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1.0 INTRODUCTION

What is a Partial Differential Equation, how do we classify Partial
Differential Equations? How are they rendered graphically and how do
we solve them? This unit addresses these questions with a tour of the

basics of Partial Differential Equations; particularly on an introduction
to the methods for deriving solution.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

J define the term Partial Differential Equation

o classify First Order Equations

o investigate the methods for constructing solutions for Partial
Differential Equations

. solve Quasi — Linear Equations

J explore the many definitions applied in deriving solutions

o apply the method of Lagrange in deriving solutions for Partial

Differential Equations.
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3.0 MAINCONTENT
3.1 Essential Definitions

In some elementary course we encountered many physical problems that
are modelled by ordinary differential equations and have learnt some of
the basic solution technique for such equation. We shall now expand our
view by examining Partial Differential Equations (P.D.E). Our
Approach will deal with:

) Existence and Uniqueness of solutions.
i) Stability of solution to small perturbations.
i) Methods for constructing solutions.

We shall focus attention largely on (iii) although it is not always
possible to solve a P.D.E in closed form.

0.1 Definition

2 n
A PDE G| xu M oY | TY)_g (1)
OX  OX ox"
Where x e R"
)_(z(x1 SR xn)

This is a relationship between a function U of several
variables x = (x, x, ......x,), n>2and its partial derivatives.

0.2 Definition

By solution (0.1.0) in a domainQ CR"we mean a function U = g (X)
whose partial derivatives of order less than or equal to m (e m) exist in
Qand satisfy the equation. We note however that some P.D.E do not
provide solution in the classical sense defined above.

Example:
e M
OX

1

Does not have a solution in any domain, Qthat contain the origin, rather
than a solution in the sense of distributions or generalised functions.
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0.3  Definitions

A PDE is said to be of nth — order if the order of the highest partial
derivative occurring in the equation is n, and if the coefficient of the
highest — order occur linearly, the equation is said to be quasi — linear.

Zn:A (4 ou 82u+gx1u ul_,
G20 ToxT T ax, ) oxex T ox

n

It is quasi — linear and of 2nd order.

If the coefficient of the highest orders derivatives are all functions of x
only. The PDE is said to be Semi Linear.

Example:
n o%u ou ou
: U, — ..., =0 i, 0.3.1
i;'% ) %X +g(x b aan ( )

Is semi linear and of 2nd order.

The equation is linear if the coefficient of U and the coefficients of all
its partial derivatives are functions of x only.

Eg. > A (x) o + Y Bi (x) M

i1 oXi oxj ‘o — OXi

te)Urgl)=0 (0.3.2)
It is linear and of 2nd order.
An equation that is not linear is said to be non-linear. A 2nd order PDE
e.g. (0.3.2) is said to be homogenous if g (x) is identically zero.
Otherwise it is non — homogenous.

If (0.1.0) is a polynomial of degree k in the highest order partial
derivation we say that the equation is of degree k.

(Gujz au)’ (aujz
— | = +|—| =
OX oy dz

It is 1st order non-linear degree 2.

In general any equation of degree k = 1 is non — linear.
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Example:
0z 0z
1 X— 4+ Yy — = COS
) Y o Xy

It is 1st order, linear non-homogenous.

2 2
2) U%u %JF(G_ZJ sinu
X

It is 3rd order quasi — linear.

2 2
3) ou, (a_uj _M L
oxy \ ox oz

It is 2" order and semi — linear.

2 2 2
4) 6_121_C2 8_[21+6_121 =0
ot OX oy

It is 2nd order linear Homogenous.

(GZUT (azuj o’u  du
5) — |t ||+ +—=uU
ox oy ) ooy oy

It is 2nd order non linear.

U @+V 8—u:x+y
OX oy

V@Jrua—u:x—y
OX oy

System of 1st order quasi linear equation
(ax) z(a)u, +(a)UzZa+(a) Vn + (av)Vz Zx=ay =0

Example: Given that

u=g(xy, Z)} ¢ (@)

v=h(xy 2)
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Determine the P.D.E of lowest order satisfied by the class of all
functions defined implicitly by

G (u; v)=0

Where, GuGv#0in Q

3.2 First Order Equation
Examples of 1st order equations are:
Zx*+2y*=1

If P=2Zx ,q=2y

P?+q*=1

a(z)zx + Zy =0

a(z)p + q=0

Xz, +Yz,=1

3.3 Quasi-Linear Equations
This is given by
Al yz)ze s Blayay=Cloye) (1.1.0)
Where, (x,y)eDcR?and A, B, Care
C°(Q), Q being in R®
Where projection on R? is 0
(1.1.0) = (2x, Zy, 1) is perpendicular to (A,B,C)

(2% 2y, -1)
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Implies that there exists an integral surface
2=y 2):Z 4 (x y);

Passes thru(x, y, z) which is target to the given vector
A(x y, 2),B(x Yy, z), C(xy, 2)

At the given point,

AZx + BZy =C

can be interpreted geometrically as a requirement that any surface
Z =Z(n,y)thru (x,y,z) must be tangent to a prescribed vector (A,B,C).
(A,B,C)

(zx, Zy,-1)

(x,y,0)

The direction of the vector (A,B,C) is called the characteristics direction
at the given point if (dx,dy,dz) lies in the tangent plane S at
(x, y,z)then(d, d,d,)(z,,z,-1)=0

=7Zxdx + Zydy =dz

Comparing the above result with (1.1.0)

We have that

d_dy_dz

ATBTC (1.1.1)
iy ds

Cdt T dt T dt

_dy_B.d C

Cdx A'dx A

Define (1.1.0) A(X,Y,2)z, +B(X,Y,2)z, =C(X,Y,2)
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By the characteristic of 1.1.0 we mean the integral curves of (1.1.1)

chor:%=ﬂ=g
A B C
Theorem 1.2

The integral curves of (1.1.1) generates the integral surface of (1.1.0)
A(x,y,2)Zn+B(x,y,2) Zy =(x,y,2)

Proof
Let Z = Z(x, y)be an integral of (1.1.0)
Then dz=2Zxdx+2Zydy (1.2.0)

Suppose r is an integral curve of (1.1.1) then dx = Adt, by = Bdt and dz
=C

Substituting into (1.2.0) we have (1.1.0)

It can be proved that exactly one characteristic passes through each
point of S. The general solution of 1.1.1 is of the form

y=(xa B)
2=(z, @, p)

Where « amdgare arbitrary constant.

Solution for « and B we obtain

a=u(XY,2)
B=v(xyz)
Assuming that u and v are finally independent
. 0(uv) au,v) ou,v)
I.e. ] 1
a(x,y) a(x,z)" a(y,z)

are not all zero at any point (x, y, z) of S.
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Definition 1.2
A single relation between u and v of the form
a(u,v)=0
Is called the general solution of (1.1.0)
Examples:
Find the general solution of
XZX+YyZy =2

With characteristic equation

dx dy dz
Xy oz
dx _dy

y

= Iny=Inx+Inc

X = =

=X u(xy,z)
Also a2 _ &

z

InZ =Inx + Inp

M B=v(xyz2)
F(uv)=0
F(a,p)=0

F yx,%j=o
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3.4 Method of Lagrange

This is a useful technique for integrating first order equation from
algebra we have that is

a c
b d
Then the following relationship is true

K.a + K,c _a_¢c
Kb+ K,d b d

For arbitrary values of the multiplies K, and K, so

dc dy dz Kde+K,dy+K.dz
4 B C KA+K,B+K,.C

Hence equation more convenient for integration maybe found by
appropriate  choice of K, K,, K;in (1.2.1)

Further examples:

Find the general solution of

) (Y+2x2)z, - (x+2yz7)z, = 1 (X* - y?)
xeR;y>0
i) (22 -2yz-y*)z,+(Xy +X2)Z, = Xy — X

Gx*+y*+2°=0
Solution

X* +4 zy +22° where K, = x
K,=2
K,=2z+y

Characteristic equations are

dx  dy = dz
y+2xz  x+2yz  1(x*-y?)

By method of Langrage multiplier
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%yd x+%xd y+dz=0

%yx +%xy+z=a

2Xy+ 22=2a=p

%xd x+%yd y—-22Zdz=0
XZ y2 )

MR A
4 4

X +y'—42° =«
G (a, B)=0

Initial value problem (or Cauchy problem in R? consists of a
determination of an integral surface S of (1.1.0) which passes through a
pre-assigned space curve 6. We noticed that those are the following
possibilities:

) Unique surface.

i) Infinitely many surface.
i) No surface depending on the pre assigned curve ¢

Examples:

2) Consider the ivp

yZx —xZy =0
{g;z (x,0) = x4

The characteristic equations are
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and

dx _dz

y_O
dZ=0=>2=4

F (4, 8)=0

g =F)

z =F(x2+y2)

The general solution is any surface of revolution about z-axis

Z

Given the curve z = Z(x, 0)= F(x?)=x"*
= F(x) x*
=Z(xy)=(<¢ +y*f

2) Consider the ivp

yzx—-x2y=0
2 2
£ :circle {X Ty=l
Z =1
Z:F(x2+y2)

1=F (x2 + y2)=1
= 7= F1(x? + y? )where f1is any function which _satisfier fi(1)=1

The solution exist but not unique.
These are certainly infinitely many such surfaces.

In this cape ¢ itself is a characteristic.

3) Consider the ivp
yZx —xZy =0

2 2
f:ellipse{x ry=l
Z=yY
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Z= F(x2 + y2)
=N y:F(x2+y2): F(1)
Z =y, which is impossible.

-.No such integral surface exists.

Theorem1.8:

Let AZx+BZy=C, (xv,y.z)eC} (1.8.0)

A,B,CeC’ (Q)and &:x = x,(s)
¥=5(s)
0<s<1 z=27,(s) (181)

A given spacein Q 3

Xor Y01 Zp € Cl[Oll]

Let Ayol _ onl £ e (182)

Then 3 a unique solution z=1z(x,y) of (1.8.0) defined in some
neighbourhood of the given curve ¢ and which satisfiers the initial
condition Z (x, y\*)

Z(46(S), yoS) =2y (5)  r— (1.8.3)

Proof:

Consider the characteristic system

=B, (1.8.4)

From the existence and uniqueness theorem for P.D.E we many solve
(1.8.4) for a uniquely family of characteristics
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= y(xo(s), yo(s), ZO(S)’ t) ECl[O,l]X ...................... (1.8.5)
2=2(%,(s) yo (5) zo(s)t)
Such that
x(s,0)=x, (s)
s,o) =y, (s) ......................... (1.8.6)

By hypothesis the Jacobian (J)

a(x.y) X, Xt
J ==
o(sit) t=0 |y, v,
=B X, -Ay,)ft=0

=BX, Ay, #0

=X Y =X ys|

-.We can solve (1.8.5) uniquely for s and t in terms of x and y in the
neighbourhood of the given curve

Substituting into (1.8.5) we have

Z=(s(x,y)txy)=z(xy)
=@ (x,y)

That Z = ®(x, y) satisfiers the initial conditions follows from
(X, y)[t =0=2(s,0)=Z,(s)

® satisfies the Partial Differential Equation for

A®dx + Bdy
—A(Z, S, +2Z t,)+ Blz. s, +2t,)
=7, (As, +Bs,) + z(At, + Bt,)
:Zs (Sx X +Sy yt)-i_zt (tx Xy +ty yt)

ds dt
=Z, g tn o = 0)+z,@)
=Z,=c¢
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Uniqueness follows from theorem (1.2). AZ +BZ, =C

dx dy dz

The integral curves of AR C generates the integral surface.

Summary: - Cauchy problem has a unique solution provided the initial
curve is not characteristic.

Exercises:
1) Solve the following:

Z7Zx + Zy =1
X=S

y=s
z:%s,OSSsl

Zy+ (Zx =0, xeR, y

) 1-x%, x| =1
) 7 (x,0)=
0, [x>1
Z (x,y)=F (x—cy)=1—(x—cy)’ —unique solution
Z(xy)=F(n-cy)=0 — intrnitty many
Solution 2

We observed that Ay — Bx, =
A=Z7Z, B=1
Yo (8)=1 x; =1
Ay, -Bxg =Z-120 forz=1
0<<el

Characteristic equation is

So that we now have

dx dy dz
- = Z’ - = 1)— =1
v —x dt
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az =1=>7Z=t+41
dt
Z(s0)=> =2
2
Z:t+/1:t+%
Similarly
y =t+p
y(so)=s=4
=>y=t+s

dx
E:Z:t'F%S

t2
X =—+—=St+a
2

2
Ss=a«a
t? 1
=>X=—+—5St+5
2 2
:%t(t+s)+s

:%y’[+s

Write t = y —s and substitute into x so that

X =Yy(y—s)+s
1
:Eyz—%ys+s
S =x—%y2/1—%
2

-l 0

Also write s =y — t and substitute into

x:%yt+y—t
t = I =X

Substitute (i) and (ii) in

MODULE 1
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4.0 CONCLUSION

In this unit we have studied some basic and essential definitions of
Partial Differential Equations; specifically those properties and general
characteristics of First Order Equation, Quasi — Linear Equations and
the utilisation of the Method of Lagrange in solving Partial Differential
Equations.

We examined Partial Differential Equations from the perspectives of
existence and uniqueness of solutions, stability of solution to small

perturbations around the solution as well as the different methods for
constructing solutions.

5.0 SUMMARY

Partial Differential Equations can be generically classified into families
and methods of solution for classes categories based on their properties.

6.0 TUTOR-MARKED ASSIGNMENT

1. Which of the following Partial Differential Equations is linear,
quasi-linear or non-linear?

If P.D.E. is linear, state whether it is homogeneous equation or

not.

B Ugp + Uy — 2u = &2

b. Uy =1u

C. UUz+xTuy=0

d. u?+logu =2zy

€. Uzy — 2Ugy + Uyy = COST
fou(1+u,) =1,

g (sinug)u, +u, = €”

h. 2uUzz — 4Ugy + 22Uy, +3u =0
1. Uz + Ugly — Ugy = 0

88



MTH 425 MODULE 1

2. Give the order of each of the following:
a. Ugy + Uy =0
b.  Upzr + Usy + a{z)uy, +logu = f(z, y)
€. Ugzz + Uzyyy + () Uzzy + u? = Sz, y)
d. wug+ul +e*=0
e. Ugtcu,=4d

3. Find the general solution of

Ugy + Uy = 0

4. Show that u = Flzy) +mG(%)

is a general solution of
:1:2'15II — yzuw =0
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1.0 INTRODUCTION

The characteristic equation for the single conservation law is derived
and solved with the assumption of implicit function, discontinuity which
implies shock is also demonstrated.

2.0 OBJECTIVES
At the end of this unit, you should be able to:

o state conservation law
o explain the concept of shock.

3.0 MAIN CONTENT

3.1 Application of IVP Conservation Law, Development of
Shock

The conservation law states that rate of change of total substance
contained in a fixed (arbitrary) domain Q is equal to the flux of that
substance across the boundary oQ .

Let U be the density of the substance and F = flux, then the conservation
law is given by rate of flow ijudx =— [E.nds
dt Q oQ
0
- J'au d x=[Ut dx+ [F.nds=0, n—normal vector to the
Q oQ

surface.
_[utdx —jdiv Fdx=0
Q Q
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ut—divF =0
Single conservation law

ut + fx=0
= ut +a(u)ux=0 . (ii)

Characteristic equation

dt  dx du
1 al) o
du dt
0 1

d
— U = constant along d—? = a (u)

i.e. on the characteristic x = x(t)which propagates with speed a
u is a constant
a = signal of the speed.

Solve the following IVP

i) ut +a(u)ux=0
u(x,0) = f(x)
dt  dx du
1 alu) o
>U =«

& -al)-ala)
dt
X=at+ f

General solution F (e, 8)=0
F(u,x—a(u)t)=0

= u=F (x—a(u)t)

= Solution is implicitly defined by
u=F (x—a(u)t)

Ut Fult u=x-a(ul
=F'(-a(u))— u=x-a(ut)

(L+ Fa't)ut = —f*a(u)

:>Ut — M
1+a'f't
Ux = Fl(l—alu xt)
fl Assuming implicit function theorem
Tl+alft
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Therefore U given implicitly satisfies the P.D.E provided
1+a'f't=0.if1+a'f't=0
Ut, Ux will become infinite and shock is said to be developed i.e.
a discontinuity exist in Q. If:
1) a is constant, no shock ¥t >0

2) F is constant, no shock ¥t >0
3) a, T, both non — deterring or non-increasing
For non — decreasing f* >0

For non — increasing f' <0
a'f'>0,no-shock 1 e>0

Exercises:

1. Find a solutionof Z Z x+Zy=0
Z (x,0)=x

Draw the lines in the x — y plane, along where solution is
constant. Do shocks ever developed fory >07?

2. Z°x+2y=0
Z (x,0)=x
X wheny=0

1+ 4xy

Derive the solution Z(x,y)= >
y

-1y=#0

1+4xy >0
Do shocks ever developed? Show that

Lim Z(x, y)= x
y—0

dx dy dz

z 1 0
=>Z=a dx=zdy
X=zy+p
z(x,0)=p=x
=Zy+X=12

X

1oy

The solution is constant along the lines
y=0,y>, y<-1

z

X =

L-y)
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Shock develop fory = 1.
40 CONCLUSION

This unit has practically exposed us to the real world application of
Partial Differential Equations through a scenario involving conservation
law where we determine shock.

5.0 SUMMARY

The law of conservation states that the rate of change of total substance
contained in a fixed domain is equal to the flux of that substance across
the domain boundary.

6.0 TUTOR-MARKED ASSIGNMENT

1. Derive the telegraph equation

2
Uy + aty + bu = Uy,

by considering the vibration of a string under a damping force
proportional to the velocity and a restoring force proportional to
the displacement.

2. Use Kirchhoff’s law to show that the current and potential in a
wire satisfy
iz+Cv+Gv = 0
Uy + Lﬂrt + Ri =0

where i = current, v = L = inductance potential, C = capacitance,
G = leakage conductance, R = resistance
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