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1.0 INTRODUCTION 
 

General non – linear first order partial differential equations have a form 

F(x,y,z,p,q) = 0 where p = Zx and q = zy whose solution lead to the 

concept of the Monge cone and the chain curve stripe. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 use General non – linear First Order Equation to solve some             

problems 

 sketch and explain the Monge cone 

 apply Cauchy Method of Characteristic equations 

 

3.0 MAIN CONTENT 

 

3.1 General First Order Equation 
 

The general non – linear P.D.E of 1st order has the form         

( , , , , ) 0F x y z p q                    .........................................  (1.9.1) 

 

Where xp z and yq z  
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At each point  zyxp ,,  on an integral surface  yxzz , the direction 

number  1,, qp  of the normal to the surface are related through 

equation (1.9.1) 

 

The P.D.E will restrict its solution to these surface having tangent planes 

belonging to a 1-parameter family  pzyxGq ,,, . Generally this one – 

parameter family of planes envelope a cone called the Monge cone. 

 

 

 

 

 

 

 

 

The geometrical significance of the 1st order P.D.E in (1.9.1) is that any 

solution surface through a point in space must be tangent to the 

corresponding Monge cone 

 

3.2 Cauchy Method of Characteristic 
 

Let   2, Cyxzz  be a given integral surface. At each point the surface 

will be tangent to the Monge cone  

 

Furthermore, the lines of contacts between the tangent planes of the 

surfaces and the cones define a field of directions on the surface called 

characteristic direction. These integral curves of field define a family of 

characteristic curves. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

The Monge cone at a fix point  ooo zyx ,  in the envelope of one 

particular family of planes. 

Monge cone 

Characteristics 

Monge Cone 

Integral Surface 

Characteristic Curve 
Tangent plane 

 111 qp

 zyx ,,
 000 ,, zyx  
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  ......................  (1.10.1) 

It’s thus given by  

 

 ......................  (1.10.2) 

 

Where p is adopted as the parameter using (1.10.1) we have 

 

   ......................  (1.10.3) 

 

Eliminating 
dp

dq
from (1.10.2) yields the Equation 

0

0

p q

x xdf
F F

dp y y

 
   

 
 

 

Equation for the Monge cone 

 

   ........................ (1.10.4) 

 

Eliminating p and q from (1.10.4) yield a more standard form of the 

equation of the cone. 

 

If given p and q the last two equation of (1.10.4) define the line of 

contact between the cone and the tangent plane. 

 

It may be written in the form  

 

 

 
 








i

ii

ii
c

zyxhv

zyxgu
 

 

The characteristic direction is  

 

   .......................................... (1.10.6) 
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If therefore follows that the characteristic curves are determined by the 

O.D.E 

 

p q p q

dx dy dz

F F pF qF
 


 

, ,p q p q

dx dy dz
F F pF qF

dt dt dt
         ............ (1.10.7) 

 

Assuming that the integral surface is yet unknown, the 3 equations in 

(1.10.9) are not sufficient to determine the characteristic curve 

comprising the surface. 

 

This is because the equation contains 2 addition unknowns p and q. 

 

However, along a characteristic curve on the given integral surface we 

have 

 ......................... (1.10.8) 

 

Differentiating the given Partial Differential Equation in (1.9.1), we 

have 

 

0

0





qyFqpyFpqFzyF

qxFqpxFppFxF
 

 

But  
2

x

z
q

x y




 
 

 

 So  

 

 

 

0

0

x zp p x q y

y zq p x q y

F F F P F P

F F F q F q

   

   
 

 

(1.10.8) then yields  

 

 
 

The 5 equations in 1.10.7 and 1.10.9 are called the characteristics 

equation associated with the Partial Differential Equation. The situation 

...................................    (1.10.9) 
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is now more complicated than in (1.9.1). All together we have 6 

equations. 

 

  0,,,, qpzyxF  

Fq
dt

dy
Fp

dt

dx
,  

 

 

  0,,,, 





qpzyxF

qFzFy
dt

dq

pFzFx
dt

dt

 

qFqpFp

zd

Fq

dy

Fp

dx


  

   qFzFy

dq

pFzFx

dp





  

 

For the 5 – unknown functions 

 

         tqtptztytx ,,,,  

 

In other words if   0,,,, qpzyxF  is satisfied at an initial point say 

0for  ,,,, 00000 tqpzyx . The 5 characteristic equations in (1.10.7), 

(1.10.9) will determine a unique solution          ,,,, tqtptztytx  passing 

through the x point and along which 0f  will be satisfied for all t. 

 

Theorem 1.11 

 

Along any solution of characteristic equation of 

(1.10.10)   0,,,, qpzyxF  

 

Proof 

 

Exercises:  

 

Defined 1.12 

 

A ship is defined as a space curve      tzztyytxx   and  in 

addition to the family of tangent planes with  1,, qp  as normal. 

 

 

 
 

 
    

Chain curve 

Stripe  

= 
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Defined 1.13 

 

An element of a stripe is defined as a point on a characteristic curve 

including the corresponding tangent plane at that point. 

 

 

 

 

 

 

 

Remark  

 

Note that not any set of 5 functions can be interpreted as a strip. 

The planes must be tangent to the curve which is that conditions that 

 

  
dt

dy
q

dt

dx
p

dt

dz
  

 

Theorem 1.14 

 

If a characteristic strip           00000 has ,,,, qpzyxtqtptztytx in 

common with an integral surface  yxuz , then it lies completely on 

that surface. 

 

Theorem 1.15 

 

Given   0,,,, qpzyxF       (1.9.1) 

 

And suppose along the initial curve  

 

    10,, 00  syysxx , the initial values  szz 0 are assigned 

and  1,0,, 2

000 Czyx   have been determined satisfying 

             0,,,, 00000 sqspszsysxF  and  

 

ds

dy
q

ds

dx
p

ds

dz 0

0

0

0

0   with 

 

    0,,,,,,,, 00000

0

00000

0  qpzyxfp
ds

dy
qpzyxfq

ds

dx
 

 

then in the same neighbourhood of the initial curve, there exists a unique 

solution  yxzz , of (1.9.1) containing the initial strip that is such that. 

 

 1, qp

 000 ,, zyx  

An element 

 
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      

      

      sqsysxzy

spsysxzx

szsysxz

000

000

000

,

,

,







 

 

4.0 CONCLUSION  
 

Solution for general non – linear Partial Differential Equations of 1st 

order has a geometrical significance in relation to the Monge cone. 

 

5.0 SUMMARY 
 

The form of the general non – linear first order Partial Differential 

Equation is F(x,y,z,p,q) = 0 where any solution surface through a point 

in space must be tangent at that point to the corresponding Monge cone. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1.  Solve  

 

subject to 

 

2.  Solve the following equation using the method of characteristics 

 

 

 

 

 

 

 

 

 

 

3.  Show that the characteristics of 

 

 
 

are straight lines 

 

4.  Take a look at the problem 
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a.  Determine equations for the characteristics 

b.  Determine the solution u(x, t) 

c.  Sketch the characteristic curves. 

d.  Sketch the solution u(x, t) for fixed t. 

 

7.0 REFERENCES/FURTHER READING 
 

Adomian, G. (1994). Solving Frontier Problems of Physics: The 

Decomposition Method. Kluwer Academic Publishers. 

 

Courant, R. & Hilbert, D. (1962). Methods of Mathematical Physics II. 

New York: Wiley-Interscience. 

 

Evans, L. C. (1998). “Partial Differential Equations.” Providence: 

American Mathematical Society. 

 

Jost, J. (2002). Partial Differential Equations. New York: Springer-

Verlag. 

 

Petrovskii, I. G. (1967). Partial Differential Equations. Philadelphia: W. 

B. Saunders Co. 

 

Pinchover, Y. & Rubinstein, J. (2005). An Introduction to Partial 

Differential Equations. New York: Cambridge University Press. 

 

Polyanin, A. D. & Zaitsev, V. F. (2004). Handbook of Non-linear 

Partial Differential Equations. Boca Raton: Chapman & 

Hall/CRC Press. 

 

Polyanin, A. D. (2002). Handbook of Linear Partial Differential 

Equations for Engineers and Scientists. Boca Raton: Chapman & 

Hall/CRC Press. 

 

Polyanin, A. D., Zaitsev, V. F. & Moussiaux, A. (2002). Handbook of 

First Order Partial Differential Equations. London: Taylor & 

Francis. 

 

Wazwaz, Abdul-Majid (2009). Partial Differential Equations and 

Solitary Waves Theory. Higher Education Press.  



MTH 425                PARTIAL DIFFERENTIAL EQUATIONS 

104 

UNIT 2 TYPES OF SOLUTIONS 
 

CONTENTS 

 

1.0 Introduction 

2.0 Objectives 

3.0 Main Content 

3.1 Types of Solution 

3.1.1 Complete Solution (Integral) 

3.1.2 General Solution (Integral) 

3.1.3 Singular Solution 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor-Marked Assignment 

7.0 References/Further Reading 

 

1.0 INTRODUCTION 
 

Partial Differential Equations can have three types of solutions; the 

complete solution, the general solution and the singular solution. All are 

treated in this unit. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 categorise the different types of solutions of partial differential 

equations 

 decribe the methods used in deriving complete solution 

 explain what a general solution is  

 explain why some Partial Differential Equations are singular 

solutions. 

 

3.0 MAIN CONTENT 

 

3.1 Types of Solutions  
 

We observed that the general solution of the 1st order P.D.E (1.9.1) is an 

expression involving an arbitrary function of one variable. 

This naturally is the extension of the result that the general solution of 

first order PDE involves one arbitrary constant. 
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3.1.1 Complete Solution (Integral) 
 

Any solution of the form 

 

   .................................  (1.16.1) 

 

Where a and b are arbitrary parameters represent two parameter family 

of surfaces. No systematic rule determining the complete integral is 

available. The complete integral is significant in the sense that the 

envelope of any family of solution of the 1st order equation (1.1.1) 

depending on some parameter is again a solution. Indeed equation 1.9.1 

defines the tangent plane of a solution. If a surface has the same tangent 

plane as a solution at some point in space, then it also satisfies the 

equation there. The envelope of a family of solutions is also a solution 

since it is in contact at each of its points with one of these earlier 

mentioned solutions. 

 

3.1.2 General Solution (Integral) 
 

The general solution of 1.9.1 can thus be obtained from the complete 

integral if we prescribe the 2nd parameter b, say b = b(a) as an arbitrary 

function of a. The enveloped of the one parameter subsystem of the 

complete integral is then considered as follows 

 

   .................................... (1.16.1) 

Differentiating with respect to (wrt) a, we have  

 

  ........................... (1.16.2) 

 

Eliminating (a) between 1.16.1 and 1.16.2 yield a single expression 

(involving the arbitrary function b(a) which is the general solution of 

(1.9.1) 

 

3.1.3 Singular Solution  

 
This is the envelope of the full two parameter family of surfaces defined 

by the  complete solution and is given by the 3 relation  

 

  

 
 

 bayxO

bayxO

bayxZ

b

a

,,,

,,,

,,,






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Examples  

 

Type I  

 

  0, qpF  

Solve 122  qp  

 

Write   01, 22  qpqpf  

 

      1,
22  ahaahaF  and 

     2
1

2 1 aah  

 

A complete solution is  

 
 

cbyaxZ

cyaaxZ



 2
1

2 1
 

 

Put   get   toa with diff and 1 2
1

2  ab  

 
  2

1
2 1



a

ay
xO  

 
  2

1
2 1




a

a

y

x
 

 

General solution is  

 
a

c
y

x

y
x

a

Z









  

 
 

  22

22

1

1

yxzx

a
xyxzx








 

 

There are singular solutions since 

 

  2
1

2 1





a

ay
xo

cbyxaz

 

 O = 1 

Example:  

 

Consider 122  qp  

 

Recall   oqpzyxf ,,,,  

 oqp  122  
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By  
   qfzfy

dq

pfzfx

dp

qfqpf

dz

fq

dy

fp

dx

p 






  

 qfqpfpozfofyofx 2,2,,,   

 
  o

dq

o

dp

qp

dz

q

dy

p

dx





22222
 

odp   

  constant is aap   

 22 1 aq   

   2
1

21 aq   

  
1

221zp zx a
y

   


 

 
ydy

z
x

zdz





  

   dyaxdadz
2

1
21    

   byaaxz 
2

1
21  

 

General solution is given by  

  

 ayaaxz  21  

 

Differentiating wrt a we have  

  ay
a

a
xo 1

21



  

 

Singular solution: None 

 

Since 61 2  yaaxz  

  

Differentiating wrt a  

 
21 a

a
xoza


  

 21 aozb   

 

Examples:  

 

Given pqyqxp  , Find 

1. The initial element if  
2

,
2

and , xoxz
x

zoyxx o
o   

2. The characteristics stripe containing the initial elements 

3. The integral surface which contain the initial element. 
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Solution  

 

 

 assume,,
2

1,,

,,,,

oooo qpxox

oqpzyxf

opqyqxp

pqyqxp







 

oooo qppx   

oo qx   

 

According to the strip condition  

dy
y

z
dx

x

z
dz









  

x

y

y

z

dx

z

dx

z

o

o

o

o














 

po
2

1  

 

Initial element is  ooo xxox ,
2

1,
2

1,,  

 

For simplicity let us take 1ox  

 

For the characteristic equation 
   qfzfy

dq

pfzfx

dp

qfqpfp

dz

fq

dy

fp

dx








,  

q
dt

dq
qx

dt

dx
  

pq
dt

dz
p

dt

dp
  

py
dt

dy
  

 

Integrating we obtain 

 

 

t

t

t

xoeq

ep

exoz

ty

txox















2
1

1
4

1

sinh
2

1

cosh

2  

 

Eliminating xo and t from above, we obtain  

 
22 48 zxxyz   
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Exercise  

 

Solve  

 

1)   2, with ssouupq   

 

2) determine the integral surface of 12  yqxpq  which contain the 

curve  oyxz o   

 

Earlier Example  

 

122  qp  

  1,,,, 22  qpqpzyxf  

qfqpfpfzfyfx 2,2,0,0,0   

   qfzfy

dq

pfzfx

dp

qfqpfp

dz

fq

dy

fp

dx








,  

o

dq

o

dp

qp

dz

p

dy

p

dx








22 2222
 

ap   

122  pq  

 122  aq  

12  qq  

dy
y

z
dx

x

z
dz









  

dyaadxdz 12   

cyaaxz  12  

 

Put  

 

 

  2
1

2
1

1
xo

a wrt diff and 1

2

2






a

ay

ab

 

 
  2

1

12 




a

a

y

x
 

 

 

General solution is 

 
a

cy
x

y
x

a

z







  

We can rewrite it as 
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 

  22

22

22 1

yxczx

yxcxzx

a
cxyxzx













 

 

There is no singular solution 

  
  consistentnot  are

bwrt yo

awrt 
1

2
1

2
















y
a

a
xo

cbyaxz

 

 

Exercise:  

 

Find the complete and singular solution of  

  922  qp  

 

TYPE II 

 

Consider  ,x yz p q f p q    

 

Solution  

 

Using the characteristic equation 

 

  
   qffy

dq

pfzfx

dp

qfqpfp

dz

fq

dy

fp

dx
ei








.  

 

Then  

    0,,,,,  qpfqypxzqpzyxf  

 
 fqyfq

fpxfpxfpfz

qfypfx







1  

 

Then  

  
       fqyqfpxp

dz

fpy

dy

fpx

dx








 

  
o

dq

o

dp
  

constant 








bqodq

apodp
 

 

Complete solution b 

   bafbyaxz ,  
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Exercise:  

 

Solve     1 yqxpzqp  

 

Find the complete solution  

  
 prq

ypxpz
1

  

Solve 4   pqzz 43 91   

  pq
zq

z



4

344
 

  0
44 14   pqz
q

z
q

 

 

4.0 CONCLUSION  
 

General solution of First Order Partial Differential Equations results in 

an expression involving an arbitrary function of one variable.   

 

5.0 SUMMARY 
 

The different types of solution of Partial Differential Equations are 

categorised into complete solution, general solution and singular 

solution. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Determine the general solution of 

 

 
 

2. Show that 

is parabolic for a, b, d constants.  
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