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1.0 INTRODUCTION 
 

What is a Partial Differential Equation, how do we classify Partial 

Differential Equations? How are they rendered graphically and how do 

we solve them? This unit addresses these questions with a tour of the 

basics of Partial Differential Equations; particularly on an introduction 

to the methods for deriving solution. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 define the term Partial Differential Equation 

 classify First Order Equations  

 investigate the methods for constructing solutions for Partial 

Differential Equations    

 solve Quasi – Linear Equations 

 explore the many definitions applied in deriving solutions 

 apply the method of Lagrange in deriving solutions for Partial 

Differential Equations. 
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3.0 MAIN CONTENT 
 

3.1 Essential Definitions 
 

In some elementary course we encountered many physical problems that 

are modelled by ordinary differential equations and have learnt some of 

the basic solution technique for such equation. We shall now expand our 

view by examining Partial Differential Equations (P.D.E). Our 

Approach will deal with: 

 

i) Existence and Uniqueness of solutions. 

ii) Stability of solution to small perturbations. 

iii) Methods for constructing solutions.    

 

We shall focus attention largely on (iii) although it is not always 

possible to solve a  P.D.E in closed form. 

 

0.1 Definition  

A       P.D.E            
2

2
, , , , , 0

n

n

u u u
G x u

x x x

   
 

   
    (1) 

 

Where nRx  

   nxxxx .......,21  

 

This is a relationship between a function U of several 

variables  nxxxx .......,21 , 2n and its partial derivatives. 

 

0.2 Definition 
 

By solution (0.1.0) in a domain nCR we mean a function U = g (x) 

whose partial derivatives of order less than or equal to m (e m) exist in 

 and satisfy the equation. We note however that some P.D.E do not 

provide solution in the classical sense defined above. 
 

Example:  

  12 




x

u
x  

 

Does not have a solution in any domain, that contain the origin, rather 

than a solution in the sense of distributions or generalised functions.  
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0.3 Definitions 
 

A PDE is said to be of nth – order if the order of the highest partial 

derivative occurring in the equation is n , and if the coefficient of the 

highest – order occur linearly, the equation is said to be quasi – linear.  
2

1 1

, 1

, , , , , , , 0
n

ij

i j n j n

u u u u
A x u g x u

x x x x x

      
    

       
  

 

It is quasi – linear and of 2nd order. 

 

If the coefficient of the highest orders derivatives are all functions of x 

only. The PDE is said to be Semi Linear. 

 

Example:  
2

, 1

( ) , , , , 0
n

ij

i j i j n

u u u
A x g x u

x x x x

   
  

    
 ............................ (0.3.1) 

 

Is semi linear and of 2nd order. 

 

The equation is linear if the coefficient of U and the coefficients of all 

its partial derivatives are functions of x only. 

 

E.g.    
xi

u
xBi

xjxi

u
xAij

n

i

n

ij 








 11

2

 

 

  ............................ (0.3.2) 

 

It is linear and of 2nd order. 

 

An equation that is not linear is said to be non-linear. A 2nd order PDE 

e.g. (0.3.2) is said to be homogenous if g (x) is identically zero. 

Otherwise it is non – homogenous. 

 

If (0.1.0) is a polynomial of degree k in the highest order partial 

derivation we say that the equation is of degree k. 

 

  1

222








 



























dz

u

y

u

x

u
 

 

It is 1st order non-linear degree 2. 

 

In general any equation of degree k = 1 is non – linear.  
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Example:  

 

1) cosxy









y

z
y

x

z
x  

  

It is 1st order, linear non-homogenous.  

 

2) u
yx

u

y

u
U sin

3

3
2

2

2






















 

 

It is 3rd order quasi – linear.  

 

3) 
22

3u u u
z

xy x z

   
   

   
 

  

It is 2
nd

 order and semi – linear. 

 

4) 0
2

2

2

2
2

2

2
























y

u

x

u
c

t

u
 

 

It is 2nd order linear Homogenous. 

 

5) u
y

u

yx

u

y

u

x

u



































 2

2

2
3

2

2

 

 

It is 2nd order non linear. 

 

































yx
y

u
U

x

v
V

yx
y

u
V

x

v
U

 

 

System of 1st order quasi linear equation 

 

          0 ayZxVzavVnaZaUzauazax x  

 

Example: Given that 

 

 

 
 








i

ii

ii
c

zyxhv

zyxgu
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Determine the P.D.E of lowest order satisfied by the class of all 

functions defined implicitly by  

 

  0vuG i  

 

Where,  in  0GvGu  

 

3.2 First Order Equation 
 

Examples of 1st order equations are:  

 

122  yZxZ  

 

If yZqxZP  ,  

 

122  qP  

 

  0 ZyxZza  

 

  0 qpza  

 

x yxz yz z   

 

 

3.3 Quasi-Linear Equations 
 

This is given by 
 

  ............................ (1.1.0) 
 

Where,   CB,A,and , 2RcDyx  are  
 

    ,0C  being in 3R   
 

Where projection on 2R  is 0 

 

    1,,0.1.1  ZyZx  is perpendicular to (A,B,C)  
 

 

 

 

 

  

  

   yxZ i 0  

 

 

 1ii ZyZx  

 CBA ,,  
 zyx ii  
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Implies that there exists an integral surface 

 

   yxZzyx iii :  

 

Passes thru  zyx ii  which is target to the given vector 

 

     .,, zyxCzyxBzyxA iiiiii  

 

At the given point,  

 
CBZyAZx   

 

can be interpreted geometrically as a requirement that any surface 

 ynZZ , thru  zyx ,,  must be tangent to a prescribed vector  CBA ,, . 

 

 

 

 

 

 

 

 

 

 

 

 

The direction of the vector (A,B,C) is called the characteristics direction 

at the given point if  dzdydx ,,  lies in the tangent plane S at 

      01,d then ,, x yxzy ZZddzyx  

 
dzdyZyZxdx   

 

Comparing the above result with (1.1.0) 

 

We have that  

 

     ............................ (1.1.1) 

  

 

.;
A

C

dx

dz

A

B

dx

dy
  

Define (1.1.0) ( , , ) ( , , ) ( , , )x yA x y z z B x y z z C x y z   

 oyx ,,

 

 CBA ,,

  1,, ZyZx
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By the characteristic of 1.1.0 we mean the integral curves of (1.1.1)  

chor =
C

dt

B

dy

A

dx
  

 

Theorem 1.2 

 

The integral curves of (1.1.1) generates the integral surface of (1.1.0) 

     zyxZyzyxBZnzyxA ,,,,,,   

 

Proof 
 

Let  yxZZ , be an integral of (1.1.0) 

 

Then dyZydxZxdz       ................. (1.2.0) 

 

Suppose r is an integral curve of (1.1.1) then dx = Adt, by = Bdt and dz 

= C 

 

Substituting into (1.2.0) we have (1.1.0) 

 

It can be proved that exactly one characteristic passes through each 

point of S. The general solution of 1.1.1 is of the form 

 

  
 
 



,,

,,

zz

xy




 

 

Where  amd are arbitrary constant. 

 

Solution for   and we obtain 

 

α = u ( x,y,z) 

β = v ( x,y,z) 

 

Assuming that u and v are finally independent  

 

 i.e.   
 
 

 
 

 
 zy

vu

zx

vu

yx

vu

,

,
,

,

,
,

,

,












 

 

are not all zero at any point (x, y, z) of S. 
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Definition 1.2 

 

A single relation between u and v of the form  

 

    0, vua  

 

Is called the general solution of (1.1.0) 

 

Examples: 

 

Find the general solution of  

 
  ZyZyZxx   

 

With characteristic equation 

 

  
z

zd

y

dy

x

dx
  

  
y

dy

x

dx
  

 

    Iny = lnx + lnc  

 

   zyxux
x

y
,,  

 

 Also  
x

dx

z

zd
  

 

  lnZ = lnx + lnβ  

   

 
 

  

 

 























x
y

F
x

z

x
z

x
y

F

F

vuF

0,

0,

0,



 

 







x
y

FxZ  
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3.4 Method of Lagrange  
 

This is a useful technique for integrating first order equation from 

algebra we have that is  

 

  
d

c

b

a
  

 

Then the following relationship is true 

 

  
d

c

b

a

dKbK

cKaK






21

21  

 

For arbitrary values of the multiplies K1 and K2 so 

 

  .......................... (1.2.1) 

 

Hence equation more convenient for integration maybe found by 

appropriate choice of 321 ,, KKK in (1.2.1) 

 

Further examples: 

 

Find the general solution of  

 

i) 2 21
2

( 2 ) ( 2 ) ( )x yy xz z x yz z x y      

 0;  yRx  

ii) 2 2( 2 ) ( )x yz yz y z xy xz z xy xz       

 0222  zyxG  

 

Solution  

 

 

yzK

zK

xKzyzx







2

  where24

3

2

1

22

 

 

Characteristic equations are 

 

 
2 21

2
2 2 ( )

dx dy dz

y xz x yz x y
 

  
 

 

 

By method of Langrage multiplier 
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 

  0;4

0,

4

44

02
2

1
2

1

222

2
1

2
1

0
2

1
2

1

222

222

2
22

















zxyzyxG

G

zyx

z
yx

dzZydyxdx

zxy

zyxxy

dzydxxdy











 

 

Initial value problem (or Cauchy problem in R
2
 consists of a 

determination of an integral surface S of (1.1.0) which passes through a 

pre-assigned space curve 6. We noticed that those are the following 

possibilities:  

 

i) Unique surface. 

ii) Infinitely many surface. 

iii) No surface depending on the pre assigned curve   

 

Examples: 

 

2) Consider the ivp 

   

 







40,;

0

xxZ

xZyyZx


 

  

The characteristic equations are 

 

  
0

dz

x

dy

y

dx
  

 

   

 
  ydyxdx   

  
22

22 yx
 

   22 yx  
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and 

 

  
0

dz

y

dx
  

   ZdZ 0  

  

 
 

 22

0,

yxFZ

F

F











 

 

The general solution is any surface of revolution about z-axis 

   

 

 

 

 

 

 

 

 

Given the curve     420, xxFxZz   

  
 

   222

2

, yxyxZ

xxF




 

 

2) Consider the ivp  

   



















1

1
circle:

0

22

z

yx

xZyxzy


  

 

 

 
 
    11fi ssatisfiyerhich function wany  is f1  where1

11

22

22

22







yxFz

yxF

yxFZ

 

 

 The solution exist but not unique.  

 

 These are certainly infinitely many such surfaces. 
  

In this cape itself is a characteristic. 

 

3) Consider the ivp 

  


















yZ

y

xZyyZx

1x
ellipse:

0

22


 

z  

s 

y 

x 

satisfier

s  
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   22 yxFZ   

    122 FyxFy   

  yZ  , which is impossible. 

   

No such integral surface exists. 

 

Theorem1.8: 

 

  .................................. (1.8.0) 

 

 .................................  (1.8.1) 

 

A given space in   

 

  10,, 1

1

000 Czyx   

 

 Let 2.8.10
1

0

1

0  BxAy  

 

Then   a unique solution  yxzz ,  of (1.8.0) defined in some 

neighbourhood of the given curve   and which satisfiers the initial 

condition     ss yxZ 00 ,  

 

       3.8.1, 000 sZsysxZ   

 

Proof:  

 

Consider the characteristic system 

 

  
C

dz

B

dy

A

dx
  

  4.8.1





















C
dt

dz

B
dt

dy

A
dt

dx

 

 

From the existence and uniqueness theorem for P.D.E we many solve 

(1.8.4) for a uniquely family of characteristics  

 

.....................................     (1.8.2) 

.....................................     (1.8.3) 

.....................................     (1.8.4) 
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      

      

      

  5.8.11,0

,,,

,,,

,,,
1

000

000

000

xC

tszsysxzz

tszsysxyy

tszsysxxx
















 

Such that  

  

   

   

   

6.8.1

,

,

,

0














szosz

syosy

sxosx

o

o

 

 

By hypothesis the Jacobian (J) 

 

  
 
  ssts

ts

s
yxyx

yy

xtx

tsit

yx
J 










0

,
 

  
 

0

0

1

00 



AyBX

tyAXB ss
  

 

We can solve (1.8.5) uniquely for s and t in terms of x and y in the 

neighbourhood of the given curve 

 

   
 yxtt

yxss

t

,

,

0:







 

 

Substituting into (1.8.5) we have  

 

 
      

 yx

yxzyxtyxsZ

,

,,,,




 

 

That  yxZ ,  satisfiers the initial conditions follows from 

     sZosZtyx 0,0,   

 

    satisfies the Partial Differential Equation for  

 

  

   
   
   

   10 tts

tytxttytxs

yxtyxs

ytysxtxs

ZZs
dt

dt
z

dt

ds
Z

ytxtZysxsZ

BtAtZBSASZ

tZSZBtZSZA

yBxA











 

  cZ t   

 

......................  (1.8.5) 

.........................  (1.8.6) 
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Uniqueness follows from theorem (1.2). CBZAZ yn   

The integral curves of 
C

dz

B

dy

A

dx
 generates the integral surface. 

 

Summary: - Cauchy problem has a unique solution provided the initial 

curve is not characteristic.  

 

Exercises:  

 

1) Solve the following: 

 

 

10,
2

1

1









ssz

sy

sx

ZyZZx

 

 

2) 



 
















1,0

1,1

,

,,0

2

x

xx

oxZ

yRxZxZy

 

 
     

    manyintrnitty 0yx,Z

solution unique1,
2





cynF

cyxcyxFyxZ
 

 

Solution 2 

 

 We observed that  1

0

1

0 BxAy  

 
 

10

1for Z01

1,1

1,

1

0

1

0

1

0

1

0









ZBxAy

xsy

BZA

 

  

 Characteristic equation is 

 

 
i

dZ

i

dy

Z

dx
  

  

 So that we now have  
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  







2

1

s
soZ

tZ
dt

dz

 

  
2

sttZ    

  

 Similarly  

 

   

sty

ssoy

ty











 

  stZ
dt

dx

2
1  

  

 

syt

sstt

sst
t

x

sS

st
t

x











2
1

2
1

2

1

2

2

1

2

2

2





 

 

 Write t = y –s and substitute into x so that 

 

    ssyyX 
2

1  

  

2
1/

2
1

2
1

2

1

2

2

y
yxs

sysy




 

   i
y

yx
s ..............................

2
1

2
1 2




  

 

 Also write s = y – t and substitute into 

 

  
 ii

xy
t

tyytx

..................................

2
11

2
1








 

 

 Substitute (i) and (ii) in 
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





























2
1

2
2

2

1

2
1

2
1

y

yx

y

xy
Z

StZ

 

  
.2

2
2

2






y

xy
y

 

 

4.0 CONCLUSION  
 

In this unit we have studied some basic and essential definitions of 

Partial Differential Equations; specifically those properties and general 

characteristics of First Order Equation, Quasi – Linear Equations and 

the utilisation of the Method of Lagrange in solving Partial Differential 

Equations.  

 

We examined Partial Differential Equations from the perspectives of 

existence and uniqueness of solutions, stability of solution to small 

perturbations around the solution as well as the different methods for 

constructing solutions. 

 

5.0 SUMMARY 
 

Partial Differential Equations can be generically classified into families 

and methods of solution for classes categories based on their properties. 

 

6.0 TUTOR-MARKED ASSIGNMENT 

 
1. Which of the following Partial Differential Equations is linear, 

quasi-linear or non-linear?  

 

If P.D.E. is linear, state whether it is homogeneous equation or 

not. 

 

  



 MTH 425                      MODULE 1 

89 

2. Give the order of each of the following: 

 

  
 

3.  Find the general solution of 

 

 
 

4.  Show that  

 

is a general solution of 
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UNIT 2 APPLICATION OF IVP CONSERVATION LAW, 

DEVELOPMENT OF SHOCK 
 

CONTENTS 

 

1.0 Introduction 

2.0 Objectives 

3.0 Main Content 

3.1 Application of IVP Conservation Law, Development of 

Shock 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION 
  

The characteristic equation for the single conservation law is derived 

and solved with the assumption of implicit function, discontinuity which 

implies shock is also demonstrated. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 state conservation law 

 explain the concept of shock. 

 

3.0 MAIN CONTENT 

 

3.1 Application of IVP Conservation Law, Development of 

Shock 
 

The conservation law states that rate of change of total substance 

contained in a fixed (arbitrary) domain   is equal to the flux of that 

substance across the boundary  . 

 

Let U be the density of the substance and F = flux, then the conservation 

law is given by rate of flow 


 dsnFudx
dt

d
.  

 0. 



 



dsnFdxUtxdu
t

, n normal vector to the 

surface. 

  0utdx div Fdx
 

    
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 0ut div F    

    

Single conservation law 

 

  0 xfut  

    iiuxuaut ______________________.0  

  

Characteristic equation  

 

  
  o

du

ua

dxdt


1
 

  
10

dtdu
  

  

 i.e. on the characteristic  txx  which propagates with speed a  

  u is a constant  

  a = signal of the speed. 

 

Solve the following IVP 

 

i)   0 uxuaut  

    xfoxu ,  

 
  01

du

ua

dxdt
  

  u  

    aua
dt

dx
  

  atx  

 General solution   0, F  

    0,  tuaxuF  

   tuaxFu   

 Solution is implicitly defined by  

   tuaxFu   

  tuaxuUtFuUt   

     tuaxuuaF  1  

    uafuttaF 1111   

 
 

tfa

fua
Ut

11

1

1
  

 

 

tfa

f
xU

txuaFxU

11

1

11

1

1






Assuming implicit function theorem 
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 Therefore U given implicitly satisfies the P.D.E provided  

 0a1 if .01 1111  tftfa  

 UxUt,  will become infinite and shock is said to be developed i.e. 

a  discontinuity exist in  . If:  

1) a is constant, no shock 0tV  

2) F is constant, no shock 0tV  

3) a, f, both non – deterring or non-increasing 

 For non – decreasing 01 f  

 For non – increasing 01 f  

 0shock  - no ,011  fa  

 

Exercises:  

 

1. Find a solution of 0 ZyxZZ  

   xoxZ ,  

 

Draw the lines in the x – y plane, along where solution is 

constant. Do shocks  ever developed for 0y ? 

 

2. 02  ZyxZ   

   xoxZ ,  

 Derive the solution  






















041

01
2

41

0y when 

,

xy

y
y

xy

x

yxZ  

 Do shocks ever developed? Show that 

   

 
 

0

yx,ZLim





y

x
 

 
01

dzdy

z

dx
  

 ydzxdZ    

  zyx  

   xoxz  ,  

 zxyz   

 
y

x
z




1
 

 The solution is constant along the lines  

 1,,0 1

0  yyy  

 
 2
1 y

x
zx


  
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 Shock develop for y = 1. 

 

4.0 CONCLUSION  
 

This unit has practically exposed us to the real world application of 

Partial Differential Equations through a scenario involving conservation 

law where we determine shock. 

 

5.0 SUMMARY 
 

The law of conservation states that the rate of change of total substance 

contained in a fixed domain is equal to the flux of that substance across 

the domain boundary.  

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Derive the telegraph equation 

 
by considering the vibration of a string under a damping force 

proportional to the velocity and a restoring force proportional to 

the displacement. 

 

2. Use Kirchhoff’s law to show that the current and potential in a 

wire satisfy 

 
where i = current, v = L = inductance potential, C = capacitance, 

G = leakage conductance, R = resistance 
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