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1.0 INTRODUCTION 
 

CONCEPTS OF SETS IN THE COMPLEX PLANE 

 

Definition:  The term set of points in the complex plane is the collection 

of finite or infinite points. Examples: the points on a line, the solution of 

quadratic equation and the points in the interior of a circle made up of 

sets respectively. 

  

A set is called open if every point of S has a neighbourhood consisting 

entirely of points that belongs to S. that is the points in the interior of a 

circle or a square from an open set, and so do the points of the ―right 

half –  plane‖ 00Re z . 

  

An open set S is to be connected if any two of its points can be joined 

by a  broken line of finitely many straight line segments all of where 

points  belong to S. 

 

Likewise, an open connected set is called a domain. Thus, an open disk 

annulus is domain. An open square with a diagonal removed is not a 

domain since this set is not connected. 

  

The complement of a set S in the complex plane is defined to be the set 

of all points of the complex plane that do not belong to S. A set is said to 

be closed if its complements is open. Example: the point on and inside 

the unit circle form a closed set. 

  

A boundary point of a set S is a point every neighbourhood of which 

contains both points that belong to S and points that do not belong to S. 

 

Example: if a set S is open, then no boundary point belongs to S, if S is 

closed, then every boundary point belongs to S. 

  

A region is a set consisting of a domain plus, perhaps, some or all of its 

boundary points. 

 

Next we shall consider functions of complex variables but before this we 

introduce complex functions first. 

  

Complex functions 

  

Definition:  A real function F defined on a set S of real numbers is a 

rule  that assigns to every X in S a real number f(x), called the value of 

f at x.  Now in complex, S is a set of complex numbers and a function f 

defined on S is a rule that assigns to every Z in    a complex number 

w, called the value of f at z. we write )(zfw  
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Here z varies in S and is called a Complex Variable. The set S is called 

the domain of definition of f. 

  

Example 1 
 

zzzfw 3)( 2  is a complex function defined for all z; that is, its 

domain S is the whole complex plane. 

 

The set of all values of a function f is called the range of f. w is a 

complex, and we write ,ivuw  where u and v are the real and the 

imaginary parts, respectively. Now w is depends on .iyxz  Hence, u 

becomes a real function of x and y. and so does v. we may thus write: 

  
  ).,(,)( yxivyxuzfw     

     

This shows that a complex function f(z) is equivalent to a pair of real 

functions u(x, y) and v(x, y), each depending on the two real variables x 

and y. 

  

Example 2 

 

Function of a complex variable. 

 

Let .32 zzw   Find u and v and calculate the values of f at z = 1 + 3i 

and  

 z = 2 – i. 

 

Let the real part of w be defined thus xyxu 322  and the imaginary 

part of w i.e. .32 yxyv   

 iiiif 155)31(3)31()31( 2   

 

Recall that i
2
 = -1. 

 

Let .32 zzw   Find u and v and calculate the values of f at z = 2 – i. 

 

Let the real part of w be defined thus xyxu 322  and the imaginary 

part of w i.e. .32 yxyv   

 if 59)i - 2(3)i - 2()i - 2( 2   

 

Recall that i
2
 = -1. 
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Example 3 

 

Function of a complex variable. 

 

Let .52 zzw   Find u and v and calculate the values of f at z = 2 – i. 

 

Let the real part of w be defined thus xyxu 322  and the imaginary 

part of w i.e. .32 yxyv   

 if 713)i - 2(5)i - 2()i - 2( 2   

 

Recall that i
2
 = -1. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 complex numbers; 

 complex analytical function; 

 Cauchy – Riemann equation; 

 Cauchy’s theorem and inequality; 

 integral transforms vis a vis: Fourier and Laplace transforms; and 

 convolution theory and their applications. 

 

3.0     MAIN CONTENT 
 

3.1 Complex Numbers 

 

It was observed early in history that there are equations which are not 

satisfied by any real number. Examples are: 

  

040103 22  xxorx  

 

This led to the invention of complex numbers. 

  

Definition  

 

A complex number z is an ordered pair (x, y) of real numbers x, y and 

we write 
   ).,( yxz  

 

We call x the real part of z and y the imaginary part of z and write 
  yzlmxz  ,Re  
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Example 4 
 

Re (4, -3) = 4 and lm (4, -3) = -3,  

 

Example 5 
Identify the real part and the imaginary part in the equation  

a. iz 34 ;  b. iz 35  

 

a. Re (z) = 4  and lm (z) = -3,  

b. Re (z) = - 5  and lm (z) = 3,  

 

Furthermore, we defined two complex numbers z1 = (x1, y1) and z2 = (x2, 

y2) to be equal if and only if their real parts are equal and their 

imaginary parts are equal. 

  

z1= z2 if and only if x1 = x2 and y1 = y2. 

 

Addition of complex numbers z1 = (x1, y1) and z2 = (x2, y2) is defined by 

  

1.     2121221121 ,,),( yyxxyxyxzz   

  

Multiplication of complex numbers z1 = (x1, y1) and z2 = (x2, y2) is 

defined by 

  

2.    12212121221121 ,,),( yxyxyyxxyxyxzz   

  

We shall say more about these arithmetic operations and discuss 

examples below, but we first want to introduce a much more convenient 

form of writing them as points in the plane. 

 

3.1.1    Representation in the Form z = x + iy 
  

A complex number whose imaginary part is zero is of the form (x, 0). 

For such numbers we simply have 

 

  

     

    0,0,0,

0,0,0,

2121

2121

xxxx

and

xxxx





 

 

as for the real numbers. This suggests that we identify (x, 0) with the 

real number x. hence the complex number system is an extension of the 

real number system. 

 

The complex number (0,1) is denoted by i. 
    )1,(oi  

and is called the imaginary unit. We show that it has the property. 
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3.  12 i  

 

Indeed, from (2) we have  

 

)2(,1)0,1()1.0)(1.0(2 fromobtainweyrealeveryforefutheremori   

    
       yyiy ,00,1,0   

 

 Combining this with the above x = (x, 0) and using (1), that is, 

    
       ,,00,, yxyx   

 

We see that we can write every complex number z = (x, y) in the form 

     
    iyxz   

 or z = x + yi. This is done in practice almost exclusively. 

 

Example 6 

 

Complex Numbers, their Real and Imaginary Parts 

 

     

       








 








 



















 




iiiz

iz

iiiz

lim,0Re,0,0

0
2

1
lim,

2

1

2

1
Re,0

2

1
0,

2

1

334lim,434Re,343,4

 

 

3.1.2  Complex Plane 
 

This is a geometric representation of complex numbers as points in the 

plane. It is of great importance in applications. This idea is quite simple 

and natural. We choose two perpendicular coordinate axes, the 

horizontal x – axis,   called the real axis, and the vertical y – axis called 

the imaginary axis. On both axes we choose the same unit of length (Fig. 

4). This is called a Cartesian   coordinate system. We now plot z = (x, 

y) = x + iy as the point P with coordinates x, y. The xy –  plane in 

which the complex numbers are represented in this way is called the 

complex plane or Argand diagram. Figure 5 shows an example. 

 

Instead of staying “the point represented by z in the complex plane” we 

say briefly and simply ―the point z in the complex plane‖ this will cause 

no misunderstandings. 

  



MTH 381                                                                                                               MODULE 2 

41 

 

  

 

 

 

 

   

 

 

 

 

 

 

3.1.3   Arithmetic Operations 
 

We can make use of the notations z = x + iy and of the complex plane.  

Addition of the sum of 
222111 iyxzandiyxz   can now be written 

  

4.     221121 iyxiyxzz  . 

        2121212121 yyixxiyiyxxzz   

 

Example 7 

  

a.     iiiii 46)3()15(315  .  

b.     iiiii 30)2()33(233  .  

c.     iiiii 42)3()64(364  . 

 

We see that addition of complex numbers is in accordance with the 

―parallelogram law‖ by which forces are added in mechanics. 

 

Subtraction is defined to be the inverse operation of addition. That is the 

difference 
21 zzz  .  

 

5.    212121 yyixxzz  . 

 

Example 8 

 

a.     iiiii 24)3()15(315   

b.     iiiii  6)2()33(233  

c.     iiiii 210)3()64(364   

 

Multiplication: The Product z1z2 in (2) can now be written 

 

6.        221221221121 iyxiyiyxxiyxiyxzz   

          12212121 yxyxiyyxx   

x 

4 – 3i 

- 1 

- 2 

- 3 

1 

5 

y 

Fig. 5: The number 4 – 3i in the        

                Complex Plane 

Fig.4: The Complex Plane  

Imaginary 

axis 

Real  

axis 

z = x + iy 
P 

y 

x 

- 1 

 1 
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This is easy to remember since it is obtained formally by the rules of 

arithmetic for real numbers and using (3), that is 12 i  

 

Example 9 
 

a.    iiiiii 1623155315 2   

b.    iiiiii 793296323 2   

c.    iiiiii 975102512 2   

 

Division is defined to be the inverse operation of multiplication. That is, 

the quotient z = z1 / z2 is the complex number z = x + iy for which 

  

7.     .022221  ziyxiyxzzz  

  

We show that for 
212 /0 zziyxzqutotientthez   is given by 

 

 

8.  
  
  2221

2211

22

11

2

1

iyxiyx

iyxiyx

iyx

iyx

z

z
z









  

     where  22 iyx   is the conjugate of 

 22 iyx   

       2

2

2

2

2112

2

2

2

2

2121

yx

yxyx
i

yx

yyxx









  

 

Example 10 

 

a. If z1 = 9 – 8i and z2 = 5 + 2i, then 

       


2

1

z

z
z

  
  ii

ii

i

i

2525

2589

25

89 1









 

 

            .21
29

5829

425

16401845
i

iii








 = z 

The reader may check this result by showing that 

 
   .892521 12 ziiizz   

 

b. If z1 = 3 – 2i and z2 = 5 + 2i, then 

       


2

1

z

z
z

  
  ii

i

i 2525

25 2i - 3

25

 2i - 3







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29

16

29

19

29

1619

425

410615 iiii








 = z 

The reader may check this result by showing that 

 

  .2325
29

16

29

19
12 zii

i
zz 








  

 

3.1.4   Properties of the Arithmetic Operations 
  

From the familiar laws for real numbers we obtain for any complex 

numbers z1, z2, z3, z the following laws (where z = x +iy): 

  

1221 zzzz  ………..commutative law of addition 

1221 zzzz   ……………… commutative law of multiplication    

 

   321321 zzzzzz  ...associative law of addition   

   321321 zzzzzz  ……………………associative law of multiplication      

             

  

9.         3121321 zzzzzzz    ……distributive   law  

  
   

zz

zzzzzz

zzz







1.

0

00
     

 

3.1.5    Complex Conjugate Numbers 
 

Let z = x + iy be any complex number. Then x – iy is called the 

conjugate of z and is denoted by z , thus, 

                           ., iyxziyxz   

 Example 11 
 

 The conjugate of izisiz 2525  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y 

2 

- 2 

x 

5 

Fig. 6:  Complex Conjugate Numbers 
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Conjugates are useful since 22 yxzz  is real, a property we have 

used in the above division. Moreover, addition and subtraction yields 

,2,2 iyzzxzz  so that we can express the real part and the 

imaginary part of z by the important formulas. 

  

10.    zz
i

yzlmzzxz 
2

1
,

2

1
Re  

 

Example 12 

 

If z = 6 – 5i, then we have z = 6 + 5i and from (10) we obtain  

    andiix 65656
2

1
  

  )100(
2

1
)5656(

2

1
i

i
ii

i
y   

       = 5
2

10




i

i
 

z is real if and only if y = 0, hence z  = z by (10). 

z is said to be pure imaginary if and only if x = 0, hence z  = -z. Then 

working with conjugates is easy, since we have  

 

11.    

   

 
2

1

2

1
2121

21212121

,

,

z

z

z

z
zzzz

zzzzzzzz













 

 

In this section we were mainly concerned with complex numbers, their 

arithmetic operations and their representation as points in the complex 

plane. The next section we shall discuss the use of polar coordinates in 

the complex  plane and situations in which polar coordinates are 

advantageous. 

 

3.2  Polar Form of Complex Number Powers and Roots 
 

It is often practical to express complex numbers z = x + iy in terms of 

polar  coordinates r, θ, these are defined by: 

 

1.  sin,cos ryrx   

By substituting this we obtain the polar form of z, 

2.   sincossincos irirrz   

r is called the absolute value or modulus of z and is denoted by z . 

Hence  

3. zzyxrz  22  
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Geometrically, z  is the distance of the point z from the origin (Fig. 7). 

 

Similarly, 21 zz  is the distance between z1 and z2 (Fig. 301). 

 

θ is called the argument of z and is denoted by arg z. thus (Fig. 7). 

4. ).0(tanarg  z
x

y
arcz  

Geometrically, θ is the directed angle from the positive x – axis to OP in 

fig. 7. Here, as in calculus, all angles are measured in radians and 

positive in the counterclockwise series. 

  

           rz 
 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

For z = 0 this angle θ is undefined. (Why?) For given z ≠ 0 it is 

determined  only up to integer multiples of 2π. The value of θ that lies 

in the interval – π < θ ≤ π is called the principal value of the argument of 

z (≠ 0) and is denoted by Arg. z. Thus θ = Arg z satisfies by definition. 

  

 < Arg z ≤ π. 

 

Polar Form of Complex Numbers Principal Value 

 

Example 11 

 

Let z = 1 + I (cf. Fig. 9). Then 

  

.0........,1,0(2
4

arg,2,
4

sin
4

cos2 







 nnzziz 


) 

 

The principal value of the argument is arg z = π/4, other values are - 

7π/4,  9π/4, etc. 

 

y 

x 

z2 

 

 

θ 

y 

 

x 

1 + i 

1 

1 

θ 

Imaginary axis 

Real axis 

y P 

x 

z = x + iy 

θ 

Fig. 7: Complex             

Plane, Polar Form of   a 

Complex Number 

Fig. 8: Distance between 

two points Complex 

Number 

Fig. 9: Example 1 
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Example 12 

  

Let z = ,
3

sin
3

cos6,33 










iztheni the absolute value of z is z = 6, 

and the principal value of arg z is Arg z = π/3. 

 

Caution! In using (4), we must pay attention to the quadrant in which z 

lies,  since tan θ has period π, so that the arguments of z and –z have 

the same  tangent. Example: for θ1 = arg (1+i) and θ2 = arg (-1 – i) 

we have tan θ1 =  tan θ2 = 1. 

 

Triangle Inequality 

  

For any complex numbers we have the importance triangle inequality 

   

5.  )303.(2121 Figzzzz   

 

Which we shall use quite frequently, this inequality follows by nothing 

that 

 

 

 

 

 

 

 

 

 

The three points 0, z1 and z1 + z2 are the vertices of a triangle (fig. 10) 

with sides ,, 2121 zzandzz  and the side cannot exceed the sum of the 

other two sides. A formal proof is left to the reader (Prob.45). 

 

Example 13 

 

If z1 = 1 + i and z2 = -2 + 3i, then  

  

.020.5132123.4174121  izz  

 

By induction the triangle inequality can be extended to arbitrary sums: 

 

Example 14 

 

If z1 = 5 + 3i and z2 = -2 + 3i, then  

  

.020.544196.5276321  izz  

Fig 10: Triangle Inequality  

z1 + z2 

z1  

z2 

y 

x 
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By induction the triangle inequality can be extended to arbitrary sums: 

 

6. ;........ 2121 nn zzzzzz   

 

That is, the absolute value of a sum cannot exceed the sum of the 

absolute values of the terms. 

 

3.2.1   Multiplication and Division in Polar Form 
 

This will give us a better understanding of multiplication and division. 

Let: 

    .sincossincos 22221111  irzandirz   

  

Then, by (6), sec. 12.1, the product is at first 

 

    2sincoscossinsinsincoscos 12121212121   irrzz . 

 

The addition rules for the sine and cosine (6) in appendix 3.1) now yield  

 

7.     21212121 sincos   irrzz  

 

Taking absolute values and arguments on both sides, we thus obtain the 

important rules 

  

8. 2121 zzzz   

  

and  

 

9.        ).2(argargarg 2121 ofmultiplestoupzzzz   

 

We now turn to division. The quotient 
2

1

z

z
z   is the number z satisfying 

zz2 = z1. Hence   .argargargarg, 122122 zzzzzzzzzz   

 

This yield 

 

10.  02

2

1

2

1  z
z

z

z

z
 

 and  

 

11.    .2argargarg 21

2

1 ofmultiplestoupzz
z

z
  
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By combining these two formulas (10) and (11) we also have  

 

12.     .sincos 2121

2

1

2

1   i
r

r

z

z
 

 

Example 15 

 

Illustration of Formulas (8) – (11) 
 

Let 2121 .322 zzThenizandiz   

)3/2(3/2/,66 21 izzi   

and for the arguments we obtain Arg z1 = 3π/4, Arg z2  = π/2. 

  2121

2121

4
/

2
4

3

zArgzArgzzArg

zArgzArgzzArg













 

 

Integer power of z 

 

From (7) and (12) we have 

 

    



2sin2cos

,2sin2cos

22

22





 irz

irz
 

 

and more generally, for any integer n, 

  

13.  .sincos  ninrz nn   

 

Example 16 

 

 Formula of De Moivre 

 

 For z = r = 1, formula (3) yields the so – called formula of De Moivre 

(13*)    nini
n

sincossincos  . 

  

This formula is useful for expressing cos nθ in terms of cos θ and sin θ. 

For instance when n = 2 and we take the real and imaginary parts on 

both sides of (13*), we get the familiar formulas. 

 

.sincos22sin,sincos2cos 22     

 

3.2.2 Roots 
 

If  ,...,2,1 nwz n then to each value of w there corresponds one value 

of z, we shall immediately see that to a given z ≠ 0 there correspond 
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precisely n distinct values of w. each of these values is called an nth root 

of z, and we  write: 

  

14. .n zw  

  

Hence this symbol is multivalued, namely, n – valued, in contrast to the 

usual conventions made in real calculus. The n value of n z can easily be 

determined as follows. In terms of polar forms for z and  

    ,sincos  iRw   

 The equation w
n
 = z becomes 

       sincossincos irzninRw nn   

 By equating the absolute values on both sides we have 

   nn rRthusrR  ,  

Where the root is real positive and thus uniquely determined. By 

equating the arguments we obtain 

  
n

k

n
thuskn




2
,2   

Where k is an integer. For k = 0,1, …, n – 1 we get n distinct values of 

w.  further integers of k would give values already obtained. For 

instance, k = n  gives 2kπ/n = 2π, hence the w corresponding to k = 

0, etc.  consequently, n z , for z ≠ 0, has the n distinct values 

 

15.  .1...,1,0
2

sin
2

cos 






 



 nk

n

k
i

n

k
rz nn 

 

 

These n values lie on a circle of radius n r with center at the origin and 

constitute the vertices of a regular polygon of n sides. 

 

The value of n z obtained by taking the principal value of arg z and  

k = 0 in (15) is called the principal value of n zw   

 

Example 17  

 

Square Root 

 

From (15) it follows that zw  has the two values 

16a  









2
sin

2
cos1


irw  

 

  and  

16b.  12
2

sin
2

cos wirw 
























 





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Which lie symmetric with respect to the origin. For instance, the square 

root of 4i has the values   .22
4

sin
4

cos24 iii 










 

From (16) we can obtain the much more practical formula 

 

17.       


























 xziysignxzz

2

1

2

1
 

Where sign y = 1 if y ≥0, sign y = - 1 if y < 0, and all square toots of 

positive numbers are taken with the positive sign. This follows from 

(16) if we use the trigonometric identities.  

   

   .cos1
2

1

2

1
sincos1

2

1

2

1
cos   n  

 

Multiply them by .r  

  

    ,cos
2

1

2

1
sin,cos

2

1

2

1
cos  rrrrrr   

 

Use r cos θ = x, and finally choose the sign of 1m z so that sign  

   

     zmz 1Re  = sign y (why?). 

 

Example 18  

 

Complex Quadratic Equation 

 

Solve   0852  iziz  

Solution 

 

      iiiiiz
2

3
25

2

1
85

4

1
5

2

1 2
  

    

     
















 2

2

5

2

1
)2

2

5

2

1
5

2

1
ii  

  







 ii

2

3

2

1
5

2

1
 










i

i

2

23
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Example 19 

 

Cube Root of a Positive Real Number 

 

If z is positive real, then 3 zw  has the real value 3 r and the complex 

values 

 

.
2

3

2

1

3

4
sin

3

4
cos

2

3

2

1

3

2
sin

3

2
cos

33

33























































irirand

irir





 

For instance ).304.(3
2

1

2

1
,113 figi


  These are the roots of the 

equation   w
3
 = 1. 

 

Example 20 

 

nth Root of Unity 

  

Solve the equation z
n
 = 1. 

  

Solution  
  

From (15) we obtain 

 

18.  .1,....,1,0
2

sin
2

cos1 /2  nke
n

k
i

n

k nikn 
 

 

If w denotes the value corresponding to k = 1, then the n values of n 1

can be written as 1, w, w
2
, …, w

n – 1
. These values are the vertices of a 

regular polygon of n sides inscribed in the unit circle, with one vertex at 

the point 1. Each of these n values is called an nth root of unity. For 

instance, 4 1   has the values 1, i, -1 and –i (Fig. 12 shows 5 1 ). If w1 is 

any nth root of an  arbitrary complex number z, then the n values of 
n z are w1, w1w, w1w

2
, ….       w1w

n-1
 

 

Multiplying w1 by w
k
 corresponds to increasing the argument of w1 by 

 2kπ/n. 
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The student should be familiar with the problems related to the polar 

representation with  particular care, since we shall need this 

representation quite often in our  work. In the next section, we discuss 

some curves and regions in the complex plane which we shall also need 

in the chapters on complex  analysis. 

 

3.3  Curves on Regions in the Complex Plane 
 

In this section we consider some important curves and regions and some 

related concepts we shall frequently need. This will also help us to 

become more familiar with the complex plane. 

 

The distance between two points z and a is az  . Hence a circle C of 

radius  ρ and center at a (fig. 14) can be represented by; 

  

1.  az    = ρ. 

In particular, the so-called unit, that is the circle of radius 1 and center at 

the origin a = 0 (fig. 308), is given by; 

    

z  = 1. 

  

Furthermore, the inequality 

2.   az   < ρ 

  

holds for every point z inside C: that is, (2) represents the interior of C. 

Such a region is called a circular disk or, more precisely, an open 

circular disk, in contrast to the closed circular disk. 

     

az   ≤ ρ. 

 

This consists of the interior of C and C itself. The open disk (2) is also 

called a neighborhood of the point a. Obviously, a has infinitely many 

such neighborhoods, each of which corresponds to a certain value of p  

y 

x 

1 

Fig 11.  

y 

x 

1 

Fig 12.  

y 

x 

1 

Fig 13.  
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(> 0); and a belong  to each of these neighborhoods, that is a, is a point 

of each of them. 

 

 

 

 

 

 

 

 

 

 

 

Similarly, the inequality 

    az    ρ. 

represents the exterior of the circle C. Furthermore, the region between 

two concentric circles of radii ρ1 and ρ2 (> ρ1) can be represented in the 

form 

  

3. ρ1 < az   < ρ. 

  

Where a is the center of the circles. Such a region is called an open 

circular ring or open annulus (Fig. 16). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 20 

 

Circular Disk 

 

Determine the region in the complex plane given by .43  iz  

 

y 

x 

ρ 

Fig 14. Circle in the Complex Plane 

x 

y 

1 

Fig 15. Unit Circle 

y 

ρ1 

x 

ρ2 

a 

Fig 16.  Annulus in the Complex Plane 
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Solution: the inequality is valid precisely for all z whose distance from a 

= 3 – i does not exceed 4. Hence this is a closed circular disk of radius 4 

with  center at 3 – i.   

 

Example 21 

 

Unit Circle and Unit Disk 

 

Determine each of the regions 

  

(a) .1)(1)(1  zczbz  

 

Solution   
  

(a)  The interior of the unit circle. This called the open unit disk. 

(b)  The unit circle and its interior. This is called the closed ad disk. 

(c)  The exterior of the unit circle. 

 

By the (open) upper half we mean the set of all points z = x + iy such 

that 0y . Similarly, the condition y < 0 defines the lower half – plane, 

0x  the right half – plane and x < 0 the left half – plane. 

 

3.3.1    Some Concepts Related to Sets in the Complex Plane 
  

We finally list a few concepts that are of general interest and will be 

used in our further work. 

 

The term set of points in the complex plane means any sort of collection 

of a quadratic equation. The points on a line and the points in the interior 

of a circle are sets. 

  

A set S is called open, if every point of S has a neighborhood consisting 

entirely of points that belong to S. for example, the neighborhood 

consisting entirely of points that belong to S. For example, the points in 

the interior of a circle or a square form an open set, and so do the points 

of the  ―right half – plane‖ Re z = x > 0. 

  

An open set S is said to be connected if any two of its points can be 

joined  by a broken line of finitely many straight line segments all of 

whose points  belong to S. an open connected set is called a domain. 

Thus an open disk  (2) and an open annulus (3) are domains. An open 

square with a diagonal removed is not a domain since this set is not 

connected. (Why?). 

 

The complement of a set S in the complex plane is defined to be the set 

of all points of the complex plane that do not belong to S. A set is called 
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closed if its complement is open. For example, the points on and inside 

the unit circle form a closed set (―closed unit disk‖ cf. example 2) since 

its complement z > is open. 

  

A boundary point of a set S is points every neighbourhood of which 

contains both points that belong to S and points that do not belong to S. 

For example; the boundary points of an annulus are the points on the 

two bounding circles. 

 

Clearly, if a set S is open, then no boundary point belongs to S; is 

closed, and then every boundary point belongs to S. 

  

A region is a set of a domain plus, perhaps, some or all of its boundary 

points. (The reader is warned that some authors use the term ―region‖ 

for what we call a domain (following the modern standard terminology) 

and others make no distinction between the two terms.) 

 

So far, we have been concerned with complex numbers and the complex 

plane (just as at the beginning of calculus, one talks about real numbers 

and the real line). In the next section, we start doing complex calculus: 

we introduce complex functions and derivatives. This will generalise 

familiar concepts of calculus. 

 

SELF ASSESSMENT EXERCISE 1 

 

Determine and sketch the sets represented by 

 

1.  22  iz   2. 311  iz    

3.   1Re 2 z   4.  
4

arg


z    

5.   zm1   6.  1
1


z
 

7.  1
1

1






z

z
  8. 1

3






iz

iz
    

9.  1
44

12






z

z
lm   10.      .012121  zizizz  

 

3.4  Limit, Derivative and Analytic Functions  
 

The functions with which complex is concerned are complex functions 

that  are differentiable. Hence, we should first say what we mean by a 

complex function and then define the concepts of limit and derivative in 

complex. This discussion will be quite similar to that in calculus. 
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3.4.1   Complex Function 
 

Recall from the calculus that a real function f defined on a set S of real 

numbers (usually an interval) is a rule that assigns to every x in S a real 

number f(x) called the value of f at x. 

 

Now in complex, S is a set of complex numbers. And a function f 

defined on S is a rule that assigns to every z in S a complex number w, 

called the value of f at z. write 

 
)(zfw   

 

Here z varies in S and is called a complex variable. The set S is called 

the domain of definition of f. 

 

Example 21  
 

)(zfw  = z
2
 + 3z is a complex function defined for all z; that is, its 

domain S is the whole complex plane. 

 

The set of all values of a function f is called the range of f. 

 

W is complex, and we write w = u + iv, where u and v are the real and 

imaginary parts, respectively. Now w depends on z = x + iy. Hence u 

becomes a real function; of x and y, and so does v. We may thus write: 

    

     .,, yxivyxuzfw   

This shows that a complex function f(z) is equivalent to a pair of real 

functions u(x,y) and depending on the two real variables x and y. 

  

Example 22 

 

Function of a Complex Variable 

  

Let w = f(z) = z
2
  +3z.  Find u and v and z = 2 –i. 

 

Solution  
 

,323)(Re 22 yxyvandxyxzfu  also, 

      iiiiiif 155936913133131
2

  

 

This shows that u(1,3) = -5  and v (1,3) = 15, similarly. 

      .793642322
2

iiiiiif   

  

 



MTH 381                                                                                                               MODULE 2 

57 

Example 23 

 

Function of a Complex Variable 

 

Let   ..62 zizzfw  Find u and v and the value for f at  iz 4
2

1
  

Solution  )(6)(2)( iyxiyxizf   

     gives 
  .62),(26),( yxyxvandyxyxu    

 Also  

.23524384
2

1
64

2

1
24

2

1
iiiiiiif 































  

 

Limit, Continuity 
  

A function f(z) is said to be limit l as z approaches a point z0, written 

 

1.  lzf
zz




)((lim
0

 

            

 

 

 

 

 

 

 

 

 

 

If f is defined in a neighborhood of 
0z  (except itself) and if the values of 

f  are ―close‖ to l for all z ―close‖ to
0z ; that is, in precise terms, for every 

positive real  we can find a positive real ∂ such that for 0zz in the 

disk )310.(0 Figzz  we have  

 

2.  ;)(  lzf  

 

That is, for every 0zz  in that the value of f lies in the disk (2). 

Formally, this definition is similar to that in calculus, but there is a big 

difference. Whereas in the real line, here, by definition, z may approach 

z0 from any direction in the complex plane. This will be quite essential 

in what follows. 

 

If a limit exists, it is unique. (Cf. Prob. 30) 

x u 

z0 

y v 

l 

f(z) 

∂ 
z0 

θ 

Fig 17:  Limit  
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A function f(z) is said to be continuous at z = z0 if f(z0) is defined and  

 

3.  ).()(lim 0
0

zfzf
zz




 

 

Note that by the definition of a limit this implies that f(z) is defined in 

some neighbourhood of z0. 

 

f(z) is said to be continuous in a domain if it is continuous at each point 

of this domain.  

 

3.4.3    Derivative 
 

The derivative of a complex function f at a point z0 is written )( 0

' zf  

and is defined by 

 

4. 
 

z

zfzzf
zf

z 






)(
lim)(' 00

0
0  

 

provided this limit exists. Then f is said to be differentiable at z0. if we 

write 0zzz  we also have 

 

(4’) 
0

0' )()(
lim)(

0 zz

zfzf
zf

zz 





 

 

Remember that this definition of a limit implies that f(z) is defined (at 

least) in a neighborhood of z0. Also by that definition, z may approach z0 

from any direction. Hence differentially at z0 means that, along whatever 

path z approaches z0, the quotient in (4’) always approaches a certain 

value and all these values are equal. This is important and should be 

kept in mind. 

 

Example 24 

 

Differentiability Derivatives 

 

The function f(z) = 2z  is differentiate for all z and has the derivative 

 zzf 2)(    because                        

 

 
 

.2lim)(
22

0

' z
z

zzz
zf

z








  

 

The differentiation rules are the same as in real calculus, since their 

proofs are literally the same. Thus, 
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2

'''

'''''''' ,)(,)(
g

fggf

g

f
fggffggfgfcfcf











  

 

As well as the chain rule and power rule (z
n
)

’
 = 1nnz  (n integer) hold. 

Also, if f (z) is differentiable at z0. It is continues s at z0. (Cf. Prob. 34). 

 

Example 25 

 

z not differentiable  

 

It is important to note that there are many simple functions that do not 

have a derivative at any point. For instance, iyxzzf )( is such a 

function? Indeed, we write haveweyixz ,  

 

5.  
   

.

)(

yix

yix

z

z

z

zzz

z

zfzzf



















 

 

but -1 along path II. Hence, by equation of (5) at 0z does not exit at 

any z. 

 

This example may be surprising, but it merely illustrates that 

differentiability of a complex function is a rather serve requirement. 

The idea of proof approach form different directions is based and will be 

discussed again in the next section. 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.1   Analytic Functions 
 

These are the functions that are differentiable in some domain, so that 

we can do ―calculus in complex.‖ They are the main concern of complex 

analysis. Their introduction is our main goal in this section; 

 

  

II 

I 

z +∆z 

z 

y 

x 

Fig. 18: Paths in (5) 
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Definition (Analyticity)  

 

A function f(z) is said to be analytical in a domain D if f(z) is defined 

and  differentiable at all points of D. The function f(z) is said to be 

analytic at a  point 0zz    in D if f(z) is analytic in a neighbourhood (cf. 

sec. 12.3) of z0. 

 

Also, by analytical function we mean a function that is analytical in 

some  domain. 

Hence, analytical of f(z) at 0z means that f (z) has a derivative at every 

point in some neighbourhood of z0 (including z0 itself since, by 

definition, z0 is a point of all its neighbourhood). This concept is 

motivated by the fact that it is of no practical interest when a function is 

differentiable merely at a single point z0 but not throughout some 

neighbourhood of z0. Problem 28  gives an example. 

An older term for analytical in D is regular in D, and a more modern 

term is holomorphic in D. 

 

Example 26 

 

Polynomids Rational Functions 

 

The integer power 1, z, z
2
, … and more generally, polynomials, that is 

function of the form 

 

  n

n zczczcczf ...)( 2

210   

Where ci,  and i=1,2,3…. are complex constants, are analytical in the 

entire complex plane. The quotient of two polynomials g(z) and h(z). 

   .
)(

)(
)(

zh

zg
zf   

is called a rational function. This f is analytic except at the points where 

h(z)= 0 here we assume that common factors of g and h have been 

cancelled partial fractions 

 

  )0(
)( 0




c
zz

c
m

  

(c and z0 complex, m is a positive integer) are special rational functions, 

they are analytic except at z0. It is in algebra that every rational function 

can be written as a sum of a polynomial (which may be 0) and finitely 

partial fractions. 

 

The concepts discussed in this section extend familiar concepts of 

calculus. Most important is the concept of an analytic function. Indeed, 

complex analysis is concerned exclusively with analytic functions and 

although many will yield a branch of mathematics, that is most beautiful 
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from the theoretical point of view and most useful for practical 

purposes. 

 

Before we consider special analytic functions (exponential functions, 

cosine, sine etc.) let us give equations by means of which we can readily 

decide whether a function is analytic or not. These are the famous 

Cauchy–Riemann equation, which we shall discuss in the next section. 

 

3.5  Cauchy – Riemann Equations 
 

We shall now derive a very important criterion (a test) for the analyticity 

of a complex function. 

 
  ).,(),()( yxiyxuzfw     

 

Roughly, f is analytic in a domain D if and only if the first partial 

derivatives of u and v satisfy the two equations 

 

1. 2,2 vuuu yy  . 

Everywhere in D, here 
y

uu
x

uu yx 



 ,  and similarly for  xu and 

yu which are  the usual notations for partial derivatives. The precise 

formulation of this  statement is given in Theorem 1 and 2 below. The 

equation (1) is called the  Cauchy – Riemann equations. They                                                                                                                                                                                                                                                                                                                  

are the most important equations in the whole unit. 

 

 

 

Example 27 

ixyyxzzf 2)( 222   is analytic for all z, and   

 xyvandyxu 222   

 

Satisfy (1), namely, xyyx vyuandvxu  22 more examples will 

follow. 

 

3.5.1  Theorem 1 (Cauchy Riemann Equations) 
 

Let f(z) = u(x,y) + iv(x,y) be defined and continuous in some 

neighbourhood of a point z = x + iy and differentiable at z itself. Then at 

the point, the first – order partial derivatives of u and v exist and satisfy 

the Cauchy Riemann equations (1). 

 

Hence if f(z) is analytic in a domain f
’
 (z) at z exists. It is given by  (1) at 

all points of D. 
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Proof 
By assumption, the derivative f’ (z) at z exists. It given by 

 

2. )(' zf = 
 

z

zfzzf

z 





)(
lim

0
 

The idea of the proof is very simple, by the definition of a limit in 

complex (cf. sec. 12.4) we can let ∆z approaches zero along any path in 

a neighbourhood of z. Thus, we may choose the two paths I and II in fig. 

312 and equate the results. By comparing the real parts we shall obtain 

the first Cauchy Riemann equation and by comparing the imaginary 

parts  we shall obtain the other equation in (1). The technical details are 

as follows. 

 

We write ∆z = ∆x +i∆y. In terms of u and v, the derivative in (2) 

becomes  

 

3.   
         

yix

yxivyxuyyxxivyyxxu
zf

z 






,,,,
lim

0

'    

 

We first choose path I in fig. 312. Thus we let 
.00  xthenandfirsty  

 

  

 

 

 

 

 

 

 

 

After ∆y becomes zero, ∆z = ∆x. then (3) becomes, if we first write the 

two u – terms and then two v-terms. 

 

 
       

x

yxvyxxv
i

x

yxuyxxu
zf

xx 











,,
lim

,,
lim)(

00

'  

 

Since f’(z) exists, the two  real limits on the right exist. By definition, 

they are the partial derivatives of u and v with respect to x. hence the 

derivative f’ (z) of f(z) can be written 

 

4. xx ivuzf )('  

Similarly, if we choose path II in fig 312, we let 0x first and then

0y . After ∆x becomes zero, ∆z = i∆y, so that from (3) we now 

obtain 

II 

I 

z +∆z 

z 

y 

x 

Fig. 19: Paths in (2) 
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       

yi

yxvyyxv
i

yi

yxuyyxu
zf

yy 











,,
lim

,,
lim)(

00

'  

 

Since f’(z) exists, the limits on the right exist and yield partial 

derivatives with respect to y; noting that 1/i = -i, we obtain: 

 

5. yy viuzf )('  

 

The existence of the derivatives 'f (z) thus implies the existence of the 

four partial derivatives in (4) and (5). By equating the real parts ux and 

vy in (4) and (5) we obtain the first Cauchy – Riemann equation (1). 

Equating the imaginary part yields the other. This proves the first 

statements of the theorem and implies the second because of the 

definition of analyticity. 

 

Formulas (4) and (5) are also quite practical for calculating derivatives 
'f (z), as we shall see. 

 

Examples 28 

 

Cauchy – Riemann Equations 

 
2)( zzf  is analytic for all z. it follows that the Cauchy – Riemann 

equations must be satisfied (as we have verified above). 

 

For iyxzzf )(  we have u = x, v = -y and see that the second 

Cauchy-Riemann equation is satisfied, uy= - vx = 0, but the first is not: 

.11  yx vu We conclude that zzf )( is not analytic, confirming 

example 4 of sec. 12.4. Note the savings in calculation! 

 

The Cauchy – Riemann equations are fundamental because they are not 

only necessary but also sufficient for a function to be analytic. More 

precisely, the following holds. 

 

Theorem 2 (Cauchy – Riemann Equations) 

 

If two real – valued continuous functions u(x,y) and v(x,y) of two real 

variables x and y have continuous first partial derivatives that satisfy the 

Cauchy – Riemann equations in some domain D, then the complex 

function ),(),()( yxivyxuzf  is analytic in D. 

 

The proof of this theorem is more involved than the previous proof;  

Theorems 1 and 2 are of great practical importance, since by using the 

Cauchy – Riemann equations we can now easily find out whether or not 

a given complex function is analytic. 
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Example 29 

 

Cauchy – Riemann Equations 
 

Is f(z) = z
3
 analytic? 

 

Solution 
 

We find u = x
3
 – 3xy and v = 3x

2
y – y

3
. next we calculate 

ux = 3x
2
 – 3y

2
,                                          vy = 3x

2
 – 3y

2
 

uy = -6xy,                                                   vx = 6xy 

 

We see that the Cauchy – Riemann equations are satisfied for every z, 

hence f (z) = z
3
 is analytic for every z, by theorem 2. 

 

 

 

Example 30 

 

Determination of an Analytic Function with given Real Part 
 

We illustrate another class of practical; that can be solved by the Cauchy 

– Riemann equations. 

 

Find the most general analytic function f(z) whose real part is  

               u = x
3
 – y

2
 – x. 

 

Solution 
 

We have uz = 2x – 1 = vy by the first Cauchy – Riemann equation. This 

we integrate with respect to y; 

 
).(2 xkyxyv     

 

As an important point, since we integrated a partial derivative with 

respect to y, the ―constant‖ of integration k may depend on the other 

variable, x. (To understand this, calculate vy from the v.) and the second 

Cauchy – Riemann equation. 

 

dx

dk
yvu xy  2  

 

On the other hand, from the given u = x
2
 – y

2
 – x we have uy = -2y. By 

comparison, dk/dx = 0. Hence k = constant, which must be real. (Why?).  
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The result is 

 

).2()( 22 kyxyixyxivuzf   

 

We can express in terms of z, namely, f(z) = z
2
 – z + ik. 

 

Example 31 

 

An Analytic Function of Constant Absolute Value is Constant 

 

The Cauchy – Riemann equations also help to establish general 

properties of analytic functions. 

   

For example, show that if f (z) is analytic in a domain D and kzf )( =                  

constant in D, then f(z) = constant in D. 

  

Solution  
 

By assumption, 222 kvu  by differentiation. 

                           .0.0  yyxx vvuuvuuu  

 

From this and the Cauchy – Riemann equations. 

 

6.  (a)   0)(.0  xyyx uuuubuuuu  

 

To get rid of uy multiply (6a) by u and (6b) by v and add. Similarly to   

eliminate ux, multiply (6a) by – v and (6b) by u and add. This yield. 

   

    .0.0 2222  yx uvuuvu  

 

If k
2
 = u

2
 + v

2
 = 0, then u = v, hence f = 0. if ,0,0  yx uuthenk  

hence by the Cauchy – Riemann equations, also .0 yx vv together,  

u = constant and v = constant, hence f = constant. 

  

If we use polar form z = r(cos θ + isin θ) and set  

f(z) = u(r, θ),  then the Cauchy – Riemann equations are  

                                                          

7.   u
r

vandv
r

u rr

11 
  

The derivative can then be calculated from 

 

8a.     sincos)(' iivuzf rr   

 or from 
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8b.     riiuvzf /sincos)('   . 

 

Example 32   Cauchy – Riemann equations in polar form 

 

let  .3sin3cos)( 33  irzzf   

          3sin,3cos 33 rvruThen   

 

 By definition, 

   

 








3sin3,3sin3

,3cos3,3cos3

32

32

rurv

rvru

r

r




 

 

We see that (7) holds for all z .0 this confirms that z
3
 is analytic for all 

z .0 (and we know that it is also analytic at (z = 0). From (8b) we 

obtain the derivative as expected. 

 .3)sin)(cos3sin3(cos3)( 22' ziirzf    

 

Laplace’s Equation: Harmonic functions 

 

One of the main reasons for the great practical importance of complex 

analysis in engineering mathematics results form the fact that the real 

part  of an analytic function f = u + iv satisfies the so – called 

Laplace’s equation. 

 

9.  .02 
yyxx uuu  

 

(
2
 read ―nabla squared‖) and the same holds fort the imaginary part 

  

10.  .02 
yyxx vvv  

 

Laplace’s equation is one of the most equations in physics, occurring in 

gravitation, electrostatics, fluid flow, etc. (cf. chaps. 11, 17) let us 

discover why this equation arises in complex analysis. 

 

Theorem 3 (Laplace’s Equation) 

 

If f(z) = u(x,y) + iv(x,y) is analytic in a domain d, then u and v satisfy 

Laplace’s equation (9) and (10) in d and have continuous second partial 

derivatives in D. 

 

Proof:  
 

Differentiating ux = vy with respect to x and uy = vx with respect to y, 

 we obtain 



MTH 381                                                                                                               MODULE 2 

67 

11.  .
yxyyxyxx vuvu    

 

Now the derivative of an analytic function is itself analytic, as we shall 

prove later (in sec. 13.6). This implies that u and v have continuous 

partial derivatives of all orders; in particular, the mixed second 

derivatives are equal; vyx = vxy. By adding (11) we thus obtain (9). 

Similarly, (10), is obtained by differentiating ux = vy with respect to y 

and uy = -vx with respect to x and subtracting, using uxy = uyx. 

 

Solutions of Laplace’s equation having continuous second – order 

partial derivatives are called harmonic functions and their theory is 

called potential theory (cf. also sec. 11.11). Hence the real and 

imaginary parts of an analytic function are harmonic functions. 

 

If two harmonic functions u and v satisfy the Cauchy – Riemann 

equations in a domain d, they are the real and imaginary parts of an 

analytic function f  in d. Then v is said to be a conjugate harmonic 

function of u in d. (of course this use of the word ―conjugate‖ has 

nothing to do with that employed in defining z , the conjugate of a 

complex number z). 

 

A conjugate of a given harmonic function can be obtained from the 

Cauchy – Riemann equations, as may be illustrated by the following 

example. 

 

Example 33 

 

 Conjugate Harmonic Function 

 

Verify that yyxu  22 is harmonic in the complex plane and find a 

conjugate harmonic function of v of u. 

 

Solution  

 

02  u  by direct calculation. Now .122  yuandxu yx hence a 

conjugate v of u must satisfy 

 

.12,2  yuvxuv yxx  

 

Integrating the first equation with respect to y and differentiating the 

result  with respect to x, we obtain. 

  
dx

dh
yvxhxyv x  2),(2  
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A comparison with the second shows that dh/dx = 1. This gives h(x) = x 

+ c. hence )tan(2 tconsrealanyccxxyv  is the most general conjugate 

harmonic of the given u. 

 

The corresponding analytic function is 

 .)2()( 222 icizzcxxyiyyxivuzf    

 

The Cauchy – Riemann equations are the most important equations in 

this  chapter. Their relation to Laplace’s equation opens wide ranges 

of engineering and physical applications, as we shown in chapter 17. In 

the remainder of this chapter we discuss elementary functions, one after 

the other, beginning with ze in the next section. Without knowing these 

functions and their properties we would not be able to do any useful 

practical work. This is just as in calculus. 

 

3.6  Exponential Function  
 

The remaining sections of this chapter will be devoted to the most 

important elementary complex function, logarithm, trigonometric 

functions, etc we shall see that these complex functions can easily be 

defined in such a way that, for real values of the independent variable, 

the functions become identical with the familiar real functions. Some of 

the complex functions have interesting properties. Which do not show 

when the independent variable is restricted to real values. The student 

should follow the consideration with great care, because these 

elementary functions will  be frequently needed in applications.  

 

We begin with the complex exponential function also written as one of 

most  important analytic functions. The definition of e
z
 in terms of the 

real functions e
x
 cos y and sin y is e

z 
= e

x
(cos y + sin y).  This definition  

is motivated by requirement that make e
z
 a natural extension of the real 

exponential function e
x
, namely. 

 

(a) e
z
 should reduce to the latter when z = x is real; 

(b) e
z
 should be  an entire function, that is analytic for all z, and 

 resembling calculus, its derivative should be  

 

2. (e
z
)

1
 = e

z
  

 

from (1) we see that (a) holds, since cos 0 = 1 and sin 0 = 0. that e
z
  is 

easily verified by the Cauchy-Riemann equations. Formula (2) then 

follows from (4) that 

 

(e
z
)

1
 = (e

z
 cos y)z + i(e

x
 sin y)x = e

z
 cos y + ie

z
  sin y = e

z. 
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e
z.
 has further interesting properties. Let us first show that, as in real, we 

have the functional relations  

 

3.  
  

2121 zzzz
ee 

  

 

For any
  

 

111 iyxz 
and ,222 iyxz  indeed, by (1). 

 .sin(cos)sincos 2211
21 yiyeyiye

xx
  

 

Since 2121 xxxx
eeee  for these real functions, by an application of the 

addition formulas for the cosine and sine functions (similar to that in 

sec.  12.2) we find that this equals 

 

   21121 )(sincos 2121

zzxzz
eyyiyyee


  

As asserted. An  

 

4. .1sincossincos 22  yyyiye iy  

 

That is, for pure imaginary exponents the exponential function has 

absolute value one, a result the student should remember. From (7) and 

(1), 

  

5. .xz ee  Hence        arg   2 nyez                 ),2,1,0(    n  

  

since .xz ee  shows that (1) is actually xe in polar form. 

  

Example 34 

 

Illustration of Some Properties of the Exponential Function 

 

Computation of values from (1) provides no problem. For instance, 

verify that 

 

,290.2347.3)565.0825.0(055.4)6.0sin6.0(cos4.16.04.1 iiiee i   

.6.0Arg        ,055.4 6.04.14.16.04.1   ii eee  

 

Since 12cos  and 02sin  , we have from (5) 

 

6. 12 ie    

 

Furthermore use (1), (5) or (6) to verify these important special values: 
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7. ie i 2 ,     1ie ,    ie i  2 ,  .1 ie   

 

To illustrate (3), take the product of  

 

)1sin1(cos)1sin(cos 4422 ieeiiee ii    

and verify that equals 

 

.)1sin1(cos )4()2(62242 iieeee   

 

Finally, conclude from 0 xz ee in (8)that 

 

8. 0xe for all z 

 

So here we have an entire function that never vanishes, in contrast to 

(non-constant) polynomials, which are also entire (Example 5 in 

Sec.2.4) but always have zero, as is proved in algebra. [Can you obtain 

(11) from (3) ?] 

 

Periodicity of xe with period i2 , 

 

9. ziz ee  2  all z 

 

is a basic property that follows from (1) and the periodicity of cosy and 

siny. It also follows from (3) and (9).] Hence all the values that zew   

can assume are already assumed in the horizontal strip of width 2 . 

  

10.   y  

 

This infinite strip is called a fundamental region of xe . 

 

Example 35 

 

Solution of an Equation 

 

Find all solution of ie x 43  

 

Solution 

 

609.15  ,5  Inxee xx is a real part of all solutions. Furthermore, 

since 5xe , 

 

927.0        0.8,sin          0.6,cos        ,4sin      ,3cos  yyyyeye xx . 
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Fig. 20:    Fundamental Region of the Exponential Function e
z
 I 

in the z-plane 

 

Ans. ),2,1,0(    2927.0609.1  niniz  . These are infinitely many 

solutions (due to the periodicity of ze ). They lie on the vertical line 

x=1.609 at a distance 2 from their neighbours. 

 

To summarise: many properties of ze z exp parallel to those of xe ; an 

exception is the periodicity of xe with i2 , which suggested the concept 

of a fundamental region and causes the periodicity of cosz and sinz with 

the real period 2 , as we shall see in the next section. Keep in mind that 
ze is an entire function. (Do you still remember what that means?) 

3.7 Trigonometric Functions, Hyperbolic Functions 
 

Just as ze extends xe to complex, we want the complex trigonometric 

functions to extend the familiar real trigonometric functions. The idea of 

making the connection is the use of the Euler formulae. 

 

 .sincos       ,sincos xixexixe ixix    

 

By addition and subtraction we obtain 

 

realxee
i

xseex iziziziz           )(
2

1
in               ),(

2

1
cos    

 

This suggests the following definitions for complex values iyxz   

1.         ).(
2

1
in               ),(

2

1
cos iziziziz ee

i
zseez    

 

Furthermore, in agreement with the definition from the real calculus we 

define 

2.   
sin

cos
ot            ,

cos

sin
tan

z

z
zc

z

z
z    

and 

 

3.   . 
sin

1
osec            ,

cos

1
sec

z
zc

z
z   

 

Since ze is entire, cosz and sinz are entire functions. Tanz and secz are 

not entire; they are analytic except at the point where cosz is zero; and 

 

-  

x 

y 
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zcot and zcsc are analytic except, where 0sin z . Formulas for the 

derivatives follows readily from zz ee )( and (1)-(3); as in calculus, 

 

4. ,sec)(tan             ,cos)(sin             ,sin)(cos 2 zzzzzz    

 

etc. Equation (1) also shows that Euler’s formula is valid in complex: 

 

5. zizeiz sincos     for all z. 

 

Real and imaginary parts of cosz and sinz are needed in computing 

values, and they also help in displaying properties of our functions. We 

illustrate this by typical example. 

 

Example 36 

 

Real and Imaginary Parts. Absolute Value. Periodicity 

 

Show that 

 

(a) yxiyxz sinhsincoshcoscos   

6. (b) yxiyxz sinhcoscoshsinsin   

 

and  

 

7. (a) yxz 222
sinhcoscosh   

(b) yxz 222
sinhsinsinh   

 

And give some application of these formulas. 

 

Solution 

 

From (1) 

 )(
2

1
cos )(() iyxiiyxi eez    

  )sin(cos
2

1
)sin(cos

2

1
yixeyixe yy    

 .sin)(
2

1
cos)(

2

1
xeeixee yyyy    

 

This yields (6a) since, as is known from calculus, 

 

8.   );(
2

1
in          ),(

2

1
cosh yyyy eehyseey    
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(6b) is obtained similarly. From and yy 22 sinh1cosh   we obtain 

.sinhsin)sinh1(coscos 22222
yxyx   

 

Since 1cossin 22  xx , this gives (7a), and (7b) is obtained similarly. 

 

For instance, iii 109.9190.43sinh2sin3cosh2cos32cos(  . 

 

From (6) we see that cosz and sinz are periodic with period 2 , just as 

in real. Periodicity of tan z and cot z with period now follows. 

 

Formula (7) points to an essential difference between the real and the 

complex cosine and sine: whereas ,1sin and 1cos  xx  the complex 

cosine and sine functions are no longer bounded but approach infinity in 

absolute value as ,y since .sinh y  

 

Example 37 

 

Solution of Equations. Zeros 

 

Solve   

 

(a) 5cos z (which has no real solution),  

(b)  0cos z  

(c)   0sin z  

 

Solution  

 

(a)  01102  iziz ee from (1) by multiplication by ize . This is a 

quadratic equation in ize , with solution (3D-values) 

 

.101.0 and  899.91255   ixyiz ee  

 

Thus nxyee ixy 2 ,292.2,1 0.101,or  899.9   

 

Ans.  ),,2,1,0(292.2 2  ninz   can you obtain this by 

using (6a)? 

 

(b)   .0  (7a),by  ,0sinh  ,0cos  yyx  

 

Ans. ).,2,1,0(  )12(
2
1  nnz   

 

(c)    .0  (7b),by  ,0sinh  ,0sin  yysx  

 

Ans. ).,2,1,0(  2  nnz   
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Hence the only zeros of cosz and sinz are those of the real cosine and 

sine functions. 

 

From the definition it follows immediately that all the familiar formulas 

for the real trigonometric functions continue to hold for complex values. 

 

We mention in particular the addition rules 

 

9.  
122121

212121

cossincossin)sin(

sinsincoscos)cos(

zzzzzz

zzzzzz




 

and the formula 

10.   .1sincos 22  zz  

 

Some further useful formulas are inclined in the problem set. 

 

HYPERBOLIC FUNCTIONS 

  

The complex hyperbolic cosine and sine are defined by the formulas  

  

     

11. ),(cosh
2
1 zz eez    ).(sinh

2
1 zz eez   

 

This suggested by the familiar definition for the real variable. These 

functions are shown below,  with derivatives 

 

12. ,sinh)(cosh zz        ,cosh)(sinh zz   

 as in calculus. The other hyperbolic functions are defined by 

  ,
cosh

sinh
tan

z

z
z    ,

sinh

cosh
coth

z

z
z   

 

13. ,
cosh

1
sec

z
hz    ,

sin

1
csc

zh
hz   

 

Complex trigonometric and hyperbolic functions are related 

 

If in (11), we replace z by iz and use (1), we obtain 

  

14. ,coscosh ziz     ,sinsinh ziiz   

 

From this, since cosh is even and sinh is odd, conversely 

 

 

15.    ,coshcos ziz     ,sinhsin ziiz   
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Apart from their practical importance, these formulas are remarkable in 

principle. Whereas in real calculus, the trigonometric and hyperbolic 

functions are  of a different character, in complex these functions are 

intimately related. Moreover the Euler formula relates them to the 

exponential function. This  situation illustrates that by working in 

complex, rather than in real, one can often gain a deeper understanding 

of special functions. This is one of the three main reasons of the 

practical importance of complex analysis, mentioned at the beginning of 

this chapter. 

  

 

In the next section we discus the complex logarithms, which differ 

substantially  from the real logarithm (which is simpler), and the student 

should work the next section with particular care. 

 

4.0  CONCLUSION 
 

To this end, we conclude by giving a summary of what we have 

covered. 

 

5.0 SUMMARY 
 

For arithmetic operations with complex number  

1. ),sin(cos  irreiyxz i   

,22 yxzr   ),/arctan( xy  and for their representation in 

the complex plane, see Sec 2.1 and 2.2 

A complex function ),(),()( yxivyxuzf  is analytic in domain 

D if it has a derivative. 

 

2. 
z

zfzzf
zf

z 






)()(
lim)(

0
 

 Everywhere in D. Also, )(zf is analytic at a point 0zz  if it has a 

 derivative in a neighbourhood of 0z  (not merely at 0z itself). 

If )(zf  is analytic in D, then u(x, y)and ),( yxv satisfy the (very 

important!)  Cauchy-Riemann equations (Sec. 2.5). 

 

3. ,
y

v

x

u









 

x

v

y

u









 

 everywhere in D. Then u and v also satisfy Laplace’s equation 

 

4. ,0 yyxx uu    0 yyxx vv  

everywhere in D . If u(x, y) and ),( yxv  are continuous and have 

continuous  partial derivatives in D that satisfy (3) in D, then 
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),(),()( yxivyxuzf   is  analytic in domain D .Sec. 2.5 the 

complex exponential function (Sec. 2.6) 
  

5. )sin(cosexp yiyeze zz   

is periodic with i2 , reduces to ze  when )0(  yxz and has the 

derivative ze . The trigonometric functions are (Sec.2.7) 

  sinhsincoshcos )(
2

1
cos yxiyxeez iziz    

 yxiyxeez iziz sinhcoscoshsin )(
2

1
cos    

 ,tan/1cot,cos/)(sintan zzzzz  etc.  

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

i. Let iz 431  and iz 252   

 Find in the form iyx   

  (a) 2

21 )( zz    (b) 
z

z
2

2  

ii. Show that z is pure imaginary if and only if .zz   
  

iii. Find; (a)   
2

1 i   (b)  
3

4

)43(

)43(

i

i




 

iv. Represent in polar form 

 (a)   
i

i
33

2


  (b)   i4  

v. Determine the principal value of the arguments of  

(a)   i22    (b)   31 i  

vi. Represent in form iyx   

(a)  


















4

3
sin

4

3
cos50

2
sin

2
cos4


ii  

vii.  Determine and sketch the sets represented by 

(a) 22  iz  (b)   01)21()21(  izizz  

 

viii. Find ),2( if  )4( if    where )(zf equals 

(a)    zz 23  (b)   
)1(

)1(





z

z
 

ix. If )(zf is differentiable at 0z , show that )(zf  is continuous at 0z . 

x. Prove the product rule   )()()()()()( zgzfzgzfzgzf 


 

xi. Are the following functions analytic? 

(a)   4)( zzf  (b)   )sin(cos)( yiyezf x  . 

xii. Let v be a conjugate harmonic of u in some domain D. Show that 

 then 22 vuh  is harmonic in D. 
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xiii. Derive the Cauchy-Riemann equations in polar form equation 

from equation 1. 

xiv. Using the Cauchy-Riemann equations, show that xe is analytic for 

all z. 

 

xv. Compute ze (in the form ( ivu  ) and ze ) when z equals 

 (a)   2/i  (b)   
4

7
1

i
  

xvi. Show that 











22
cos

22 yx
eu xy is harmonic and find a conjugate. 

xvii. Prove that ,cosh,sin,cos zzz  and zsinh are entire functions. 

xviii. What is the idea that led to the Cauchy-Riemann equations? 

xix. State the Cauchy-Riemann equations from memory. 

xx. What is an analytic function? Can a function be differentiable at a 

 point 0z without being analytic at 0z . 
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UNIT 2 INTEGRATION OF COMPLEX PLANE 
 

CONTENTS 

 

1.0    Introduction 

2.0    Objectives         

3.0    Main Content 

3.1 Line Integral in the Complex Plane 

3.1.1 Definition of the Complex Line Integral 

3.1.2 Existence of the Complex Line Integral  

3.1.3 Three Basic Properties of Complex Line Integral 

3.2 Two Integration Methods 

3.2.1 Use of the Representation of the Path 

3.2.2 Indefinite Integration 

3.2.3 Bound for the Absolute Value of Integrals 

3.3 Cauchy’s Integral Theorem 

3.3.1 Cauchy’s Integral Theorem 

3.3.2 Independence of Path, Deformation of Path 

3.3.3 Cauchy Theorem for Multiple Connected Domains 

3.4 Existence of Indefinite Integral 

3.5 Cauchy’s Integral Formula 

3.6 Derivative of Analytic Functions 

3.6.1 Moreras’s Theorem 

3.6.2 Liouville’s Theorem 

4.0    Conclusion         

5.0    Summary         

6.0    Tutor-Marked Assignment      

7.0    References/Further Reading 

 

1.0 INTRODUCTION      
 

In this unit we defined and explained complex integrals. The most 

fundamental result in the whole unit is Cauchy’s integral theorem. It 

implies, the importance of Cauchy integral formula. 

 

We prove that if a function is analytic, it has derivatives of all orders.  

Hence, in this respect, complex analytic functions behave much more 

simply than real-valued functions of real variables. Interpretation by 

means of residues and applications to real integrals will be considered in 

Module 3. 
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2.0 OBJECTIVES 
 

At the end of the unit, you should be able to: 

 

 in applications there occur real integrals that can be evaluated by 

complex integration, whereas the usual methods of real integral 

calculus are not successful; and 

 some basic properties of analytic function can be established by 

integration, but would be difficult to prove by other methods. The 

existence of higher derivatives of analytic functions is a striking 

property of this type. 

 

3.0 MAIN CONTENT 
 

3.1 Line Integral in the Complex Plane 
 

As in real calculus, we distinguish between definite integrals, and 

indefinite integrals or ant derivatives. An indefinite integral is a 

function whose derivative equals a given analytic function in a region. 

By inverting known  differentiation formulas we may find many types of 

indefinite integrals. 

 

We shall now define definite integrals, or line integrals, of complex 

function ),(zf where iyxz  as follows;.  

 

Path of Integration 

 

In real calculus, a definite integral is taken over an interval (a segment) 

of the real line. In the case of a complex definite integral we integrate 

along a curve C  in the complex plane, which will be called the path of 

integration. 

 

Now a curve C in the complex plane can be represented in the form 

           

       )()()( tiytxtz    )(a  bt       (1) 

 

where t is a real parameter. For example, 

 
)2(0                                         3)(  titttz  

 

represent a portion of the line xy 3   (sketch it!), 

 
)(-                                         sin4cos4)(   ttittz  

 

represent the circle 4z , etc. (More example below) 
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C is called a smooth curve if C has a derivative 

 

)()()( tyitx
dt

dz
tz    

at each of its points which is continuous and nowhere zero. 

Geometrically this means that C has a continuous turning tangent. This 

follow directly from the definition 

  

t

tzttz
tz

t 






)()(
lim)(

0
  

                 

 
                                   

Fig. 21:  Tangent vector z(t) of a curve C in the complex plane 

given by z(t).  The arrow on the curve indicates the 

positive sense (sense of increasing t). 

 

3.1.1 Definition of the Complex Line Integral  
 

This will be similar to the method used in calculus. Let C be a smooth 

curve  in the z -plane represented in the form (1). Let )(zf be a 

continuous function  defined (least) at each point of C . We subdivided 

(―partition‖) the interval  )(a bt  in (1) by points of 

  

               
Fig. 22:  Complex Line Integral 

 

)(,.,),( 110 btttat nn    
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Where nttt  10 . To do this subdivision there corresponds a 

subdivision of C by points 

 

  ),(,.,, 110 zzzzz nn    

where )( jj tzz  . On each portion of subdivision of C we choose an 

arbitrary point, say, a point 1 between 0z and 1z  (that is, )(1 tz  ) where

t  satisfies 10 ttt  , a point 1 between 0z and 1z  (that is, )(1 tz  ) where

t  satisfies 10 ttt  , a point 2 between 1z and 2z etc. Then we form the 

sum 

 





n

m

mn fS
1

)(       (2) 

where  

    .1 mmm zzz  

This we do for each  ,3,2,1n in a completely independent manner, 

but in  such a way that the greatest mz approaches zero as n approaches 

infinity. This gives a sequence of complex numbers .,, 32 SS  The limit 

of these sequence is called the line integral (or simply the integral) of 

),(zf along the oriented curve C and is denoted by 

 

  C dzzf )(        (3)  

The curve C is called the path of integration. C is called a closed path if 

0zz  , that is, if its terminal point coincides with its initial point.  

 

(Example: a circle, a curve shaped like an 8, etc.) Then also writes 

 

  C instead of   C  

 

Examples follow in the next section. 

 

General Assumption 

 

All path of integration for complex line integral will be assumed to be 

piecewise smooth, that is, to consist of finitely many smooth curves 

joined  end to end. 

 

3.1.2    Existence of the Line Integral 
 

From our assumption that )(zf is continuous and C is piecewise smooth, 

the existence of the line integral (3) follows, as in the previous chapter 

let us write ),(),()( yxivyxuzf  . We also set 
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 mmm i  and mmm yixz   

 

then (2) may be written  

   ))(( mmn yixivuS       (4) 

 

Where ),( mmuu  and ),( mmvv  we sum over m from1 to n. We 

may  now split up nS  into four sums:  

 

     mmmmn xvyuiyvxuS  

 

These sums are real. Since f is continuous, u and v are continuous.  

Hence, if we let n approach infinity in the aforementioned way, then the 

greatest  mx and my will approach zero and each sum on the right 

becomes a real line integral: 

    

    
 C C CCC

n
n

vdxudyivdyudxdzzfS )(lim    (5) 

 

This shows that under our assumption ( f continuous on 1C and 2C

piecewise smooth) the line integral (3) exist and its value is independent 

of the choice of subdivisions and intermediate points m . 

 

3.1.3   Three Basic Properties of Complex Line Integrals 
  

We list three properties of complex line integrals that are quite similar to 

those of real definite integrals (and real line integrals) and follow 

immediately from the definition. 

 

Integration is a linear operation, that is, a sum of two (or more) functions 

can be integrated term by term, and constant factors can be taken out 

from under the integral sign:  

 

   
CCC

dzzfkdzzfkdzzfkzfk )()()()( 22112211   (6) 

 

 
Fig. 23:  Subdivision of Path (Formula (7) 

 

Decomposing C into two portions 1C and 2C  (Fig), we get 

 
21

)()()(
CCC

dzzfdzzfdzzf      (7) 
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3.   Reversing the sense of integration, we get the negative of the 

original value: 

 
0

0

)()(
z

z

z

z
dzzfdzzf       (8) 

 

here the path C with endpoint 0z and Z is the same;  on the left we 

integrate from 0z to Z , on the right from 0z to Z . 

 

Applications follow in the next section and problems at the end of it.  

 

3.2 Two Integration Methods 
  

Complex integration is rich in methods for evaluating integrals. We 

discuss first two of them, and others will follow later in this chapter. 

 

3.2.1 First Method: Use of Representation of the Path 
 

This method applies to any continuous complex function. 

  

Theorem 1 (Integration by the use of the path) 

 

Let C be a piecewise smooth path, represented by z = z(t), where

bta   Let f(z) be a continuous function on C. Then 

 

   C

b

a
dttztzfzf )()()(               










dt

dz
i      (1) 

 

Proof 

 

The left-hand side of (1) is given by (5), Sec, 13.1, in terms of real 

integrals, and we show that the right-hand side of (1) also equals (5). 

 

We have iyxz  , hence yixz   . We simply write u  for  )(),( tytxu

and v for  )(),( tytxv .We also have dtxdx  and dtydy  . Consequently, in 

(1), 

 

   
b

a

b

a
dtyixivudttztzf ))(()()(   

 ,)( 
C

vdxudyivdyudx  

 

Which is the right-hand side of (5), as claimed. 
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Steps in applying Theorem 1 

 

Represent the path C in the form )(tz bta   

Calculate the derivative dtdztz )(  

Substitute )(tz for every z in )(zf (hence )(tx for x and )(ty for y) 

Integrate   )()( tztzf  over t from a tob   

 

Example 1 

 

A Basic Result: Integral of z1 around the unit circle 

 

Show that 

 

  (C the unit circle, clockwise) (2) 

 

 

The important result will be frequently needed. 

 

Solution 

 

We may represent the unit circle C in the form 

   

tittz sincos)(  z    ).20(  t  

 

So that the counterclockwise integration correspond to an increase of t

from 0 to 2 . By differentiation, 

 
tittz cossin)(   

Also  
)(

1
)(

tz
tzf  . Formula (1) now yields the desired result 

  

  



C

dttit
titz

dz
)cossin(

sincos

12

0



 

  
2

0
dti  

  i2  

 

The Euler formula helps us to save work by representing the unit circle 

simply in the form 

 
itetz )(  

 

Then 

 .    ,
)(

1
dtiedze

tz

itit   

 



MTH 381                                                                                                               MODULE 2 

85 

 

As before, we now get more quickly 

 

    
 2

0

2

0
dtiiee

z

dz

C

itit  

            i2 . 

 

Example 2 

 

Integral of Integer Powers 

 

Let mzzzf )()( 0  where m is an integer and 0z is a constant.  

Integrate in the clockwise sense around the circleC of radius  with 

centre at 0z  

 

Solution 

 

We may represent the unit circle C in the form 

  
iteztitztz   00 )sin(cos)( z  ).20(  t  

 

Then we have 

,         ,)( 0 dteidzezz itimtmm    

and we obtain 

 

   )(
2

0
0 dtedzzz imtm

C

m

 


  

.
2

0

)1( dte tmi






 

 

By the Euler formula (5), the right-hand side equals 

.)1sin()1cos(
2

0

2

0

1





  




 tmitmi m  

When ,1m we have 11 m , 00sin,10cos  and thus obtain i2 . For 

integer 1m each of the two integer is zero because we integrate over an 

interval of length i2 , equal to a period of sine and cosine. Hence the 

result is  

    

   

                       (3) 

 

 

Let us now illustrate the following important fact. If we integrate a 

function ),(zf from a point 0z to a point 1z along different path, we 

generally get the values of the integral. In other words, a complex line 
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integral generally depends not only on the end point of the path but also 

on the geometric shape of the path. 

 

Example 3 

 

Integral of Non-analytic Function 

 

Integrate xzf )( from 0 to 1. 

along *C in fig. 325 below. 

along C consisting  of 1C and 2C . 

 

Solution 

 

a.   *C can be represented by )10(   )(  titttz . Hence 

itz )(                   and                 1)()(  txtzf           (on *C ). 

 

We now calculate 

 

  
C

dtitzdz
1

0
)1(Re  

).1(
2

1
i  

 

b.     1C  can be represented by )10(  )(  tttz . Hence 

 1)( tz        and               1)()(  txtzf           (on 1C ). 

 2C  can be represented by )10(   )(  titttz . Hence 

 1)( tz        and                 1)()(  txtzf         (on 2C ). 

 Using (7) , we calculate 

            

              
 

 
1

0

1

0
1ReReRe

21

tdttdtzdzzdzzdz
CCC

    

  i
2

1
 

Note that this result is differ from the result in (a). 

 

z = 1 + i 

C2 

C1 

C
*
 

y 

1 

1 

 

z0 

Fig. 24 Path in Example 2 Fig. 25. Path in Example 3 
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3.2.2 Second Method: Indefinite Integration 
 

In real calculus, if for given )(xf  we know an )(xF such that 

),()( xfxF   

then we can apply the formula  

   
b

a
aFbFdxxf )()()(         

This method extends to complex functions. We shall see that it is 

simpler than the previous method, but, of course, we have to find an 

)(zF whose derivative )(zF equals the given function )(zf that we want 

to integrate.  Clearly, differentiation formulas will often helps us in 

finding such an )(zF , so that this method becomes of great practical 

importance.  

  

Theorem 2 (Indefinite Integration of Analytic Functions) 

  

Let )(zf be analytic in a simply connected domain D . Then there exists 

an indefinite integral of )(zf in the domain D , that is, an analytic 

function )(zF such that )()( zfzF  in D , and for all path in D joining 

two point 0z   and 1z in D we have 

  

 

   .)()( zfzF 4.

    

 

(Note that we can write 0z and 1z instead of C , since we get the same 

value for all those C from 0z and 1z  ). 

  

This theorem will be proved by using Cauchy’s integral theorem which 

we discuss in the next section… 

 

Example 4   

 

0

1

3

1 3
1

0

3
i

zdzz
i 




 

 ii
3

2

3

2
)1(

3

1 3   

 

Example 5 
 

i

i
zzdz

i

i 



 
 sincos  

iii 097.23sinh2sin2    
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Example 6 

 





 38

38
2 2

38

38

2










z
i

i

z edze  

)(2 234234 ii ee     

0  

Since ze  is periodic with period .2 i  

 

3.2.3    Bound for Absolute Value of Integrals 
 

There will be a frequent need for estimating the absolute value of 

complex line integrals. The basic formula is 

 

6. MLdzzf
C

 )(    ( ML -inequality); 

here L is the length of C and M a constant such that Mzf )(

everywhere on C. 

 

Proof: 

 

We consider nS as given by (2). By the generalized triangle inequality 

(6), we obtain 

  

 m

m

m

m

n

m

mmn zfzfS  
 11

)()(   

 .
1





n

m

mzM    

 

Now mz is the length of the chord whose end points are 1mz and mz . 

Hence the sum on the right represents the length *L of the broken line of 

the chord whose endpoints are ).(,,, 10 Znzzz n   If n approaches 

infinity in such a way that the  greatest mz approaches zero, then *L

approaches the length L  of the curve C , by the definition of the 

length of a curve. From this the inequality (6) follows. 

 

We cannot see for (6) how close to the bound ML the actual absolute 

value  of the integral is, but this will be no hardship in applying (6). For 

the time being we explain the practical use of (6) by a simple example. 

 

Example 8 

 

Find a upper bound for the absolute value of the integral 

 



MTH 381                                                                                                               MODULE 2 

89 

 C dzz ,2  C the straight-line segment from 0 to 1+i 

 

Solution  

 

2L and 2)( 2  zzf on C gives by (6) 

8284.2222  dzz
C

  

 

The absolute value of the integral is  

9428.02
3

2

3

2

3

2
 i  

 

In the next section we discuss the most important theorem of the whole 

chapter, Cauchy’s integral theorem, which is the basic in itself and has 

far reaching consequences which we shall explore, above all the 

existence of all higher derivatives  of an analytic function, which are 

themselves analytic functions. 

 

3.3 Cauchy’s Integral Theorem 
 

Cauchy’s integral theorem is very important in complex analysis and has 

various theoretical and practical consequences. To state this theorem, we 

shall need the following concepts. 

 

A closed path C is called a simple close path if C does not intersect or 

touch itself (see diagram below). For example a circle is simple, an 

eight- shaped curve is not.  

 

A domain D in the complex plane is called a simply connected domain 

if every closed path in D encloses only points of D. A domain that is not 

simply connected is called multiply connected. 

 

For instance, the interior of a circle (―circular disk‖), ellipse or square is  

 
simply connected. More generally, the interior of a simple closed curve 

is simply connected. A circular ring or annulus is multiply connected 

(more  precisely: doubly connected). The figure below shows further 

examples. 
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Fig. 27:  Simply and Multiply Connected Domain 

 

Recalling that, by definition, a function is a single-valued relation, we 

can  now state Cauchy’s integral theorem as follows. This theorem is 

sometimes also called the Cauchy-Gaursat theorem.  

 

3.3.1   Cauchy’s Integral Theorem 
 

If )(zf be analytic in a simply connected domain D , then for every 

simple close path C in D, 

 

     

1.     

 

  

Proof 

 

If we make assumption –as Cauchy did- that the derivative )(zf  of )(zf

is continuous in D (existence of )(zf  in D being a consequences of 

analyticity), then Cauchy’s theorem follows from a basic theorem on 

real 

 
 

Fig. 28:  Cauchy’s Integral Theorem 

 

line integrals (proof below). Goursat finally proved Cauchy’s theorem 

without the assumption that )(zf  is continuous (optional proof at the end 

of this chapter). Before we go into details, let us consider some example 

in order to really understand what is going on. 
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We mention that a closed path is sometimes called a contour and an 

integral over such a path a contour integral. 

 

Example 9 

 

 
C

z dze 0 ,  
C

zdz 0cos    
C

ndzz 0       ),1,0( n  

 

For any closed path, since these functions are (analytic for all z). 

  

Example 10 

      

 
C

zdz 0sec ,   
C z

dz
0

42
 

where C is the unit circle.
z

z
cos

1
sec   is not analytic at

,,23,2  z  but all these points lie outside C ; none lie on C. 

Similarly for the second  integral, whose integrand is not analytic at 

iz 2 outside C. 

  

Example 11 

 

 
C

idzz 2  

 

(C the unit circle, counterclockwise) does not contradict Cauchy’s 

theorem, since zzf )( is not analytic, so that the theorem does not 

apply. (Verify this result!) 

 

Example 12 

 

 
C z

dz
,0

2
 

where C is the unit circle. This result does not follow from the Cauchy’s 

theorem, because 
2

1
)(

z
zf  is not analytic at 0z . Hence the condition 

that f  be analytic in D is sufficient rather than necessary for (1) to be 

true.  

 

Example 13 

 

 
C

i
z

dz
,2

2
  

 

The integration being taken around the unit circle in the clockwise 

sense. C lies in the annulus 
2

3

2

1
 z  where 

z

1
 is analytic, but this 
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domain is not simply connected, so that Cauchy’s theorem cannot be 

applied. Hence the  condition that the domain D be simply connected is 

quite essential. 

  

Example 14 
 

    












C C C C
idz

z
dz

z
dz

zz

z
dz

zz

z
023

2

43

)2(

67

2

67
2

  

             i6  

(C the unit circle, counterclockwise) by partial fraction reduction. 

  

Cauchy’s proof under the condition that )(zf  I continuous 

 

From (5) we have 

 

  
C CC

vdxudyvdyudxdzzf ).()()(  

 

Since )(zf is analytic in D, its derivative )(zF exists in D. Since )(zF is 

assume to be continuous,  (4) and  (5) in previous section imply that u 

and v  have continuous partial derivatives in D. Hence Green’s theorem 

with u and –v instead of 1F  and 2F is applicable and gives 

 

 dxdy
y

u

x

v
vdyudx

C
R

  
















 )(  

 

where R is the region bounded by C. The second Cauchy-Rieman 

integration shows that the integrand on the right is identically zero. 

 

Hence, the integral on the left is zero. In the same fashion it follows by 

the use of  the first Cauchy-Rieman equation that the last integral in 

the above formula is zero. This complete Cauchy’s proof.     

 

3.3.2   Independence of Path, Deformation of Path 
 

We shall now discuss an important consequence of Cauchy’s integral 

theorem that has great practical interest, proceedings as follows. If we 

subdivided the path, C in Cauchy’s theorem into two arcs *

1C and 2C , 

then (1) takes the form 

     

)2(    
21

0
CC

fdzfdz . 
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 Fig. 29:  Formula (2’)  Fig. 30: Formula (2) 

 

If we now reverse the sense of integration along *

1C , then the integral 

over *

1C is multiplied by -1. Denoting *

1C with its new orientation by 2C , 

we thus obtain from )6(  . 

  

2.    

 

Hence, if f it is analytic in D, *

1C and 2C are any path in D joining two 

points  in D and having no further points in common, then (2) holds. 

   

If those paths *

1C and 2C have finitely many points in common, then (2) 

continues to hold. This follow by apply previous result to the portion of

1C and 2C between each pair of consecutives point of intersection. 

 

If it is even true that (2) holds for any paths that join ant points 1z and 2z

and lie entirely in the simply connected domain D in which )(zf is 

analytic. 

 

To express this we may say that the integral of )(zf is independent of 

path in D. (Of course the value of the integral depends on the choice of

1z and 2z .) 

 

The proof may require additional consideration of the case in which 1C

and 2C  have infinitely many points of intersection, and is not presented 

here. 

 

We may imagine that the path 2C in (2) was obtained from 1C by a 

continuous deformation. It follows that in a given integral we may 

impose a continuous deformation on the path of integration (keeping the 

endpoint fixed); as long as we do not pass through a point where )(zf is 

not analytic,  the value of the integral will not change under such 

deformation. This is  often called the principle of deformation of 

path.   
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Fig. 31:  Paths having finitely  Fig. 32:  Continuous 

      Many Intersections   Deformation of Path 

 

   
    Fig. 33:  Unit Circle and Path C 

 

Example 15 

 

 
C

i
z

dz
,2 (Counterclockwise integration) now follow from example 

(1), for any simple closed path C whose interior contains 0.The figure 

above gives the idea: first deform ABE continuously into the path

EEBAA  . The heavy curve in the figure shows the resulting deformed 

path. Then deform AEGAE  and AGE  . 

 

There is more general systemic approach to problem of this kind, as we 

shall now see. 

  

3.3.3   Cauchy Theorem for Multiple Connected Domains 

 

A multiplys connected domain D* can be cut so that the resulting 

domain (that is, D* without the point of the cut or cuts) become simply 

connected. 

 

For doubly connected domain D* we need one cut C
~

(figure below).If 

)(zf is analytic in D* and at each point of 1C and 2C then, since 1C , 2C and 

C bound a simply connected domain, it follows from Cauchy’s theorem 

that the integral of f  taken over 1C ,C
~

, 2C  in the sense indicated by the 
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arrows in the figure has the value zero. Since we integrate along C
~

in 

both directions, the corresponding integrals cancel out, and we obtain 

 

(3*)  
21

0)()(
CC

dzzfdzzf   

 

where one of the curve is traversed in the counterclockwise sense and 

the other in the opposite sense. Reversing the sense of integration on one 

of the  curves, we may write this 

 

 
 

Fig 34:  Doubly Connected Domain     Fig. 35:  Paths in (3) 

 

3.  
21

)()(
CC

dzzfdzzf  

 

where curve now traversed in the same sense (the figure above). We 

remember that (3) holds under the assumption that )(zf is analytic in the 

domain bounded by 1C and 2C and at each point of 1C and 2C . 

 

Can you see how the result in Example (7) now follows immediately 

from  our present consideration? 

 

For more complicated domains we may need more than one cuts, but the 

basic idea remains the same as before. For instance, for the triply 

connected domain in figure below, 

 

   
2 31

0)()()(
C CC

dzzfdzzfdzzf  

where 2C and 3C are traversed in the same sense and 1C is traversed in the 

opposite sense. 

 
 

Fig. 36:  Triply Connected Domain 
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Example 16 

 

From (3), Example 2, it now follows that 

  

 









C

m

egerandm

mi
dzzz

)int1(0

)1(2
)( 0


 

 

For counterclockwise integration around any simple closed path 

containing 0z   in its interior. 

 

In the next section, using Cauchy integral theorem, we prove the 

existence of indefinite integrals of analytic functions. This will also 

justify our earlier method of indefinite integration. 

 

       
 

Fig. 39:  Problem 29 

 

3.4 Existence of Indefinite Integral 
 

This section includes an application of Cauchy’s integral theorem. It 

relates to Theorem 2 in section 3.2 on the evaluation of line integrals by 

indefinite integration and substitution of the limits of integration: 

  

1. )()()( 01

1

0

zFzFdzzf
z

z
         ,)()( zfzF   

Where )(zF is an indefinite integral of f(z), that is )()( zfzF  , as 

indicated. 

In most applications, such a )(zF can be found from differentiation 

formulas. 

Theorem 1 (Existence of an Indefinite Integral) 

 

If )(zf is analytic in a simply connected domain D, then there exists an 

indefinite integral )(zF of f(z)in D, which is analytic in D joining two 

points  0z and 1z in D, the integral of f(z) from 0z and 1z can be evaluated by 

formula (1).     
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Proof 

 

The conditions of Cauchy’s integral theorem are satisfied. Hence the 

line integral of )(zf from 0z in D to any z in D is independent of path in 

D. We keep 0z fixed. Then this integral becomes a function of z, which 

we denote by )(zF : 

 

2. .)()( **1

0

dzzfzF
z

z  

 

We show that this )(zF is analytic in D and that )()( zfzF  . The idea of 

doing this is as follows. We form the differential quotient 

    

 




 







 

 zz

z

zz

z
dzzfdzzf

zz

zFzzF

0 0

**** )()(
1)()(

 

  ,)(
1

0

**







zz

z
dzzf

z
 

 

Subtract )(zf from it and show that expression obtained approaches zero 

as ;0z this is done by using the continuity of )(zf . We now give the 

details.   

 

 
  

Fig. 38:  Path of Integration 

 

We keep z fixed. Then we choose zz   in D. This is possible since D is 

a domain; hence D contains a neighbourhood of z.  See figure above. 

The segment we use as the path of integration in the previous formula. 

We now subtract )(zf . This is a constant, since z is kept fixed. Hence 

    

 .)()()( ** zzfdzzfdzzf
zz

z

zz

z
 

 

 

 

Thus 

   





zz

z
dzzf

z
zf *)(

1
)(  
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This trick permits us to write a single integral: 

   

  








 zz

z
dzzfzf

z
zf

z

zFzzF

0

** )()(
1

)(
)()(

 

)(zf is analytic, hence continuous. An є>0 being given, we can thus find 

a 0 such that  

   )()( * zfzf є  when  zz*  

 

Consequently, letting z , we see that the ML-inequality yields 

  

 
z

dzzfzf
z

zf
z

zFzzF zz

z 










 1
)()(

1
)(

)()(

0

** є z = є; 

 

that is, by the definition of a limit and of the derivative, 

 

  ).(
)()(

lim)( zf
z

zFzzF
zF

z








 

 

Since z is any point in D, this proves that )(zF is analytic in D and is an 

indefinite integral or antiderivative of )(zf in D, written 

    

  .)()( dzzfzF      

 

Also, if ),()( zfzG   then 0)()(  zGzF in D; hence )()( zGzF  is 

constant in D. That is, two indefinite integrals of )(zf . This proves the 

theorem. 

 

See section 3.2 for examples and problems on indefinite integration. 

 

The theorem in this section followed from Cauchy’s integral theorem. A 

much more fundamental consequence is Cauchy’s integral formula for 

evaluating integrals over close curves, which we discuss in the next 

section.  

 

3.5 Cauchy’s Integral Formula 
 

The most important consequences of Cauchy’s integral theorem is 

Cauchy’s integral formula. This formula is useful for evaluating 

integrals (see example below). More importantly, it plays a key role in 

providing the surprising fact that analytic function have derivative of all 

orders (see section 3.6), In establishing Taylor series representations and 

so on. Cauchy’s integral formula and its conditions of validity may be 

stated as follows. 
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Theorem 1 (Cauchy’s Integral Formula) 

 

Let )(zf is analytic in a simply connected domain D. Then for any point

0z in D and any simple closed path C in D which encloses 0z (fig. 

below), 

 

1.   

 

 

(Cauchy’s integral formula)  

 

The integration being taken in the counterclockwise sense. 

 

Proof 

 

By addition and subtraction,  .)()()()( 00 zfzfzfzf  . We insert this 

into (1) on the left and can take constant factor )( 0zf out from under the 

integral sign. Then 

  

2. .
)()(

)(
)(

0

0

0

0

0

dz
zz

zfzf

zz

dz
zfdz

zz

zf

CCC  








 

  

The first on the right hand equals izf 2)( 0  (see Example 8 in sec. 3.3, 

with m=-1). This proves this theorem, provided the second integral on 

the right is zero. This is what we are now going to show. It’s integrand 

is analytic, except at 0z . Hence by the principle of deformation of path 

(sec. 3.3) we  replace C by a small circle K of radius  and centre 0z  

(figure below), without altering the value of the integral. Since )(zf is 

analytic, it is  continuous. Hence, an є>0 being given, we can find a

0  such that 

 

  )()( 0zfzf є          for all z in the disk  0zz  

  

 
Fig. 39:  Cauchy’s Integral       Fig. 40: Proof of Formula   
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Cauchy’s  Integral Formula 

 

Choosing the radius  of k smaller than , we thus have the inequality 

 

    








dz

zz

zfzf

0

0 )()(
  

 

At each point of k. The length of k is 2 .Hence by ML-inequality in 

sec. 3.2, 

 

    .22
)()(

0

0 








 dz

zz

zfzf

K
 

Since є(>0) can be choosing arbitrarily small, it follows that the last 

integral on the right-hand side of (2) has the value zero, and the theorem 

is proved. 

  

Example 17    

 

Cauchy’s Integral Formula 

 

  22
2

2
2

e
z

edz
z

e z

C

z

 



  

 

For any contour enclosing 20 z (since ze is entire), and zero for any 

contour for which 20 z lies outside (by Cauchy’s integral theorem). 

  

Example 18 

 

Cauchy’s Integral Formula 
 

 
2

32
2

3

2

6 3

2
1

2
1

33

iz
zdz

iz

z
dz

iz

z

CC 










   

 i


6
8
   )C inside (

2
1

0 iz  .  

Example 19 

 

Integration Around Different Contour 

 

1

1
)(

2

2






z

z
zg  

in the counterclockwise sense around a circle of radius 1 with centre at 

the point 

a.   1z       (b)   
2
1z       (c)   ,1

2
1
i

z     (d)   iz  . 
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Solution 

 

To see what is going on, locate the point where g(z) is not analytic and 

sketch them along with the contours (figure below) . These points are -1 

and1. We see that (b) will give the same result as (a), by the principle of 

deformation of path. And (d) gives zero, By Cauchy’s integral theorem. 

We consider (a) and afterward (c). 

 

Here 10 z , so that 10  zzz in (1). Hence we must write 

);
1

1
)(

1

1
(

1

1
)(

2

2

2











zz

z

z

z
zg        thus     ,

1

1
)(

2

2






z

z
zf   

 

 
 

Fig. 41:   Example 3 

 

Looking back, we point to a chain of basic results. The beginning was 

Cauchy’s integral theorem in sec. 3.3. From it followed Cauchy’s 

integral formula (1) in this section. From it follows the existence of all 

higher derivatives of an analytic function, in the next section. This is the 

probably the most exciting link of our chain. From it follows in the 

Taylor series for analytic functions. 

 

3.6 Derivative of Analytic Functions 
 

From the assumption that a real function of a real variable is once 

differentiable, nothing follows about the existence of derivatives of 

higher order. We shall now see that from the assumption that a complex 

function has a first derivative in a domain D, there follows the existence 

of derivative of all orders in D. This means that in this respect complex 

analytic functions behave much more simply than real functions that are 

once differentiable.    

 

Theorem 1 (Derivative of Analytic Function) 

 

If )(zf is analytic in a domain D, then it has derivatives of all orders in 

D, which are then also analytic function in D. The value of these 

derivatives at a point 0z in D are given by the formulas 
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)1(   dz
zz

zf

i
zf

C 


2

0

0
)(

)(

2

1
)(


  

 

)1(   dz
zz

zf

i
zf

C 


3

0

0
)(

)(

2

!2
)(


 

 and in general 

  

(1) dz
zz

zf

i

n
zf

C n

n

 


1

0

0
)(

)(

2

!
)(


   );,2,1( n  

 

here C is any simple closed path in D that encloses 0z and whose full 

interior belongs to D; And we integrate counterclockwise around 

C(figure below). 

  

Comment 

 

For memorizing (1), it is useful to observe that these formulas are 

obtained formally by differentiating the Cauchy formula (1), Sec. 3.5, 

under the integral sign with respect to 0z . 

 

Proof of Theorem 

 

We prove )1(  . 

We start from the definition 

 

z

zfzzf
zf

z 






)()(
lim)( 00

0
0  

 

On the right we represent )( 0 zzf  and )( 0zf by Cauchy’s integral 

formula (1), sec. 3.5;  we can combine the two integrals  into a single 

integral by taking the common denominator and simplifying the 

numerator (where 0zz  drops out and only zzf )( remains):  

  






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
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 dz
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zfzzf
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)(

)(

2

1)()(


 




  dz
zzzzz
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zi C ))((

)(

2

1

00
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             Fig. 42:  Theorem 1 and its Proof 

 

Clearly, we can now establish )1(   by showing that, as ,0z the 

integral on the right approaches the integral in )1(  . To do this, we 

consider the difference between these two integrals. We can write this 

difference as a single integral by taking the common denominator and 

simplifying. This gives 

 

 


 CC
dz

zz

zf
dz

zzzzz

zf
2

000 )(

)(

))((

)(
    

dz
zzzzz

zf

C 


))((

)(

00

 

 

We show by ML-inequality (Sec. 3.2) that this difference approaches 

zero  as ,0z . 

 

Being analytic, the function )(zf is continuous on C , hence bounded in 

absolute value, say, .)( Kzf   Let d be the smallest distance from 0z to 

the points of C(see fig. below). Then for all z on C, 

 

,22

0 dzz   

 

hence 




22

0

11

dzz
 

 

Furthermore, if ,2dz  then for all z on C we also have 





dzzz

d
zzz

21
        hence      ,

2 0

0  

  

Let L be the length of C. Then by ML-inequality, if ,2dz   
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
 22

00

12

))((

)(

dd
zKdz

zzzzz

zf

C
 

 

This approaches zero as ,0z Formula )1(  is proved. 

 

Note that we used Cauchy’s integral formula (1), Sec. 3.5, but if all we 

had  known about )( 0zf is the fact that it can be represented by (1), 

Sec. 3.5, our  argument would have established the existence of the 

derivative )( 0zf  of  )(zf . This is essential to continuation and 

completion of this proof, because it implies that )1(  can be proved by 

similar argument, with f replaced by f  , and that the general formula (1) 

then follows by induction. 

 

Example 20 

 

Evaluation of Line Integrals 

 

From )1(  , for any contour enclosing the point i (counterclockwise) 

   

iz
zidz

iz

z

C 


 


 )(cos2
)(

cos
2

 

 sinh2sin2  ii  

 

 

Example 21 

 

From )1(  , for any contour enclosing the point -1(counterclockwise)  
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zzidz

iz
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C 

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 )63(

)(

63 24

3

24
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  izi iz  18612 2    

 

Example 22 

 

By )1(  , for any contour for which 1 lies inside and i2  lie outside 

(counterclockwise), 
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6
ii

e
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3.6.1  Moreras’s Theorem 
 

If )(zf is continuous in a simply connected domain D and if  

  

2. 0)(  dzzf
C

  

for every closed path in D, then )(zf is analytic in D. 

 

Proof 

 

In sec.3.4 it was shown that if )(zf  

 


z

z
dzzfzF

0

**)()(  

 

is analytic in D and )()( zfzF  . In the proof we use only the continuity 

of  )(zf and the property that its integral around every close path in D is 

zero; from the assumptions we concluded that )(zF is analytic. By 

theorem 1, the derivative of )(zF is analytic, that is )(zf is analytic in D, 

and Morera’s theorem is proved. 

 

Theorem 1 also yields a basic inequality that has many applications. To 

get it, all we have to do is to choose for C in (1) a circle of radius r and 

centre 0z and apply ML-inequality (Sec. 3.2); with Mzf )( on C we 

obtain from (1) 

 

.2
1

2

!

))

)(

2

!
11

0

0

)( r
r

M
n

dz
zz

zfn
zf

nC n

n 
 




   

   

This yields Cauchy’s inequality 

 

3. .
!

0

)(

n

n

r

Mn
zf   

 

To gain first impression of the importance of this inequality, let us prove 

a famous theorem on entire functions (functions that are analytic for all 

z; cf.Sec. 2.6) 
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3.6.2   Liouville’s Theorem 
 

If an entire function )(zf is bounded in absolute value for all z, then )(zf

must be a constant. 

 

Proof 

 

By assumption, )(zf is bounded, say, Kzf )(  for all z. Using (3), we 

see that rKzf /)( 0  .Since this is true for every r, we can take r as 

large as we please and conclude that 0)( 0  zf . Since 0z  is arbitrary, 

0)(  zf for all z, and )(zf is a constant. 

 

This completes the proof.   

 

This is the end of section on complex integration, which gave us a first 

impression of the methods that have no counterpart in real integral 

calculus. We have seen that these methods result directly or indirectly 

from Cauchy’s integral theorem (Sec.3..3) More on integration follows 

in the next section. 

 

In the next section, we consider power series, which play a great role in 

complex analysis, and we shall see that the Taylor series of calculus 

have a complex counterpart, so that ze , zz sin,cos etc. have Maclaurin 

series that are quite similar to those in calculus. 

 

4.0 CONCLUSION 
 

In conclusion, we state that if a function is analytic, it has derivative of 

all orders.  

 

5.0 SUMMARY 
 

The complex line integral of a function )(zf taken over a path C is 

donated by (sec. 3.1) 

 

C dzzf )(   or, if C is closed, also by  C dzzf )( . 

 

Such an integral can be evaluated by using the equation z=z(t) of C, 

where bta   (se. 3.2): 

 

1.  
b

aC
tztzfdzzf )())(()(     










dt

dt
i  

As another method, if )(zf  is analytic (sec.2.4) in a simply 

connected domain D, then there exists an )(zF in D such that
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)()( zfzF  and for every path C in D from a point 0z to a point 1z

we have 

2. )()()( 01 zFzFdzzf
C

    [ )()( zfzF  ]. 

Cauchy integral theorem states that if )(zf is analytic in as 

simply connected domain D, then for every closed path C in D 

   

3. 0)( C dzzf . 

If )(zf is as in Cauchy’s integral theorem, then for any 0z  in its 

interior we have Cauchy integral formula 

 

4. .
)(

2

1
)(

0

0 dz
zz

zf

i
zf

C 



 

Furthermore, then )(zf  has derivative of all orders in D that are 

themselves analytic functions in D and (sec. 3.6) 

5.  .
)(

)(

2

!
)(

1

0

0

)( dz
zz

zf

i

n
zf

C n

n

 



   ).,2,1( n  

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

i. Show that i
z

dz

C
2   (C the unit circle clockwise) 

ii. Evaluate C
z dze by the method in theorem 1 and compare the 

result by method in theorem 2. 

(C is the line segment from 0 to
2

1
i

 ) 

iii. For what contour C will it follow from Cauchy’s theorem that 

(a) ,0C z

dz
 (b) 0

)( 5







dz
zz

e z

? 

iv. Evaluate the following integrals 

(a) dzz
i

i 
2

32 )1(   (b) 
i

zdzz


0
cos  

v. State and prove Morera’s theorem 

vi. State and prove Liouville’s theorem 
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