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1.0       INTRODUCTION 
 
One of the early mathematicians that attempted to find the area under a curve was a 

Greek named Archimedes.  He used ingenious methods to compute the area bounded 

by a parabola and a chord.  See Fig (1.1). 
 
 
 
 
 
 
 
 
 
 
 
 
In this unit, you will study how to develop necessary tools of calculus to compute 

areas under curve as a mere routine exercise.   The area under a curve gave birth 

to the second branch of calculus known as integration.  The tools  that will be 

developed  here will naturally lead  to the  definition  of integration  in  the  next  

unit  –  unit  2.    Recall that the word to integrate connotes “whole of” which could 

be interpreted to mean “find the whole area of”.  This concept is what will be 

introduced in this unit and this will be fully developed in the next unit. 

 

 



MTH 122                                         MODULE 1 

205 
 

2.0       OBJECTIVES 
 
At the end of this unit, you should be able to: 
 

 approximate area under a curve by the sum of areas of rectangles 

inscribed in the curve 

 approximate  the  area  under  a  curve  by  the  sum  of  the  areas  of 

rectangles circumscribed over the curve 

 define a partition of a closed interval (a, b) 

 compute the exact value of the area under a curve by the limiting 

process. 

 

3.0 MAIN CONTENT  
 

3.1     Area under a Curve 
 
You are quite familiar with the computation of the areas of plane figures such as 

triangles, parallelogram trapezium, regular polygons etc.   Interestingly, you 

studied in elementary geometry that the area of a regular polygon can be computed 

by cutting it into triangles and sum up the areas of the triangles. 

 

You are also aware t hat the area of a circle is   r2.  This formula was derived by the 

method of limit.   You could recall that the limit of the areas of inscribed 

regular polygons as the number of sides approaches infinity is equal to the area of 

the circle.  See Fig. 1.2 a-c 
 

 
 
 
 
 
 
 
 
 
 

Inscribed polygons Inscribed polygons Inscribed polygons 

of 4 sides of 6 sides of 8 sides 
 

Fig. 1.2a                           Fig. 1.2b                               Fig. 1.2c 

 
Let y = f(x) be a continuous function (see the first course on calculus i.e. calculus I 

unit 4 for definition of continuous function) of x on a closed interval [a, b].  In 

this case for better understanding, you assume that the f(x) is positive in the closed 

interval i.e. f(x) > 0.   for all XE [a, b].   Then the problem to be considered is to 

calculate the area bounded by the graph y = f(x) and the vertical lines y = f(a) and y 

= f(b) and below by the x – axis as shown in Fig. 1.3. 
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Fig. 1.3 

 

You can start by dividing the area into n thin strips of uniform width             
(   )

 
   

by lines perpendicular to the x – axis at the end points x = a and n x = b and many 

intermediate points which can be numbered as X1, X2, Xn-1 (see fig 1.4). 
 
 

 
 

The sum of the areas of these n rectangular strips gives an approximate value for the 

area under the curve.  To put the above more mathematically, you can define the 

area of each strip in terms of f(x) and x.  Given that Δx = x1  – a = x2-x1 = .. = b-

xn-1.  For example the area of the rectangular strip ABCD in Fig. 

 

1.4 above is given as: 

 
Area of ABCD = f(x2) . (x1-x0) = f(x2) Δx 

 
Example: 

 
Suppose f(x) = x2-3 in Fig 1.5 with n = 6 were a = 2, b = 8, dx = 8-2 = 6 
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Therefore: dx = 1 i.e. you have 6 rectangular strips. 
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1 
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2    3    4    5    6    7    8 
 

Fig. 1.5 

 
 
Area is given as sum of 
 

f(2) Δx = 1.1 = 1 
f(3) Δx = 6.1 = 6 
f(4) Δx = 13.1 = 13 
f(5) Δx = 22.1 = 22 
f(6) Δx = 33.1 = 33 
f(7) Δx = 46.1 = 46 

 

In fig. 1.4 above the area under the curve is larger than the sum of the areas of the 

inscribed rectangular strips numbered 1 to 6 i.e. sum of areas of strips 

= 1+6+13+22+33+46 = 121 which is less than area under curve. 
 
Example: 

 

Using  the  same  example  Y  =  x2-3  use  circumscribed  rectangular  strips 

instead of inscribed ones to compute the area under the curve.  See Fig. 1.6 
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Area is given as the sum of 
 

f(x) . Δx = 6.1 = 6 

f(x) . Δx = 13.1 = 13 

f(x) . Δx = 22.1 = 22 

f(x) . Δx = 33.1 = 33 

f(x) . Δx = 46.1 = 46 

f(x) . Δx = 61.1 = 61 

 
 

Area = 6+13+22+33+46+61 = 181 

As should be expected this area is greater than the area under the curve f(x) = x2-3. 

 
In the computation with the circumscribed rectangular strips the sides of the rectangles are 

assumed in this case to be the points of the function in their respective subintervals.  In the 

case of the inscribed rectangles, the sides of the rectangles are the minimum values of the 

function in their respective subintervals. 

 
Therefore the area under the curve lies between the sum of the areas of the inscribed 

rectangles and the sum of the areas of the circumscribe rectangles. This takes to the issue of 

limit.  Therefore it will be right to say as n→ α Δx→0 this implies that the  

   (               )            
 

From the foregoing, you can now define the area under curve as the limit of the sums of the 

areas of inscribed (circumscribed) rectangles as their common base of length dx approaches 

zero and the number of rectangles increases without bound.  In symbols you can write the 

above limit as: 

 

     [ (  )    (  )      (    )]      

                       [ (  )    (  )     (    )]      

 

OR 

     
    

∑  (  )

   

    

      
    

∑(   )  

 

   

 

 
SELF-ASSESSMENT EXERCISE 

 
Repeat the above example using n = 10.  Find the difference between the sum of areas of 

the inscribed rectangle (i.e. the minimum area) and the sum of areas of the circumscribed 

rectangles (i.e. the maximum area). 
 

 

3.2       Partition of a Closed Interval 
 
Let [a, b] be a bounded closed interval of real numbers.   A partition of a closed interval 

[a, b] is a finite set of points 

 
P = {a = x0, x1, x2, .., xn-1, xn-b} where a 

= x0 <  x1 < x2 < .. < xn-1, xn = b 



MTH 122                                         MODULE 1 

209 
 

Example: 

 
P = {0, 

1
/6, 

1
/3, ½, 

2
/3, 

5
/6, 1} and 

Q = {0, ¼, ½, ¾, 13 are both partition of {0, 13} 

 
PUQ = {0, 

1
/6, ¼ , 

1
/3, ½ , 

2
/3, ¾, 

5
/6 1} is a partition of [0, 1] PnQ = {0, ½, 1} is 

a partition of [0,1] 

See fig. 10.6(a) to (c) 
 

     P 

P 
 

0            
1
/6           

1
/3        ½          

2
/3           

5
/6       10 

 

Q 
 

0                  ¼                ½                  ¾                  1 
 

PnQ 
 
           1

/6       ¼         
1
/3       ½        

2
/3        

7
/4           

5
/6 

 

 
 
 
 
 

0                                     ½                                       1 

 
A partition of P = {x0,  x1,  .., xn} of [a, b] divides [a, b] into n closed sub interval [x0, 

x1], [x1, x2], …, [xn-1, Xn] 

 
The closed interval 
 

[xr-1, xr] is called the rth  subinterval of the partition. 

 
Given a partition of P[a = x0, x2, …, xn = b] the length of the subinterval s are the same and 

it is denoted by  Δxr = xr- xr-1 

 
This equal to the length of the interval [a, b] divided by the number of subintervals 

n i.e.     
   

 
 

 

Example:      for  p is 
   

 
   ⁄  

 

                             for  Q is 
   

 
   ⁄  

 
Not in all case you will get subintervals of the same length.  Example is PUQ The 

length of x1 – X0 = 1/6 – 0 = 1/6 

The length of x2 – X1 = ¼ - 1/6 = 1/12 
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Such partitions  in which the  subintervals  are not of the  same  length  are  called 

irregular partition. 

 
SELF-ASSESSMENT EXERCISE         

 

Write down a regular partition for 

 
(1)       [2, 8],  n = 12  (2)       [1, 8],  n = 7 

 
Ans: 

 
(i)        [2, 5/2, 6/2, 7/2, 8/2, 9/2, 10/2, 11/2, 12/2, 13/2, 14/2, 15/2 

16/2] 

 
(ii)       [1,  2, 3,  4,  5,  6,  7,  8] 

 

 

3.3       Computation of Areas as Limits 
 
In this section you will combine the results of section 3.1 and 3.2 to compute the 

areas under curves using the limiting process. 
 
Example 
A good starting point is to consider the area under the curve Y = X (see Fig. 10.7) 

P                                                                    P 

f(b) 
 
 
 
 

 
f(a)                 Q 

 
P              A                                                          B 

a = x1 x2                                                                    ½ , xn = b 

Fig 10.7 
 

which the interval Xє [a, b] let there be n-regular partition of [a, b] i.e. 

 

     
   

 
 

 
P [a, x1, x2, .., xn-1, xn = b] 

 
x1 = a + xx 

 

x2 = a + 2Δx x3 = a + 3Δx 

 
xn-1 = a + (n-1) Δx 
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Areas of inscribed rectangles are 
 

f(a)  . Δx = a.Δx 

f(x1) . Δx 
f(x2) . Δx 

.. 

= 
= 

(a+Δx).Δx 
(a+2Δx). Δx 

f(xn-1) Δx = (a+(n-1)Δx) . Δx 

 

Sum of the areas of the rectangles is given as 

 

S = (     (    )    (  (   )  )   ) 

   = [  (       (   )  ] 

    =    (∑     
   )  )   

∑ 

   

 
(   ) 

 
   

(                                                         ) 

  

   *   
(   ) 

 
  +     

but    
   

 
   therefore  

  *   
(   ) 

 

   

 
+
   

 
  

    = *  
       

 
+
   

 
 

Taking limit as n →∞ 

           *  
       

 
+
   

 
   

           = 
(     )(   )

 
      

   

 
 

            =   
(   )(   )

 
   

= 
   

 
 (   ) 

 

In fig. 10.8, the area of trapezium AQPB is the same as the area under the curve and 

as you know the area of trapezium is given as: 
 

½ base x sum of two parallel sides 

=  ⁄ (   )   ( )   ( ) 

=   ⁄ (   )(   ) 
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Example 
Find the area under the graph Y = x + 1  0 ≤ x ≤ 6 
 
Solution: 
Let n be a positive integer that there be a partition of [a, b] into n regular partition. 

 

Therefore;  Δx = b n 
 

x1 = Δx x2 = 2Δx x3 = 

3Δx 

.. 

xn-1 = (n-1) Δx 

C 
 
 
 
 
 
 
 
 

B                                                   n-1      n 
 

 

A 
 

1 

 

2 
   

D 

O x1  x2 xn-1 x1 = 6 

 

Fig. 10.8 
Area of (n-1) rectangles is given as 

f(0).Δx    =   1.Δx 

 (  )    (    )    

Sum of areas of rectangles is  

     (    )   (     )   (     )     (   )(   

 )    

    = (   (    )  (     )  (   )(    )  ) 

    = [     ∑       
   ]   

  *   
(  (   ) )

 
  +     let    

 

 
  

then  

   
 

 
 *

(  (   ) )

 
+
 

 
  

    = 
 

 
(  

 

 
 
   

 
).b 

Taking limits as n →∞ 

   
   

     
   

 

 
     

   
(  

 

 

(   )

 
) 
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     =    (  
 

 
) 

   
   

    
  

 
 

SELF-ASSESSMENT EXERCISE 
Show that the area of the trapezium ABCD in Fig. 10.8 is equal to b(b+2) 

                 2 

4.0       CONCLUSION 
In this unit, you have studied how to find an approximate value of the area under a 

curve by computing the sums of areas of rectangles inscribed under the cure and 

circumscribed over if you have defined a partition of a closed interval.   You have 

studied that as the number  of partitions of a closed interval [a, b] is increased 

without bound the value of the sum of the areas of the rectangles (inscribed or 

circumscribed) approaches the exact value of the area under the curve in the given 

interval [a, b] that is the limit of the sum of areas of the rectangles is equal to the 

exact area under the given curve as the number n of partition tends to infinity or the 

length dx of the subinterval of the partition tends to zero. 
 
 

5.0       SUMMARY 
In this unit you studied how to 

 compute the minimum value of area under a curve i.e. sum of area of rectangles 

inscribed under a curve within an interval 

 compute the maximum value of the area under a curve i.e. the sum of areas of 

rectangles circumscribed over the curve. 

 define a partition of a closed interval [a, b] i.e. a= x1 < x2 < … < x2 = b = P[a, b] 

 compute the exact area under a curve in a given interval [a, b] by taking the limit of 

the sum of the areas of the rectangles (inscribed or circumscribed) as the number n 

of partition of [a, b] is increased without bound i.e. A = lim ∫n where dx = b – a 

n   ∞                   n 
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7.0 TUTOR-MARKED ASSIGNMENT  
 

1.         Show that the sets 

 
{0, 1} {0, ½, 1}, {0, ¼, ½, 1} and 

{0, 1/4 , 1/3, ½, 5/8, 1} are partition of {0, 1} 

 
2.       Which of the partition of [0, 1] in exercise (1) above are regular? 

 
3. Find the minimum and maximum values of the area under the curve f(x) = 2x for 

xЄ[0, 1] and P(0, ¼, ½, 1) 

 
2.         Find the minimum value of the area under the curve f(x)= 1- x xe [0,2] P(011/3, 

¾, 1, 2). 

 
3. Find the area under the curve Y = x2  XЄ[0, b] by taking appropriate limits. 

 
4. Find the area under the curve Y = mx a ≤ x ≤ b by taking appropriate limits. 
 
 

5. Sketch the graph of Y = X + 1.   Divide the internal into n = 6 subintervals 

with dx = (b – a)/6.  Sketch the inscribed rectangles. 

 
6.         Repeat ∑ x 7 but this time sketch the circumscribed rectangle. 

 
7.         Compute the sums of areas in Є x 7 and Є x 8 above. 

 
8. Find the area under the curve Y = x + 1 a ≤ b by taking appropriate limits of 

results of exercise 9 above. 
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1.0       INTRODUCTION 
 
In unit 1, you studied how to compute the area under a curve and showed how 

you could estimate it by computing sums of area of rectangles.  Using the above 

estimate you applied the concept of limit to get the exact value of the area under a 

curve.  These methods were applied to functions or graphs that could easily be 

sketched i.e. not too complicated functions.  In this unit, you will be introduced to 

the famous path taken by Leibniz and Newton in showing how exact areas can be 

computed easily by using integral calculus. It is necessary you refer once more to 

unit 1 of this course before embarking on this one.  It will help you have a proper 

grasp of this unit if you do so. 
 

2.0       OBJECTIVES 
 
At the end of this unit, you should be able to: 

 
 define the definite integral of a function within an interval [a, b] 

 evaluate definite integrals of function 

 state the fundamental theorem of integral calculus. 

 

3.0  MAIN CONTENT 

 

3.1 Definition of Definite Integral 
 
In unit 1, you studied that the sum of the areas of inscribed rectangles gives a lower 

(minimum) approximation of the area under the curve of the function f(x).  If you list all the 

values of the function f(x) in a given interval [a, b] and take the least among these value you 

will have what is known as the infimum of f(x) for all xЄ [a, b] 

 

i.e. Inf f(x) XЄ[a, b]. 

let Inf f(x) = Mr and XЄ P[a, b] 

when dxr = xr-xr-1. then the area is Mr. dxr.  The sum of such area is 

AL = ∑ Mr (xr – xr-1) is called the Lower Sum of the function f(x). 
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If you take the maximum value of f(x) within [a, b] and find their areas i.e. Mr = ∫up f(x) 

XЄ [xr-1 xr] then the Upper sum for the areas is given as 

 
Au = ∑ Mr(xr – xr-1) 

r=1 

 

No known concept has been introduced.  You are rewriting sum of areas of a rectangles 

inscribed under the curve f(x) as AL = ∑ Mr (xr – xr-1) and the sum of areas of rectangles 

circumscribed over f(x) as 

Au = ∑Mr xr – xr-1) 

 
Once you keep the fact you will not run into any difficulty understanding what follow 

next. 

 
Definition:  The unique number I which satisfies the inequality 

 
AL(P)≤ I ≤ Au(P) for all partitions P of [a, b] is called the definite integral (or more 

simply the integral of f on [a, b] and is written as: 

 

  ∫ ( )

 

 

   

This symbol S dates back to Leibniz and it is called the integral sign. It is an elongated S, 

which presents sum. The numbers in this case are called the limits of integration. This 

expression ∫  ( )
 

 
   read integrating from b to a with respect to x  

 

In the above definition, it has been assumed that f(x) is continuous in the closed [a, b]. 

This condition guarantee the existence of a number I such that 

 
AL(p) ≤ I ≤ AL(p) 

 
The prove of the above theorem could be found in the text suggested for further 

reading given at the end of this course. 

 

If f(x) ≥ 0   X Є[a, b] then 

 
 

  ∫  ( )
 

 
   = Area under the curve f(x) 

  
 

Example 

Given that f(x) = K    XЄ[a, b] show that ∫  ( )
 

 
   = K(b – a) 

Solution:  Let P = {u, xo, x1, x2, .., xn = b} be any partition of [a, b] 

 Since f(x) = K   XЄ [a, b] the f(x0) = f(x1) = … = f(xn) 

 
Let AL (P) = ∑ m∆Xr = K∆X1 + K + ∆X2+..K∆Xn 

= K(∆X1 +...+∆Xn) = K(b-a) 
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Also 

Au(P) = ∑Mr∆Xr = K(b-a) 

But 

AL(P) ≤ ∫  ( )
 

 
   ≤ Au(P) 

 

then K(b-a) ≤ ∫  ( )
 

 
   ≤ K(b-a) 

 

 ∫  ( )
 

 
    (   ) 

 

Example 

 

Given that f(x) = x show that ∫  ( )
 

 
   = ½ (b2-a2) 

 
 

Solution: Let P{axo, x1, .. , xn, = b} be an arbitrary partition of [a, b]. 

f(x) = x for XЄ [Xr, Xr2,] for all such subintervals. 

So Mr ≤ f(x) mr XЄ [xr, xrt1] such mr and mr exist for each 

subinterval. 

Let Mr = xr and mr = xr-1 

then       

  ( )  ∑     

 

   

 ∑     

 

   

 

    

=  x1(x1-xo)+x2(x2-x1)+…+ xn(xn-xr-1) 

and          

           

  ( )  ∑     

 

   

 ∑       

 

   

 

= xo(x1-xo) + x1(x2-x1) + .. x2-1(x-xn-1) 

For each index, 

 

xr-1 ≤ ½ (xr + xr-1) ≤ xr 

 
Therefore 

 

AL(P) ≤ ½ (x1+xo) (x1-xo) + ½ (x2+x1) (x2-x1) + …+ ½  (xn+xn-1) 

(xn-xr-1) ≤ Au(P) 

but ½ (x1+xo) (x1-xo) + ½ (x2+x1) (x2-x1) + .. + ½ (xn+xn-1) 

(Xn+Xn-1) 

 

=   ⁄ (  
    

    
    

           
 )    ⁄ (      

 ) 

   ( )  
 
 ⁄ (  

    
 )    ( ) 

   ( )  
 
 ⁄ (     ) 

 ∫  ( )    
 

 
 

The following properties of definite integral are hereby stated without their 
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proofs are beyond the scope this course: 
 

1. If a < c < b then ∫  ( )  
 

 
 ∫  ( )  

 

 
 ∫  ( )  

 

 
 

2. If a < b then  ∫  ( )  
 

 
 ∫  ( )  

 

 
 

3. ∫  ( )  
 

 
   

Example: Given that 

∫ ( )  

 

 

      ∫  ( )  

 

 

   ∫ ( )  

 

 

   

Find (i) ∫  ( )  
 

 
     (ii) ∫  ( )  

 

 
       (iii) ∫  ( )  

 

 
      (iv) ∫  ( )  

 

 
 

Solution: (i) ∫  ( )  
 

 
      

      ∫  ( )  
 

 
 ∫  ( )  

 

 
 ∫  ( )  

 

 
       

Let t = 3 i.e. ∫  ( )  
 

 
 =∫  ( )  

 

 
 ∫  ( )  

 

 
       

   (ii)  ∫  ( )  
 

 
 ∫  ( )  

 

 
 ∫  ( )  

 

 
  

Let t = 0   ∫  ( )  
 

 
∫  ( )  
 

 
 ∫  ( )  

 

 
         

    (iii) ∫  ( )  
 

 
                                                        

(iv) ∫  ( )  
 

 
  ∫  ( )  

 

 
 ∫  ( )  

 

 
 ∫  ( )  

 

 
  [    ] 

SELF-ASSESSMENT EXERCISE 

Given that ∫  ( )  
 

 
   ∫  ( )  

 

 
        ∫  ( )  

 

 
   

Find (i) ∫  ( )  
 

 
     (ii) ∫  ( )  

 

 
      (iii) ∫  ( )  

 

 
        (iv) ∫  ( )  

 

 
    

Answer: (i) 9     (ii) – 5         (iii) – 2     (iv)  2                                               
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3.3       Fundamental Theorem of Integral Calculus 
 

To find the value of the function F(x) = ∫  ( )  
 

 
 for some simple function it could 

easily be evaluated.  Either by the limiting process discussed in unit or by direct 

evaluation as was done in the previous section.  Such process might prove very 

laborious for certain classes of functions.  In this section you will examine the direct 

connection between differential calculus and integral calculus.  This connection was 

made possible by looking at the summation process  of  finding  areas  and  volumes  

and  the  differentiation  process  of finding the scope of a target to a curve.  It is quite 

interesting that the process of carrying out inverse differentiation yields an easy tool 

of solving the summation problem. 
 
So you will now discuss the proof of the fundamental theorem concept behind the 

theorem is that before you can evaluate a definite integral ∫  ( )  
 

 
   you will first of 

all find a function Fl(x) whose derivative is f(x). i.e.    

F1(x) = f(x)  XЄ (A, B).  

 

You will now as first step study the proof of the following theorem: 

 

Theorem 1:   If f(x) is a continuous function on [a, b], the function F(x) 

defined on [a, b] by setting   F(x) = ∫  ( )  
 

 
 is a(i) continuous function on 

[a, b] and (ii) satisfies F1(x) = f(x) for all x in (a, b). 

 
Proof:  You will begin with xЄ [a, b] and show that: 

   
   

 (   )   ( )   ( )

 
 

 
In figure 2.1 F(x +h) = area from a to x + h 

 

 
 
 

F(x) = area from a to x  

F(x + h) - F(x) = area from x to x + h 

(Area = base x height) 

F(x + h) – F(x)  = area from x to x + h f(x) if h 0 

h                                  h 
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(note f(x) = height of the area under curve in Fig. 2.1 

 
If x < x + h ≤ b  then 

 

 (   )   ( )  ∫  ( )  
   

 
 ∫  ( )  

 

 
  

(since from statement of theorem F(x) = ∫  ( )  
 

 
 

 

It follows therefore that 

 

 (   )   ( )  ∫  ( )  
   

 
 ∫  ( )  

 

 
  

 ∫  ( )  

   

 

 

 

Let Mh = maximum value of f(x) on [x, x+h] 

and mh = minimum value of f(x) on [x, x+h ] 

since Mh (x+h – x) = Mh.h and   mh (x+h – x)  =  mh.h 

therefore, Mh = upper sum (see UNIT 1) and mh = lower sum (see UNIT 1) 

therefore 

     ∫  ( )  

   

 

      

 
 

= mh.h ≤  F(x+h – F(x)  ≤ Mh.h  

    h 

 
since f(x) is a continuous function on [x, x + h] therefore 

 
   
   

      ( )     
   

     

thus       
 (   )  ( )

 
  ( )  - I 

In a similar manner you can show that if X Є (a, b), then 

      
 (   )  ( )

 
  ( )  - - I 

Now if xЄ (a, b) then equation (I) and (II) hold 

 

Thus       
 (   )  ( )

 
  ( ) 

And       
 (   )  ( )

 
   ( ) 

therefore    F
1
(x) = f(x) 
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since F1(x) exists then F(x) must be continuous on (a, b).  Before you 

prove the fundamental theorem of calculus.  Look at this definition. 

 
Definition: 

 
A function F(x) is called an anti-derivative for f(x) on (a. b) if and only if 

 
(i)        F(x) is continuous on (a, b) and 

(ii)       F1(x) = f(x) for all XЄ (a, b) 

 
Using the above definition you can rewrite theorem 1 as 
 

If f is continuous on (a, b) then 

 
F(x) = ∫  ( )  

 

 
 

The above now says to you that you can construct or find an anti-derivative for f(x) by 

integration f(x).  The next theorem you are going to study will tell you that you can evaluate 

the definite integral ∫  ( )  
 

 
by finding an anti-derivative for f(x).                                                

 

The Fundamental Theorem of Integral Calculus: 

 

Let f(x) be continuous for all xЄ (a, b) If P(x) is an anti-derivative of f(x) for all 

xЄ (a, b) then 

 

F(x) = ∫  ( )  
 

 
 = P(b) – P(a) 

 

Proof: In theorem 1, the function  F(x) = F(x) = ∫  ( )  
 

 
 

is an anti-derivative for f(x) for all XЄ (a, b). 

 
If P(x) is another anti-derivative for f(x) for all xЄ (a, b), then it implies that 

both P(x) and F(x) are continuous for all XЄ (a, b) and also will satisfy that P1(x) 

= F1(x) for all XЄ (a, b).  There exist a constant C such that 

 
F(x) – P(x) = C 

 
Since F1(x) = P1(x) and derivative of a constant is zero 

i.e. F(x) – P(x) =   C          F1(x) – P1(x) = 0 

 
Since F(a) = 0 then  P(a) + C = 0 and C = -P(a) 

This implies that 

F(x) = P(x) – P(a) for all XЄ (a, b) Thus    

F(h) = P(b – P(a) (x = b) 
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Since   F(b) = F(x) = ∫  ( )  
 

 
 = P(b)-P(a) 

which is the required result. 

 

3.4       Evaluation of Definite Integral 
 
You are now set to seek or construct anti-derivates F(x) which will evaluate the definite 

integral given as F(x) = ∫  ( )  
 

 
 

Example:  Find ∫     

 

 

Solution Let F(x) = ½x2 as an anti-derivative 

 

Then ∫    
 

 
 = ½ (b2 – a2) 

 

 

Find the ∫     
 

 
 when n is a positive integral the anti-derivative to use is 

 

 ( )  
 

   
     

 F
1
(x) = x

n
 => ∫   

 

 
  ( )    ( ) 

= 
 

   
(         ) 

 

Notation: 

∫ ( )  

 

 

 [ ( )] 
   ( )   ( ) 

thus  ∫     *
 

   
    +

 

 

   ⁄
 

 
(     ) 

 

Example: 

 

∫(         )  

 

 

  

Let F(x) = 
  

 
 
   

 
    

then ∫ (         )
 

 
   *   

 

 
   

  

 
+
 

 

      

Example: 

 
Evaluate the following integrals by applying the fundamental theorem.  



MTH 122                                         MODULE 1 

223 
 

(i)  ∫ (   (   )  
 

 
 

(ii)       ∫
  

(   ) 

 

 
 

 

(iii)      ∫ ( 
 
 ⁄    ⁄  

 
 ⁄ )

 

 
   

 

(iv)      ∫ (      )
 

 
 

 
 

(v)       ∫
   

  
  

 

 
 

 

(vi)       ∫ (√  
 

  
)

 

 
   

(vii)     ∫      
 

 
 

 
 

(viii)    ∫   (   )  
 

 
 

 

(ix)      ∫ √   
 

 
   

 
 

(x)       ∫ (   )  
 

 
   

 

 

Solution: To evaluate ∫ (   )(   )  
 

  
 

 
 

you expand the function (x - 1) (x -1) 

 
=  x2 – 2x + 1 

 

(i)        ∫ (   )(  )   ∫ (       )  
 

 

 

 
                                   

 

let F(x) = 
1
/3 x

3 - x2 + x serve as anti-derivative 

 

therefore  ∫ (       )  [  ⁄        ]
 

  

 
                                                                               

 

(ii)       ∫
  

(   )

 

 
 

construct a function with derivative as  
 

(   ) 
  it is not difficult to see that 

 

  
*
 

   
+  

 

(   ) 
  

 

therefore:  ∫
  

(   )
 *

  

   
+
 

 

 
 

  

 

 
 

 

 

(iii)      ∫ ( 
 
 ⁄    ⁄    ⁄ )   
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let F(x) = 4/7x3/4 + ½ x ½ ) = 4/7 x 7/4 + 1/3 x 3/2 

 

therefore ∫ ( 
 
 ⁄    ⁄    ⁄ )

 

 
 *  ⁄  

 
 ⁄    ⁄  

 
 ⁄ +
 

 

    

0                                                                                                     0 

 
 

(iv)      ∫ (       )  
 

 
 

 
 

Let F(x) = 
    

 
 
  

 
 

∫(       )

 

 

 *
    

 
 
  

 
+
 

 

 

 

 
    

 
 
  

 
 

(v)       ∫
   

  

 

 
 ∫ (   )  

 

 
 

Let F(x) = 
 

 
 

 

  
 

 

then ∫
   

  

 

 
 *

 

 
 
  
+
 

 

 

 (vi)      ∫8(√E – 1/t2)dt 

Let F(t) = 2t3/2 + 1 

  3       t 

∫8√t – 1/t2 = [2t3/2   + 1 ]8 = 32√2 – 37 
1                              [ 3         t  ]1        3       24 

 
(vii)     ∫3(6 – t )dt = ∫3(6 – 1)dt 

1   t4                         1t4      t3
 

 
F(t) = 1 – 2 

∫3(6 – 1)dt = [1 – 2]3 = 40 
1 t4      t3               2t2   t3]1      27 

 

(x)       ∫2(x – 1) x2 dx = ∫2(x3 – x2)dx 
1                                              1 

 

F(x) = x4 – x3
 

       4    3 

 
∫2(x3 – x)dx = [x4 – x3]2 = 17 [4 3] 1      12 

 
(xi)      ∫4√x + 1dx 

1 
 

F(x) = 2/3(x + 1)3/2
 

 

then ∫4√x + 1 = [2/3(x + 1)3/2]4 = 10√5 -4√2 
1                                                                 1       3       3 
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(xii)     ∫1(x – 1)7dx 

 
F(x) 1(x – 1)8

 

8 

therefore: ∫1(x – 1)7 = [1(x – 1)8]1 =    -1 
0                     [8            ]0            8  

 

4.0 CONCLUSION 
 

In this unit, you have studied how to define a definite integral.   You have seen the 

connection between the summation process of finding the area under a curve and the 

differentiation of the function representing the area under the curve.  You have studied 

that the fundamental theorem of integral calculus is the bridge between the summation 

process and the differentiation process i.e. you can find the area under a curve by 

finding an anti-derivative for the curve.  You have applied the theorem in evaluation of 

definite integrals. 

 

 

5.0       SUMMARY 
 

You have studied the following in this unit: 

 
 How to define a definite integral 

 How to evaluate definite, integral using the following properties: 

 

(i)        ∫  
 

 
  , (ii) ∫  

 

 
 ∫   ∫  

 

 

 

 
and (iii) ∫bf = -∫a f 

 

 How to apply the fundamental theorem of integral calculus in evaluating the definite 

integral of rational functions. 
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(1) ∫1(4x – 3)dx (11) ∫2(√x – 1)dx 

 0   
 
 

(2) 
 

∫05x – 3dx 
 

(12) 
 

∫2(3t + 4t2)dt 

 1  1 
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7.0 TUTOR-MARKED ASSIGNMENT 
  
 

Evaluate the following integrals by applying the fundamental theorem of integral 

calculus. 
 

 
 

1                 √x 
 
 
 
 

 

(3)       ∫1(3x + 2)dx                                        (13)  ∫3(x2  + 1)dx 
0                                                                                                            1        x2

 

 
 

(4)       f5√x                                                     (14)   ∫1x2(x – 1)dx 
0 

 

 

(5) ∫a(x – a)2dx (15) ∫4(t3 – t)dt 

 -c 1 
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(6) 
 

∫2(5 + tx)dx 
 

(16) 
 

∫1(x + 1) (x – 2)dx 

 1        -2  

 

(7) 
 

∫2(1 – x)dx 
 

(17) 
 

∫2x-1/2dx 

 0 1  

 

(8) 
 

∫-t(1 + x) dx 
 

(18) 
 

∫22(x + 3)dx 
-4   x2                                                                                                          1          x3

 

 
(9)       ∫-11                                                      (19)   ∫3(√x + 1)2

 

-2 x4                                                                                                            1                  √x 
 

(10) ∫2(3 + 2x – x2)dx (20) ∫3(2v - 3√v)dv 

 -2 2  
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UNIT 3         INDEFINITE INTEGRAL 
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1.0       INTRODUCTION 
 
You have studied rules for differentiation of various functions such as polynomids 

functions, rational functions, trigonometric function of sines, cosines, tangent etc. 

hyperbolic functions and then inverses, exponent and logarithm functions. All these 

you studied in the first course in calculus. However, the reverse process i.e. anti-

differentiation is some how not as straight forward process as the differentiation. The 

reasons being that there are no systematic rules or procedures for anti-differentiation.  

Rather success on techniques of anti-differentiation depends much more on your 

familiarity with differentiation itself.  So before embarking on the study of this unit, it 

might be worth the time to practice some of the differentiation in calculus I. Do not 

be discouraged when you come across functions whose derivatives are not very 

common.  In this unit and subsequent ones you will study some basic methods of anti-

differentiation. 
 

2.0       OBJECTIVES 
 
At the end of this unit, you should be able to: 
 

 evaluate indefinite integral as anti-differentiation 

 recall notations for integration and 

 recall properties of indefinite integration 

 evaluate   indefinite   integrals   using   the   properties   of   indefinite 

integration. 

 integrate differential equations that are separable. 
 

3.0      MAIN CONTENT 

 

3.1 Indefinite Integration 
 
In this section an informal definition of what is anti-differentiation will be given.  

Suppose that the derivative of the function is given as: 
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dy = f(x) 

dx 

 
and you were asked to find the function y = F(x).  For example you are given the differential 

equation.  
  

  
    

 

From your experience with differentiation you can easily know that y = x2
 

since dy = 2x  

         dx 

 

Interestingly, it is not only y = x2 that can be differentiated to give dy = 2x.  

dx 

Other function like y = x2- 1, y = x2  + 2, y = x2  + a, y = x2  + 4 can be 

differentiated to yield dy = 2x 

       dx 

In general any function of this form y = x2  + c, where C is any constant will 

yield a differential equation of this type dy = 2x 

 dx 

You are now ready to take this definition. 

 
Definition 1:  An equation such as dy = f(x) which specifies the derivative as   

        dx 

a function of x (or as a function of x and y) is called a differential equation. For example 

dy = sine 

dx    is differential equation 

 
Definition 2:   A function y = F(x) is called a solution of the differential equation dy = 

f(x) if over domain a<xcb F(x) is differentiable and 

  dx 

d F(x) = F1(x) = f(x) 

dx 

 
in this case F(x) is called an integral of f(x) with respect to x. 

 
Definition 3:  If F(x) is an integral of the function f(x) with respect to x so is the 

function F(x) + C an integral of f(x) with respect to x, where c is an arbitrary 

constant.  If  d  F(x) = f(x)  so also is F(x) + C i.e. d [F(x) + C] = 

dx                                                        dx d 

F(x) + C dc = df(x) + 0 = F1(x) = f(x) 

    dx              dx     dx 

 
From the above if y = F(x) is any solution of dy = f(x) then all other solutions are contained 

in the formula y= F(x)+C         dx   where C is an arbitrary constant this gives rise to the 

symbol. ∫f(x) dx = F(x) + C – (1) where the symbol S is called an integral sign (see unit 2).  

Equation 1 is read the integral of f(x)dx is equal to F(x) plus C  since dy = 2x and a typical 

            dx 
 

solution is F(x) = x2 + C. then d F(x) = 2x = d(x2+C) 

dx                     dx 

=  y = x2 + C 



MTH 122                                               INTEGRAL CALCULUS 

230 
 

and dy = d  (x2 + C) = 2x dx dx 

 
Example: If y = x dy = 1 dx 

= ∫dydx = ∫1dx =  x + C 

dx 

 
In other words, when you integrate the differential of a function you get that 

function plus an arbitrary constant. 

 

Example: Solve the differential equation dy = 4x3
 

   dx 
 

Solution: let dy = 4x3
 

dx 

 
then dy = 4x3dx integrate both side you get ∫dy = ∫4x3dx but d(x2)=4x3dx.  

dx 

therefore  y = ∫4x3dx = ∫d(x4) = x4  
C. 

 
Example: Solve the differential equation dy = 2x + 1  

      Dx 

 

= dy = (2x + 1)   dx 

 
but d(x2 + x) = 2x + 1 dx 

 

therefore ∫dy = ∫ (2x + 1)dx becomes y =  ∫ dx2 + x) = x2 + x + C. compare ∫d(F(x) ) = F(x) with 

the result of UNIT 2. 

 

Example: Solve the following differential equation: 

 
 

(1) dy = x2 – 1 

dx 

(2) dy = 1 + x 

dx    x2 

 

(3) 
 

dy = x 
 

(4) 
 

dy = 2x + 3 

 

(5) 

dx    y 

dy = (x2 + √x)dx 

 

(6) 

dx 

dy = 3x2-2x+3 
 dx  dx 

(7) ds = 3t2-2t-6 (8) dv = 5u4-3xu2-1 

 dt  du 

(9) dx = 8√x (10) dy = (2x2- 1) 

dt                                            dx             x2 

 
Solution:   dy = x2- 1  

       dx 

= dy (x2 – 1)dx 

∫dy = S(x2-1)dx  
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but d(x3 – x) = (x2-1)dx 

   3 

therefore: y = ∫d(x3-x) = x3 – x + C 

3          3 
 

(2) dy = 1 + x  

 dx x2
 

 
∫dy = S(1 + x)dx  
   x2 

 
d(-1 + x2) = (1 + x) dx  

     x 2       x2
 

 
y = ∫d(x2 – 1) = x2   - 1 + c 

2     x      2     x 
 

(3) dy       =         x  

 dx y 
 

∫ydy = ∫x dx 
 

d(y2) = ydy  and d(x2) = xdx 

2                          2 
 

therefore: ∫ydy = ∫d(y2) 

2 
 

∫d(y2) = ∫d(x2) 

2            2 

 
=    y2 = x2 + C1 

2      2 

 
y2 = x2 + 2C1 

 
y2 = x2 + C 

 

(4) dy =  2x + 3 dx 

 
∫dy = ∫ (2 + 3) dx 

y = ∫d(x2 + 3x) = x2 + 3x + C  

(5)       dy = (x2 + √x) 

dx 
 

dy = (x2 + √x) dx 

∫dy = ∫ (x2 + √x)dx 

y = ∫d(x3 + 2x3/2) = x3 + 2x3/2 + C 

3     3           3      3 
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(6) dy = 3x2 – 2x – 5 dx 
 

dy = 3x2 – 2x – 5 
 

∫dy = ∫ (3x3-x2-5x) = x3-x2-5x+C 

 
(7) ds = 3t2 – 2t - 6  

 dt 
 

∫ds = ∫ (3t2 – 2t – 6)dt 
 

∫ = ∫d(t3-t2-6t) = t3- t2 – 6t + C 

 
(8) dv  = 5u4 – 3u2 - 1  

 du 

 
∫dv  =  ∫ (5u4 – 3u2- 1)du 

V = ∫d(u5- U3 – U) = U5 – U3 – U + C 
 

(9) dx = 8√x dt  

 dt 
 

dx = 8√x dt 

 
= ∫dx = ∫8 dt 

√x 
 

∫d(2√x) = ∫d(8t) 

2√x + Cx = 8t + Ct 

2√x = 8t + Cx + Ct 

2√x = 8t + C, where C = Cx + Ct 

 
(10)     dy = (4x2 – 1) 

dx                x2
 

 

∫dy = ∫ (4x2 – 1)dx x 

y = ∫d(4x3 – 1) = 4x3  –  1 + C 

3      x        3      x 

 
 

SELF-ASSESSMENT EXERCISE 

 

Evaluate the following: 

 
(1) ∫dx                                          (2)       ∫ (x + 1)3dx  
 x5 

 

(3) ∫ (ax2 + b)dx                            (4)       ∫ (x3 + 1) dx  
  x6 

 
(5) ∫ (x3  – 1)dx                              (6)       ∫ (t2 – a) (t2 – b)dt  
      x2 
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(7) ∫ (√x – 1)dx (8) ∫ (5x)4dx 

 x1/3  x5 
 

(9)       ∫dx                                          (10)     ∫ (x – 1)2 + 1 )dx 

√1+x                                                                     (x+2)2
 

 

Ans: 

 
(1)       -1 

4x4+C                                     (2)       ¼ (x + 3)4 + C 

 
(3)       1/3ax3 + bx + C                      (4)       -1  5x3  + 2 + C 

10      x5
 

 
(5)       ½ (x3 + 2)                              (6)       1t5+ 1(b-a)t3 – abt + C 

x                                               5      3 

 
(7)       2/3 x3/2 – 3/2 x2/3 + C               (8)       125 + C 

3x15
 

 
(9) 2√x + 1 + C                            (10)     1/3(x – 1)3 – 1 + C (x+1) 

 

3.2       Properties of Indefinite Integral 

 

So far, you would have been doing much of guess work to find an appropriate anti-

derivative that will fit the answers above you will now be given some properties of 

indefinite integral.   It would help reduce the amount of guesswork when evaluating 

integrals. 
 
(1) The integral of the differential of a function U is U plus an arbitrary constant.  ∫du = 

u + c 

 
(2)       A constant may be moved across the integral sign Sadu1 = aSdu 

 
(3) The  integral  of  the  sum  of  two  differentials  is  the  sum  of  their integrals ∫ (du 

+ dv) = ∫du + ∫dv 

 
(4) The integral of difference of two differential is the difference of their integrals ∫ (du - 

dv) = ∫du - ∫dv 

 
(5)       As a consequent of 2, 3 and 4 above, you have that 

∫a(du ± dv) = a∫du ± a ∫dv 
 

∫du1± du2± du3…duh = ∫du1± ∫du2± .. ± ∫duh 

(7) If n is not equal to minus 1, the integral of Undu is obtained by adding 

one to the exponent dwindling by the new exponent and adding an 

arbitrary constant ∫undu = Un+1  =  C 

  n + 1 
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Find the following 

 
Example (1)   ∫ (5x10 – x8 + 2x)dx  = ∫5x10dx – ∫x8dxt ∫2xdx 

 
=   5x10+1 – x8+1 + 2x1+1 

10+1      8+1    1+1 

 
=   5x11 – x9 + x2 + C 

11       9 

 
(2)   ∫x3/2dx  =  x3/2+1 = x5/2 

3/2
+1          5/2

 

 
=   2/5 x5/2

 

 
 

(3)   ∫    3x + 1dx 

Let u = 3x+1 
 

then du = 3  = du = 3dx  

    dx 
 

Therefore ∫√3x+1dx = ∫u1/2  du 

3  

here dx = du 

3 
 

therefore 1/3Su1/2 du = 1/3 u1/2+1
 

½+1 

= 1  2u3/2 = 2U3/2
 

          3   3         9 

=     2(3x+1) 

9  

(4)   ∫√- 1 dx 

Let U = 4x – 1 du = 4 = dx = du  

 dx 4 

 

then ∫√4x-1dx = ∫u1/2  du 

       4 

 
¼ ∫u1/2 du = U1/2+1 = 2(4x-1)3/2 + C 

½+1      12 
 

 

Examples: Evaluate the following integrals 

(i)        ∫√1=4x            (ii)   ∫ √   
 

       

(iii)      ∫   5    2x+1                 (iv)      ∫  4    4x - 2  
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(v)       ∫   6   6x + 4 
 

Solution: 
 

(i)        ∫ √1-4xdx let U = 1- 4x then du = 4, dx = -du 

      dx                 4 
 

therefore ∫√1-4x dx = ∫u1/2(-du) = - ¼  ∫u1/2du 

= - 1 [2u3/2] = - 1(1-4x)3/2 + C 

4 [3     ]         6 
 
 

(ii)        ∫ √   
 

       

then du = 1  du = dx dx 

therefore   ∫ 3   1 +  x dx = ∫ u1/3du = 3u4/3 = 3(1 + x)4/3 + C 

       4         4  

(iii)      ∫   5  2x  1 dx  let U = 2x + 1 

then du/dx = 2         = dx = du/2 
 

therefore    ∫  5  2x +1 dx = ∫ U1/5 du = ½ [5U6/5] = 5(2x+1)6/5
C 

      2            6 

=  5(2x + 1)6/5 + C 

12 
 

(iv)      ∫   4   4x-2 dx  let U = 4x - 2  

then du = 4dx         dx = du/4 

∫   4  4x -2dx = ¼ ∫U1/4 du = ¼ [4/5(4x-2)5/4] 
 

= 1/5 (4x-2)5/4
 

 
(v) ∫   6  6x+4 dx  let U = 6x + 4 then dx = du/6 

∫   6   6x+4 dx = 1/6 ∫U1/6 du = 1/6.6/7 (6x+4)7/6+C 

 
= 1/7 (6x + 4)7/6 + C 

 
 

Exercise:  Evaluate the integrals 

 
(1)       ∫ (8x7 – 6x5 – x4 + 3x3 + 2) dx 

 
(2)       ∫ (6x + 1)1/6dx  

(3)       ∫ (1 – 4x)1/4dx  

(4)       ∫ (4 – 10x)1/10dx  
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(5)       ∫ (x – 1)1/3dx 

 
Ans: 

 
 

(1)       x8 – x6 – x5 + 3x4 + 2x + C 

 5      4 

(2)       1 (6x+1)7/6 + C 

7 

(3)       -1(1 – 4x)5/4 + C 

5 

(4)       -1(4 – 10x)11/10 + C 

11 

(5)       3(x – 1)4/3 + C 

4 

 

3.3       Application of Indefinite Integration 
 

Most elementary differential equation could be solved by integrating them. 

 
Example:  Solve the differential equation given as  dy = f(x) 

dx  

dy = f(x) dx 

∫dy = Sf(x) dx  

y    = Sf(x) dx 

Such class of differential equation is used to solve various types of problems arising 

from Biology, all branches of engineering, physics, chemistry and economics. 
 
In application of indefinite integral the value of the arbitrary constant must be found 

by applying the initial conditions of the problem that is being solved. Therefore before 

continuing it is important that you know more about this arbitrary constant C. 
 

Example:  Let dy = 2x  

  dx 

then y = x2 + C 
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The graph of y = x2 for C = 0 is given in Fig. 3.1 
 

 

Y 
 

 
 
 
 
 
 
 
 
 
 

X 
 

 
 
 
 

Fig. 3.1 
 

 

Any other integral curve y2  + C can be obtained by shifting this curve y = x2 through a 

vertical displacement C.   In Fig.3.1 such vertical displacements give rise to a family of 

parallel curves.  They are parallel since the slope of each curve is equal to 2x.  This family of 

curves has the property that for any given part (xo, yo) where xo    
1D (i.e. D is the domain 

of definition) there is only one and only one curve from the family of curves that passes 

through the part (xo, yo).  Hence the part (xo, yo) must satisfy the equation 
 

Yo = xo
2 + C 

 
i.e. C = yo  – xo

2    so for any particular point (xo yo) C can be uniquely be determined. 

 
This condition that y = yo and x = xo imposed on the differential equation du/dx = 2x is referred 

to as initial condition.  You will use this method to solve problems on application of 

integration. 

 
Example:   Total profit P(x) from selling X units of a product can be determined  by 

integrating  the differential  equation  of the marginal  profit dp/dt and using some initial 

conditions based on the market forces to obtain the constant of integration.  Given that 

 
dp/dt = 2 + 3 (2x-1)3

 

Find P(x) for 0 ≤ x ≤ C if P(1) = 1. 

Solution: 
 

 

∫   ∫
(   )

(    ) 
   ∫(

   

(    ) 
)   

∫   ∫(
   

(    ) 
)   

  
    

 (    ) 
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Since Po = 1        Xo = 1 

      
 

 (   ) 
   

 C =    ⁄  

           ( )     
 

 (    )
   ⁄  

Example:  Given that dy/dx = 8x7
 

 
Find y when y = -1 and x = 1 

 

 
 

Solution: 
 

∫dy      =         ∫8x7 dx  

y          =         x8 + C 

-1        =         1 + C  

C         =         x8 – 2 

 

SELF-ASSESSMENT EXERCISES 
 

Solve the following equations subject to the prescribed initial conditions: (1)       dy/dx = 

4x2 – 2x – 5               x = -1, y = 0 

(2)       dy/dx = 4(x-5)3                                        x = 0, y = 2 

 
(3) dy/dx = x2+1 dx                      x = 1, y = 1  

 x4 

 
 

(4)  
  

  
 √    

 
  x = 0, y = 0 

(5) 
  

  
  

 
 ⁄   

 
 ⁄   x = 0, y = 2 

 

You will study more on application of indefinite integration in the last unit in the 

course. 
 

Ans:    (1)   y = 4/3x3-x2+5x+22/3     (ii)  y = (x-5)4-623 

(iii)  y = -1/x – 1/3x3+7/3       (iv)  y = 1/3(x2+1)3/2-1/3 

(v)   y = 2/3x3/2
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4.0       CONCLUSION  
In  this  unit  emphasis  has  been  on  techniques  of  finding  anti-derivative. 

Therefore, you have studied numerous solved examples on method of finding anti-

derivatives of functions.   You have known the notation for indefinite integration as 

∫f(x)dx = f(x) + C.  You have studied properties of indefinite integration and how to use 

them to evaluate integrals.  You have studied how to integrate simple differential 

equations. 
 

5.0       SUMMARY 

You have studied: 
 

 the definition of indefinite integral 

 Properties and notation of indefinite integration 

 To  evaluate  integrals  using  both  the  notation  and  properties  of    

indefinite integration. 
 To integrate differential equation that are separable. 
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7.0 TUTOR-MARKED ASSIGNMENT  
 

 
 

Evaluate the following integrals: 
 

 (1)       ∫√dx 

 
(3)       ∫ (7x6-4x3 + 4x6 – 2x)  (4) 

(2) 

 
∫ dx/x7 

∫ 

 
dx 

4x 1 

(5)       ∫ x4  – 1 dx                               (6)       ∫ (    x + 1  ) dx 

X6                                                                                                          1+ x 
 

(7) ∫ (5x – 1)2 dx (8) ∫4x3  – 1 dx 

 x3  x6 

(9) ∫ (√4x + 1 - √3x) dx                (10)     ∫   x2 + x2  + 2x   dx x2 

 
(11)     ∫ (1 – 8x)1/8dx                          (12)     ∫ (5x – 2)1/5dx 

 

Solved the differential equation at the specified points: 

 
(13) dy/dx = x2  – 1                         y = 0 x = 1  
  x4 

 
(14)     dy/dx = 1                                y = 2,  x = 1 

√1+7x 

 
(15)     dy/dx = (1 – 4x)1/4                                y = 1, x = -3  

(16)     dy/dx = 6c√1 – x2)dx              y = 0, x = 1 

(17) Find the total profit of a product if the marginal profit is given as dp/dx = x4+ x2 

(√1-x3) 

where P(0) = 0 
 
(22) Solve dy/dx = 2√1+y2 if x = 1, y = 1  

  y 

 
(19)     Solve dy/dx = x2/y3 if x = 0, y = 1 

 
(20)     Solve ds/dt = (t2+1)2 when S = 0, t = 0 
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UNIT 4 INTEGRATION OF TRANSCENDENTAL FUNCTIONS 
 
CONTENTS 

 

1.0       Introduction 

2.0       Objectives 

3.0 Main Content  

3.1       Integration of Rational and Experimental 

3.2       Integration of Trigonometric Functions 

3.3       Integration by Inverse Trigonometric Functions 

4.0       Conclusion 

5.0       Summary 

6.0 Tutor-Marked Assignment  

7.0 References/Further Reading  

 

1.0       INTRODUCTION 
 

In the previous unit, you studied the integration of polynomial function and simple 

rational function.   However, there are some functions whose derivatives are not very 

common.  Integration of such functions uncommon derivatives can only be possible by 

using derivatives of known functions to do the evaluation.   In this unit integration of 

transcendental and rational function are discussed.   These integration will form part 

of the basic tools that will be needed in applying techniques of integration that will be 

studied in the next unit. 
 

2.0       OBJECTIVES 
 
At the end of this unit, you should be able to:  
 

 derive  the  formula  for  integrating  rational  functions,  exponential function and 

trigonometric functions 

 evaluate definite and indefinite integrals of sinx, cos x, ex  and any combination of 

them 

 to evaluate integrals by using the derivatives of inverse trigonometric functions of 

sinx and tan x. 

 

3.0 MAIN CONTENT 

 

3.1 Integration of Rational and Exponental Function 
 

3.1.1 The integral ∫du/u =, u ≠0 Recall that d/dx 1nu = du/u - I (see unit 8 of 

calculus I) then the integral counterpart of equation I above is that ∫du/u = ln1u1+C 
 

In the above u is a differentiable function of x and u>0 for all values of x in the specified 

domain. 

 

Example: Find ∫8x   dx 

2x-1
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Solution:  let u = x2-1, du = 2x dx  

then 

du    =  x dx 

2  

 

Therefore 

 

∫ 8x  dx      = 8 ∫ du  
x2-1                             2 

 
=  4∫du    = 4/u/u∫+C 

x 
 

Example:  Find ∫x2    - dx 

1+3x3
 

 
let u = 1+3x3,  du = 9x2dx  

 x2dx =  du/9 

∫x2dx = ∫du = 1 ∫du 

13x
3              9     9   u 

u 

 
=   1ln/u/ + C = 1ln/1+3x3/+C 

9                   9 

Example:  Find 

 
∫8x3  – 2 dx  

x4-x+1 

 
let u = x4 – x + 1, du = (4x3 – 1) dv 

but (8x3 – 2)dx = 2(4x3-1) dx 

therefore: ∫ (8x3  – 2)dx = ∫2(4x3-1)dx = ∫2du  

    x4-x+1              x4-x+1         u 

 
=  2ln/u/+C 

 
= 2ln/x4 – x + 1/ + C 

 

Example:  Find ∫ (1    – 1    ) dx 

(x+1  x+2) 

let   u = x + 1 and v  = x + 2  

du = dx           du = dx 

 

 
∫ (1 –  1     ) dx  =  ∫dx – ∫dx = ∫du – ∫dv 

(x+1  x+2)           x+1    x+2    u       v 

 
= ln/u/ - ln/v/ + C 
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= ln/x+1/ - ln/x+2/ + C 

 
Example: Find ∫log(x+1)dx 

 x + 1 

 
let   u = log (x+1)  du = 1 dx x+1 

 
therefore:   (x+1) du = dx           ∫log(x+1)dx = ∫u. .(x+1)du  

x + 1         x+1 

= ∫udu = ½ u2 + C 

 
=  ½ log (x+1)2 + C 

 

Exercise:  Evaluate the following integrals 
 

(1) ∫dx 

3-4x 

(2) ∫3  dx  

x-5 
 

(3) 
 

∫x  dx  

x2-2 

 

(4) 
 

∫logx du  

    x 

 

(5) 
 

∫4x – 2 dx  

x2 – x+1 

  

 

Ans: 
 

(1)       -1 ln/(3-4x) /+C 
 

(2) 
 

3ln/(x-5) + C 
 4   

 

(3) 
 

½ ln/x2-2/ + C 
 

(4) 
 

½ logx2 + C 

 

(5) 
 

2ln/x2 – x + 1/ 
  

 

The method adopted above is to differentiate the denominator and check if it is a factor of the 

numerator; if so with appropriate algebraic manipulation, the derivative of the denominator 

will be made to look like the numerator.  This method was used in UNIT 3. 
 

i.e.       ∫g(x)dx  let  u = P(x) P(x) 

and  du = P1(x)dx  = g(x)dx then ∫g(x)  = ∫du = ln/u/ + C 

 P(v)       u 

 
Ln/P(x) + C 

 

 

 

3.1.2    The Integral ∫ exdu 
 

Recall that  deu  =  deu  .  du  = eu  du  

 dx du      dx         dx 
 

then  deu = eudu  

 dx dx 
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 deu = eudu then ∫deu  = ∫eudu therefore  ∫eudu = eu + C 

Example:  Find Se-xdx. 

Let  u = -x, du = 1dx  

 dx  -du 

therefore  ∫e-xdx = ∫e(-du) = -∫eudu 

 
= -eu + C = e-x  C. 

Example:  Find ∫e2xdx.  Let  u = 2x       du = 2dx  

   dx = du 

2 

 
therefore ∫e2xdx = ∫eu(du)  = ½ ∫eudu 

2 

=  ½ e2x + C 

 
Example:   Find ∫ex/3dx  let u = x,  du = dx 

3            3  

 

dx = 3du, Sex/3  ∫ex/3du = ∫eu.(3du) 

 
∫ex/3dx = 3Seudu = 3eu  C 

=  3ex/3 + C 

 
Example:   ∫4e2xdx  Let U = e2x     du = 2e2xdx. 

∫4e2xdu = 2∫2e2xdx = 2∫du = 2u + C 

= 2e2x  + C 

 
Example:  ∫ (ex  x)2 (ex  1)dx 

Let u = ex  + x  =  du = (ex  
1)dx 

∫ (ex  + x)2 (ex + 1) dx = ∫u2du 

= U3 + C = (ex  + x)3 + C 

3                   3 

Example:  ∫xex2dx 

Let  u = x2 du = 2x dx du  = x dx 

    2 

then ∫xex2 dx = ½ Seu du 

= ½ eu + C = ½ ex2 + C 
 

 

SELF-ASSESSMENT EXERCISE 

Evaluate the following integrals 

 
(1)       ∫e3xdx                          (2)       ∫esx

    

 2 
 

(3)       ∫8e4x dx                       (4)       ∫ (ex – x)2 (ex – 1) dx 
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(5)       ∫3x2 ex3
 

 
Ans:    (1)       1/3e3x + C       (2)       2e5x + C        (3)       2e4x + C 

5  2
 

(5)       ex3  + C 
 
 

3.2       Integration of Trigonometric Functions 
 
Recall from UNIT 8 of the first course on calculus that for any differentiable function U of X 

that 
 
 

d (sinu) = cosudu  

dx                   dx 

 
d (cosu) = sin2U du  

dx                       dx 

 
d (tanu) = -cosec2udu  

dx                          dx 

 
d(cotu) = -cosec2udu  

dx                         dx 

 
d(secu) = secu tan u du  

dx                             dx 

 
d (asecu) = -wsecucotudu  

dx                                 dx 

 
Using the above you will integrate the following trigonometric function as 

 
(1)       ∫sinudu = -∫-sinudu = -∫d(cosu) 

       dx 

= - cosu C 

 
therefore 

 

 
∫sinu du = - Cosu + C 

(ii)       ∫Cosu du = ∫dsinu) = sinu C 

 
therefore 

 

∫cosudu = sinu +C 
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Given that ∫1 .   d [f(x)] dx = log/f(x) + C 

f(x) dx 

then 

 
(iii)      ∫tanudu = ∫sinu du = -∫1.d cosu) 

cosu         cosu 

 

= -∫dv = lnv + C, where v = cosu v 

= -lnkosul + C = ln(1 ) = ln/secU/+C 

cosu 

therefore ∫tan u du = ln/secu/ + C 

 
(iv)      ∫secudu = ∫secu(sec u + tan u )du 

(sec u + tan u) 

 

= ∫sec2  + sec u tan u du  

sec u + tan u 

Let V = tan u + sec u, dv = sec2 u + tan u sec u du 

 
therefore: ∫sec2u + tan u secu du = ∫dv  

    tan u + tan u               v 

 
(v)       Scotudu = ∫cosu du = ∫1 d(sin u) 

sin u        sin u 

= ln/sinu/ + C 

 
(vi)      ∫ cosec u du = ∫cosec u cosec u – cot u  

cosecU – cotU 

 

= ∫cosec2 u – cot ucosec u du  

cosec u – cot u 

 
=  ∫dv , v  = cosec u – cot u 

            v    dv = cosec2 u – cot cosec u du 

 ln/v/ + C = ln/cosec u – cot u/ + C. 

 
Example: Find  ∫sec2 u du = ∫d(tan u) C 

 = tan u + C 

 
Example: Find ∫cosec2  u du = -∫-cosec2 u du  -∫ (d(cot u) = -cotu + C 

 
Example: Find ∫sec u tan u du ∫sec u tan u = ∫d(sec u) = sec u + C 

 

 

Example:  Find ∫ cos x sin x dx 

Let u = sinx  du = cos x dx  

therefore   ∫ sin x cos x dx = ∫ u du 

= u2 + C = sin2 x + C 

    2                2 
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Example: Find ∫sec3x tan x dx 

Let  u = sec x  du = sec x tan x dx  

therefore  ∫sec3x tan x dx = ∫sec2x sec x tan x dx 

=  ∫u2du = u3 + C 

 3 

= sec3 x + C 

            3 

 
Example: Find ∫cosec3 x cot x dx.  Let u = cosec x du = -cosec x cot x dx 

Therefore ∫cosec3x cot x dx = ∫cosec2 x cosec x cot x dx 
 

= -∫u2du = -u3 + C 

3 

= -cosec3 x + C 

3 

 
Example:  Find ∫ xcosax2 dx 

Let U = ax2   du = 2axdx 

∫ xcosax2dx = ∫ ½ a (cos ax2) (2ax) dx 

= ½ a ∫cos U.du = ½ a (sinU + C) 

= ½ a sin ax2 + C 

 
Example:  Find ∫sec2x dx 

1+tanx 

let U = 1 + tanx   du = sec2x dx  

therefore ∫sec2xdx  = ∫du = ln/u/+C 

     1+tanx          u 

= ln/1+ tanx1 + C 

 
Exercises:  Find the following integrals 

 

(i) ∫sin(2x-1) dx (ii) ∫sin ½ ax dx 

 

(iii) 
 

∫2cos2x sinx dx 
 

(iv) 
 

∫sin4x cosx dx 

 

(v) 
 

∫xtan x2 dx 
 

(vi) 
 

∫dx  

cos2x 

 

(vii) 
 

∫sinx dx 
 

(viii) 
 

∫cotax dx 

 1 + cosx   

 

(ix) 
 

∫cos6ax sin ax dx 
 

(x) 
 

∫ (1+tanx) sec2x dx 
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Ans: (i) 

 
(ii) 

- ½ cos (2x – 1) + C 

 
-2 cos ½ ax + C 

  
(iii) 

a 
-2cos3x + C 

  
(iv) 

3 
1sin5 x + C 

  5 

 (v) ½ ln/secx2/+C. 

 
 

(vi) 
 

tan x + C 

(vii)     -ln(cosx + 1)  

(viii)    ln/sin ax/ + C 

(ix)      -1 cos7ax 
7         a 

 
(x)       ( + tan x)2 + C 

 

3.3       Integration of Inverse Trigonometric Function 
 

Recall that   d (arc sin u) =   1                  du  

 dx √1-x2 dx 
 

to evaluate ∫arc sin u du you have to know how to integrate by part which is one of the 

techniques of integration that you will study next unit.  For now 

∫arc sin u du = u arc sin u + √1 – u2 + C  and 
∫arc tan u du = u ar tan u = - ½ ln/1+u2/+C 
 

You can proceed to make use of the derivative of arc tan x to evaluate special integrals. 
 

Recall d (arc tan u) = 1 

du                   1+u2
 

u2 = a2v2
 

therefore: ∫du   = ∫adv   =    ∫ adv 

√a2-u2     √a2-a2v2          a√1-v2
 

 

=  ∫dv  = arc sin v + C 

√1-v2
 

=  arc sin u + C 

a 

 
Example:  Find ∫du 

√4-u2
 

 

Solution:   ∫du = ∫du = arc sin u + C 

√4-u2 = ∫du        = arc sin u + C 

√(2)2- u2                              2
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Example:  Find          (1)       ∫dx   

a2+(x+2)2 

 

Solution  let u = (x + 2), du = dx 

 
therefore dx         =       ∫du 

a2 + (x + 2)2          a2 + u2
 

 

= 1arc tan u + C 

a            a 

= 1 arc tan (x + 2) + C 

a                 a 

 
Example: Find ∫dx   

√a2 + (x-1)2
 

Let  u = x-1  du = dx therefore 

 ∫dx   =  arc sin u + C 

√a2+u2                      a 

 
=  arc sin x – 1  + C 

a 

 
Exercises:   Find the following integrals: 

 

(i) ∫ dx   (ii) ∫ dx   

 16 + 4x2  √9 – 64x2 
 

(iii) ∫ dx (iv) ∫ dx 

 49 + (x+2)2  √25 – 9x2 
 

(v)       ∫5 dx 
0 25+x2

 

 

Ans: (i) ¼ arc tan x (ii) arc sin 8x 

  8             3 

 (iii) 1/7 art tan x+2 (iv) arc sin 3x 

             7              5 

 (v) ∏/20   

 
 

4.0       CONCLUSION 
 
In this unit you have derived the formula for common rational functions and how  to  

find  their  integrals.    You  studied  how  to  derive  the  integration formula of 

trigonometric functions.  Evaluation and trigonometric functions were  treated.    You  

also find  the  integrals  of special  functions  using  the inverse functions of sin x and 

tan x.  The formulas derived in this unit will be used to study methods and techniques 

of integration which will be studied in the next unit of this course. 
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5.0       SUMMARY 

 

In this unit you have studied how to; 

1. derive formula such as: (i)        ∫1 du = ln/u/+C 

u 

(ii)       ∫sin u du = -cos u + C (iii)      ∫cos du = sin u + C 

(iv)      ∫tan u du = ln/sec u/+ C (v)       ∫cot u du = ln/sin u/+C 

(vi)      ∫ secu du  =ln/tan u + sec u/ 

(vii)     ∫cosec u du = ln/cosec u – cot u/ + C (viii)    ∫eu du = eu + C 

 
2.         evaluate integral of this form ∫du  = arc sin u + C 

√a2-u2                    a 

and ∫du  = 1 arc tan u + C 

a2+u 2                    a             a 

 
3.         how to use the formula in (i) above to evaluate integrals. 
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7.0 TUTOR-MARKED ASSIGNMENT  
 

Find the following integrals 
 

(1) ∫ dx  (2) ∫ 1  dx (3) ∫ x  dx 

 5 – 7x  x – 6   x2 – 4 
 

(4) ∫ 10x + 5 dx 

5x2+5x+1 

(5) ∫e4 dx (6) ∫ sin(4x-1) dx 

 

(7) 
 

∫ sinc x covx du 
 

(8) 
 

∫ du  
 

(9) 
 

∫ sin4ax cos ax dx 
   sin2x   

 

(10) 
 

∫ x cot(x)2dx 
 

(11) 
 

∫ du  

16 + x2 

 

(12) ∫dx  

√902 – 4x2 
 

(13)     ∫4x3ex4 dx                    (14)     ∫ (ex + x)2 (ex + 1) dx 
 

(15) ∫ cos 2x sin 2x dx (16) ∫ dx  (17) ∫3tan (x+1)2 dx 
 

 
 

(18) 

 

 
 

∫ xex2dx 

 

 
 

(19) 

√36-(x+3)2
 

 
∫ cos8x sin x dx 

  

 
 

(20)   ∫ 3x2          dx 

x3 – 8 
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UNIT 5 INTEGRATION OF POWERS OF TRIGONOMETRIC 

FUNCTIONS  

 

CONTENTS 
 

1.0 Introduction  

2.0 Objectives 
3.0 Main Content  

Basic Formulas 

 3.1 Powers of Trigonometric Function 
 3.2 Even Powers of Sines and Cosines 
 3.3 Powers and Products of other Trigonometric Functions 
4.0 Conclusion  
5.0 Summary  
6.0 Tutor-Marked Assignment  
7.0 References/Further Reading  

 

1.0       INTRODUCTION 
 
So far what you have studied in the last two units is to find the function whose 

derivative gives you the integral of another function.  This process is summed up in 

the fundamental theorem of integral calculus.  For a review, consider evaluating the 

integral ∫f(x)dx what you have studied in unit 2 and 3 is to find a function F(x) such 

that d/dxF(x) = f(x) – 1 then F(x)+C = ∫f(x)dx. 
 
The process of finding F(x) that satisfies equation 1 above is the difficult aspect and 

that is why differentiation is taught before integration.  So far, all you have been doing 

is making a good guess for the function F(x) which is dependent on how familiar 

you are with differentials of functions.   In this unit you will study how to make 

the guesswork a lot easier.   This will be done by introducing firstly the use of 

differentiation formulas alongside their integration formulas, second, by applying 

some techniques that will be developed  here  based  on  the  knowledge  of  function  

as  well  as  their respective derivative.  Since it is the anti-derivative that gives the 

solution to the integral it is necessary once again you review basic rules and formulas 

for derivatives of function in the course calculus I. 
 
The emphasis in this unit would be on developing skills rather than finding specific 

answer to any given problem.  Therefore as was done in the previous units  a  

particular  example  might  be  solved  several  times  with  different methods.  

Therefore the examples in this unit have been kept fairly simple so that you would be 

able to develop the necessary skills expected of you. 
 

2.0       OBJECTIVES 
 
At the end of this unit, you should be able to: 
 

 recall differential formulas and their corresponding integrals 
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 evaluate integrals involving powers of trigonometric functions 

 evaluate integrals involving products of even powers of sines and cosines 

 to develop techniques and methods for evaluating integrals of any function 

formed by functions of the trigonometric functions. 
 

3.0       MAIN CONTENT  

 

3.1 Basic Formula 
 
The first requirement for skill in integration is a thorough mastery of the formulas for 

differentiation.   Therefore,  a good starting  point for you  to develop the skill 

required of you in this course is for you to build your own table of integral. You may 

make your own note in which the various sections are headed by standard form like 

SUndu and then under each heading include several  examples  to  illustrate  the  range  

of  application  of  the  particular formula.   Therefore, what will be done in this unit 

is to list formulas for differentiation together with their integration counterparts. 
 

Summary of Differential Formulas and Corresponding Integrals 
 

1. du = du  dx 1 ∫du = u C 

2. d(au) = a du 2 ∫ a du = a ∫ du 

3. d(u + v) = du + dv 3. ∫ (du  + dv) = ∫ du + ∫ dv 

4.. d(un) = nun-1du 4. ∫ un du = un+1 + C, n ≠- 1 

n + 1 
 

5. 
 

d(ln u) = du 
 

5. 
 

∫ du = ln /u/ + C 

6.         a) d(eu) = eu du            6.          a) ∫ eu du = eu + C 
 

b) d(au) = au ln a du                             b) ∫ au du = au    + C 

ln a 

7. d(sin u) = -sin u du 7. ∫ cos u du = sin u + C 

8. d(cos u) = -sin u du 8. ∫ sin u du = tan u + C 

9. d(tan u) = sec u tan u du 9. ∫ sec3 u du = tan u + C 
 

 

10. 

 

 

d(cot u) = -csc2 u du 

 

 

10. 

 

 

∫ csc2 u du = -cot u + C 

11. d(sec u) = sec u tan u du 11. ∫ sec u tan u du = sec u + C 

12. d(csc u) = -csc u cot u du 12. ∫ csc u cot u du = -csc u + C 

13. d(sin-1 u) =   du  13. ∫   du     = {sin-1 u + C 

 √1 – u2 and ∫  1 – u2     {-cos-1 u + C 

14. d(cos-1  u) =  du 

√1 – u2 

14.  
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15. d(tan-1 u) =  du 15. ∫  du     = {tan-1 u + C 

1 + u2                                 and   ∫ 1 + u2        {-cot-1 u + C 
 

16.       d(cot-1 u) = -du                     16. 

1+ u2
 

 
17.       d(sec-1 u) =     du                     17. 

/u/ √u2- 1      and ∫ du        = {sec-1/u/ + C 

∫   u√u2 – 1       { -csc-1/u/ + C 
 

18.       d(csc-1 u) =    -du                      

/u/   u2 - 1 

 

3.2 Integration   Involving   Powers   of   Trigonometric Functions 
From the above basic formula you have that: 

 

(1) ∫un du = un+1 + C   for n –1 

 n + 1  
 

 
 

(2) 

and 

 
∫un du = ln/u/+C n = 1 

 

 

This could be used to evaluate integrals involving powers of trigonometric 

functions. 

 
Example:  Find ∫ sinn ax cos ax dx 

Let u = sin ax du = acos ax dx  

then du  = cos ax dx, un = sinn ax 

a 

therefore:  ∫ sinn ax cos ax dx = ∫ un du  

      a 

=   nn + 1 + C 

a(n + 1) 

 

using equation (1) above you get 

 

(3)       ∫ sinn ax cos ax dx = sinn+1ax + C 

   a(n + 1) 

with equation (2) you get n + 1 
 

(4)       ∫ cos ax dx =   1 ln /sin ax/+C 

sin ax       a 

Interestingly this is the same result arrive at when you derive the formula for 

∫ cot u du = ∫ cos ax dx = ln/sin u/ + C 

sin ax 

In a similar manner you can find ∫cosn ax sin ax dx 

Let  u = cos ax du = -a sin ax 

Un = cosn ax then 

∫ cosn ax sin ax dx = ∫ uu(-du) = -Un+1C 

n + 1 
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for n ≠1 
 

therefore ∫cosn ax sin ax dx = -cosn+1ax C  

(n + 1)a 

 

for n = 1 ∫ sin ax dx  -1ln/cosax/ + C 

   cos ax        a 

this is the same as ∫ tan ax dx 
 

i.e. ∫ tan ax dx = -1. ln/cos ax/ + C 

=  1  ln/sec ax/ + C 

 a 
 

(see 3.2 of Unit 4) 
 

Example:  Try finding ∫ sin3  x dx you find out that the above method does not work 

because there is cos x side of it to give d (sin x)/ therefore, another method has to be tried. 
 

Recall that sin3x = sin2x sin x 

= (1 – cos2x) sin x sin3x = sin x – cos2x sin x 

then let u = cos x du = -sin x 
 

∫ sin3 dx = ∫ sin x dx - ∫cos2x sin x dx 

= -cos x + cos3x  + C 

3 
 

The above give rise to a formula or technique for integrating odd powers of 

sin x or cos x 
 

i.e. cos2n+1 x = cos2n x cos x 

but cos2n x = (cos2 x)n = (1 – sin2 x) therefore cos2n+1 x = (1-sin2 x)n. cos x let u = 

sin x du = cos x dx 

therefore ∫ cos2n+1 x dx = ∫ (1 – sin2 x)n cos x dx 

= ∫ (1 – u2) du. 
 

What follows next is to expand the expression (1-u2) du where u = cos x smf 

∫ cos2n+1x dx = -∫(1-u2)n du where u = sin x 
 

Example:   Find (1) ∫cos3 x dx  ii ∫ sin5 x dx 
 

Solution:  ∫ cos2n+1 x dx = ∫(1 – u2)n du 2n + 1 = 3            n = 1, u = sin x 

 
therefore: ∫ cos3 x dx = -∫ (1 – u2) du = u – u3

 

3 

= sin x – sin3 x + C 

3 

(optimal)  =  sin x – sin x + sin2  x cos x 

3                3 

 
= sin2  x cos x  - 2 sin x 

3          3  
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(ii)       ∫ sin5 x dx 

2n + 1 = 5          n 2,  u = cos x 

 
therefore  ∫ sin5 x dx =  ∫ (1 – u2)2 du 

=  ∫ (1 – 2u2 + u4) du 

= u – 2u3 + u5   + C 

   3       5 
 

therefore  ∫ sin5 x dx = cos x – 2 cos3 + 1 cos5 x + C 

3            5 
 

(optimal)  =  1 cos4 x sin x + 4  cos2 x sin x + 8 sin x + C 

5                       15                     15 

Example:  Find  ∫ secx tan x dx 
 

Solution:   ∫ sec x tan x dx =  ∫  1         sin x  =  ∫  sin x 

Cos x  cos x          cos2 x 

 

then  ∫ sec x tan x dx =  ∫ cos-2 x sin x dx  

  therefore  ∫ cos-2 x sin x = -cos-2+1   + C 

-2 + 1 
 

= cos-1 x + C 

-1 

=  -1  + C 

          cos x 

= sec x + C 

Example:  Find ∫ tan4 x dx 
 

recall that sin2 + cos2 x = 1 

therefore              tan2 x = sec2 x – 1 then 

∫ tan4 x dx = ∫ tan2 x. tan2 x dx 

= ∫ tan2 x (sec2 x – 1) dx 

= ∫ (tan2 x sec2 x – tan2 x) dx 

= ∫ tan2 x sec2 x - ∫ (sec2 x – 1) dx 

= ∫ (tan2 x sec2 x) dx - ∫ sec2 x dx + ∫ dx let  u = tan x  

du = sec2 x dx 
 

therefore ∫ tan4 x dx = ∫ u2 du - ∫ du - ∫ dx 

= u3   - u – x 

      3 

= 1 tan3 x – tan x + x + C 

 3 

 
Therefore, for n = even you  can derive the formula using the technique 

above. 

∫ tann x dx = ∫ tann-1 x (sec2 x – 1) dx 

 
=  ∫ tann-2 x sec2 x) dx - ∫ tann-2 x dx 

=  ∫ (tann-2 x sec2 x) dx - ∫ (secn-2 x – 1) dx 

=  ∫ (tann-2 x sec2 x ) dx - ∫ secn-2 + dx 
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= ∫ tann-1 - ∫ tann-2 x dx  

      n – 1 
 

Example:  Find ∫ tan2 x dx 
 

n= 2, therefore n – 1           2 – 1 = 1  

therefore  ∫ tan2 x dx = tan x -  ∫ tan0 x dx 

1 

= tan x – x 
 

The above formula also works for the case n is odd.  Let n = 2m + 1 then 

after m steps it will be reduced by 2m leaving  ∫ tan x = -ln/cos x/ + C. 

 

From  the  two  examples  above,  you  can  see  the  usefulness  of  the  two 

trigonometric identities. 

 
sin2 x + cos2 x = 1 and tan2 x + 1 = sec2 x 

 

in evaluating integrals involving powers of trigonometric functions such as 
 

(a)       odd powers of sin x or cos x 

(b)       any integral powers of tan x (or cot x ) and 

(c)       even powers of sec x (cos x u) 
 

To get the integral C of even powers of sec x all you need do is to express 

sec2  x in terms of tan2  x and then use the reduction process above to get the 

integral. 
 

Example:  Find  ∫ sec4 x dx 
 

=     ∫ sec2 dx sec2 x = ∫ sec2 x (1 + tan2 x) dx 

=     ∫ sec2 dx + ∫ tan2 x sec2 x dx 

=     ∫ /+ tan2 x dx +  ∫ u2 du  

where  u = tan x and du = sec2 x dx. 

 ∫ u2 du = u3 + C 

        3 

but ∫ tan2 x dx = tan x – x 
 

∫ secu x dx = ∫ dx + ∫ tan2 x dx + tan3x + C 

  3 

You can now derive the integral for any even powers of sec x 

Example:   Find ∫ secn x dx 

Solution:  let ∫ sec2 x dx = ∫ (sec2n-2 x) (sec2 x) 

 
=   ∫(sec x )2(n-1) sec2 x dx 

 
=  ∫ (sec2 x )n-1 sec2 x dx 

 
=  ∫ (1 + tan2 x)n-1 sec2 x dx 

 
=  ∫ (1 + u2)n-1 du (where u = tan x and du = sec2 x dx)  where 

(1 + u2)n-1  can be expanded by the binomial theorem and then the result will be 

integrated term by term as; 
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SELF-ASSESSMENT EXERCISE 

 
(i)        ∫ sin3 x dx        (ii)       ∫ tan2 4x dx                 (iii)      ∫ cos5 x dx 

 

(iv)      ∫ cot3 x dx       (v)       ∫ cos3 x sin2 x dx         (vi)      ∫ secu x tan u du 

 
(vii)     ∫ dx          (viii)    ∫ cosn x sin x dx       (ix)      ∫ cos2 x sin 2x dx  

sin x 
 

(x) 

 
Ans: 

∫ cos x4 3x dx  

 

(i) 
 

1/3 cos3 x –cos x + C 
 

(ii) 
 

  tan4 x – 4x + C 

 

(iii) 
 

sin x – 2 sin3 x + 1/5 sin5 x + C 
 

(iv) 
 

-cot2  x – ln/sin x / + 

C  
(v) 

 3 
sin3  x -  sin5  x + C 

 
(vi) 

   2 
ln(cosec x – cot x) + 

C           3             5 

 
(vii)     ln(cosec x – cot x) + C                         (viii)     - cosn+1 x + C 

    2                                                                        n + 1 

 
(ix)       -cos3  2x + C                                (x)   -1cosec2 3x cot 3x -2 cot3x 

   6                                                                9                             9 
 

 

3.3       Integration of Even Powers of Sines and Cosines 
 

In the previous section you have studied how to integrate odd powers of sin x and cos x.  You 

will attempt to evaluate integrals of even powers of sines and cosines by applying the same 

technique used above for odd powers i.e. 

 
∫ sinn x cosm x dx where m or n is an even numbers. that ∫ cos ½ x sin3 dx  

evaluate the integral. 

Recall that 3 is odd as such sin3 x = sin2 x sin x = (1 – cos2 x) sin x. therefore: ∫ 

cos ½ x sin3 x dx = ∫ cos ½ x 91 – cos2 x) sin x dx 

for u = cos x du = sin x dx. 

 
therefore: ∫ cos ½ x (1 – cos12 x) sin dx = ∫ u ½ (1 – u2) du 

= ∫ (u ½ - u) du = 2 u3/2 -   u2
 

3        2 

=  2cos3/2 x = cos2  x  + C 

3              2 

 
If in the above you have sin4 x instead of sin3 x then you have to evaluate 
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∫ cos ½ x sin4 x dx 
 

Then using the above method will fail because sin4  x =(1 – cos2  x)2  which 

give 
 

∫ cos ½  x sin4 x dx = ∫ cos ½ x (1-cos2 x)2 dx 
 

missing above is –sin x dx = du that goes with the cos x.  Therefore, there is a 

need to use another trigonometric identity.  The one that will be used is given as 

sin2 x = ½ (1 – cos 2x) and cos2 x = ½ (1 + cos 2x). 

 
Note: The above identities are derived by adding or subtracting the equations 

cos2 x + sin2 x = 1 and cos2 x – sin2 x = cos 2x 
 

Recall 
 

∫ sin4 x dx  = ∫ (sin2 x)2 dx 

= ∫ [ ½ (1 – cos 2x]2 dx 

= ∫ ¼ (1 – 2 cos 2x + cos2 2x) dx 

= ¼ ∫ (1 – 2 cos 2 x + ½ (1 – cos 4x) dx 

= ¼ [x – sin 2x + x – 1 sin4 x] 

2    8 

=   3 x – ¼ sin 2x = 1 sin 4x  + C 

8                         32 

 
Example: Find ∫ sin2 x cos2 x dx 

 
Here both powers are even. Let sin2 x = (1 – cos2 x) 

Therefore sin2 x cos2 x = (1 – cos2 x) cos2 x 

 ∫ sin2 x cos2 x dx = ∫ (cos1 x – cos4 x) dx 

∫ cos2 x dx - ∫ cos4 x dx 

∫ cos2 x dx = ∫ ½ (1 + cos 2x) dx =  x + sin 2x 

2         4 

 
∫ cos4 x dx = ∫ (cos2 x)2 dx = ∫ [ ½ (1 + cos 2x)]2 dx 

 
= ∫ ¼ [1 + 2 cos 2x + cos2 2x] dx 

 
= ¼ [1 + 2cos 2x + ½ (1 + cos 4x)] dx 

 

=  3x  + ¼ sin 2 x +  1 sin 4x 

8                         32 

 
 

∫ sin2 x cos2 x dx =  x + sin 2x +  3x + ¼ sin 2x +  1 sin 4x 

2         4         8                       32 

 
=   7 x  ½ sin 2x + 1 sin 4x + C 

  8                       32 

 
Example:  Find  ∫ cos6 x dx 
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 ∫ cos6 x dx = ∫(cos2 x)3 dx = ∫  1 (1 + cos 2x)3 dx 

8 

=  1 ∫ (1 + 3 cos 2x + 3cos2 2x + cos3 2x) dx 

 8 

 
=  5 x + ¼ sin 2x +  3 sin 4x -1 sin3 2x + C. 

    16                          64           48 

 
SELF-ASSESSMENT EXERCISES  

 

Find the following integrals: 

 
(i)        ∫ sin2 x cos4 x dx                     (ii)       ∫ sin2 4t dt  

(iii)      ∫ cos2 6x dx                             (iv)      ∫ sin6 x dx  

(vi)      ∫ cos4 ax dx 

Ans: 

 
(i)         x – sin4x + sin3  2x + C          (ii)        x – sin 8x + C 

16      64          48                                      2       16 

 
(iii)      5 x + ¼ sin 2x +  3 sin 4x -  1 sin3 2x + C 

16                           64             48 

 
(iv)       5 x – ¼ sin 2x -  3 sin 4x +  1 sin3 2x + C 

  16                       64               48 

 
(v)        3 x + ¼ sin 2ax +  1 sin 4ax + C 

 8                           32 

 

3.4 Powers    and    Products    of    Other    Trigonometric Functions 
 

In this section, you shall evaluate two types of integrals 

 
(1)       ∫ tanm x secn x dx   and 

 
(2)       ∫ cotm x cosexn dx 

 
Example: When n is even you write tanm x secn x = tanm x secn-2  x sec2  x and 

then express secn-2 in terms of tan2 x using sec2 x + 1 = tan2 x. 

 
 

Example: ∫ tan3 x sec2 x dx 

let u = tan x du = sec2 x dx. then ∫ tan3 x sec2 x dx = ∫ u3 du 

 
= u4 + C = tan4  x  + C 

4                 4 

When n and m are both odd you write 
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tan x secn x = tanm-1 x secn-1 sec x 1an u 

 
and express tanm-1 x in terms of sec2 x using tan2 x = sec2 x – 1 

 
Example:  ∫ tan3 x sec3 x dx 

 
tan3 x sec3 x = tan2 x sec2 x tan x sec x and tan2 x = (sec2 x – 1) 

therefore: ∫ tan3 x sec3 x dx = ∫ (sec 3x – 1) sec2 x sec x tan x dx 

 
= ∫ (sec4 x – sec2 x) sec x tan x dx 

 
(but u = sec x, du = se x 1 an x du) 

 
therefore ∫ tan3 x sec3 x dx = ∫ (u4 – u2) du 

=  u5 – u3 + C 

     5     3 

= sec3  x – sec3  x  + C 

5            3 
 

you can do the same for cotm x cosecn x in a similar manner.  That is for ∫ cotm  x cosecn  x dx 

when n is even you write out cotm  x cosecn  x = cotm  x cosecn-2 cosec x and express cosecn-2 

in terms of cot2 x using cosec2 x = cot2 x + 1 

 
 

Example:  ∫ cot5 x cosec4 x dx 

 
=    ∫cot5 x cosec2 x cosec2 x dx 

=   ∫ cot5 x (cot2 x + 1) cosec2 x dx 

=   ∫ cot7 cosec2 x dx + ∫ cot5 x cosec2 x dx 

(u = cot x du = -cosec2 x dx). 

= -cot8  x - -cot6  x + C 

8             6 

 
In similar manner when m and n are both odd you have cotm x cosexn x 

= cotm-1 x cosecn-1 x cosec x cot x and then express cotm-1 x in terms of cosec2
 

x using cot2 x = cosec2 x – 1 

 
Example:  ∫ cot5 x cosec3 x dx 

 
=         ∫ cot4 x cosec2 x cosec x cot x dx 

=         ∫ (cosec2 x – 1)2 cosec2 x cosec x cot x dx 

=         ∫ (cosec6 x – 2 cosec4 x + cosec2 x) cosec x cot x dx u  = cosec x 

du = - cosec x cot x dx 

 
=         ∫ (u6 – 2u4 + u2) (-du) 

=         -u7 + 2u5 – u3   + C 

7       5       3 
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=         -cosec7 x + 2cosec5 x – cosec3 x + C 

7                 5                3 

 

SELF-ASSESSMENT EXERCISES   

 

Find 

 
1.         ∫ cot3 x cosec3 x dx 

2.         ∫ cot3 x cosec2 x dx 

3.         ∫ tan5 x sec2 x dx 

 
Ans: 

 

1.         -cosec5  x + cosec3 x + C 

5                3 

2.         -cot4  x + C 

4 

3.         tan6  x + C 

6 

 

4.0       CONCLUSION 

 

In this unit, you have reviewed differential formulas and their corresponding integrals.  

These basic formulas will be used throughout the remaining part of the course.  You 

have developed techniques of finding integrals of powers of trigonometric functions 

by using the trigonometric identities; 
 

(i)        cos2 x + sin2 x = 1  and 

(ii)       1 + tan2 x = sec2 x etc. 

 

You have also studied how to evaluate the products of even powers of sines and 

cosines functions.  These integrals will be used when developing other techniques of 

integration in the next unit of this course. 
 

5.0       SUMMARY 
 
You have studied in the unit how to 
 

 recall basic differential formulas and corresponding integrals 

 use  these  basic  formulas  to  develop  techniques  of  integration  of powers of 

trigonometric function 

 evaluate the integrals of odd powers of trigonometric function such as ∫ sinn x dx, ∫ 

cosn x dx 

 evaluate the integrals of trigonometric function such as ∫ tann  x dx, ∫ cotn x dx 

where n is odd or even 

 evaluate the integrals of even powers of sec x and cosec x 

 evaluate the integrals of products of even powers of sin x and cos x such as ∫ cosn  x 

dx, ∫ sinn  x dx, ∫ cosn  x dx sinm  x dx where n or m is even or both are even. 
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7.0 TUTOR-MARKED ASSIGNMENT  
 
1.       Find ∫ sin2 x cos2 x dx 

2.       Show that ∫ tan ax dx = 1 ln/cosax/+C 

  a 

3.       Find ∫ sin3 4x dx 

4.       Find ∫ tan5 x sec3 x dx 

5.       Show that ∫ sec2n x dx = ∫(1+u2)n-1 du where u = tan x 

6.       Find ∫ cos2/3 x sin5 x dx  

7.       Find ∫ sin2 x cos5 x dx  

8.       Find ∫ sin 4x cos2 x dx  

9.       Find ∫ tan6 x dx 

10.     Find ∫ tan5 x sec4 x dx 


