt-r)=0 foralltsuchthatt< z.
Thus,

Ho(s) = J.c:f (7) .[C:g (t— r)e"“dt}d T.

And so putting T =t - 7, you get
Ho(s) = [ f ()| [ g(Te TdT [de
0 0 '

SinceT=0whent=r.
That is,

Ho(s) = j;of (r)e-stdrjzog (T)e"dT = F, (5)D, (3).
Remark

The change in the order of integration in the proof given above is justified by the absolute
convergence of the integrals concerned.

3.1.2 Applications of Laplace

The most immediate application of these properties is in the solution of ordinary
differential equations with constants. Consider the case of the general second-order
equation
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d’y . dy
a—+2b—=L +cy =f(t 5
2 T2b oy (t) (5)

Where y(0) = « and d'(0) = B. If 7/[y(t)] = Yo(s) then

6{%} =5Yy(s) - a, and ﬁ{ztzy}: 2Y0(S) - as- B.

Taking Laplace Transforms of both sides of (5.5) therefore gives

a[s?Yo(s) - @S- B+ 2b[sYo(S) - ]+ cYo(s) = Fo(S).
That is,
Yo(s) = : F, (S) N aas t (af+2ba) (6)
as“ +2bs+c as® +2bs+c

Yo(s) is thus given explicitly as a function of s, and what remains is an inversion
problem; that is to say you need to determine a function y(t) whose Laplace Transform is
Yo(s). The question of uniqueness which naturally arises at this point is not, in practice, a
serious problem. In brief, if y; and y, are any two functions which have the same Laplace
Transform Y/(s), then they can differ in value only on a set of points which is (in a sense
which can be made precise) a negligibly small set. In fact, you have the following
situation:

it [ya(O] = £[y2(0)] then I:Iyl(t)—yz(t)l dt=0.
With this proviso in mind, you admit the slight abuse of notation involved, and write:

y(t) = 0 7Y, (5)] = f‘l{FO—(S)}+€—1{a&S +(apf + Zba} @

as’ +2bs+c as? +2bs+c

where y is defined for all t > 0.

A more serious problem from the practical point of view is that of implementing the
required inversion; that is, of division effective procedures which allow us to recover a
function f(t) given its Laplace Transform Fy(s). In a large number of commonly occurring
cases this can be done by expressing Fo(s) as a combination of standard functions of s
whose inverse transforms are known .

Note that with zero initial conditions, (y(0) = y'(0) = 0), the differential equation (5) can
be regarded as representing a linear time-invariant system which transforms a given input
signal f into a corresponding output y. This output function y is the particular integral
associated with f and, using the Convolution Theorem, it can be expressed in terms of the
appropriate impulse response function characterizing the system:
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Y(t) = Igf (O, (t—7)dz = ([ (s)H,

Where
1

o0
Ho(s) = [ e“h(t)dt= ————
ols) j0 ® as® +2bs+c
Non-zero initial conditions correspond to the presence of stored energy in the system at
time t = 0. The response of the system to this stored energy is independent of the
particular input f and is given by the complementary function. The complete solution
(valid for all t > 0) of the equation (5) can be written in the form.

Y(t) = (7[R (s)H, (9)]+ £ "[aos + (af + 2ba)]H, (S)]- (8)

In applying the classical Laplace transform technique to (5) you are tacitly assuming that
the system which it is being taken to represent is unforced for t < 0O; that is, that the
response which you compute from (5) is actually the response to the excitation f(t)u(t).
This is sometimes expressed by saying that the input is suddenly applied at time t = 0.

3.2 Laplace Transforms of Generalised Functions

If a is any positive number then there is no specialty in extending the definition of the
classical, one-sided, Laplace Transform to apply to the case of a delta function located at
t = a, or to any of its derivatives located there; for a direct application of the appropriate
sampling property gives immediately

45,1} = 4ot -a)} = [ ;Oe-sta(t _a)dt—e (9)
' o —st &1 _ i —st — —sa

W' (t—a)}= j o€ 9 (t-aydt = {dt (e )L se (10)

and so on

Now take the case of a function f defined by a relation of the form
f(t) = ga(Qula-t) + go(tu(t—a) 11)
where a> 0, and ¢, and ¢, are continuously differentiable functions. Using the notation

f'(t) = ¢, (Yu(@a—t) + ¢, (Hu(t—a) (forallt =a)
and
Df(t) = ¢ ,(Yu@—1t) + g, (u@—1t) + [¢(a) - ¢1(a)] 5 (t-a)
= f'(t)+[f (a+) — f (a-)]5(t - a). (12)
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Using integration by parts to evaluate the Laplace integral you have

[ :)Oe'SLf'(t)dt = | g g (et + | : 4, (e'dt

o0 o0

=g | +sfo a0 s e, [ e

a a

- {I A0 [, (t>e‘“dt} ¢, () -4,@)]-4.0)
=sF,(9)- 1) -e*[f(an)-f(a) (13)

so that a modification of the derivative rule is required when you adhere to the classical
meaning of the term “derivative” in the case of discontinuous functions.

On the other hand, from (12) you get

[ ;O e “[DF(D)]dt = | Oooe'“f'(t)dt + [f(a+) — f(a-)] €

= sFo(s) — f(0) (14)
and the usual form of the derivative rule continues to apply.

The result (13) makes sense even when you allow a to tend to zero, for then you get
oo _ o0 -
[IFO1= [ #:edt=s] " pa()e™dt- 42(0)

= sFy(s) — f(0+). (15)
However, a complication arises with regard to ¢ [Df(t)] when a =0. If you have

Then f(t) = ¢1(Ou(-t) + $2(Hu(t)
DF(t) = ¢, (Yu(-)+ [42(0) - 4:(0)]5 (V)

and so,

¢[DF)] = ¢ [¢,(0] + [¢2(0) - 2(0)] £[5 (V)]
=5t [¢2(t)] - 4200) + [¢2(0) - $1(0)] A(S)
=sFy(s) — f(0 +) + [f(0+)—f(0 -)] A(S). (16)

The difficulty is that, as remarked in Sec. 4.5, the Laplace Transform of the delta function
(which you have denoted by A (s)) is not defined by the Laplace integral

[ :)Oe'sta* (hdt = | fz eSu(t) 5 (t)dt.
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The role of the delta function as a (generalized) impulse response function suggests that
you should have A(s) = 1 for all s, and this is the definition most usually adopted.
However the discussion on the significance of the formal product u(t) 5 (t) shows that

there are grounds for taking A(s) = % for all s; other values for A(s) have also at the

issue cannot be resolved simply by an appeal to the definition of &as a limit, nor by
means of the formulation as a (Riemann) Stieltjes integral. In the latter case, for
example, you have for an arbitrary continuous integrand f

J fduc(t) = (1 - ©)f(0) (17)
You could therefore obtain A(s) =1 by choosing ¢ = 0 or, equally well, A(S) z%by

choosing ¢ :%. Whatever value you choose for A(s) the relation (16) is bond to be

consistent with the behaviour of ¢ as the derivative of the unit step function u. for, since

Cu] = | ;oe'stdt = 1/s,
You have
1= 15[ 3] - w0+ )]+ A OO - 0]

=(1-1)+ A(S) (1L-0)= A(s).
On the other hand care must be taken to ensure that the correct form of (16) is used when
a specific definition of A (s) has been decided on. Thus, for A(s) =1 you get

¢ [DF(t)] = sFq(s) — (0 - )
= sFo(S) (18)

Whenever f(t) =0 forall t < 0.

But for A(S) = % the result becomes

¢ [DF(t)] = sFo(s) - % [F(0+) + (0 -)].

In what follows, you shall adopt the majority view and define A (s) to be 1 for all values
of s. Similarly, you shall take the Laplace Transform of &' to be s; the analogue of (19)
then becomes

¢ [D3(t)] = s°Fq(s) — sf(0-) — F(0-) (19)
= 5°Fo(s)

whenever f(t) = 0 for all t < 0. The convenience of these definitions is readily illustrated
by the following derivation of the Laplace Transform of a periodic function:
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Let f be a function which vanishes identically outside the finite interval (0,T). The
periodic extension of f, of period T, is the function obtained by summing the translates,
f(t—KT), fork=0, £1, £2,...., (see fig. 49)

f(t) = 3 f(t-KT) (20)

¥

Fig. 49
You can write f as a convolution:
fr(t) = i[f ) *S(t—KkT)]= f(t) = fa(t —kT). (21)
k=— k=-0

further, using the above definition of A(s), you obtain
z{ S5t kT)} = ({i St - kT)}
k=—o0 k=00

=1+ e-sT + e-ZST + e-SsT + = 1 (22)
1_ e—ST

The summation being valid provided that

—a+iw)T

'(e | e—aT < 1’

7| =

e
That is, for all s such that Re(s) > 0. Hence, appealing to the Conclusion

Theorem for the Laplace transform, (21) and (22) together yield

{faa—m}: o 23)
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3.3 Computation of Laplace Transforms

If f is an ordinary function whose Laplace Transform exists (for some values of s) then
you should be able to find that transform, in principle at least, by evaluating directly the
integral which defines Fq(s). It is usually simpler in practice to make use of certain
appropriate properties of the Laplace integral and to derive specific transforms from
them. The following results are easy to establish and are particularly useful in this
respect:

(L.T.1) The first Translation Property. If ¢ [f(t)] = Fo(s), and if a is any real constant,
then

¢ [€¥(1)] = Fols — a).

(L.T.2) The Second Translation Property. If ¢ [f(t)] = Fo(s), and if a is any positive
constant, then

2 [u(t — a)f(t — a)] = e™Fq(s).

(L.T.3) Change of Scale. If ¢ [f(t)] = Fo(s), and if a is any positive constant, then
CIf@] = Fo(ij.
a a

(L.T.4) Multiplication t. If ¢ [f(t)] = Fo(s), then
_ d -
CIFW] = Fo(s) = - F(9).
(L.T.5) Transform of an Integral. If ¢ [f(t)] = Fo(s), and if the function g is defined by

o(t) = Itof(z')dr
then
£[90] = < Fo(s).

The first three of the above properties follow immediately on making suitable changes of
variable in the Laplace integrals concerned. For (L.T.4) you have only to differentiate
with respect to s under the integral sign, while in the case of (L.T.5) it is enough to note
that g'(t) = f(t) and that g(0) = 0; the result then follows from the rule for finding the
Laplace Transform of a derivative. Using these properties, an elementary basic table of
standard transforms can be constructed without difficulty (Table 1). This list can be
extended by using various special techniques. In particular, the results for the transforms
of delta functions derived in the preceding section are of considerable value in this
connection.
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Table 1: Basic Table of Standard Transforms
fu(t)(t) Fo(s) Region of (absolute) convergence
u(t) 1/s Re(s) >0
t 1/s* Re(s) > 0
t"(n>1) nt/s"? Re(s) >0
eat
s—a Re(s) >a
e-at 1
S Re(s) >-a
sinh at S+a
a Re(s) > |a |
cosh at 2 2
> —a Re(s) > |a|
sin at S
s2_a? Re(s) >0
cos at a
Re(s) >0
s? +a’
S
s? +a’
Example 1

Find the Laplace transform of the triangular waveform show in fig. 50.

Fig. 50: Laplace Transform of the Triangle Waveform

MODULE 4

You shall obviously expect to use the formula (23) for the Laplace Transform of the
periodic extension of a function f, but the first need is to establish the transform of this
function f itself. In fig. 51 there is shown a decomposition of the required function into a

combination of ramp functions:

(1) = tu(t) — 2(t — Du(t — 1) + (t — 2)u(t - 2)
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Fig. 5.4(a).

Fig. 5.4 (b).

Fig. 51 (b)

A straightforward application of the second translation property (L.T.2) immediately
gives

2
1 2 e® |l1-e° 4 L 12S
Fo(s) = =— —Z e~ ¢ = =—e®sinh? =,
0() SZ SZ S { :| 2 2

Hence, applying (5.23)

: 2
¢ [f+(0] = Liz(%‘ssinhzﬂ { ! }: 2sinh”s/2 _ tanhs/2

1-e* s?sinhs  s2
4.0 CONCLUSION

In this unit you considered the Laplace transform atum from practical point of view and
illustrate its use by important engineering problems, many of them related to ordinary
differential equations.
5.0 SUMMARY

The main purpose of the Laplace transformation is the solution of differential equations
and systems of such equations, as well as corresponding initial value problems.
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The Laplace transform f(s) = ¢ (f) of a function f(t) depend by.

F(s) ¢ (f) j ge“ f (t)dt

Further, more discussion, the Laplace of the derivation such that.

¢ (f) =s ¢ (f) + f(0)
¢ (f) = s? ¢ (f) — sf(0) — f(0).

2
Hence, by taking the transform of a given differential equation % + a%+ by = f(t).
X

L (y) = Y()
Hence, the simple equation becomes

(xasxb)y= ¢(5)xs f(0) + £(0) + a f(0).

Hence, ¢ (o) the transformation back to hard problem can be gotten from the table 1 —
unit 3.

6.0 TUTOR-MARKED ASSIGNMENT

. Find the Laplace transform of the following function
a. e
b. cos wt
C. cosh bt
i, Use Laplace transforms to obtain, for t x0, the solution of the linear differential
equation
d’y
dx?
iii.  Use the convolution theorem for the Laplace Transform to solve the integral

Xy = t., which satisfies the condition y(0) = 1, y'(0) = -2

. . t
equation y(t) = cost + 2sint + on(r)sin(t —7)dr

fort>0.

Iv. Identify the function whose Laplace Transforms are:

(@) s? 42

s+1
(b)

coshs
e
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