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1.0 INTRODUCTION 
 

In this unit, you shall be introduced to a special kind of boundary value problem known 

as a Sturm-Liouville Problem. Your study of this type of problem will introduce you to 

several important concepts including characteristic function, orthogonality, and Fourier 

series (which are beyond the scope of this book). These concepts are frequently employed 

in the applications of differential equations to physics and engineering. 

 

2 .0   OBJECTIVES 
 

At the end of this unit, you should be able to: 
 

 define and give examples of Sturm-Liouville problems; and 

 know the meaning of characteristic values and characteristic functions. 

 

3.0 MAIN CONTENT 
 

3.1 Sturm-Liouville Problems 

 

3.1.1 Definition and Examples 
 

The first concern in this unit is a study of the special type of two-point boundary value 

problem given in the following definition: 
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Definition 3.1 Consider a boundary value problem which consists of 

1. a second-order homogeneous linear differential equation of the form 

  
 

  
 *    

  

  
+                      (1) 

  

where p, q and r are real functions such that p has continuous derivative, q and r 

are continuous, and p(x) > 0 and r(x) > 0 for all x on a real interval a < x < b; and 

λ is a parameter independent of x; and 
 

2. two supplementary conditions 

A1y(a) + A2y
'
(a) = 0, 

(2 )  

B1y(b) + B2y
'
(b) = 0 

 

where A1, A2, B1 and B2 are real constants such that A1 and A2 are not both zero and B1 

and B2 are not both zero. 
 

This type of boundary-value problem is called a Sturm-Liouville Problem (or Sturm-Liouville 

System). 
 

Two important special cases are those in which the supplementary conditions (2) are 

either of the form 

 

y
'
(a) = 0,   y(b) = 0     (3) 

 

or of the form 

 

y
'
(a) = 0,   y

'
(b) = 0.     (4)  

 

Example 3.1 The boundary-value problem 

 
   

   
        (5)  

 

               (6) 
 

is a Sturm-Liouville problem. The differential equation (5) may be written 

  
 

  
 *   

  

  
 ++ [0 + λ · 1]y = 0 

 

and hence is of the form (1), where p(x) = 1, q(x) = 0, and r(x) = 1. The supplementary 

conditions (6) are of the special form (3) of (2). 
 

Example 3.2 The boundary-value problem 



MTH 421     ORDINARY DIFFERENTIAL EQUATIONS 

144 

 

   (7) 

 

   (8) 

 

is a Sturm-Liouville Problem. The differential equation (7) is of the form of (1), 

where p(x) = x, q(x) = 2x
2
, and r(x) = x

3
. The conditions (8) are of the form (2), 

where a = 1, b = 2, A1 = 3, A2 = 4, B1 = 5, and B2 = −3. 

 

You are now due to be introduced to what is involved in solving a Sturm-Liouville 

Problem. You must find a function f which satisfies both the differential equation (1) 

and the two supplementary conditions (2). Clearly one solution of any problem of this 

type is the trivial solution ɸ such that ɸ(x) = 0 for all values of x. Equally clear is the 

fact that this trivial solution is not very useful. You should therefore focus you 

attention on the search for nontrivial solutions of the problem. That is, you should 

attempt to find functions, not identically zero, which satisfies both the differential 

equation (1) and the two conditions (2). You shall see that the existence of the 

nontrivial solutions depends upon the value of the parameter λ in the differential 

equation (1). To illustrate this, you have to return to the Sturm-Liouville Problem of 

Example (1) and attempt to find nontrivial solutions 

 

Example 3.3 Find nontrivial solutions of the Sturm-Liouville Problem 

 
   

   
+ λy = 0,      (5) 

 

y(0) = 0, y(π) = 0.     (6) 

 

Solution 
 

You would need to consider three cases according as λ = 0, λ < 0 and λ > 0. In each case 

you should first find the general solution of the differential equation (5). You shall then 

attempt to determine the two arbitrary constants in this solution so that the 

supplementary conditions (6) will also be satisfied. 

 

Case I: (λ = 0). In this case the differential equation (5) reduced at once to  

   

   
 

and so the general solution is 

 

y = c1 + c2x.   (9) 
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You can now apply conditions (6) to the solution (9). Applying the first condition 

y(0) = 0, you obtain c1 = 0. Applying the second condition y(π) = 0, you find that c1 

+ c2π = 0. Hence, since c1 = 0, you must have also that c2 = 0. Thus in order for the 

solution (9) to satisfy the conditions (6), you must have c1 = c2 = 0. But then the 

solution (9) becomes the solution y such that y(x) = 0 for all values of x. Thus if the 

parameter λ = 0, the only solution of the given problem is the trivial solution. 

 

Case II: (λ < 0). The auxiliary equation of the differential equation (5) is m
2 

+ λ = 0 

and the roots  √  . Since in this case λ < 0, these roots are real and unequal. Denoting 

√   by α, you can see that for λ < 0 the general solution of (5) is of the form 

 

y = c1e
αx 

+ c2e
−αx     

(10) 

 

Applying the conditions (6) to the solution (10) starting with the first, gives you 

 

c1 + c2 = 0      (11)  

 

Applying the second condition y(π) = 0, you find that 

c1e
απ 

+ c2e
−απ 

= 0     (12) 

 

You must thus determine c1 and c2 such that the system consisting of (11) and (12) is 

satisfied. Thus in order for the solution (10) to satisfy the conditions (6), the constants c1 

and c2 must satisfy the system (11) and (12). Obviously c1 = c2 = 0 is a solution of this 

system; but these values of c1 and c2 would only give the trivial solution of this given 

problem. You must therefore seek nonzero values of c1 and c2 which satisfy (11) and 

(12). By some theorems of ODE, this system has nonzero solutions only if the 

determinant of the coefficient is zero. Therefore you must have 

 

|
  

      |     

 

But this implies that e
απ 

= e
−απ 

and hence that α. Thus in order for a nontrivial function of 

the form (10) to satisfy the conditions (6) you must have α = 0. Since α = √  , you must 

have λ = 0. But λ < 0 in this case. Thus there are no nontrivial solutions of the given 

problem in the case λ < 0. 

 

Case III: (λ > 0). Since λ > 0, here, the roots ±√  of the auxiliary equation of 

(5) are the conjugate complex numbers ± √  . Thus in this case the general solution of 

(5) is of the form 

  

y = c1 sin √ x + c2 cos √ x.   (13) 
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Applying now the conditions (6) to this general solution, beginning from the first 

condition y(0)=0, you obtain 

 

c1 sin 0 + c2 cos 0 = 0 

 

and hence c2. Applying the second condition y(π) = 0, you would find that 

  

c1 sin √ π + c2 cos √ π = 0 

 

Since c2 = 0, this reduces at once to 

 

   c1 sin √ π = 0     (14) 

 

You must therefore satisfy (14). At first glance it appears that you can do this in either of 

two ways: 

 

you can set c1 = 0 or you can set sin √ π = 0. However, if you set c1 = 0, then (since c2 

= 0 also) the solution (13) reduces immediately to the unwanted trivial solution. Thus to 

obtain a nontrivial solution you cannot set c1 = 0 but rather you must set 

 

sin √ π = 0       (15) 

 

If k > 0, then sin kπ = 0 only if k is a positive integer n = 1, 2, 3, .... Thus in order that 

the differential equation (5) have a nontrivial solution of the form (13) satisfying the 

conditions (6), you must have 

 

 λ = n
2
, where    n = 1, 2, 3, ...    (16) 

 

In other words, the parameter λ in (5) must be a member of the infinite sequence 

1, 4, 9, 16, ..., n
2
, ... 

 

You can now summarize you result as follows. If λ < 0 the Sturm-Liouville problem 

consisting of (5) and (6) does not have a nontrivial solution; if λ > 0, a nontrivial 

solution can exist only if λ is one of the values given by (16). You now note that if λ is 

one of the values (16), then the problem does have nontrivial solutions. Indeed, from 

(13) you see that nontrivial solutions corresponding to λ = n
2
(n = 1, 2, 3, ...) are given 

by 

 

y = cn sin nx(n = 1, 2, 3, ...),    (17) 

 

where cn(n = 1, 2, 3, ...) is an arbitrary nonzero constant. That is, the functions defined 

by c1 sin x, c2 sin 2x, c3 sin 3x, ..., where c1, c2, c3, ... are arbitrary nonzero constants, are 

non trivial solutions of the given problem. 
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3.1.2  Characteristic Values and Characteristic Functions 
 

Example 12.3 shows that the existence of nontrivial solution of a Sturm-Liouville 

Problem does indeed depend upon the value of the parameter λ in the differential 

equation of the problem. Those values of the parameter for which nontrivial solutions 

do exist, as well as the corresponding nontrivial solutions themselves, are singled out by 

the following definition. 

 

Definition 3.2 Consider the Sturm-Liouville Problem consisting of the differential 

equation (1) and the supplementary conditions (2). The values of the parameter λ in (1) 

for which there exist nontrivial solutions, of the problem are called the Characteristic 

values of the problem. The corresponding nontrivial solutions themselves are called the 

characteristic functions of the problem. 

 

Example 3.4 Consider again the Sturm-Liouville Problem 

 
   

   
 + λy = 0,       (5) 

 

y(0) = 0, y(π) = 0.      (6) 

 

In Example 12.3 you found that the values of λ in (5) for which there exist nontrivial 

solutions of this problem are the values 

 

 λ = n
2
, where n = 1, 2, 3, ...  (16) 

 

These then are the characteristics values of the problem under consideration. The 

characteristic function of the problem at the corresponding nontrivial solutions 

 

 y = cn sin nx (n = 1, 2, 3, ...)  (17) 

 

where cn(n = 1, 2, 3, ...) is an arbitrary nonzero constant. 

 

Example 3.5 Find the characteristic values and the characteristic functions of the Sturm-

Liouville Problem 

 

   
 

  
 * 

  

  
++ 

 

 
 y = 0,     (18) 

 

y'(1) = 0, y'(e
2π

) = 0     (19) 

 

where it is assumed that the parameter λ in (18) is nonnegative. 
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Solution 
 

Consider separately the cases λ = 0 and λ > 0. If λ = 0, the differential equation (18) 

reduces to 

  

    
 

  
 * 

  

  
+ = 0, 

 

The general solution of this differential equation is 

 

y = C ln |x| + C0, 

 

where C and C0 are arbitrary constants. If you apply the conditions (19) to this general 

solution, you will find that both of them require that C = 0 but neither of them imposes 

any arbitrary constant. These are nontrivial solutions for all choices of C0 ≠ 0. Thus λ = 

0 is a characteristic value and the corresponding characteristic functions are given by y 

= C0, where C0 is an arbitrary nonzero constant. 

 

If λ > 0, you see that for x ≠ 0 this equation is equivalent to the Cauchy-Euler Equation 

 

     

   
    

  

  
          (20) 

 

Letting x = e
t
, then equation (20) transforms into 

 
   

   
           (21) 

 

Since λ > 0, the general solution of (21) is of the form 

  

y = c1 sin √ t + c2 cos √ t 

 

Thus for λ > 0 and x > 0 the general solution of (18) may be written 

 

y = c1 sin(√  ln x) + c2 cos(√ x).   (22) 

 

Differentiating (22) and Applying the supplementary conditions (19) gives you that 
  

  
  

  √ 

 
   (√  )  

  √ 

 
   (√    )   (23) 

 

for x > 0. Applying the first condition y
’
(0) = 0 of (19) to (23), you would have 

 

  √     (√  )    √    (√    )     
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or simply c1 √  = 0. Thus you must have 
 

c1 = 0. 
 

Applying the second condition y
'
(e

2π
) = 0 of (19) to (23), you obtain 

 

  √         (√      )    √        (√      )     
 

Since c1 = 0 by (24), and ln e
2π

 = 2π, this reduces at once to 

 

c2 √ e
−2π 

sin(2π√ ) = 0. 

 

Since c1 = 0, the choice c2 = 0 would lead to the trivial solution. Thus you must have 

sin(2π√  = 0 and hence 2π√  = 0 nπ, where n = 1, 2, 3, .... Thus in order to satisfy the 

second condition (19) nontrivially you must have 

 

      
  

 
(n = 1, 2, 3, ...)    (24) 

 

Corresponding to these values of λ you obtain for x > 0 the nontrivial solutions 

 

  (25) 
 

where Cn(n = 1, 2, 3, ...) are arbitrary nonzero constants.  

 

Thus the values 

 
 

given by (25) for n > 0, are the characteristic values of the given problem. The functions 

 

 
 

given by (26) for n > 0, where C0, C1, C2, C3, ... are arbitrary nonzero constants, are the 

corresponding characteristic functions. 

 

For each of the Sturm-Liouville Problems of Examples (3.3) and (3.5), you must have 

found an infinite number of characteristic values. You could observe that in each of 

these problems the infinite set of characteristic values thus found can be arranged in a 

monotonic increasing sequence 
 

λ1 < λ2 < λ3 < · · · 
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such that λn → +∞ as n → ∞. For example, the characteristic values of the problem in 

example (3.3) can be arranged in the monotonic increasing sequence 

1 < 4 < 9 < 16 < · · ·    (26) 

 

such that λn → +∞ as n → +∞. You also note that in each problem there is a one-parameter 

of characteristic functions corresponding to the same characteristic value are merely 

nonzero constant multiples of each other. For example, in the problem of example 3.3, the 

one-parameter family of characteristic functions corresponding to the characteristic value 

n
2 
is cn sin nx, where cn ≠ 0 is the parameter. 

 

You might now inquire whether or not all Sturm-Liouville Problems of the type under 

consideration possess characteristic values and characteristic functions having the 

properties noted in the preceding paragraph. You can ansyour in the affirmative by 

stating the following important theorem. 

 

Theorem 3.1 Consider the Sturm-Liouville Problem consisting of 

 

(i) the differential equation 

 

   (27) 

 

where p, q and r are real functions such that p has a continuous derivative, q and 

r are continuous and p(x) > 0 and r(x) > 0 for all x on the real interval a < x < b; 

and λ is a parameter independent of x; and 

(ii) the conditions 

 

A1y(a) + A2y’(a) = 0    (28) 

 

B1y(b) + B2y’(b) = 0 

 

where A1, A2, B1 and B2 are real constants such that A1 and A2 are not both zero and 

B1 and B2 are not both zero.  

 

Then  

 

(i) There exists an infinite number of characteristic values λn can be arranged in a 

monotonic increasing sequence 

 

λ1 < λ2 < λ3 < · · · 

 

such that λn → + ∞ as n → + ∞. 
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(ii) corresponding to each characteristic value λn there exists a one-parameter family 

of characteristic functions ɸn. Each of these characteristic functions is defined 

on a < x < b, and any two characteristic functions corresponding to the same 

characteristic value are nonzero constant multiples of each other. 

 

(iii) Each characteristic function ɸn corresponding to the characteristic value λn (n = 1, 

2, 3, ...) has exactly (n − 1) zeros in the open interval a < x < b. 

 

Example 3.6 Consider again the Sturm-Liouville Problem of Examples 3.3 and 3.4 

 
   

   
          (29) 

 

y(0) = 0, y(π) = 0.     (30) 

 

You have already noted the validity of conclusions (i) and (ii) of theorem 3.1 for this 

problem. The infinite number of characteristic values λn = n
2
(n = 1, 2, 3, ...) can be 

arranged in the unbounded monotonic increasing sequence indicated by (27); and the 

characteristic functions cn sin nx(cn  ≠ 0), corresponding to λn = n
2 

possess the properties 

stated. 
 

Conclusion (iii) is illustrated by showing that each function cn sin nx corresponding to λn 

= n
2 

has exactly (n − 1) zeros in the open interval 0 < x < π. You know that sin nx = 0 if 

and only if nx = kπ, where k is an integer. Thus the zeros of cn sin nx are given by 

 

     
  

 
,  (n = 0, ±1, ±2, ...)    (31) 

 

The zeros (28) which lie in the open interval 0 < x < π are precisely those for which k = 

1, 2, 3, ..., n − 1. Thus, just as conclusion (iii) asserts, each characteristic functions cn sin 

nx has precisely (n − 1) zeros in the open interval 0 < x < π. 

 

4.0 CONCLUSION 
 

In this unit, you have studied the two point Sturm-Liouville problem. You saw some 

examples, and learnt how to find the solutions to these problems by obtaining the 

Characteristic values and the Characteristic functions. 
 

5.0 SUMMARY 
 

Having gone through this unit, you now know: 
 

 what is meant by a two point Sturm-Liouville boundary value problem. 

 the meaning of a characteristic value and the corresponding characteristic 

function of a Sturm-Liouville problem.  
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6.0 TUTOR MARKED ASSIGNMENT 

 
Exercise 6.1 
 

Find the characteristic values and characteristic functions of each of the following 

Sturm-Liouville Problems: 
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[Hint: Let t = x

3
 + x]  
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1.0 INTRODUCTION 
 

The mathematical formulation of numerous physical problems results in differential 

equations where are actually nonlinear. In many cases it is possible to replace such a non-

linear equation by a related linear equation which approximates the actual nonlinear 

equations closely enough to give useful results. However, such a “linearization” is not 

always feasible; and when it is not, the original nonlinear equation itself must be 

considered. While the general theory and methods of linear equations are highly 

developed, very little of a general character is known about nonlinear equations. The 

study of nonlinear equations is generally confined to a variety of rather special cases, and 

one must resort to various methods of approximation. In this unit, you shall be introduced 

briefly to certain of these methods. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to; 
 

 define phase plane, paths and critical points; 

 describe types of critical points; 

 define and describe stability of a critical point; 

 determine the critical points of linear system; 

 describe the nature of the critical point (0, 0); 

 describe the stability of the critical point (0, 0); and 
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 linearize a nonlinear differential equation and describe the nature and stability of 

the critical point (0, 0). 

 

3.0 MAIN CONTENT 
 

3.1 Phase Plane, Paths, and Critical Points 

 

3.1.1  Basic Concepts and Definitions 
 

For simplicity, you should be concerned with second-order nonlinear differential 

equations of the form 

 

    ̈ = F(x,  ̇)      (1)  

 

where x=x(t). As a specific example of such equation you have the important van der Pol 

equation 

 

 ̈+ µ(x
2
 − 1)  ̇ + x = 0,     (2)  

 

where µ is a positive constant. For the time being, you could observe that you can put (2) 

in form (1), where  

 

F(x,  ̇) = −µ(x
2
 − 1)  ̇− x 

 

Suppose that the differential equation (1) describes a certain dynamical system having 

on degree of freedom. The state of this system at time t is determined by the values of x 

(position) and  ̇ (velocity). The plane of the varibles x and   ̇ is called a phase plane. 

 

If you let y =  ̇, you can replace the second-order equation (1) by the equivalent system 

 

   {

 ̇   

 ̇        
       (3) 

 

You can determine information about the equation (1) from a study of the system (1). In 

particular you should be interested in the configuration formed by the curves which the 

solutions of (3) define. You should regard t as a parameter so that these curves will 

appear in the xy plane. Since y =  ̇ = dx/dt, this xy plane is simply the x, dx/dt- phase 

plane mentioned in the preceeding paragraph. 
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More generally, you should consider the system of the form 
 

{

 ̇        

 ̇        
           (4) 

 

 

where P and Q have continuous first partial derivatives for all (x, y). Such a system, in 

which the independent variable t appears only in the differentials dt of the left members 

and not explicitly in the functions P and Q on the right, is called an autonomous system. 

You shall now proceed to study the configurations formed in the xy-phase plane by the 

curves which are defined by the solutions of (4). 

 

From the existence theorem, it follows that given any number t0 and any pair (x0, y0) of 

real numbers, there exists a unique solution 

 

  {

      

      
           (5) 

 

of the system (5) such that 

 

  {

        

        

  

 

If f and g are not both constant functions, then (5) defines a curve in the xy plane which 

you shall call a path of the system (4). 

 

If the ordered pair of functions defined by (5) is a solution of (4) and t1 is any real 

number, then it is easy to see that the ordered pair of functions defined by 

 

  {

         

         
      (6) 

 

is also a solution of (4). Assuming that f and g in (5) are not both constant functions and 

that t1 ≠ 0, the solutions defined by (5) and (6) are two different solutions are simply 

different parametrizations of the same path. You can observe that the terms solution and 

path are not synonymous. On the one hand, a solution of (4) is an ordered pair of 

functions (f, g) such that x = f(t), y = g(t) simultaneously satisfy the two equations of the 

system (4) identically; on the other hand, a path of (4) is a curve in the xy-phase plane, 

which may be defined parametrically by more than one solution of (4). 
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Through any point of the xy-phase plane there passes at most one path of (4). Let C be a 

path of (4) and consider the totality of different solutions of (4) which define this path C 

parametrically. For each of these defining solutions, C is traced out in the same direction 

as the parameter t increases. Thus with each path C there is associated a definite 

direction, the direction of increase of the parameter tin the various possible parametric 

representations of C by the corresponding solutions of the system. In your figures, you 

shall use arrows to indicate this direction associated with a path. 

 

Eliminating t betweeen the two equations of the system (4), you obtain the equation 

 
  

  
  

      

      
        (7) 

 

This equation gives the slope of the tangent to the path of (4) passing through the point 

(x, y), provided the functions P and Q are not both zero at this point. The general solution 

of (7) thus provides the one-parameter family of paths of (4). However, the description 

(7) does not indicate the directions associated with these paths. 

 

At a point (x0, y0) at which both P and Q are zero, the slope of the tangent to the path, as 

defined by (7), is indeterminate. Such points are singled out in 136 the following 

definition. 

 

Definition 3.1 Given the autonomous system 

 

   {

 ̇        

 ̇        
      (4) 

 

a point (x0, y0) at which both 

 

P(x0, y0) = 0  and  Q(x0, y0) = 0 

 

is called a critical point of (4). 

 

Example 3.1 Consider the linear autonomous system 

 

   {

 ̇   

 ̇    
       (8) 

 

Solving this, using the methods developed in unit 4, you would find that the general 

solution of the system may be written 
 



MTH 421     ORDINARY DIFFERENTIAL EQUATIONS 

158 

{

               

               
 

 

where c1 and c2 are arbitrary constants. The solution satisfying the conditions x(0) = 0, 

y(0) = 1 is readily found to be 
 

  {
      

      
        (9) 

 

This solution defines a path C1 in the xy plane. The solution satisfying the conditions 

x(0) = −1, y(0) = 0 is 
 

{

           

           
     (10) 

 

The solution (10) is different from the solution (9), but (10) also defines the same path 

C1. That is, the ordered pairs of functions defined by (9) and (10) are two different 

solutions of (8) which are different parametrizations of the same path C1. Eliminating t 

from either (9) or (10) you obtain the equation x
2
 +y

2
 = 1 of the path C1 in the xy phase 

plane. Thus the path C1 is the circle with center at (0, 0) and radius 1. From either (9) or 

(10) you see that the direction associated with C1 is the clockwise direction. 

 

Eliminating t between the equations of the system (8) you obtain the differential equation 

 

  
  

  
    

 

 
       (11) 

 

which gives the slope of the tangent to the path of (8) passing through the point (x, y), 

provided (x, y) ≠ (0, 0). 

 

 

The general solution 

 

x
2
 + y

2
 = c

2
 

 

of equation (11) gives the one-parameter family of paths in the xy phase plane. Several 

of these are shown in figure 1. The path C1 referred to above is of course that for which 

c = 1 
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Figure 1: 

 

Looking back at the system (8), you see that P(x, y) = y and Q(x, y) = −x. Therefore the 

only critical point of the system is the origin (0, 0). Given any real number t0, the 

solution x = f(t), y = g(t) such that f(t0) = g(t0) = 0 is simply for all t. 

 

{
   

   
 

 

You can also interpret the autonomous system (4) as defining a velocity vector field V, 

where 

 

V (x, y) = [P(x, y), Q(x, y)] 

 

The x component of this velocity vector at a point (x, y) is given by P(x, y), and the y 

component there is given by Q(x, y). This velocity vector of a representative point R 

describing a path of (4) defined parametrically by a solution x = f(t), y = g(t). At a 

critical point both components of this vector velocity are zero, and hence at a critical 

point the point R is at rest. 

 

In particular, you can consider the special case (3) which arises from a dynamical 

system described by the differential equation (1). At a critical point of (3) both 
  

  
 and 

  

  
 

are zero. Since 
  

  
 = 

   

   
, you thus see that at such a point the velocity and acceleration of 
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the dynamical system described by (1) are both zero. Thus the critical points of (3) are 

equilibrium points of the dynamical system described by (1). 

 

The following are basic concept dealing with critical points and paths. 

 

Definition 3.2 A critical point (x0, y0) of the system (4) is called isolated if there exists a 

circle 

 

(x − x0)
2 

+ (y − y0)
2 

= r
2
 

 

about the point (x0, y0) such that (x0, y0) is the only critical point of (4) within this circle. 

 

In what follows, assume that every critical point 138 is isolated. 

 

Definition 3.3 Let C be a path of the system (4), and let x = f(t), y = g(t) be a solution of 

(4) which represents C parametrically. Let (x0, y0) be a critical point of (4). You shall 

say that the path C approaches the critical point (x0, y0) as t → +∞ if 

 

                                        (12) 

 

Definition 3.4 Let C be a path of the system (4) which approaches the critical point (x0, 

y0) as t → +∞, and let x = f(t), y = g(t) be a solution of (4) which represents C 

parametrically. You will say that C enters the critical point (x0, y0) as t → +∞ if 

 

       
        

        
       (13) 

 

exists or if the quotient in (13) becomes either positively or negatively infinite as t → 

+∞.  
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3.1.2  Types of Critical Points 

 
1. Center: This is a critical point that is surrounded by infinite family of closed 

paths which is not approached by any of the paths as t → +∞ or t → −∞. 

2. Saddle point: 

3. A critical point is called spiral point if such a point is approached in a spiral-like 

manner by an infinite family of paths as t → +∞ (or as t → −∞). 

4. A critical point is called a node if such a point is not only approached but also 

entered by an infinite family of paths as t → +∞ (or as t → −∞). 

 

3.1.3  Stability 

 
Definition 3.5 Let (x0.y0) be a critical point of the system (4); let C be a path of (4); and 

let x = f(t), y = g(t) be a solution of (4) represent C parametrically. Let 

 

      √          
             

    
(14) 

 

denote the distance between (x0, y0) and the point R : [f(t), g(t)] on C. The critical point 

(x0, y0) is called stable if for every ϵ > 0, there exists a number δ > 0 such that the 

following is true: Every path C for which 

 

D(t0) < δ for some value t0    (15) 

 

is defined for all t ≥ t0 and is such that 

 

D(t) < ϵ for t0 ≤ t < ∞.    (16) 

 

3.2 Critical Points and Paths of Linear Systems  
 

3.2.1  Basic Theorems 
 

Although the major interest in this unit is to classify the critical point of nonlinear 

systems. But you shall see that under appropriate circumstance you can replace a given 

nonlinear system by a related linear system and then employ this linear system to 

determine the nature of the critical point of the given system. Thus in this section, you 

shall first investigate the critical points of a linear autonomous system. 
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Consider the linear system 

 

{

 ̇       

 ̇       
      (17) 

 
where a, b, c and d (in the right member of the second equation) are real constants. The 

origin (0, 0) is clearly a critical point of (15). Assume that 

 

|
  
  

|          (18) 

 

and hence (0, 0) is the only critical point of (15). Note that the solutions of (15) are sought 

and found of the form 

 

{
      

      
      (19) 

 

and if (17) would be a solution of (15), then λ must satisfy the quadratic equation 

λ
2
 − (a + d)λ + (ad − bc) = 0   (20) 

 

called the characteristic equation of (15). Note that by condition (16), zero cannot be a 

root of the equation (18) in the problem under discussion. Let λ1 and λ2 be the roots of 

the characteristic equation (18). You need to prove that the nature of critical point (0, 0) 

of the system (15) depends upon the nature of the roots λ1 and λ2. You shall consider 

five cases according as 

 

1. λ1, and λ2 are real, unequal, and of the same sign 

2. λ1, and λ2 are real, unequal, and of opposite signs 

3. λ1, and λ2 are real and equal 

4. λ1, and λ2 are conjugate, complex and pure imaginary. 

5. λ1, and λ2 are pure imaginary. 

 

Theorem 3.1 If the roots λ1 and λ2 of the characteristic equation are 
 

1. real, unequal and of the same sign, then the critical point (0, 0) of the linear system 

is a node. 

2. are real, unequal and of opposite sign then the critical point (0, 0) of the linear 

system is a saddle point 

3. real and equal then the critical point (0, 0) of the linear system (15) is a node 
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4. conjugate complex with real part not zero (that is not pure imaginary) then the 

critical point (0, 0) of the linear system (15) is a spiral point. 

5. pure imaginary, then the critical point (0, 0) of the linear system (15) is a center  

 

Theorem 3.2 The critical point (0, 0) of the linear system 

 

  {

 ̇       

 ̇       
            |

  
  

|         

    

is stable if and only if both roots of the characteristic equation have negative or zero real 

parts. 

 

3.2.2 Examples and Applications 
 

Example 3.2 Determine the nature of the critical point (0, 0) of the system 

 

{

 ̇       

 ̇       
       (21) 

 

and determine whether or not the point is stable. 

 

Solution 
 

The system (19) is of the form (15) where a = 2, b = −7, c = 3 and d = −8. The 

characteristic equation is 
 

λ
2
 + 6λ + 5 = 0 

 

Hence the roots of the characteristic equation are λ1 = −5 and λ2 = −1. Since the roots are 

negative, the critical point (0, 0) of (19) is a node. Since the roots are negative, the point is stable. 

 

Example 3.3 Determine the nature of the critical point (0, 0) of the system 

 

   {

 ̇       

 ̇       
      (22) 

 
and determine whether or not the point is stable. 
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Solution 
 

 Here a = 2, b = 4, c = −2 and d = 6. The characteristic equation is 
 

λ
2
 − 8λ + 20 = 0 

 

and its roots are 4 ± 2i. Since these roots are conjugate complex but not pure imaginary, conclude 

that the critical point (0, 0) of (20) is a spiral point. Since the real part of the roots is positive, the 

point is stable. 

 

3.3 Critical Points and Paths of Nonlinear Systems 
 

3.3.1 Basic Theorems on Nonlinear Systems 
 

Consider the nonlinear real autonomous system  

 

   {

 ̇        

 ̇        
      (23) 

 
Assume that the system (21) has an isolated critical point which you shall choose to be 

the origin (0, 0). Assume further that the function P and Q in the right members of (21) 

are such that P(x, y) and Q(x, y) can be written in the form 

 

{

                          

                          
    (24) 

 

where (i) a, b, c and d are real constants,  

 

    |
  
  

|     

 

and (ii) P1 and Q1 have continuous first partial derivatives for all (x, y), and are such that 

 

  (25) 

 

 

 

Thus the linear system under consideration may be written in the form 

 

      

(26) 
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where a, b, c, d, P1 and Q1 satisfy the requirements above. 

 

If P(x, y) and Q(x, y) in (21) can be expanded in poyour series about (0, 0), the system (21) 

takes the form 

 

 

 

       (27) 

 

 

 

 

This system is of the form (24), where P1(x, y) and Q1(x, y) are the terms of higher degree 

in the right members of the equations. The requirements above will be met, provided the 

Jacobian 
      

      
|
     

    Observe that the constant terms are missing in the expansion in the 

right members of (25), since P(0, 0) = Q(0, 0) = 0. 

 

Example 3.4 The system 

 

 

 

 

is of the form (24) and satisfies the requirements (i) and (ii) above. Here a = 1, b = 2, c = −3 

and d = −4, and  

 

 

 

 
 

Further P1(x, y) = x
2
, Q1(x, y) = 2y

2
, and hence 

 

 
 

and 

 
 

By the requirement of (ii) the nonlinear terms P1(x, y) and Q1(x, y) in (24) tend to zero more 

rapidly than the linear terms ax + by and cx + dy. Hence one would suspect that the behaviour 



MTH 421     ORDINARY DIFFERENTIAL EQUATIONS 

166 

of the paths of the system (24) near (0, 0) would be similar to that of the paths of the related 

linear system 

 

{

 ̇       

 ̇       
        (28) 

 

obtained from (24) by neglecting the nonlinear terms. In other words, it would seem that the nature 

of the critical point (0, 0) of the nonlinear system (24) should be similar to that of the linear system 

(15). In general this is actually the case. It is now time to state without proof the main theorem 

regarding this relation. 

 

Theorem 3.3 Consider the nonlinear system 

 

{

 ̇                   

 ̇                   
      (29) 

 

where a, b, c, d, P1 and Q1 satisfy the requirements (i) and (ii) above. Consider the 

linear system 

 

{

 ̇          

 ̇          
        (30) 

 

obtained from (27) by neglecting the nonlinear terms P1(x, y) and Q1(x, y). Both 

systems have an isolated critical point at (0, 0). Let λ1 and λ2 be the roots of the 

characteristic equation 

 

λ
2
 − (a + d)λ + (ad − bc) = 0   (31) 

 

of the linear system (28). 

  

Then 

 

(a)  The critical point (0, 0) of the nonlinear system (28) in the following cases 

(i) If λ1 and λ2 are real, unequal and of the same sign, then not only is (0, 0) a 

node of (28) but also (0, 0) is a node of (27). 
 

(ii) If λ1 and λ2 are real, unequal, and of opposite sign, then not only is (0, 0) a 

saddle point of (28), but also (0, 0) is a saddle point of (27). 



MTH 421           MODULE 3 

167 

(iii) If λ1 and λ2 are real and equal and the system (28) is not such that a = d =6 

0, b = c = 0. Then not only is (0, 0) a node of (28), but also (0, 0) is a node 

of (27). 
 

(iv) If λ1 and λ2 are conjugate complex with real part not zero, then not only is 

(0, 0) a spiral point of (28), but also (0, 0) is a spiral point of (27). 
 

(b)  The critical point (0, 0) of the nonlinear system (27) is not necessarily of the type 

as that of the linear system (28) in the following cases: 
 

(v) If λ1 and λ2 are real and equal and the system (28) is such that a = d =6 0, b = c = 

0, then although (0, 0) is a node of (28), the point (0, 0) may be either a node, a 

spiral point of (28). 
 

(vi) If λ1 and λ2 are pure imaginary, then although (0, 0) is a center of (28), the point 

may be either a center or a spiral point of (27). 

 

Theorem 3.3 deals with the type of the critical point (0, 0) of the nonlinear system (27). 

Concerning the stability of this point, you have without proof the following theorem of 

Lyapunov. More on this is discussed in unit 8. 

 

Theorem 3.4 With Hypothesis as exactly as in theorem 3.3, 

 

(a) If the roots λ1 and λ2 of the characteristic equation (29) of the linear system (28) both 

have negative real parts, then not only is (0, 0) a stable critical point of (28) but also 

(0, 0) is a stable critical point of (27). 
 

(b) If at least one of the roots λ1 and λ2 of (29) has a positive real part, then not only 

is (0, 0) an unstable critical point of (28), but also an unstable critical point of 

(27). 

 

Example 3.5 Consider the nonlinear system 
 

{
 ̇           

 ̇            

      (32) 

 

This is of the form (27), where P1(x, y) = −x
2
 and Q1(x, y) = 2xy. You see at once that 

the hypotheses of Theorems 13.7 and 13.8 are satisfied. Hence to investigate the critical 

point (0,0) of (30), consider the linear system 

 

{

 ̇        

 ̇       
        (33) 
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of the form (28). The characteristic equation (29) of this system is 
 

λ2 − 25 = 0. 
 

Hence the roots are λ1 = 5, λ2 = −5. Since the roots, are real, unequal, and of opposite sign, 

you see from conclusion (ii) of theorem 3.3, that the critical point (0, 0) of the nonlinear 

system (31) is a saddle point. From the conclusion (b) of theorem 3.4, you further conclude 

that the point is unstable. 

 

Eliminating dt from the equation (30), you obtain the differential equation 

 
  

  
 

        

       
      (34) 

 

which gives the slope of the paths in the xy-phase plane defined by the solutions of (30). 

The first order equation (32) is exact. Its general solution is readily found to be 

 

x
2
y + 3x

2
 − xy − 2y

2
 + c = 0   (35) 

 

where c is an arbitrary constant. Equation (33) is the equation of the family of paths in the xy-

phase plane. 

 

Example 3.6 Consider the nonlinear system 

 

{

  

  
             

  

  
              

      (36) 

 

Using the expansion 
 

        
  

  
  

  

  
    

 

You write this system in the form 
 

{
 

  ̇       
  

 
  

  

   
  

 ̇        
   

 
  

   

  
  

    (37) 

 

The hypothesis of theorems 3.3 and 3.4 are satisfied. Thus to investigate the critical point 

(0,0) of (27) or (28), you consider the system 
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{

 ̇      

 ̇       
       (38) 

 

The characteristic equation of this system is 
 

λ2 + 4λ + 3 = 0. 
 

Thus the roots are λ1 = −3, λ2 = −1. Since the roots are real, unequal, and of the same 

sign, you see from conclusion (i) of theorem 3.3 that the critical point (0, 0) of the 

nonlinear system (34) is a node. From conclusion (a) of theorem 3.4, you can conclude 

that this node is stable. 

 

Example 3.7 Consider the two nonlinear systems 

 

{
 ̇       

 ̇   

       (39) 

and 
 

{
 ̇       

 ̇   

      (40) 

 

The point (0, 0) is a critical point for each of these systems. The hypotheses of Theorem 

3.3 are satisfied in each case, and in each case the corresponding linear system to be 

investigated is 

 

{

 ̇    

 ̇   
      (41) 

 

The characteristic equation of the system (39) is  
 

λ
2
 + 1 = 0 

 

with the pure imaginary roots ±i. Thus the critical point (0, 0) of the linear system (39) is 

a center. However, Theorem 3.3 does not give us definite information, concerning the 

nature of this point for either of the nonlinear systems (37) and (38). Conclusion (vi) of 

theorem 3.3 tells you that in each case (0, 0) is either a center or a spiral point; but this is 

all that this theorem tells us concerning the two systems under consideration. 
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4.0  CONCLUSION 
 

In this unit, you studied nonlinear systems. In which you learnt how to determine the 

critical points of a system of differential equations and discuss the nature and stability of 

a critical point especially (0,0) You also learnt how to linearize a non linear system. 

 

5.0 SUMMARY 
 

Having gone through this unit, you are now able;  
 

 define phase plane, paths and critical points. 

 describe types of critical points 

 define and describe stability of a critical point. 

 determine the critical points of linear system. 

 describe the nature of the critical point (0, 0) 

 describe the stability of the critical point (0, 0) 

 linearize a nonlinear differential equation and describe the nature and stability of 

the critical point (0, 0) 

 

6.0  TUTOR MARKED ASSIGNMENT  
 

Exercise 6.1 
 

Determine the nature of the critical point (0, 0) of each of the linear autonomous systems 

in the following Also determine whether or not the critical point is stable. 

 

 
 

Determine the type and stability of the critical point (0, 0) of each of the nonlinear 

autonomous systems 
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8. Consider the autonomous system {

 ̇      

 ̇      
 

 

(a) What type of critical point is (0, 0)? 

(b) Obtain the differential equation of the paths and find its general solution. 
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UNIT 3  THEOREMS AND SOLUTIONS OF LYAPUNOV EQUATION 

 
CONTENTS 
 
1.0 Introduction   

2.0 Objectives  

3.0 Main Content   

3.1 Stability in the sense of Lyapunov  

3.2 Quasilinear System  

3.3 Lyapunov Second Method  

4.0 Conclusion  

5.0  Summary  

6.0 Tutor-Marked Assignment  

 

1.0 INTRODUCTION 
 

In this unit, you shall be introduced to stability theory. This will aid you to 

determine the stability of a system of ordinary differential equation. 

 

2.0   OBJECTIVES 
 

At the end of this section, you should be able to: 
 

 say whether a system of an ODE is stable or not; 

 determine whether a critical point is stable or not; and 

 use Lyapunov’s theory to determine the stability of a critical point. 

 

3.0 MAIN CONTENT  
 

Stability 
 

The term stability is an expression that almost tells its own story. Suppose a device of 

some sort operates under general conditions, and these conditions are slightly changed 

or modified. The question now is, “Does this change or modification have little or 

considerable effect on the device? In your thought, if the first instance is stable, then the 

second is unstable. 

 

How does this apply to physical systems in particular? The system will depend upon 

certain number of physical parameters x1, x2, ..., xn which define position and also 

velocity. These will be represented in some space R
n  

by a vector point x. The state of 

the system at time t will be x = x(t). As will be produce a trajectory g, in R
n
 space. The 

question again is, how do trajectories g which start near g behave with respect to g? Do 

they as time goes on remain near g which is stability or do they shift away from g which 

is instability. 
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Suppose at time t, the state of a physical system is described by 

 

xi = xi(t)  i = 1, 2, ..., n 

 

and suppose the conditions of motion of the system require variable to satisfy 

    ̇i = xi(x1, x2, x3, ..., xn)    (1) 

 

Suppose xi = ηi(t) is some particular state of the system i.e., xi = ηi(t) is a solution of (1). 

To study the properties of solutions of (1) in the neighbourhood of ηi(t), you make 

 

yi = xi − ηi 

 

where yi = 0 or xi = ηi is the unperturbed motion or trajectory and xi(t) describes 

another solution or state of the system. The new variable yi(t), now satisfies an equation 

of the form 

 

 
   

  
= yi(y1, y2, ..., yn, t)  (2) 

Where 

 

yi(y1, y2, ..., yn, t) = xi(y1 + η1,..., yn − ηn, t) − xi(η1, η2,..., ηn, t). (3) 

 

Here the curve {ηi(t)} is denoted by 

 

yi = 0 

 

is called the null-solution (or trivial solution) as can be seen from (2) and (3). Thus the 

stability of the solution ηi(t) of (1) is reduced to that of the trivial solution of yi 0 of (2). 

 

Given that equation 

 

 ̇ = f (t, x),   df (t, 0) = 0   (4) 

 

in which f : I x D → R
n
 is assumed continuous and satisfy conditions for uniqueness 

and continuous dependence of solutions on initial data. Then the following definitions 

hold. 

 

3.1 Stability in the sense of Lyapunov 
 

Definition 3.1 The trivial solution x(t) = 0 of (4) is said to be stable (in the sense of 

Lyapunov) if  ϵ > 0 is given and t ∈ I, there exists, for any y(t) a solution of (4), a positive 

number 
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δ = δ(t0,ϵ) such that ||y(t0)|| < δ implies that ||y(t)|| < ϵ  or ||y(t0) − x(t0)|| < δ implies that 

||y(t) − x(t)|| < ϵ fort > t0. 

 

If δ can be chosen independent of t0, then the x(t) is said to be uniformly stable. 

 

Definition 3.2 The solution x(t) is said to be asymptotically stable if it is stable and for 

any given δ > 0 and a solution y(t) of (4), 

 

   
   

||          ||                                  ||            ||      

 

Note that the definition of stability given are local in nature in the sense that you are 

concerned with solutions where the initial values are sufficiently close. 

 

Example 3.1 Show that the differential equation 

 

 ̈ + x = 0 

 

is stable in the sense of Lyapunov but not as symptotically stable.  

 

Solution 
 

The scalar equation 

 

 ̈ + x = 0 

 

is equivalent to the system 

 
 ̇   

 ̇    
      (

  

   
) 

with solution as 

 

x = A cos t + B sin t and y = −A sin t + B cos t 

 

Define the a norm on X = (
 
 )  (

  

  
) by 
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Choose    
 

 
 

Then from the definition, the trivial solutions 

 

  
 

is stable in the sense of Lyapunov. However, the trivial solution is NOT asymptotically 

stable, why? 

 

Example 3.2 Show that the differential equation  

 

     ̈ + 3  ̇ + 2x = 0 

 

is both stable and assymptotically stable in the sense of Lyapunov. 

 

Solution 
 

The scalar equation 

      ̈ + 3  ̇ + 2x = 0 

 

is equivalent to the system 

 

 
 

The auxiliary equation is 

 

λ
2
 + 3λ + 2 = 0 i.e., λ1 = −1, and λ2 = −2 

 

The general solution is given by 

 

X = c1e
−t

 + c2e
−2t

 and X˙ = −c1e
−t

 − 2c2e
−2t

  

 

||X(0)|| = |x(0)| + | ̇(0)| ≤ 2c1 + 3c2 

 

||X(t)|| ≤ 2|c1|e
−t

 + 3|c2|e
−2t

  

 

≤ (2|c1| + 3|c2|)e
−t
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Since e
−t

 ≤ 1. Choose δ =   
∈

 |  |  |  | 
 and conclude that the trivial solution is stable. 

 

        ‖    ‖        { |  |   |  |} 
               

 

Therefore,     
     

‖    ‖   . Thus, the trivial solution of the system 

 

 
 
 

is assymptotically stable in the sense of Lyapunov. 
 

Example 3.3 Consider the homogeneous system  

 

 ̇ = Ax 
 

where A is a constant n × n matrix all of whose eigenvalues have negative real parts. Then you 

can conclude both stability and asymptotic stability.  
 

Proof. Suppose all the roots of a are distinct, recall that Tyi, i = 1, 2,..., n are the n linearly 

independent solution, where 

 

 

 

 

 

 

 

 

 

 

 

 

     
 

 

Any solution x(t) of the system is of the form  

 

x(t) = (Ty1, Ty2,..., Tyn)x
n
  

 

||x(t)|| ≤ Ae
−µt

||x0|| 

 

where µ is the smallest of 
 

αi < 0λi =αi + jβiα1 < α2 < … < αj < 0 
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you can conclude both stability and asymptotic stability. 

 

Suppose the roots are not necessarily distinct. Then the general solution is given by 

 

m1 + m2 + · · · + mk = n  (5)  

 

 

Fix j = 1, Then the expression (5) becomes  

 

 
 

Therefore asymptotically stable. 

 

Note that given the system  

 

 ̇ = Ax 

A is a constant n × n matrix all of whose eigenvalues have negative real parts then 

there exists α > 0, β > 0 such that 

 

||e
At

|| ≤ βe
−αt 

,  t > 0   (6) 

 

(i)  If all the roots of A are distinct then each column of the fundamental matrix 

solution of Φ is of the form 

 

e
λkt

P
k 

   k = 1, 2, ..., n 

 

where the P
k
’s are some constants n−vectors, Clearly, you can write 

 

λk = µk + αk,   uk < 0 

 

Assume that uk < −α for all k. Then 

 

Φ(t) ≤ n max |Pj
k
|e

−αt
, t > 0, k, j = 1, 2, ..., n 
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If λi is a repeated root of A, then the corresponding column of Φ involve terms of the 

form 

 

    (7) 

 

where Pi’s are constant n−vectors. Since 

 

           

 

and µs + αs < 0, it follows that 

 

t
r
e

(µs+α)t
 → 0 as t → ∞ 

 

Thus 

 

t
r
e(µs+α)t ≤ Ms,   Ms > 0 

 

is a constant. Combining with (7) it follows readily that there exist constants M > 0 and α > 0 such that 

 

||Φ(t)|| ≤ Me
−αt

  

Remark 3.1  

 

 ̇ = A(t)x 

 

with A(t + ω) = A(t), the solution  

 

Φ(t) = P (t)e
tR

  

 

If all the roots of R have negative real parts then 

 

||Φ(t)|| ≤ Me
−αt

   t ≥ 0, α > 0, M > 0 

 

 

3.2  Quasilinear System 
 

Theorem 3.1 Given the differential equation 

 

   ̇ = Ax + f (t, x)  x(0) = x0   (8) 
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where A is a constant n × n matrix all whose eigenvalues have negative real parts, f is 

a continuous function of x and t. Suppose that 

 

||f (t, x)||≤ K||x||    (9) 

 

for t and x. Then the solution of the system (8) is asymptotically stable provided K is 

small enough 

 

Proof: Any solution of (8) can be written in the form 

 

 
 

Clearly there exists α > 0, β > 0 such that 

 

||e
At

|| ≤ βe
−αt

,     t ≥ 0 

 

and so 

 
Thus 

 
 

Multiplying both sides by βk 

 

  
 

Integrating between 0 and t you obtain 

 



MTH 421     ORDINARY DIFFERENTIAL EQUATIONS 

180 

 
 

Thus 

 

 
and so 

 

||x(t)|| ≤ β||x0||e
−(α−βk)t

  

 

Fix k > 0 such that α − kβ > 0, then 

 

 
 

3.3  Lyapunov Second Method 
 

The examples you have considered so far presume a knowledge of solutions before you 

can conclude stability. There are only very few equations whose solutions can be 

determined in closed form (i.e., in terms of elementary functions). 

 

An alternative method initiated by a Russian Mathematician A.M. Lyapunov is a 

generalization based on the youll known observation that near the equilibrium point of a 

physical system, the total energy of a given system is either constant or decreasing. 

Therefore idea here is introduction of some functions now known as Lyapunov 

functions, which generalize the total energy in a system. 
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Consider the differential equation 

 

 ̇ = f (x, t),   f (0) = 0   (11) 

 

where f : R
n 

→ R
n 

is continuous and the solutions are unique and very continuously with 

the initial data. 

 

Let V : R
n 

→ R be defined and continuous together with the first partial derivatives 
  

   
 (i 

= 1, 2, ..., n) on some open let    R
n 

 

 

      = {x : x ∈ R
n
, 11x11 < h} 

The following are some definitions that would be of help you as you proceed in the 

understanding of this topic. 

 

Definitions 

 

1. A function V :   → R is said to be positive definite (negative definite) if V (0) = 

0 and V assume positive (negative) values on  . 

2. A function V :   → R    R is said to be positive(negative) semi-definite if V (0) 

= 0 and V (x) > 0 (V (x) <  0) on  . If the functions assume arbitrary values 

then it is said to be indefinite. 

 

Example 3.4 

 

(a) V = x
2 
+ y

2 
is positive definite. 

(b) (x + y)
2 
+ z

2 
is positive semi-definite. 

(c) V = x
2 
+ y

2 
− z

2 
is indefinite. 

3.  The derivatives (Euler’s) of V along solution paths of (11) is given by 

 

 
 

Note: On investigation of stability or instability Lyapunov pioneered the work which 

appeared in France 1907. The definitions (1), (2) and (3) are very essential in this 

study. These will be tied up ultimately in the context of systems. 

 

Stability or Instability can be assumed directly using the following theorems accordingly. 

 

Theorem 3.2 Given the differential equation (4) that is 

  ̇ = f (t, x), f (t, 0) = 0 
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Suppose there exists a C
1 

function V : R
n 

→ R which is positive definite and is such 

that the time derivative of V along the solution paths of (4), that is, F · gradV is 

negative semi-definite. Then the trivial solution x ≡ 0 is stablen in the sense of 

Lyapunov. 

 

Theorem 3.3 Lyapunov Given the system (4). Suppose that there exists a C
1 

function 

V : R
2 

→ R, with the following properties; 

 

(i) V is positive definite. 

(ii) The time derivative U (x1, x2) of V (x1, x2) along the solution paths of (4) is 

negative definite. 

(iii) Then the trivial solution x = 0 of (4) is asymptotically stable. 

 

Theorem 3.4 Given the system (4). Suppose that there exists a C
1 

function V: R
2 

→ R, 

with the following properties 

 

(i) V is positive definite. 

(ii) The time derivatives U (x1, x2) of V (x1, x2) along the solution paths of (4) is 

positive definite. 

 

Then the trivial solution of (4) is unstable in the sense of Lyapunov. 

 

Theorem 3.5 (Cêtaev) On Instability Consider the system (11) i.e., 

 

  ̇ = f (x); f(0) = 0 

 

which f is sufficiently smooth in the domain G (in R
n
) containing the origin. Let D   G 

be a domain in R
n 

with the boundary of D which lies inside G passing through the 

origin. 

Suppose there exists a C
1 
function V: R

n 
→ R such that 

 

(i) V (x) = 0 on that part of the boundary D lying inside G and V (x) > 0 elsewhere. 

(ii) The time derivative elsewhere of V along the solution paths of (11) that is f · 

gradV > 0 in D. 

 

Then the trivial solution x ≡ 0 of (11) is unstable 

 

The following are some applications of these theorems to some specific cases. 

 

Example 3.5 Consider the section equation 

 

 ̈ + x = 0 

or rather the equivalent 2-system 
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     ̇1 = x2,  ̇2 = −x1   (12) 

 

with the function V defined by 

 

 
 

Show that the system (12) is stable in the sense of Lyapunov 

 

Solution 
 

Clearly V given by 

 

 
 

is positive definite. Along the solution paths of (12) 

 

 ̇ (x1, x2) = x1 ̇1 + x2 ̇2 = x1x2 − x1x2 = 0 

 

Thus  ̇ (x1, x2) is negative semi-definite. Hence V is a suitable function to which theorem 

1.2 can be applied to give that the trivial solution x ≡ 0 is stable in the sense of Lyapunov. 

 

Example 3.6 Consider the system 

 

  ̇      
       

 

  ̇    
      

 

}     (13) 

 

with the function V (x1, x2) defined by 

 

V (x1, x2) = x
2
1 + x

2
1x

2
2 + x2

4
  

 

prove that the system (13) is asymptotically stable 

 

Solution 
 

Note that V (x1, x2) is positive definite since 

 

V (x1, x2) = x
2
1 + x

2
1x

2
2 + x

4
2 = x

2
1(1 + x

2
2) + x

4
2 > 0 
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Along the solution paths of (13) 

 

V (x1, x2) = 2x1 ̇1 + 2x1  
  ̇12x2  

  ̇2 + 4  
  ̇2 

 

= −2x1(  
 

 + 2x1  
 ) − 2x1  

  (  
 

 + 2x1  
 ) 

 

+2  
 x2(2  

 x2 −   
 ) + 4  

  (  
 x2 −   

 ) 

 

= −2  
 

 − 4  
   

 − 2  
   

 
 − 4  

  

 

 ̇ (x1, x2) = −2  
 (  

 + 2  
 

 +   
 ) − 4  

  

 

This is negative definite. Thus by theorem 1.3, the system (13) is asymptotically 

stable in the sense of Lyapunov. 

 

Example 3.7 Consider the 2-system 

 

   ̇1 = x2,    ̇2 = −ax2 − bx1   (14)  

 

a, b are constants, with the function V (x1, x2) defined by V (x1, x2) = a  
       

 . 

Discuss the conditions for 

 

(i) assymptotic stability 

(ii) instability on the system (14) 

 

Solution 
 

Our V (x1, x2) defined by 

 

V (x1, x2) = a  
 

 + b  
  

 

is positive semi definite if a > 0, b > 0. Along the solution paths of (14) 
 

 
 

Note: Our V is positive definite if a > 0, b > 0, also that V
˙
, considered as a function x1 

and x2 satisfies the following 

 

(i) V
˙ 
is negative definite if a > 0 

(ii) V
˙ 
is positive definite if a < 0 
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and conclusions follows accordingly That is 

 

(i) Assymptotically stable if  ̇ is negative definite. 

(ii) Instability if  ̇ is positive definite 

 

Example 3.8 Given the scalar equation 
 

 ̈ + a  ̇ + h(x) = 0     (15) 

 

where a > 0 is a constant and the function h : R
2
 → R is such that solutions exist and 

are unique and very continuously with initial data. By considering with initial data. By 

considering an appropriate equivalent system and considering the function 
 

2V (x, y) = (y + ax)
2
 + y

2
 + 4H(x) 

 

where H(x) = ∫  
 

 
(s)ds. Determine the conditions on h which ensure (i) stability (ii) 

assymptotic stability of the trivial solution of scalar equation (15)  

 

Solution 
 

1. The scalar equation (15) is equivalent to the system 

 
 ̇   

 ̇           
}       (16) 

 

Along the solution paths of (16) 

 

 ̇ = (y + ax)  ̇ + a(y + ax)  ̇ +    ̇+ 2h(x)  ̇ 

 

−(y + ax)(ay + h(x)) + ay
2
 + a

2
xy − ay

2
 − yh(x) + 2h(x)y 

 
= −ay

2
 − yh(x) − a

2
xy − ah(x)x + ay

2
 + ax

2
y − ay

2
 − yh(x) + 2h(x)y 

 

= −(ay
2
 + ah(x)x) = −a(y

2
 + h(x)x) 

 

If xh(x) < 0 for all x ≠ 0 when you conclude stability b if xh(x) > 0 for all x ≠ 0 then you 

conclude assymptotic stability. 

 

4.0 CONCLUSION 
 

Lyapunov and other theorems listed earlier depend heavily on the construction of suitable Lya-

punov functions. There is no fixed standard technique for constructing such Lyapunov 
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functions for a given ordinary differential equation. This remains the main problems in the 

application of the theorems. 

 

If a suitable function V can be found then stability or instability follows and if not, you 

cannot proceed. 

 

5.0 SUMMARY 
 

Having gone through this unit, you are now able to; 

 

 determine the stability of the trivial solution and a critical point of a system of 

ODE. 

 use the Lyapunov’s theorem to determine the stability of a solution of a linear 

system. 
 

6.0 TUTOR MARKED ASSIGNMENT 

 

Exercise 6.1 

 

1. Given the function V defined by 

V (x, y) = 
 

 
 y

2
 + G(x) 

 

where G(x) = ∫  
 

 
(s)ds Determine the conditions on g which ensure stability of 

the trivial solution of 
 

 ̈ + g(x) = 0,   g(0) = 0  
 

Note: Any relevant theorems used must be stated. 

 

2. By considering the function 

 

V =  
 

 
 (x

2
 + y

2
)  

 

Prove that the trivial solution of the system 

 

 ̇ = −x − x
3
 − x sin y 

 

 ̇ = −y − 
  

 
 

 

is assymptotically stable in the sense of Lyapunov. 
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3. The scalar equation 

 

 ⃛ + f ( ̇) ̈a ̇ + bx = 0 

 

a > 0, b > 0 are constants, f is a continuous function such that solutions exist and 

are uniquely determined by the initial conditions. Furthermore the function 

 

         
 

 
 

 

where C is a constant by considering the function V defined by 

 

  
 

 
      

 

 
                      ∫        

 

 

 

 

 

 

Prove that the scalar equation 

 

 ⃛ + f ( ̇) ̈   a ̇ + bx = 0 

 

is stable and assymptotically stable in the sense of Lyapunov. 

 

4.  Consider the scalar equation 

 

 ̈ − x
3
 = 0 

 

and V (x1, x2) defined by 

 

V (x1, x2) = x1x2 

 

Show that the scalar equation is unstable in the sense of Lyapunov. Any relevant 

theorem used must be clearly stated 

 

5.  Consider the 2-system 

 

  ̇1 = x2 + x
2
1x2,  ̇2 = x1 + 10x2

4
  

 

and by using V (x1, x2) defined by 

 

V (x1, x2) = x1x2 
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Show that the trivial solution x = 0 is unstable. 

 

6.  (a) State and prove a theorem due Lyapunov used in establishing stability of a 

trivial solution x = 0 of the scalar equation 

 

 ̇= f (x),   f(0) = 0 

 

(b) Hence or otherwise show that the system 

 

 ̇1 = x2,  ̇2 = −x2 − x1 − 2x
3
1  

 

and the function V3(x1, x2) is positive definite. 

 

(c) Show that the zero solution x = 0 is assymptotically stable in the sense of 

Lyapunov. 

 

 

7.  By considering the system 

 

 ̇1 = x2 + 2x2,  ̇2 = 3x1 + x2 

 

and the function V4(x1, x2) = x1x2 

(a) Show that the zero solution x ≡ 0 is unstable in the sense of Lyapunov 

(b) Any theorem used in the above must be stated (No Proof). 

 

8.  By considering the function V: R
2
 → R defined by 

 

V (x1, x2) = x
2
2 + 9x

2
1  

 

Show that the zero solution x ≡ 0 of the trivial solution of the system 

 

 ̇1 = x2,  ̇2 = −9x1  

 

is stable in the sense of Lyapunov 

 

9. Given that the function V: R
2
 → R defined by V (x1, x2) = x1x2. Prove that the 

trivial solution, x = 0 of the system 

 

 ̇1 = x2,  ̇2 = x
3
1  

 

is unstable. 

 
 


