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1.0 INTRODUCTION

General non — linear first order partial differential equations have a form
F(x,y,z,p,q) = 0 where p = Zx and g = zy whose solution lead to the
concept of the Monge cone and the chain curve stripe.

2.0
At the

3.0

3.1

OBJECTIVES

end of this unit, you should be able to:

use General non — linear First Order Equation to solve some
problems

sketch and explain the Monge cone
apply Cauchy Method of Characteristic equations

MAIN CONTENT

General First Order Equation

The general non — linear P.D.E of 1st order has the form
FOLY,Z,P0) =0 e (1.9.1)

Where p=z,and q=z,
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At each point p(x,y,z) on an integral surface z =z (x,y)the direction
number (p, g,-1) of the normal to the surface are related through
equation (1.9.1)

The P.D.E will restrict its solution to these surface having tangent planes
belonging to a 1-parameter familyq=G (x,y,z, p). Generally this one —
parameter family of planes envelope a cone called the Monge cone.

Monge cone

The geometrical significance of the 1st order P.D.E in (1.9.1) is that any
solution surface through a point in space must be tangent to the
corresponding Monge cone

3.2 Cauchy Method of Characteristic

Let z=1z(x,y)eC?be a given integral surface. At each point the surface
will be tangent to the Monge cone

Furthermore, the lines of contacts between the tangent planes of the
surfaces and the cones define a field of directions on the surface called
characteristic direction. These integral curves of field define a family of
characteristic curves.

Monge Cone

i

Integral Surface

R
PR

>
/ )_‘ Tangent

b

’ Characteristics

Characteristic Curve
lane 7\

(p, 0, -1)

©

(% y. 2)

(XO’ yO’ ZO

The Monge cone at a fix point (x, y,,z,) in the envelope of one
particular family of planes.
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z-2,= pla-x)+q(y-yo)

where F (x,v, z,, p.q)=0
orq=4q (on’o?o:p)

It’s thus given by

Z_Zg :p (x_xg) + Q(x[j:yO?ZO? p)(y_yO)

d
0= x-% + o (y-7.)
" (1.10.2)

Where p is adopted as the parameter using (1.10.1) we have

a _ Fp + Fqﬂzo
dp v (1.10.3)

Eliminating g—gfrom (1.10.2) yields the Equation

dp Y=Y

Equation for the Monge cone
F(xO:}’0=ZO=p=Q):O
z-zy=plr—x,)+q(y-y)
XX, _ Y-V

Ip Fgoo 0 (1.10.4)

Eliminating p and q from (1.10.4) yield a more standard form of the
equation of the cone.

If given p and q the last two equation of (1.10.4) define the line of
contact between the cone and the tangent plane.

It may be written in the form

u=g(x v, Z)} ¢ (@)

v=h(x y 2)
The characteristic direction is

(Fp. Fg. pFp + qFq) (1.10.6)
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If therefore follows that the characteristic curves are determined by the
O.D.E

de_dy e

F, F PR, +0aF,
dx dy dz

=—=F,—=F,——pF,+qF, = ... 1.10.7
g g et ( )

Assuming that the integral surface is yet unknown, the 3 equations in
(1.10.9) are not sufficient to determine the characteristic curve
comprising the surface.

This is because the equation contains 2 addition unknowns p and g.

However, along a characteristic curve on the given integral surface we
have

d
%f:pxxr+py};1: prp+pyfq

dq
Vit = a.x va,3 = a.fyra, /) (1.10.8)

Differentiating the given Partial Differential Equation in (1.9.1), we
have

Fx+F=p+Fppx+Fg gx=0
Fy+Fz q+Fppy+Fq qy=0

0’z

But g, = Y

So

F +F, +(F, P, +F,P,)=0
Fy+qu +(qux +Fq qy)=0

(1.10.8) then yields

dp

£ = — Fx— pF=

I x-p } ................................... (1.10.9)
dq

A - _ Fy—gFz

0 V—q

The 5 equations in 1.10.7 and 1.10.9 are called the characteristics
equation associated with the Partial Differential Equation. The situation
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is now more complicated than in (1.9.1). All together we have 6
equations.

F(x Y,z pq)=0

dx dy

—=Fp,— = F

- P

dt

S (Fx+pF

% (e pre)

(;—?: (Fy +qFz)

= F(xy.2pq)=0

o _dy _ dz

Fp Fq pFp +qFq
dp _ dq

" _[Fx+pFz]  -[Fy+qF]
For the 5 — unknown functions
x(t), y(t). z(t). p(t) a(t)

In other words if F(x, v,z p,q)=0 is satisfied at an initial point say
Xo» Yo» Zo» Py, G, fort=0. The 5 characteristic equations in (1.10.7),

(1.10.9) will determine a unique solution x(t), y(t), z(t), p(t)a(t), passing
through the x point and along which f =0 will be satisfied for all t.

Theorem 1.11

Along any solution of characteristic equation of
(1.10.10)F (x,y,2, p,q)=0

Proof
Exercises:
Defined 1.12

A ship is defined as a space curve x=x(t) y=y(t)and z=z(t) in
addition to the family of tangent planes with (p, g,~1) as normal.

/@» Chain curve
Stripe
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Defined 1.13

An element of a stripe is defined as a point on a characteristic curve
including the corresponding tangent plane at that point.

(p.g-1)

_

(XO 1 yO IZO)
An element

Remark

Note that not any set of 5 functions can be interpreted as a strip.
The planes must be tangent to the curve which is that conditions that

@ o
at P 9

Theorem 1.14

If a characteristic strip  x(t), y(t), z(t), p(t), q(t)has X, Y, Z, Py GoiN
common with an integral surface z =u(x, y)then it lies completely on
that surface.

Theorem 1.15
Given F(x, Y,z p,q)=0 (1.9.1)
And suppose along the initial curve

X=X, (s) y=1Y,(s) 0<¢c<1, the initial values z=z,(s)are assigned
and x,, y,. z, € C? [0,1] have been determined satisfying
F (%, () Yo () 20 (). P, (8) G, (5))=0 and

dﬁ—p %+qo% W|‘[h
ds

ds ° ds
dx dy
d_SO fq (Xo’ Yor Zg» Pos qO)_d_SO fp(XOv Yor 2o, po’qo);éo

then in the same neighbourhood of the initial curve, there exists a unique
solution z =z (x, y)of (1.9.1) containing the initial strip that is such that.
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N
>
—~
x
[
—~
w
~—"

(s) = o (s)
0 () =0 (s)

4.0 CONCLUSION

Solution for general non — linear Partial Differential Equations of 1st
order has a geometrical significance in relation to the Monge cone.

5.0 SUMMARY

The form of the general non — linear first order Partial Differential
Equation is F(x,y,z,p,q) = 0 where any solution surface through a point
In space must be tangent at that point to the corresponding Monge cone.

6.0 TUTOR-MARKED ASSIGNMENT

1. Solve ‘Z)_l; - 3% =0
subject to w(z,0) =sinz
2. Solve the following equation using the method of characteristics
a. % - (% = subject to u(z,0) = f(x)
b. % + 1% =il subject to u(z,0) = f(z)
c. % + 3t% = subject to u(x,0) = f(x)
d. % — 2% = %% subject to u(x,0) = cosx
e. % = 1‘2% = —fu subject to u(x,0) = 3e”
3. Show that the characteristics of
% + 211,% =)

iz, 0y =T(%)
are straight lines

4. Take a look at the problem
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Ju ou
o 2110‘1‘ =0
1 z <0
w(z,0)=f(z)=q 147 O0<z<L
2 L <z

Determine equations for the characteristics
Determine the solution u(x, t)

Sketch the characteristic curves.

Sketch the solution u(x, t) for fixed t.

o0 o
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1.0 INTRODUCTION

Partial Differential Equations can have three types of solutions; the
complete solution, the general solution and the singular solution. All are
treated in this unit.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

) categorise the different types of solutions of partial differential
equations

o decribe the methods used in deriving complete solution

o explain what a general solution is

o explain why some Partial Differential Equations are singular
solutions.

3.0 MAINCONTENT

3.1 Types of Solutions

We observed that the general solution of the 1st order P.D.E (1.9.1) is an
expression involving an arbitrary function of one variable.

This naturally is the extension of the result that the general solution of
first order PDE involves one arbitrary constant.
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3.1.1 Complete Solution (Integral)

Any solution of the form

Z=®(xyab) (1.16.1)
Where a and b are arbitrary parameters represent two parameter family
of surfaces. No systematic rule determining the complete integral is
available. The complete integral is significant in the sense that the
envelope of any family of solution of the 1st order equation (1.1.1)
depending on some parameter is again a solution. Indeed equation 1.9.1
defines the tangent plane of a solution. If a surface has the same tangent
plane as a solution at some point in space, then it also satisfies the
equation there. The envelope of a family of solutions is also a solution
since it is in contact at each of its points with one of these earlier
mentioned solutions.

3.1.2 General Solution (Integral)

The general solution of 1.9.1 can thus be obtained from the complete
integral if we prescribe the 2nd parameter b, say b = b(a) as an arbitrary
function of a. The enveloped of the one parameter subsystem of the
complete integral is then considered as follows

Z:(I)(x, ¥y, da, b(a)) (1.16.1)

Differentiating with respect to (wrt) a, we have

0 =9, (x.1.a.5a)) + @, (x.7.0.5a)) & (1162)

Eliminating (a) between 1.16.1 and 1.16.2 yield a single expression
(involving the arbitrary function b(a) which is the general solution of
(1.9.1)

3.1.3 Singular Solution

This is the envelope of the full two parameter family of surfaces defined
by the complete solution and is given by the 3 relation

Z = D (x, y,a,b)
O =ad_ (x,v,.a,b)
O =, (x,Vv,.a,b)
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Examples
Type |

F(p.q)=0
Solve p*-qg* =1

Write f(p,q)=p*-q°-1=0
F (a, h(a))=a® —(h(a))’ -1 and
h(a)=(a? -1)?

A complete solution is
Z =ax+ (a2 —1)y2y+c
Z=ax+hy+c

Put b = (a2 1)’ and diff witha toet

There are singular solutions since
Z=ax+by+c

ay
)

0=X+

0=1
Example:

Consider p® +q° =1

Recall f (x,y,z, p,q)=0
p’+g®-1=o0
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dx dy dz dp B dg

p fq pf,+afg —(&+pk) —(fy+af)
fx=0,fy=0, fz=0, fp=2p, fg=2q
dx _dy dz dp dq

q

2p 2 Zip +qi

p = a (ais constant)
q2 — 1_ a2

q=(-a’)°
p:zx:528y:(1—a2)%
& = o+ vy
.[dz=_[ad x+_[1—a %dy
z:ax+(l—a2)%y+b

dp=o0

General solution is given by
z=ax++1-a’y+d(a)

Differentiating wrt a we have
y +®'(a)

0=X—
1-a*

Singular solution: None

Since z=ax++1-a’y+6
Differentiating wrt a

a
V1-a?
zb=0=+1-a°

Za=0=X—

Examples:

Given xp +yq = pq, Find

1. Theinitial element if x=x,, y=oand z = X% z(x,0)=%,

2. The characteristics stripe containing the initial elements
3. The integral surface which contain the initial element.
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Xp+Yq = pq
Xp +Yq— pg =0
f(xy,z,p.a)=0
(xo,o,}/xo, po,qo)assume
X, Py = P, U,

:>X0 =(

0

According to the strip condition

dz = a dx+gdy
OX oy
o, @, ooy

dx, dx, oy ox

(o} (o]

Vo=
Initial element is (xo, o, }/ Xy s }/ xo)

For simplicity let us take x, =1

For the characteristic equation

d_dy dz dp

dq

o, da_
dt dt
@——p %——pq
dt dt

dy B

dt_y p

Integrating we obtain

X = xocosht

y = %sinht
= %xo( — +1)
= %e’t

p
q = xoe’

N

Eliminating X, and t from above, we obtain

8xyz + x* = 42°
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Exercise

Solve

1) pg =uwithu (0,s)=s°

MODULE 2

2) determine the integral surface of xpg + yq® =1 which contain the

curve z=x,y=o0
Earlier Example

p*-g°=1

f(xy,z,p0q)=p*-q°-1
x=0,fy=0, z=0, fp=2p, fqg=2q

dx _dy  dz dp B dq
fp' fq pip+afg —(f+pfz) —(fy+afz)
dx _dy _ dz dp dq
2p -2p 2p*-29° o© 0
p a
q*=p°-1
o* =(a*-1)
q=49*-1
dz azdx+a—dy
ox oy

dz = adx + va® —1dy
z = ax+ Ja®-1ly+c

Put

b =(a? -1)* and diff wrta
ay
(o -1)"
-x__ 2
y  (a®-1)?

0=X+

General solution is
Z _ -y c
3 X+ ( KJ y+ A

We can rewrite it as
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axz =x*-y?+acx (a:%)
axzi—oacx=x>-y?

2oy

ax(z—c)-x*—y?

There is no singular solution
z=ax+by+c

o= x4 — 2 y wrta _
(a2 —1)% are not consistent

o=y wrtb

Exercise:

Find the complete and singular solution of
p*+q° =9

TYPE I
Consider z=p, +q,+ f(p.,q)
Solution

Using the characteristic equation

dx _dy  dz dp dg

o fq pp+alqg —(f+plz) —(fy+dqf)

Then
f(x,y,z,p,q)=Z—IOX—qy—f(p,Q):O
fx=-p fy=-q
fz=1 fpo=-xfp=—(x+"fp)
fo=—(y+fq)
Then
dx  dy dz
~(x+fp) —(y+f) —p(x+fo)-aly+fq)
__dp__daq
0 0
dp=0= IO:a}constant
dg=0= q=Db

Complete solution b
z=ax+by+ f(a,b)
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Exercise:
Solve (p+a)(z—xp-ya)=1

Find the complete solution
Z=Xp+yp 1
(pra)
Solve 4 (1+ zs): 9z pq
4+47°
2"
4 _4 4 _1

— 2zt +-2
q

-pg=0

4.0 CONCLUSION

General solution of First Order Partial Differential Equations results in
an expression involving an arbitrary function of one variable.

5.0 SUMMARY

The different types of solution of Partial Differential Equations are
categorised into complete solution, general solution and singular
solution.

6.0 TUTOR-MARKED ASSIGNMENT
1. Determine the general solution of

Ury — C%uyy =0 ¢ = constant
Uzz — Stzy + 2Uyy =0

Uggy + Ugy = 0

Ugz + 10Uy + Ouyy = ¥

pOo TR

b?
Upr = QU + by —Zu+d
2. Show that
is parabolic for a, b, d constants.
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