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1.0 INTRODUCTION 
 

The subject of differential equation constitutes a part of mathematics that plays an 

important role in understanding physical sciences. In fact, it is the source of most of 

the ideas and theories which constitute higher analysis. In physics, engineering, 

chemistry and many other disciplines it has become necessary to build a mathematical 

model to represent certain problems. These mathematical models often involve the 

search for an unknown function that satisfies an equation in which derivatives of the 

unknown function play an important role. Such equations are called differential 

equations.  The primary purpose of differential equations is to serve as a tool for 

studying change in the physical world. 

 

You may recall that if y = f(x) is a given function then its derivation 
dx

dy
 can be 

interpreted as the rate of change of y respect to x.  Sir Isaac Newton observed that 

certain important laws of natural sciences can be phrased in terms of equations 

involving rates of change. The most famous example of such a natural law is 

Newton‟s second law of motion. Newton was able to model the motion of a particle 

by an equation involving an unknown function and one or more of its derivatives. 

 

As early as the 1690s, scientists such as Isaac Newton, Gottfried Leibniz, Jacques 

Bernoulli, Jean Bernoulli and Christian Huygens were engaged in solving differential 

equations. Many of the methods which they developed are in use till today. In the 
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eighteenth century the mathematicians Leonhard Euler, Daniel Bernoulli, Joseph 

Lagrange and others contributed generously to the development of the subject. The 

pioneering work that led to the development of ordinary differential equations as a 

branch of modern mathematics is due to Cauchy, Riemann, Picard, Poincare, 

Lyapunov, Birkhoff and others. 

 

Differential equations are not only applied by physicists and engineers, but they are 

being used more and more in certain biological problems such as the study of animal 

populations and the study of epidemics. Differential equations have also proved useful 

in economics and other social sciences. Besides its uses, the theory of differential 

equations involving the interplay of functions and their derivatives, is interesting in 

itself. 

 

2.0 OBJECTIVES 
 

In this unit, we introduce the basic concepts and definitions related to differential 

equations.  We also express some of the problems of physical and engineering interest 

in terms of differential equations in this unit.  We shall give the methods of solving 

differential equations of various types in Units 2 and 3. The physical problems 

formulated in this unit will be solved in unit 3 after we have learnt the various 

methods of solving the first order equations. 

 

 Distinguish between the order and degree of a differential equation; 

 Define the solution of an ordinary differential equation; 

 Identify an initial value problem; 

 State and use the conditions for existence and uniqueness of first order ordinary 

different equations; 

 Derive differential equations for some physical problems. 

 

3.0 MAIN CONTENT 

 

3.1 Basic Concepts 
 

In this section we shall define and explain the basic concepts in the theory of 

differential equations and illustrate them through examples. 

 

In unit 1 of MTH 112 Differential calculus, you have learnt that if a relation y = y(x) 

involving two variables x and y exist then we call x the independent variable and y 

the dependent variable. 

 

Further, suppose we are given a relation of the type f(x,t1, t2, ……., tn) = 0 involving 

(n + 1) variables (x and t1, t2, ………., tn,); where the value of x depends on the values 

of the variables t1, t2, ..…., tn are called independent variables and x is called the 

dependent variable and y is dependent variable.  Similarly, if z = x
2
 + y

2
 +2xy, the x 

and y are independent variables and z is a dependent variable. 
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Any equation which gives the relation between the independent and dependent 

variables and the derivatives of dependent variables is called a differential equation. 

 

 In general, we have the following definition. 

 

Definition: An equation involving one (or more) dependent variable derivatives with 

respect to one or more independent variables in called a differential equation. 

 

For example,
dx

dy
 = cosx      …(1) 

                        Y = x
dx

dy
+ 

y/dx

a

d
              ….(2)                                                                               

 

                      y
2
 

y

z
xy

x

z









 = nzx             ….(3) 

 

are all differential equations. 

 

In Eqn. (3), 
x

z




 and 

y

z




 are partial derivatives of z w.r.t.x and y respectively.  The 

partial derivatives of a function of two variables z = f(x, y) w.r.t to one of the 

independent variables, can be defined as 

 

                     
x

z




 = 

x

f




 = fx(x, y) =  

 

when the limit exist and is independent of the path of approach. 
x

z




 is the first order 

partial derivatives of z w.r.t.x and is obtained by differentiating z w.r.t.x treating y as a 

constant. It is read as „del z by del x‟.  Similarly, first order partial derivative of z 

w.r.t. y is denoted  by 
y

z




 (or 

y

 f
or fy(x, y), so that 

                   
y

 z
 = 

y

 f
 = fy(x, y) =  

 

      Note that equations of the type 

 

                 
dx

d
(xy) = y + x 

dx

d y
 

 

are not differential equations.  In this equation, if you expand the left hand side then 

you will find that the left hand side is the same as the right hand side.  Such equations 

Δx 

y) f(x, y) Δx, f(x 

0 Δx 

lim   

 

y 

y 

Δ 

y) f(x, Δy) f(x, 

0 Δy 

lim   

 
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are called identities.  Moreover, a differential equation may have more than one 

dependent variable.  For instance, 
 

                  
2

2

d x dy
y

dt dt
    

 

is a differential equation with dependent variable x and y and the independent variable 

t. 

 

Differential equations are classified into various types. The most obvious 

classification of differential equations is based on the nature of the dependent variable 

and its derivatives (or derivatives) in the equation.  Accordingly, we divide differential 

equations into three classes: ordinary, partial and total.  The following definitions give 

these three types of equations. 

 

Definition: A differential equation involving only ordinary derivatives (that is, 

derivatives with respect to a single independent variable) is called an ordinary 

differential equation (abbreviated as ODE). 

 

Equations 

 
2

2

d y

dx
 + y = x

2, 

 
2

dy

dx

 
 
 

 = [sin (xy) + 2]
2
, and 

y = x
dy

dx
 + r 

2
dy

1
dx

 
  
 

 

 

are all ordinary differential equations. 

 

The typical form of such equations is 

 

g
2 n

2 n

dy(x) d y(x) d y(x)
x, y(x), , ,......,

dx dx dx

 
 
 

 = 0   …(4) 

 

whenever we talk of Eqn. (4) we assume that g is known real valued function and the 

unknown to be determined is y.  secondly, in an ordinary differential equation, y and 

its derivatives are evaluated at x. 
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It may be noted that the equation 

 

x

dy

dx

 
 
 

 = (y)x+1 

is not a differential equation.  This is because y is evaluated at (x + 1) whereas 
dy

dx
 is 

evaluated at x. 

 

Similarly, the equation 

 

dy(x)

dx
 = 

x

xs

0

e y(s)ds  

 

is not a differential equation since the unknown y is appearing inside an integral.  

Also, in this case the values of y on the right hand side of the equation depends on the 

interval 0 to x, whereas, in a differential equation, the unknown y has to be evaluated 

only at x. 

 

Let us now define partial equation. 

 

Definition: Differential equation containing partial derivatives of one (or more) 

dependent variable with respect to two or more independent variable is called a 

partial differential equation. (abbreviated AS PDE) 

 

The examples of differential equations are  

 
2

2

v

x




 + 

2

2

v

y




 + 

2

2

v

z




 = 0 

 

x
z

x




 +  y 

z

y




 - z = 0, 

3

3

u

x




 + 

u

x




 

2

2

u

t




 + xtu = 0. 

 

You may also note that Eqns. (1`) and (2) given earlier are ordinary differential 

equations, whereas, Eqn. (3) is a partial differential equation. 

 

And now an exercise for you. 

 

Besides ordinary and partial differential equations, namely, total differential 

equations.  Before giving you the definition of total differential equations, we ascribe 
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a meaning to the symbols dx and dy which permit us to manipulate the derivative 

dy

dx
as a quotient of two function y = f(x),  we define, the differential of y, by 

 

Dy = f‟ (x) dx 

 

If u = f(x,y) be a function of two independent variables x and y, then we know that  

u

x




 = 

lim f(x Δx,y) f(x, y)

Δx 0 Δx

 


 

 

and  

 

u

y




 = 

y

y

Δ

y)f(x,Δy)f(x,

0Δy

lim 


 

 

Let  u be the change in u when both x and y change by the amounts  x and  y 

respectively, so that 
lim

x, y 0  
 u = du.  Here du is called the total differential. 

 

The total differential du of a function u (x, y) is defined as 

 du = 
u

x




 dx + 

u

y




dy      …(5) 

or 

 du = uxdx + uydy 

For instance, 

If         u = x
2
y – 3y     

then 

 

          Du = 2xy dx + (x
2
 – 3) dy 

 

Now consider the relation u (x, y, z) = c where x, y, z are variables and c is a constant. 

Then 

          Du = 0 

 

        
u

x




 dx + 

u

y




dy + 

u

z




dz = 0 

 

Here, 
u

x




, 

u

y




, 

u

z




 are known functions of x, y and z, and therefore the above 

equation can be put in the form 

 

P dx + Q dy + R dz = 0 
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Which is called the total differential equation in three variables.  In this equation any 

one of the variables x, y, z can be treated as independent and the remaining two are 

then the dependent variables. 

 

Similarly, if u = u(x, y, z, t) then corresponding total differential equation will be of 

the form 

 

                  P dx + Q dy + R dz + T dt = 0. 

 

Remember that a total differential equation always involves three or more variables. 

 

We now give the following definition. 

 

Definition: A total differential equation contains two or more dependent variables 

together with their derivatives with respect to a single independent variable which 

may, or may not, exist explicitly into the equation. 

 

For example, equations 

 

yz (1 + 4 xz) dx – xz (1 + 2 xz) dy – xydz = 0,  

and 

 

2 2 2

xdx ydy zdz

x y z

 

 
+ 

2 2

zdx xdz

x z




+ 2ax

2
dx + 3by

2
dy + 3cz

2
dz = 0. 

 

are total differential equations. 

 

We shall be dealing with only ordinary differential equations in Modules 1ansd 2 and 

devote Modules 3 and 4 study total and partial differential equations. 

 

We next consider the concepts of order and degree of a differential equation on the 

basis of which differential equations can be further classified. 

 

We all know that the nth derivative of a dependent variable with respect to one or 

more independent variables is called a derivative of order n, or simply an nth order 

derivative. 

For example, 
2

2

d y

dx
, 

2

2

z

x




, 

2z

x y



 
are second order derivatives and 

3

3

d z

dx
, 

2

2

z

x y



 
 are 

third order derivatives. 

 

Definition: The order of a differential equation is the order of the highest order 

derivative appearing in the equation.  For instance, the equation 

 
2

2

d y

dx
 + y = x

2
 is of second order     …(6) 
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(because the highest order derivative is 
2

2

d y

dx
, which is of second order), whereas 

 

(x + y) 

2
dy

dx

 
 
 

 - 1, is of first order     …(7) 

(highest order derivative is 
dy

dx
). 

Similarly, equation 

 
2

3

3

d y

dx

 
 
 

 + 2
2

2

d y

dx
 - 

dy

dx
 + x

2
 

3
dy

dx

 
 
 

 = 0 is of third order  …(8) 

 

whereas, 
2

2

z

x




 + 

2

2

z

y




 + 

z

x




 = 0 is of second order.  …(9) 

 

Note that the order of a differential equation is a positive integer. 

 

Also, if the order of a differential equation is „n‟ then it is not necessary that the 

equation contains some or all lower order derivatives or independent variables 

explicitly.  For instance, equation 
4

4

d y

dx
 = 0, is a fourth order differential equation. 

 

Definition: The degree of a differential equation is the highest exponent of the 

highest order derivative appearing in it after the equation has been expressed in the 

form free from radicals and any fractional power of the derivatives or negative power.  

For example Equations. (6) and (9) are of first degree and Equations. (7) and (8) are 

of  second degree. 

 

Equation 

 

y – x  
dy

dx
 = r  

3
dy

1
dx

 
  
 

      ….(10) 

 

is of degree three for, in order to make the equation free from radicals, we need to 

square both the sides, so that 

 
2

dy
y-x

dx

 
 
 

 = r
2
 

3
dy

1
dx

  
  
   
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since the highest exponent of the highest derivative, that is, 
dy

dx
 is three, thus by 

definition the degree of Equation. (10) is three. 

 

Similarly, Equation. (2), that is, 

 

y – x  
dy

dx
+

a

dy / dx
 is of degree two. 

This is because we multiplied through by 
dy

dx
 to remove negative power of 

dy

dx
 and 

get 

Y 
dy

dx
 = x 

2
dy

dx

 
 
 

 + a. 

 

You may now try the following exercise. 

 

We now classify the differential equations depending upon the degree of dependent 

variables and its derivatives into two classes, namely, linear and non-linear. 

 

Definition: When, in an ordinary or partial differential equation, the dependent 

variables and its derivatives occur to the degree only, and not as higher powers or 

products, we call the equation linear. 

 

The coefficients of a linear equation are therefore either constants or functions of the 

independent variable or variables.  If an ordinary differential equation is not linear, we 

call it non-linear. 

 

For example, the equation 

 
2

2

d y

dx
 + y = x

2  ,      
is an ordinary linear differential equation.. 

  However (x + y)
2
 
dy

dx
 = 1 is an ordinary non-linear equation, because of the presence 

of terms like y
2
 
dy

dx
 and 2xy

dy

dx
. 

 

Similar, equation 

 

2

2

z

x




 + 

2

2

z

y




 - 

2
2z

x y

 
 
  

 = 0 ,        is a non-linear partial differential equation. 

 



MTH 232                                                                                        ELEMENTARY DIFFERENTIAL EQUATION 

10 

 

Further, if a partial differential equation is not linear, it can be quasi-linear, semi-

linear or non-liner.  We will discuss conditions for these classifications in the later 

part of this course. 

 

You may now try this exercise. 

 

Normally when we encounter an equation, our natural curiosity is to enquire about its 

solution. But, then it is natural for you to ask as to what exactly is the meaning of a 

solution of a differential equation.  In the next section you will find an answer to this 

question.  There, we also answer many more questions like 

 

i) Under what conditions does the solution of a given ordinary differential 

equation exists? 
 

ii) If the solution exists, then is it a unique solution? 

 

3.2 Solution of a Differential Equation 

 
You have seen that the general ordinary differential equation of the nth order as given 

by Equation (4) is 

 

g
2 n

2 n

dy d y d y
x, y, , ,....,

dx dx dx

 
 
 

 = 0   

 

using the prime notation for derivatives  (y' = 
dy

dx
 y''= 

2

2

d y

dx
,…. Y n  = 

n

n

d y

dx
) we can 

rewrite Equation . (4) in the form 

 

y
(n) 

 = f(x, y, y', y'' ….. y(
(n- 1)

)     …(11) 

 

Let us assume that we can solve Eqn. (11) for y
(n)

, that is, Eqn. (11) can be written in 

the form 

 

Y
(n)

 = f(x, y, y', y'' ……., y
(n-1)

)     ….(12) 

 

It is normally a simple task to verify that a given function = ø (x) satisfies an equation 

like (11) or (12).  All that is necessary is to compute the derivatives of y and to show 

that y =  ø (x) and its derivatives, when substituted in the equation, reduce it to an 

identity in x. if such a function y exists, we call it a solution of the Eqn. (11) or (12). 

 

However, usually we assume that 

 

i) y = ø (x) is defined on some interval [a, b]; 

ii) y is n times differentiable on [a, b]; 

iii) We assume that y has a right derivative at point a and a left derivative at b; 
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iv) y = ø (x) can be real valued function or complex valued function (range is             

a subset of C) of x. 

 

We now give the definition of the solution of an ordinary differential equation. 

 

Definition: A real or complex valued function y = ø (x) defined on an interval I is 

called a solution or an integral of the differential equation g(x, y, y‟,…., y
(n)

) = 0 if 

ø (x) is n time differentiable and if x, ø (x), ø ‟(x), ….., ø
(n)

 (x) satisfy this equation 

for all x in I. 

 

For example, the first-order differential equation 

 

dy

dx
= 2y – 4x 

 

Note: I could represent any interval [a,b], [a, b] [0, [,] ,   ] and so on 

 

has the solution y = 2x + 1 in the interval I =  x : x    . 

This can be checked by computing y' =  2 = 2(1 + 2x) – 4x 

 

In the same way you can check that y = 1 + 2x + ce
2x

, in the interval x  , is 

also a solution of this equation for any constant c. 

 

In the above definition you might have noticed that a solution of (11) is real valued or 

complex valued. In case y is real value it is called a real solution. If y is complex 

valued, it is called complex solution. We are usually interested in real solution of 

Eqn. (11). To help you clarify what we have just said let us take some more examples. 

Example 1: Show that for any constant c, the function y(x) = ce
x
, xR is a solution of  

 

dy

dx
 = y,         xR                        …(13) 

 

Solution: Here I is R itself.  For any x R, we know that 

dy

dx
 = 

d

dx
 (ce

x
) = c

dy

dx
(e

x
) = ce

x
 = y 

 

which shows that y satisfies equation(13). 

 

Example 2: show that for real constants a and b the functions y (x) = a cos 2x and 

z(x) = b sin 2x are solutions of the equation below; 

 
2

2

d y

dx
 + 4y = 0, x R       …(14) 
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solution: We will first show that z (x), x R is a solution of Equation. (14). 

 

Now         
d

dx
 [z(x)] = 

d

dx
 (b sin 2x) = 2bcos 2x. 

             
2

2

d

dx
[z(x)] = 

d

dx
(2bcos 2x) = - 4b sin 2x = - 4z(x). 

 

thus, 

 
2

2

d y

dx
 + 4z(x) = 0, xR. 

That is, z satisfies Equation (14). 

 

By now you must have understood the meaning of z satisfying Equation (14)._.  It 

means that Equation (14). holds when y is replaced by z. Similarly, you can check that 

y(x) = a cos 2x is also a solution of Equation (14). 

.  You may observe here that the sum y(x) + z(x) that is, a cos 2x + b sin 2x is again a 

solution of. Equation (14). 

 

Let us consider another example. 

 

Example 3: Shown that y(x) = e
ix

, xR is a solution of 

 
2

2

d y

dx
 + y = 0, x R 

 

Solution: We have, 

 

dy

dx
= 

d

dx
(e

ix
) = i e

ix
 

 

and 

 
2

2

d y

dx
= 

d

dx
(ie

ix
) = i

2
 e

ix
 = -e

ix
 = - y(x) 

 

thus, 
2

2

d y

dx
 + y = 0 

 

In the examples taken so far, you have seen that the solution(s) differential equation 

exist. In Example (1) and (2) the solutions were real valued whereas, the solution in 

Example (3) was a complex valued function. But, there are equations for which real 

solution does not exist. Suppose that we are looking for real roots of the equation x
2
 + 

1 = 0.  We know that it does not exist.  Likewise, the equation 
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dy

dx
 + y

2
 + 1 = 0 

 

does not admit a real solution. 

 

Similarly, the equation sin 
dy

dx

 
 
 

 = 2 does not admit a real solution, because real value 

of the sin of a real function lies between – 1 and + 1. 

 

You may now try the following exercises. 

In the above discussion you must note that a differential equation may have more than 

one solution. It may even have infinitely many solutions.  For instance, each of the 

functions y = sin x, y = sin x + 3, y = sin x - 
4

5
 is a solution of the differential 

equation y = cosx but from your knowledge of calculus you also know that any 

solution of the differential equation is of the form. 

 

y = sin x + c        …(15) 

 

Where c is a constant. If we regard c as arbitrary then relation (15) represents the 

totality of all solutions of the equation.  Thus, we can represents even the infinitely 

many solutions by a simple formula involving arbitrary constants. Accordingly, we 

classify various types of solutions of an ordinary differential equation as follows. 

 

Definition: The solution of the nth order differential equation with arbitrary „n‟n 

constants is called its general solution. 

 

Definition: Any solution which is obtained from the general solution by giving 

particular values to the arbitrary constants is called a particular solution. 

 

For example, y = a cos 2x + b sin 2x, involving two arbitrary constants a and b, is the 

general solution of the second order equation 
2

2

d y

dx
 + 4y = 0 (ref. Example 2) whereas, 

y = 2 sin 2x + cos 2x is its particular solution (taking a = 1 and b = 2). 

 

In some cases there may be further solutions of given equation which cannot be 

obtained by assigning a definite value to the constant in the general solution.  Such a 

solution is called a singular solution of the equation. For example, the equation 

 

y''- xy' + y = 0       …(16) 
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has the general solution y = cx – c
2
.  A further solution of Eqn. (16) is y = 

2x

4
.  Since 

this solution cannot be obtained by assigning a definite value to c in the general 

solution, it is a singular solution of Eqn. (16). 

 

Thus, we have seen the various types of solution of an ordinary differential equation.  

We have also seen that a solution of a differential equation may or may not exist.  

Even if a solution exists, it may or may not be unique. 

 

We now try to find the conditions under which the solution of a given ordinary 

differential equation exists and is unique. Here, we shall confine our attention to the 

first order ordinary differential equations only. Let us consider the general first order 

equation. 

 

dy

dx
= f(x, y)        …(17) 

 

In Eqn. (17) we assume that f is known to us.  You may be surprised to know that, 

though this equation looks simple, it is very difficult to get its explicit solution. For 

clearity, let us look at the following examples. 

 

Example 4:  Does the solution y(x) of an ordinary differential equation 

 

dy

dx
 = f(x),       where     f(x) = 0 for x < 0     

                                      = 1 for x  0 

 

exist   x R? 

 

Solution: The function defined by 

y(x) = 
cforx 0

x c for x 0




 
 

 

Satisfies this equation at the same time this function has no derivative at x = 0, 

because of the discontinuity of y(x) at x = 0. 

 

Thus, this differential equation has no valid solution for x = 0. 

 

However, y(x) defined above is the solution of the given differential equation at all 

points other than x = 0. 

 

Let us look at another example. 
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Example 5: Does the equation  
dy

dx
 = - e

-y 
x have a unique solution? 

 

Solution: Rewrite the above equation in the form 

dy

dx
(e

y
) = - x 

 

Integrating, we get the solution of given equation as 

 

            e
y
 =- 

2x

2
 + A, 

or          y = In 
2x

A
2

 
  
 

 

 

where A is an arbitrary constant. 

You know that in x is defined for positive values of x only.  So, the solution of the 

given differential equation will exists as long as 
2x

A
2

 
  
 

> 0. Clearly A > 0. Also, 

for different values of A we get different solutions.  Moreover these solutions have 

different intervals of existence. Thus, the solution of a given differential equation is 

not unique. 

 

As regards the non-unique solutions, it is obvious that the cause for the non-

uniqueness is the arbitrariness of A, (but for A > 0). Thus, we would like to impose 

some condition on the solution which might determine A. one such condition is to 

specify the value of y at some point x0 where x0 is in the interval of existence of y.  

such a condition is called initial condition and the problem of solving a differential 

equation together with the initial conditions is called the initial value problem (IVP).  

In other words, initial value problem is the problem in which we look for the solution 

of a given differential equation which satisfies certain conditions at a single of the 

independent variable.  Thus, the first order initial value problem s 

 

0 0

dy
f (x, y),

dx

y(x ) y


 


 

       …(18) 

 

From Example 4 and 5 mainly two questions arise: 

 

1) Under what conditions does an initial value problem of the form (18) have at 

least one solution? 

 

2) Under what conditions does that problem have a unique solution, that is, only 

one solution? 
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The above questions are answered by a theorem, known as Existence Uniqueness 

Theorem 1.  We shall now state this theorem for the first order differential equation. 

 

Theorem 1: (Existence – Uniqueness): 
If f(x, y) is continuous at all points (x, y) in some rectangle (see Fig. 1. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Rectangle R 

 

R: |x – x0| < a, |y – y0| < b    and bounded in R, say 

|f(x, y)|   k  (x, y) in R.      …(19) 

 

then the IVP (18) has at least one solution y(x) defined for all x the interval 

 |x – x0| < h,  

 

further, if 
f

y




 is continuous for all (x, y) in R and bounded say, 

 

f

y




  M,  (x, y) in R      …(20) 

 

then the solution y(x) is the unique solution for all x in that interval |x – x0| < h, 

 

Note:  A function f(x, y) is aid to be bounded when (x, y) varies in a region in the xy-

plane and if there is a number k such that |f|   k when (x, y) is in that region. For 

example. 

 

F = x
2
 + y

2
 is bounded, with K = 2 if |x| < 1 and |y| < 1. 

 

We shall not be proving this theorem.  The proof of this theorem requires familiarity 

with many other concepts which are beyond the scope of this course.  However, in 

which, we give some remarks which may be helpful for a good understanding of the 

theorem. 

 

R 

    y 
 

yo + b 
 

       yo 

 

yo –b 

 
      o 

xo-a     xo              xo+a   x 
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Remark: Since y' = f(x,, y), the condition (19) implies that |y'| k, that is, the slope of 

any solution curve y(x) in R is at least – k and at most k.  Hence a solution  curve 

which passes through the point (x0, y) must lie in the shaded region in Fig. 2 bounded 

by the lines 11, and 12 whose slopes are – k and k, respectively 

 

 

 

 

 

 

 

 

 

    

 

Fig. 2 

 

Now two different cases may arise, depending on the form of R. 

 

i) We may have 
k

b
  a.  Therefore, h = a, which asserts that the solution exists for 

all x between x0 – a and x0 + a (see Fig. 2 (a)). 

ii) We may have 
k

b
 < a.  Where, h = 

k

b
, and we concluded that the solution exists 

for all x between x0 - 
k

b
 and x0 + 

k

b
.  In this case, for larger or smaller values 

of x; the solution curve may leave the rectangle R (see fig. 2 (b)).  Since we 

have not assumed anything about f outside R, nothing can be concluded about 

the solution for those corresponding value of x. 

 

The condition stated in Theorem 1 are sufficient but not necessary and can be relaxed.  

For example, by the mean value theorem of differential calculus, we have (ref. 

Theorem 1). 

 

f(x, y2) – f(x, y1) = (y2 – y1) 
y

f




 

 

where (x, y1) and (x, y2) are assumed to be in R.  From condition (20) then it follows 

that  

 

|f(x, y2) – f(x, y1) |   M| (y2 –y1) | 

 

condition (20) may be replaced by the condition (21) which is known as a Lipschitx 

condition, named after the German mathematician, Rudolf Lipschitz (1831 – 1903). 

 

Thus, we can say that for the existence of the solution of the IVP (18), we must have 

x0 

h=a h=a 

11 R 

Y 

yo+b 

yo 

yo-b 
12 

x 

(a) 

a a 
h h 

x0 x 

12 

11 

R 

yo+b 
yo 

yo-b 

Y 

(b) 
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i) f continuous in T. 

ii) f bounded in T. 

 

Further the solution is unique if in addition to (i) and (ii), we have 

 

iii) 
y

f




 continuous in T. 

iv) 
y

f




 bounded in T (or, Lipschitx condition) 

 

However, if the above conditions do not hold, then the IVP (18) may still have either 

(a) no solution (b) more than one solution (c) a unique solution.  

  

This is because theorem provides only sufficient conditions and not necessary.  For 

instance, consider  

 

dx

dy
 = 3y

2/3
, y (0) = 0. 

 

Here, f(x, y) = 3y
2/3

, 
y

f




 = 3.

3

2
 y

-1/3
 for y   0.  

y

f




 does not exists at y = 0. so 

y

f




 is 

not bounded but, the solutions y = x
3
 and y = 0 exist. 

 

Let us examine conditions (i) – (iv) for a few differential equations through examples. 

 

Example 6: Examine 
dx

dy
 = y, with y (0) = 1 for existence and uniqueness of the 

solution. 

 

Solution: Here f(x, y) =y, fy(x, y) = 1. Also x0 = 0 and y0 = 1. 

 

In this case consider a rectangle T defined by 

 

T: |x – 0 |<a, |y – 1|<b 

Where a and b are positive numbers. 

 

In any rectangle T (containing the point (0, 1)) the function f(x, y) is continuous and 

bounded.  Hence the solution exists.  Further fy(x, y) is also continuous and bounded 

in any such rectangle T.  Therefore, the solution is unique. 

 

You may verify that y = e
x
 is a solution of the given equation satisfying the initial 

condition y (0) = 1.  Hence, it is the unique solution. 
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However, if the initial condition is changed to y(0) = 0 then rectangle T will be of the 

form 

 

T: |x – 0| < a, |y – 0| <b 

And  in that case y =  0 will be the unique solution for all x and y in any rectangle T 

containing (0, 0). 

 

Example 7: Examine 
dx

dy
 = |y| when y (0) = 0, for existence and uniqueness of 

solutions. 

 

Solution: Here f(x, y) = |y| , x0 = 0 and y0 = 0.  In this case consider the region T 

with |x| < a, |y| < b, a and b positive numbers.  Function f(x,y) is continuous and 

bounded in any rectangle T, containing the point (0,0). 

 

Hence solution exists.  In order to test the uniqueness of the solution, consider the 

Lipschitz condition. 

 

12

12

12

12

yy|

||y||y||

|yy|

|)yf(x,)yf(x,|









 

 

for any region containing the line y = 0, Lipschitz condition is violated.  Because for  

y1 = 0 and y2 > 0, we have 

 

0)y(,
y

1

y

y

|yy|

|)yf(x,)yf(x,|
2

22

2

12

12 



 

 

and this can be made as large as we please by choosing y2 sufficiently small, whereas 

condition (21) requires that the quotient on the left-hand side of (21) does not exceed a 

fixed constant M. 

 

therefore,  the solution is not unique. 

 

Further, it can be checked that the given problem has the following solutions 

 

i) y = 0  x 

ii) y = 












0xforx
4

1

0xforx
4

1

2

2

 

 

Example 8: Examine 
dx

dy
 = f(x, y) = 









0xfor1)xy(2

0xforx)2y(1
with y(1) = 1 

for existence and uniqueness of solution. 
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Solution: Here x0 = 1 and y0 = 1. Rectangle T can be any rectangle containing point 

(1, 1). You may note that the function is not defined at x = 0. It is discontinuous at x = 

0.  Thus, at x = 0 the solution does not exist.  At all other points the function 

 

f(x, y) = 








0xfor1)xy(2

0xforx)2y(1
 

is continuous and bounded in T with (x) = 1. Hence, the solution, exists and is unique 

for all x other than x = 0. Further, you may verify that 

 

              y = 
2xxx  for x > = 0     

and        y = xxe 2

for x < 0 

 

is the unique solution of the given problem for all x other than x = 0 

 

you may now try the following exercise. 

 

From the definitions given in page 14, you may have realized that the general solution 

of a first order differential equation normally contains one arbitrary constant which is 

called a parameter. When this parameter is vary in values, we obtain a one parameter 

family of curves.  Each of these curves is a particular solution or integral curve of the 

given differential equation, and all of them together constitute its general solution.  On 

the other hand, we expect that the curve of any one-parameter family are integral 

curves of some first order differential equation. In general we pose a problem: given 

an n-parameter family of curves, can thus say that differential equations arise from a 

family of curves. In the next section we shall take up this. 

 

3.3 Family of Curves and Differential Equations 
 

Let us consider a family of straight lines 

 

Y = mx + c        …(22) 

 

Which is a two-parameter family of curves, parameters being m and c. 

 

It is clear from Eqn. (22) that y can be treated as a function of x, x R . 

Differentiating Eqn. (22) w.r.t.x, we have 

 

y' = m         …(23) 

 

Again, differentiating (23) we get 

 

y" = 0         …(24) 
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Equation (23) and (24) are differential equations of order one and two respectively.  

The way in which we have arrived at Eqn. (23) or (24) is clear.  We have actually tried 

to eliminate the parameters, or constants, m and c and the result is Eqn. (23) or (24). 

 

In general, we represent one-parameter family of curves by an equation 
 

F(x, y, a) = 0        …(25) 

where a is a constant. 

 

In Eqn. (25), let us regard y as a function of x and differentiate if w.r.t.x. Suppose we 

get 
 

G(x, y, y‟, a) = 0       …(26) 

 

In case, we are able to eliminate the constant a between Eqn. (25) and (26), then we 

have a relation connecting x, y and y', say 

 

h (x, y, y',) = 0          …(27) 

 

Equation (27) is an ODE of order one.  In particular, if Eqn. (25) has the form  

 

 (x, y) = a        ...(28) 
 

then the elimination of the constant a from Eqn. (28) leads us to the differential 

equation 
 

y

ψ

x

ψ









y' = 0       …(29) 

for example, x
2
 + y

2
 = a

2
      …(30) 

is the equation of the family of all concentric circles with centre at the origin (fig. 3) 

                                
Fig. 3 

 

For different values of a , we get different circles of the family.  Differentiating Eqn. 

(30) with respect to x, we get 

           2x + 2y 
dx

dy
 = 0. 
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Or          x + y 
dx

dy
 = 0, as the differential equation of the given family of circles. 

 

Continuing with equation y = mx + c, if we regard only c as an arbitrary constant to be 

eliminated, then y' = m, represents the required differential equation. Geometrically, 

for a fixed m, y' = m represents a family or straight lines (in the plane) whose slope is 

m (see fig. 4). 

 

 

 

 

 

 

 

 

 

 

 

 

      Fig. 4 

 

On the other hand, if we assume that in equation y = mx + c both m and c are 

constants to be eliminated, then equation y" = 0 represents the required differential 

equation. Geometrically, it is the family of the straight lines in the plane (see Fig. 5) 

 

 

 

 

 

 

 

 

 

 

 

 

      Fig. 5 

 

You may now try the following exercise. 

 

In the introduction of this unit we mentioned that there are many problems of physical 

and engineering interest which give rise to differential equations. In other words, we 

can say that some problems have representations through the use of differential 

equations. In the next section we shall take up such problems. 

 

 

45
o 45

o 
45

o 
45

o 
45

o 

M
=1

 

M
=1

 
M

=1
 M

=1
 M

=1
 

O
 

O    (1, 0)     

45
o
     

(-2, 0)     
45

o
     

M
=1

, C
=-

2

 

M
=1, C

=0

 

M
=1, C=1

 

x     

Y
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3.4 Differential Equations Arising From Physical Situations 
 

In this section we shall show that differential equations arise not only out of 

consideration of families of geometric curves, but an attempt to describe physical 

problems, in mathematical terms, also result in differential equations. 

 

The initial-value problem 

 












00 t)y(t

ky
dx

dy

        …(31) 

 

where k is a constant of proportionality, occurs in many physical theories involving 

either grow  or decay. For example, in biology it is often observed that the rate at 

which certain bacteria grow is proportional to the number of bacterial present at any 

time. In physics an IVP such as Eqn. (31) provides a model for approximating the 

remaining amount of a substance that is disintegrating, or decaying, through 

radioactivity. The differential Eqn. (31) could also determine the temperature of a 

cooling body. In chemistry, the amount of a substance remaining during certain 

reactions is also described by Eqn. (31). 

 

Let us now see the formulation of some of these problems. 

 

I:  Population Model 

 

Let N(t) = denote the number or amount of a certain species at time t.  then the growth 

of N(t) is given by its derivative 
dt

d
 N(t).  Thus, if N(t) is growing at a constant rate, 

dt

d
N(t) =  , a constant.  It is sometimes more appropriate to consider the relative rate 

of growth defined by 

 

relative rate of growth = 
N(t)ofsize

growthofrateactual
= 

N(t)

/dtdN(t)

N(t)

(t)N'
  

 

The relative rate of growth indicates the percentage increase in N(t) or decrease in 

N(t). For example, an increase of 100 individuals for a species with a population size 

of 500 would probably have a significant impact being an increase of 20 percent.  On 

the other hand, if the population were 1,000,000 then the addition of 100 would hardly 

be noticed, being an increase of 0.01 percent. If we assume that the rate of change of 

N at time t is proportional to population N(t), present at the time t then, 

 

dt

d
N(t) N(t) 

which is written as 
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dt

d
 N(t) = k N(t),       …(32) 

 

where k is a constant 

 

if N increases with t, then k > 0 in Eqn. (32) 

 

If N decreases with t, k   0 in Eqn. (32). 

 

Normally, we have the knowledge of the population, say N0, at some initial time t0.  so 

along with Eqn. (32)  we have 

 

N(t0) = N0.        …(33) 

 

Thus, the population N(t) at time t can be found by solving Eqn. (32) with condition 

(33).  We shall reconsider this problem with some modifications later in unit 3. 

 

II:  Newton’s Law of Cooling 
 

Here we deal with the temperature variations of a hot object kept in a surrounding 

which is kept at a constant temperature, say T0. Under certain conditions, a good 

approximation to the temperature of an object can be obtained by using Newton‟s law 

of cooling. Let the temperature of the object be T. If T   T0, we know that the object 

radiates heat to the surrounding resulting in the reduction of its (object‟s) temperature. 

Newton‟s law of cooling states that the rate at which the temperature T(t) changes in a 

cooling body is proportional to the difference between the temperature of the body 

and the constant temperature T0 of the surrounding medium.  That is 

 

             
dt

d
 T(t)   T(t) – T0 

or         
dt

d
T(t) = k (T(t) – T0),     …(34) 

 

where k is a constant of proportionality. 

 

Constant k < 0, because the temperature of the body is reducing (we have assume that 

T(t)   T0).  We observe that the Eqn. (34) is a differential equation of order one. 

 

III:  Radioactive Decay 
 

Many substances are radioactive. This means that the atoms of such a substance break 

down into atoms of other substances. In Physic, is has been noticed that the 

radioactive material, at time t, decays at rate proportional to its amount y(t). In other 

words, 
 

dt

d
 y(t) = ky(t)       …(35) 
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where k < 0, is a constant.  If the mass of the substance at some initial time, say t = 0, 

is A, then y(t) also satisfies the initial condition 

 

y(0) = A. 

 

Thus, the physical problem of radioactive decay is modeled by the IVP. 

 

dt

d
 y(t) = ky(t), y(0) = A      …(36) 

where k is a constant. 

 

Remark: I, II and III above indicate situations where differential equations occur 

naturally. In unit 3 we shall give the methods of solving these equations. 

 

You may now try the following exercise. 

 

4.0 CONCLUSION 

 
We now conclude this unit by giving a summary of what we have covered in it. 

 

5.0 SUMMARY 

 
In this unit, we have covered the following points: 

 

1) a) An equation involving one (or more) dependent variables and its 

derivative w.r. to one or more independent variables is called a 

differential equations. 

 

b) A differential equation involving only ordinary derivatives is called an 

Ordinary Differential Equation (ODE). 

 

c) A differential equation involving partial derivatives is called a partial 

differential equation (PDE). 

 

d) The order of a differential equation is the order of the highest order 

derivative appearing in the equation. 

 

e) The degree of a differential equation is the highest exponent of the 

highest order derivative appearing in it after the equation has been 

expressed in the form free from radicals and fractions of the derivatives. 

 

f) In a differential equation, when the dependent variable and its 

derivatives occur in the first degree only, and not as higher powers or 

products, the equation is said to be linear. 
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g) If an ordinary differential equation is not linear, it is said to be non-

linear. 

 

2) a) A real or complex value function =  (x) defined on an interval I is  

called a solution of equation g(x, y, y', y", ….., y
(n)

) = 0 
 

if  (x) is differentiable n times and if  (x), ' (x), " (x), ….,(x) satisfy 

the above equation for all x in I. 
 

b) The solution of the nth order differential equation which contains n 

arbitrary constants is called its general solution. 

  

c) Any solution which is obtained from the general solution by giving 

particular values to the arbitrary constants is called a particular 

solution of the differential equation. 

 

d) A solution of a differential equation, which cannot be obtained by 

assigning definite values to the arbitrary constants in the general 

solution is called its singular solution. 

 

3) a) Conditions on the value of the dependent variable, and its  

derivatives, at a single value of the independent variable in the interval 

of existence of the solution are called the initial conditions. 

 

b) The problem of solving a differential equation together with the initial 

conditions is called the initial value problem.  

 

4) The sufficient conditions for the existence of solution of the first order 

equation 

 

 
dy

dx
= f(x, y), with y(x0) = y0, 

 in a region T defined by |x – x0| < a and |y – y0| < b are 

 

 i) f is continuous in T 

 and 

 ii) f is bounded in T. 

 

further if the solution exists, then it is unique if, in addition to (i) and (ii), we 

have  

(iii) 
f

y




 is continuous in T. 

iv) 
f

y




 is bounded in T (or, Lipschitz condition is satisfied). 
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5) The general solution of a first order (nth order) differential equation represents 

one-parameter (nm-parameter) family of curves. 

 

6) Many physical situation such as population model, Newton‟s law of cooling, 

radioactive decay, can be represented by first order differential equations. 

 

6.0 TUTOR MARKED ASSIGNMENT 

 

1. Which of the following are differential equations? Which of the 

differential equations are ordinary and which are partial? 

 

a) 

3
2

2

d y

dx

 
 
 

+ x
dy

dx
 + y

3
 = 5x + 2 

 

b) 
dy

dx
 = 

x

x

sin[xy(s)]ds  

 

c) 
2 2 2

2 2 2

u u u

x y z

  
 

  
 = 0 

 

d) 
dy(x)

dx
 = 5x y (x + 1) 

 

e) 
2

2

d y

dx
 + 

dy

dx
 + y = 

x

x

sin[xy(s)]ds  

 

f) 
2

2

w

t




 = a

2
 

2

2

w

x




 

 

2. Find the order and degree of the following differential equations. 

a) 

2/3
2

2

d y

dx

 
 
 

 = 1 + 2
dy

dx
 

 

b) 
2

2

d y

dx
 + 

3
dy

dx

 
 
 

 + y
2
 = x 

 

c) sin 
2

2

d y

dx

 
 
 

 + x
2
y

2
 = 0 

 

d) 
dy

dx
 + y

3
 = 0 
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e) 

3/ 2
2

dy
1

dx

  
  
   

 = r 
2

2

d y

dx
 

 

f) 
4

4

z

x




 + 

2
2z

x y

 
 
  

 = x 

 

g) x
2
 (dx)

2
 + 2xy dx dy + y

2
(dy)

2
 – z

2
(dz)

2
 = 0 

 

3. Classify the following differential equations into linear and non-linear. 

 

 a) x 
z

x




+ y 

z

y




 - z = 0 

 

 b) 
2

2

z

x




  

2

2

z

y




 - 

2
2z

x y

 
 
  

 = 0 

 

 c) 
dy

dx
 = (x + y)

2
 

 

 d) (1 – x
2
) 

2

2

d y

dx
 - 2x 

dy

dx
+ n(n + 1) y = 0 

 

 e) (x
2
 + y

2
)

3/2
 

2

2

d y

dx
 +  x = 0 

 

4. Verify that y = cos
-1

 
2x

2

 
 
 

, and 2cos y = - x
2
 are solutions of the 

equation sin y 
dy

dx
 = x.  Can you state the interval on which y is defined? 

 

5. Verify that y = 
1

x
(In y + c) is a solution of the equation 

dy

dx
 = 

2y

1 xy
 for 

every value of the constant c. 

 

6. Verify that y = e
2x

 and y = e
3x

 are both solutions of the second order 

equation   y” – 5y‟ + 6y = 0 

 Can you find any other solution? 
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7. Examine 
dx

dy
 = f(x, y) = 













0yxwhen0,

zerobothnotareyandxwhen,
)y(x

yx4
24

3

 

 With y (0) = 0 

For existence and uniqueness of the solution. 

 

8. Assuming y to be a function of x, determine the differential equations by 

Eliminating the arbitrary constant (or constants) indicated in the following 

problems. 

 

a) xy = c (arbitrary constant is c) 

b) y = cos (ax) (arbitrary constant is a). 

c) y = A cos (ax) (arbitrary constants are A and a). 

 

9. In the following problems derive the differential equation describing the given 

physical situations. 

 

a) A culture initially has P0 number of bacteria.  Growth of the bacteria is 

proportional to the number of bacteria present.  What is the number p of 

bacteria at any time t. 

 

b) A quantity of a radioactive substance originally weighing x0 gms 

decomposes at a rate proportional to the amount present and half the 

original quantity is left after 2 years.  Find the amount x of the substance 

remaining after t years. 
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UNIT 2 METHODS OF SOLVING DIFFERENTIAL EQUATION OF 

FIRST ORDER AND FIRST DEGREE 

 
CONTENTS 

 

1.0 Introduction 

2.0 Objectives 

3.0 Main Content 

 3.1 Separation of Variable 

 3.2 Homogenous Equation 

 3.3 Exact Equation 

 3.4 Integrating Factor 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor Marked Assignment 

7.0 Reference/Further Readings 

 

1.0 INTRODUCTION 

 
In unit 1, we introduced the basic concepts and definitions involved in the study of 

differential equations. We discussed various types of solutions of an ordinary 

differential equation. We also stated the conditions for the existence and uniqueness of 

the solution of the first order ordinary differential equation.  However, we do not seem 

to have paid any attention to the methods of finding these solutions. Accordingly, in 

this unit we shall confine our attention to the same. 

 

In general, it may not be feasible to solve even the apparently simple equation 

dy

dx
 = f(x, y) or g(x, y,

dy

dx
) = 0 where f and g are arbitrary functions. This is because 

no systematic; procedure exists for obtaining its solution for arbitrary forms of f and g.  

However, there are certain standard types of first order equations for which methods 

of solution are available.  In this unit we shall discuss a few of them with special 

reference to their applications. 

 

2.0 OBJECTIVES 

 
At the end of this unit, you should be able to: 

 

 define separable equations and solve them 

 define homogeneous equations and solve them 

 obtain the solution of equations which are reducible to homogenous equations 

 identify exact equations 

 obtain an integrating factor which may reduce a given differential equation into 

an exact one and eventually provide its solution. 
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3.0 MAIN CONTENT 

 

3.1 Separation of Variables 

 
You know that the problem of finding the tangent to a given curve at a point was 

solved by Leibniz.  The search for the solution to the inverse problem of tangents, that 

is, given the equation of the tangent to a curve at any point to find the equation of the 

curve led Leibniz to many important developments.  A particular mention may be 

made of the method of separation of variables which was discovered by Leibniz in 

1691 by providing that a differential equation of the form 

dy

dx
 = X (x) Y (y) 

is integrable quadratures.  However, it is John Bernoulli (1694) who is credited with 

the introduction of the terminology and the process of separation of variables. 

 
In short, it is a method for solving a class of differential equations that arises quite 

frequently and is defined as follows: 

 

Note: The process of finding the areas of plane regions if called quadrature 

 

Definition: An equation of the form 

dy

dx
 = f(x, y)        …(1) 

is called a separable equation or equation in variable separable form if f(x, y) can 

be put in the form 

 

f(x, y) = X(x) Y(y),       …(2) 

where X and Y are given functions of x and y respectively. 

 

In other words, Eqn. (1) is a separable equation if f is a product of two functions, one 

of which is a function of x and the other is a function of y.  Here X (x) and Y(y) are 

real value functions of x and y respectively. 

 

For instance, equation 
dy

dx
 = e

x+y
 is a separable equation, since e

x+y
 = e

x
.e

y
 (here X(x) 

= e
x
 and Y(y) = e

y
).  The equation 

dy

dx
 = x

2
(y

2
 + y

3
) is also a separable equation. But 

the equation 
dy

dx
 = e

xy
 is not a separable equation, because it is not possible to express 

e
xy

 as a product of two functions in which one is a function of x only and the other is a 

function of only.  Similarly, equation 
dy

dx
 = x + y is not a separable equation. 

 

In order to solve Eqn. (1), when it is in variable separable form, we write it as  
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a(y) 
dy

dx
 + b (x) = 0       …(3) 

where a(y) and b(x) are each functions of only one variable 

 

let us assume that there exist functions A and B such that A' (y) = a(y) and B' (x) = 

b(x).  With this hypothesis, Eqn. (3) can be rewritten as 

d

dx
 A (y(x)) + B' (x) = 0      …(4) 

 

[by chain rule 
d

dx
 A (y(x)) = A‟ (y(x)) 

dy

dx
 = a (y(x)) 

dy

dx
] 

 

Integrating Eqn. (4) with respect to x, we get 

 

A (y(x)) + B(x) = c       …(5) 

Where c is a constant. 

 

Thus, any solution y of (3) is implicitly given by (5). 

 

We now take up a few examples to illustrate this method. 

 

Example 1: Solve 
dy

dx
 = e

x-y 

 

Solution: This equation may be written as 

dy

dx
 = e

x
 e

-y 

or e
y
 
dy

dx
 = e

x 

or d

dx
 (e

y
) = e

x 

which, on integration, gives e
y
 = e

x
+ c, where c is a constant. 

 

In case e
x
 + c  0, then y(x) = In (e

x
 + c). 

 

Example 2:  Solve the equation 

 

(1 + y
2
) dx + (1 + x

2
) dy = 0 with y (0) = - 1. 

 

Solution: The given equation can be rewritten as 

 

2

dx

1 x
 + 

2

dy

1 x
 = 0. 
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Integrating, we get 

 

tan
-1

x + tan
-1

y = c. 

 

The initial condition that y = -1 when x = 0 permits us to determine the value of c that 

must be used to obtain the particular solution desired here.  Since tan
-1

0 = 0 and tan
-1

(- 

1) = - 
4


, c = 0 - 

4


.  Thus, the solution of the initial value problem is tan

-1
x + tan

-1
y = 

- 
4


. 

 

Let us look at another example. 

 

Example 3: Solve 
dy

dx
 = ky – my

2
, where k > 0 and m > 0 are real constants. 

 

Solution: Let us write the given equation as  

 

2

1

ky my
 
dy

dx
 = 1. 

 

Now we will try do decompose the coefficient of 
dy

dx
 into partial fractions. 

 

Let 
1 A B

y(k my) y k my
 

 
       …(6) 

Where  A and B are constants to be determined. 

 

From (6), we get 

1 = A (k – my) + By 

which gives 1 = Ak and 1 = 
Bk

m
 

 

or A = 
1

k
 and B = 

m

k
 

 

Hence 
1

y(k my)
 = 

1

ky
 + 

m

k

1

(k my)  
 

Thus the given differential equation can be rewritten as 

1 m 1
.

ky k k my

 
 

 

dy

dx
 = 1,        …(7) 

for y   0 and k-my   0. 
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In the integration of Eqn. (7) the sign of y and k –my play a important role.  We now 

discuss the following possible cases: 

 Case 1: y > 0 and k-my > 0 (0 < y < 
k

m
). 

 

For the case under consideration, Eqn. (7) can be expressed as  

d

dx

1 1
Iny In(k my)

k k

  
   

  
 = 1 

 

which on integrating, yields 

1

k
 Iny - 

1

k
In (k-my) = x + c, 

 

where c is a constant of integration.  The above equation can be further express as  

 

In (y)
1/k

 – In (k – my)
1/k

 = x + c 

or  

1/ k

y

k my

 
 

 
 = ex + c

 

 

Case II: y < 0 

 

When y < 0 then k – my > 0 because m > 0,. In this case, Eqn. (7) on integration can 

be written as 

- 
1

k
 In (- y) 

1

k
 In (k – my) = x + c 

 

or 
1/ k 1/ k

1

( y) (k my) 
 = e

x +c 

 

Cases III: y> 0 and k – my < 0 (y > 
k

m
). 

In this case Eqn. (7) after integration gives 

1

k
 In(y) - 

1

k
 In( - k + my) = x + c 

or 

1/ k

y

k my

 
 
  

 = e
x +c 

You may now try the following exercises. 

 

Many differential equations that are not separable can be reduced to the separable 

form by a suitable substitution.  In the next section we shall study one class of such 

equations. 
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3.2 Homogeneous Equations 

 
In this section we shall study equations like 

2 2

2 2

dy x xy y

dx 3x y

 



 

 

This is an example of homogenous differential equations. In 1691 Leibniz made 

known to the world the method of solving homogeneous equation differential 

equations of the first order. 

 

Before we discuss the method of solving a homogeneous equation, we define 

homogeneous functions of two variables x and y. 

 

Definition: A real-value function h(x, y) of two variables x and y is called a 

homogeneous function of degree n, where n is a real number, if we have  

 

h( x, y  ) = 
n
h(x, y) 

 

for x, y and any constant  > 0. 

 

For example, h(x,y) = x
3
 + 2x

2
y + 3xy

2
 + 4y

3
 is homogeneous of degree three because  

h( x, y  ) = 
3
h(x, y) 

 

Also, h(x,y) = x
2

 cos 
y

x

 
 
 

 + (In|x| - In|y|) xy is homogeneous function of degree 2 and 

2

2 2

x

x 2xy y 
 is homogeneous of degree 0. 

 

But, the function h(x, y) = x
2
 + 2xy + 4 is not homogeneous because  

h( x, y  ) n (x2 xy 4)     for any value of n. 

 

if h(x, y) is a homogeneous function of degree n, that is, h( x,  y) = 
n
h(x,y), then a 

useful relation is obtained by letting   = 
1

x
.  This gives 

n

1

x
h(x,y) = h 

y
1,

x

 
 
 

 = 


y

x

 
 
 

 (say) or , h(x,y) = x
n
  

y

x

 
 
 

. 

 

We shall be particularly interested in the case where h(x,y) is homogeneous of degree 

0 that is, if h( x,  y) = 
0
h(x,y) = h(x,y).  We now give the following definition. 

 

Definition: A differential equation 

 

y' = f(x,y)        …(8) 

2 
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is called a homogenous differential equation when f is a homogeneous function of 

degree 0. 

 

For instance, the following equations are homogeneous differential equations: 

i) 
dy 2y

dx x
 , 

ii) 
dy 2x 3y 2 3(y / x)

dx 4x 4

 
   

iii) 
3 2 3 3

2 3 3

dy x x y y 1 (y / x) (y / x)

dx 3x y y 3(y / x) (y / x)

   
 

 
 

 

from the above equations, you may have noticed that if an equation can be put in the 

form  

dy

dx
 = f(x, y) = 1

2

f (x, y)
,

f (x, y)
 

 

where f1 and f2 are homogeneous expressions of the same degree in x and y, then f is a 

homogeneous function of degree 0. 

 

Further, if in Eqn. (8) we let   = 
1

x
, then we have 

y' = f
y

1,
x

 
 
 

 = f
y

x

 
 
 

                  …(9) 

 

This suggests making the substitution v = 
y

x
 to solve this equation.  Since we seek y 

as a function of x this substitution means 

 

         V(x) = 
y(x)

x
 or y(x) = xv(x) 

and     
dy

dx
 = v + x

dv

dx
 

with this substitution Eqn, (9) reduces to 

            v + x
dv

dx
 = f(v) 

or                 
dv

dx
 = 

F(v) v

x


         …(10) 

 

which shows that Eqn. (10) is a separable equation in v and x.  if we can solve Eqn. 

(10) for v in term of x, using the technique of Sec. 2.2 then the solution of Eqn. (9) is 

y = vx and hence we can solve equations of the type (9). 
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We now illustrate this method with the help of the following examples. 

 

Example 4: Solve 
dy

dx
 = 

2

2

2y 3xy

x


 

Solution: You can easily check that the given equation is homogeneous of degree 0.  

it can be rewritten as 

 

dy

dx
 = 2 

2
y

x

 
 
 

 + 3 
y

x

 
 
 

        …(11) 

By making the substitution, v = 
y

x
, Eqn. (11) reduces to  

x 
dv

dx
+ v = 2v

2
 + 3v 

or x 
dv

dx
= 2v

2
 + 2v = 2v(v + 1) 

or 
dv 2dx

v(v 1) x



 

which is in variable separable form. 

 

Resolving 
1

v(v 1)
 into partial fractions, we have 

1 1

v v 1

 
 

 
 dv = 

2

x
 dx 

which on integration, gives  

 

In |v| - In|v+1| = Inx
2
 + In |c|     …(12) 

 

Where c is an arbitrary constant. 

 

From Eqn. (12), we have 

 

v

v 1
 = cx

2
 

replacing v by 
y

x
, we get 

 

cx
2
 = 

y / x Y

(y / x) 1 X Y


 
 

or y = 
3

2

cx

1 cx
, 

 

y 

y x 
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which is the general solution of the given equation. 

 

Example 5:  Solve 
3

3

dy y y

dx x x
  , x > 0. 

 

Solution:  With the substitution y = vx, we have 

 

V + x 
dv

dx
 = v

3
 + v 

or 
3

1

v
 
dv

dx
 = 

1

x
       …(13) 

 

Integration of Eqn. (13) yields 

 - 
2

1

2v
 = Inx + In |c|, 

 

where c is a real constant.  On replacing v = 
y

x
, the general solution of the given 

equation can be expressed as 

 

y
2 = - 

2x

2[Inx In | c |]
 or

 y
2 = - 

2x

2
 

1

In(x | c |)
 

 

Let us consider another example. 

 

Example 6: Solve (x
2
 + y

2
) dx – 2xy dy = 0. 

 

Solution: The given equation can be written as 

 

dy

dx
 = 

2 2x y

2xy


         …(14) 

 

Putting y = vx, in Eqn. (14), we get 

V + x 
dv

dx
 = 

21 v

2v


, 

or x 
dv

dx
 = 

21 v

2v


 - v 

     = 
2 21 v 2v

2v

 
 = 

21 v

2v


 

or
2

2v

1 v
 
dv

dx
 = 

1

x
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Integrating, we get, 

 

In |x| |(1 – v
2
)| = In |c|, where c is a constant of integration or 

X (1- v
2
) = c 

 

On substituting for v, we can write the solution of Eqn. (14) in the form; 

                   x
2
 – y

2
 = cx. 

How about trying some exercise now? 

 

Sometimes it may happen that a given equation is not homogeneous but can be 

reduced to a homogeneous form by considering a transformation of the variables. We 

now consider such equations. 

 

Equations reducible to homogeneous form 
 

Consider the equation of the form 

 

dy

dx
 = 

ax by c

a 'x b 'y c '

 

 
       …(15) 

where a, b, c, a', b' and c' are all constants. 

 

Eqn. (15) can be reduced to a homogeneous form by using the substitution 

X = x' + h and y = y' + k, 

 

Where h and k are constants to be so chosen as to make the given equation 

homogeneous. In terms of these new variables, Eqn. (15) becomes 

 

dy

dx
 = 

dy '

dx '
 = 

)'''(''''

)(''

ckbhayba

cbkahbyax




 ,     …(16) 

 

which will be homogeneous provided h and k are so chosen that  

 

ah + bk + c = 0 

a'h + b'k + c' = 0       …(17) 

 

Consequently Eqn. (16) reduces to  

 

dy' ax ' by '

dx ' a 'x ' b 'y '





       …(18) 

 

which can be solved by means of the substitution y' = vx'. 

 

If the solution of the Eqn. (18) is of the form 

g(x', y') = 0, 
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then the solution of Eqn. (15) is 

 

g(x – h, y – k) = 0, 

 

where h and k are obtained by solving the simultaneous Eqns. (17) 

Solving Eqns. (17) for h and k, we get, 

 

h = 
bc ' bc '

ab ' a 'b




, k = 

a 'c ac '

ab ' a 'b




 

 

which are defined except when 

ab' – a'b = 0 that is, when 
a b

a ' b '
 . 

If  
a b

a ' b '
 , then h and k have either infinite values or are indeterminate.  But then the 

question is what happens if 
a b

a ' b '
 ? 

 

In such cases, we let 
a b

a ' b '
  = 

1

m
 (say) 

 

Then Eqn. (15) can be written as 
 

')( cbyaxm

cbyax

dx

dy




       …(19) 

 

On putting ax to by = v, Eqn (19) reduces to 

 

1 dv
a

b dx

 
 

 
 = 

v c

mv c'




 

so that the variables are separated and hence the equation can be solved by the method 

given in the Sec 2.2. 
 

We now take up some examples to illustrate the above discussion. 
 

Example 7: Solve 
dy

dx
=  

y x 1

y x 5

 

 
    …(20) 

 

Solution: Comparing the given equation with Eqn. (15), we have  

 

a = 1, b = -1, a' = 1, b' = 1. 


a b a b

1, |1and
a ' b ' a ' b '
     

Putting x = x' + h and y = y' + k in Eqn. (20), we get 
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dy' y ' x ' k h 1

dx ' y 'x ' k h 5

   


  
      …(21) 

we choose h and k such that  

 

k- h + 1 = 0 

k + h + 5 = 0        …(22) 

on solving Eqn. (22), we get h = - 2 and k = -3 .  with these values of h and k, Eqn. 

(21) reduces to  

 

dy ' y ' x '

dx ' y ' x '





        …(23) 

 

which is a homogeneous equation. 

 

on putting y' = vx' in Eqn. (23) and simplifying the resulting equation, we get 

 

2

1 v

1 v






dv 1

dx ' x '
  

or 
2 2

1 v dv 1

1 v 1 v dx ' x '

 
   

  
     …(24) 

 

 

Integration of Eqn. (24) yields 

 

tan
-1

v + 
1

2
 In (1+ v

2
 ) = - Inx' + c, where c is a constant. 

or, 
1

2
 In (1 + v

2
) x'

2
 + tan

-1
v = c. 

 

Replacing v by 
y '

x '
, we have 

1

2
 In (x'

2
 + y'

2
) + tan

-1
 

y '

x '
 = c. 

 

substituting x' = x + 2 and y' = y + 3, solution of Eqn. (20) is given by 

 

1

2
 In 2 2(x 2) (y 3)      + tan

-1
 

y 3

x 2

 
 

 
 = c. 

 

Example 8: Solve the differential equation (4x + 6y + 5) dy = (3y + 2x + 5) dx. 

Solution: The given equation can be written as 
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dy

dx
 = 

3y 2x 5

4x 6y 5

 

 
 

 

       = 
(2x 3y) 5

2(2x 3y) 5

 

 
        …(25) 

 

In this case a = 2, b= 3, a' = 4, b' = 6. Thus, 

 

a b

a ' b '
 . Therefore, we put 2x + 3y = v, and Eqn. (25) reduces to, 

 

1 dv v 5
2

3 dx 2v 5

 
  

 
 

dy dv
here 2 3

dx dx

 
  

 
  

or 
dv

dx
= 

3(v 5)

2v 5




 + 2  = 

3v 15 4v 10

2v 5

  


 = 

7v 25

2v 5




 

 

Now variables are separated and we get 

 

2v 5

7v 25




 
dv

dx
 = 1 

or 
2 15

7 7(7v 25)

 
 

 
 
dv

dx
 = 1. 

 

Integrating, we get 

 

2

7
 v - 

15

49
 In 

25
v

7

 
 

 
 = x + c, where c is a constant of integration, substituting 

v = 2x+ 3y, we get 

2

7
 (2x + 3y) - 

15

49
 In 

25
2x 3x

7

 
  

 
 = x + c, 

or, 14(2x + 3y) – 15 In (2x + 3y +
25

7
) = 49 (x + c) 

or, 42y – 21x – 15 In (14x + 21y + 25) = 49c – 15 In 7 = c1, say, which is the required 

solution. 

 

You may now try the following exercise.  In each of the equations in this exercise you 

should first see whether 
a b

a ' b '
  and then decide on the method. 

 

In Unit 1, we defined the total differential of a given function.  In the next section we 

shall make use of this to define and solve exact differential equations. 
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3.3 Exact Equations 

 
Let us start with a family of curves h(x, y) = c. Then its differential equation can be 

written in terms of its total differential as 

 

dh = 0, or 

h

x




 dx + 

h

y




 dy = 0. 

For example, the family x
2
y

3
 = c has 2xy

3
dx + 3x

2
y

2
dy = 0 as its differential equation.  

suppose we now consider the reverse situation and begin with the differential equation 

 

a(x, y)dy + b(x,y)dx = 0 

 

If there exists a function h(x,y) such that  

h

x




 = b(x, y) and  

h

y




 = a(x, y), 

then Eqn. (26) can be written in the form 

 

h

x




dx + 

h

y




 dy = 0 or dh = 0 

that is, h(x, y) = constant represents a solution of Eqn. (26). 

 

In this case we call the expression a(x, y)dy + b(x, y)dx an exact differential and (26) 

is called an exact differential equation. For instance, equation x
2
y

3
 dx + x+3

y+2
 dy = 

0 is exact, since we have d 3 31
x y

3

 
 
 

 = x2
y

3 
dx

 + 
x

3
y

2
dy. 

Thus, an exact differential equation is formed by equating an exact differential to zero. 

 

It is sometimes possible to determine exactness and find the function h by merer 

inspection.  Consider, for example, the equations. 

 

3x
2
y

4
dx + 4x

3
y

3
 dy = 0 

and xe
xy

 dy + (ye
xy

 – 2x) dx = 0. 

 

These two equations can be alternatively written as d(x
3
y

4
) = 0 and d(e

xy
 – x

2
) = 0, 

respectively.  Thus, the general solution of these equations are give by x
3
y

4
 = c and e

xy
 

= x
2
 + c, where c is constant. 

 

However except for some cases, this technique of “solution by insight” is clearly 

impractical. Consequently we seek an answer to the following question: when does a 

function h(x, y) exist such that Eqn. (26) is exact? An answer to this question is given 

by the following theorem. 
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Theorem 1: If the functions a(x, y), b(x, y), ax 
a

x




 and by = 

b

y




 are continuous 

functions of x and y, then Eqn. (26), namely, 

 

a(x, y) dy + b(x, y) dx = 0 is exact if and only if 

y




 b(x, y) = 

x




 a(x, y)           …(27) 

 

Indeed condition (27) is a necessary and sufficient condition for a function h(x, y) to 

be such that 

y




 h(x, y) = b(x, y) and 

y




 h(x, y) = a(x, y)        …(28) 

 

you may note here that if relation (28) is satisfied, then  

 

d[h(x, y (x))] = 
x




h(x,y (x)) dx + 

y




 h(x,y(x)) dy 

  = b(x, y(x))dx + a(x, y(x)) dy 

and hence Eqn. (26) can be rewritten as  

d[h(x, y(x))] = 0 
 

or that the solution of Eqn. (26) is given by  

h (x, y) = c, 
 

where c is a constant. 

 

We now give the proof of Theorem 1. 

Proof: The condition is necessary 

Let the equation 

 

a(x, y) 
dy

dx
 + b(x, y) = 0 

Or, a(x, y) dy + b(x, y) dx = 0 

Be exact. 

 

Then there exists a function h(x, y) such that  

dh = b(x, y) dx + a(x, y) dy 

 

But dh = 
h

x




 dx + 

h

y




 dy. 

h

x





 dx + 
h

y




 dy = b(x, y) dx + a(x, y) dy 

Thus, necessarily, 

h

x




 = b(x, y) and 

h

y




 = a(x, y)     …(29) 

x 
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Since a(x, y) and b(x, y) have continuous first order partial derivatives, h possess 

continuous second order partial derivatives namely, 
2h

y x



 
 and 

2h

y y



 
.  Refer Unit 6, 

Block 2 of MTE-07 for second and higher order partial derivatives. 

Now, 

 

y

b

xy

h

x

h

y 























 2

 (x, y)      …(30) 

and 
x

a

yx

h

y

h

y 























 2

 (x, y)     …(31) 

Since 
y

b




 and 

x

a




 are continuous, 

xy

h



2

 = 
yx

h



2

 (ref. Unit 6, Block 2 of MTE-07). 

There, from Eqn. (30) and (31), we get 

x

a




(x, y) = 

y

b




(x, y) 

The condition is sufficient: Now suppose that  

x

a




(x, y) = 

y

b




(x, y) 

and we shall show that a(x, y) dy + b(x, y) dx is an exact differential 

Let  b(x, y) dx = V, then 
x

V
 = b(x, y) 

and  

       
xy

V



2

 = 
y

b




 (x, y) 

       = 
x

a




 (x, y) (using given condition) 


x

a




 (x, y) = 

y















x

V
      …(32) 

 

Integration of Eqn. (32) with respect to x, holding y fixed, yields 

 

a(x, y) = 
y

V
+ ø (y) 

 

where ø, a function of y only, is therefore a constant of integration, when y is held 

fixed. 

 

Thus,  
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a(x, y) dy + b(x, y) dx = 
y

V
dy + ø(y) dy + 

x

V
dx 

      = d[V(x, y) + ø(y) dy] 

 

which establishes that a(x, y) dy + b(x, y) dx is an exact differential implying thereby 

that, a(x, y) dy + b(x, y)dx = 0 is an exact differential equation.  This completes the 

proof of Theorem 1. 

 

We shall now illustrate this theorem with the help of the following examples. 

 

Example 9:  Solve the differential equation 

Sin(y) + x cos (y)y' = 0. 

 

Solution:  For the case under consideration, a(x, y) = xcos(y) and b(x, y) = sin(y).  

also 

 

x


 a(x, y) = cos(y) = 

y


 b(x, y) 

which shows that the given equation is an exact equation. 

 

Therefore, there exists a function h(x, y) = constant such that, 
x

h




= b(x, y) and 

y

h




 = 

a(x, y) 

 

Then we have 

x

h




 = sin y        …(33) 

and  

y

h




 = x cos y        …(34) 

 

Integrating Eqn. (33) with respect to x, treating y as a constant, we get 

 

h(x, y) = x sin y + ø (y)      …(35) 

 

Where ø(y) is a constant of integration.  Differentiating Eqn. (35) partially w.r.t.y, we 

get 

 

y


 h(x, y) = x cos y + ø'(y)      …(36) 

 

from Eqns. (34) and (36), we get 

x cos y = x cos y + ø'(y) 

which shows that ø'(y) = 0 ø(y) = constant = c1.  Hence from Eqn. (35), we can 

write 
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h(x, y) = xsin y + c1 

so the required solution, h(x, y) = constant, is 

x sin y + c1 = c2, where c2 is a constant or, 

x sin y  = c, 

 

where c = c2 – c1 is a constant. 

 

Example 10: Solve e
x
 sin y + e

x
 cosy y' + 2x = 0. 

 

Solution:  Comparing with Eqn. (26), we have a(x, y) = e
x
cos y and b(x, y) = e

x
sin y + 

2x.  Therefore, 

x


 a(x, y) = e

x
cos y 

and 
y


 b(x, y) = e

x
cos y = 

x


 a(x, y). 

Hence the given equation is exact and can be written in the form dh(x, y(x) = 0 where 

x


 h(x, y) = e

x
sin y + 2x                …(37) 

and 
y


 h(x, y) = e

x
 cos y                …(38) 

 

Integrating Eqn. (37) w.r.t.x, we get 

 

h(x, y) = e
x
 sin y + x

2
 + ø(y)               …(39) 

 

Where ø, a function of y only, is a constant of integration 

From Eqns. (38) and (39), we get 

 

y


 h(x, y) = e

x
cos y + ø' (y) = e

x
 cos y 

 

So we have ø' (y) = 0 or ø (y) = c1 where c1 is a constant.   

Hence from Eqn. (39) we have the required solution as 

 

h(x, y) = e
x
 sin y + x

2
 = - c1 = c 

 

where c is a constant. 

 

On the basis of Theorem 1 and Example (9) and (10) we can say that various steps 

involved in solving an exact differential equation b(x, y) dx + a(x, y) dy = 0 are as 

follows: 

 

Step 1: Integrate b(x, y) w.r.t.x, regarding y as a constant. 
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Step 2: Integrate, with respect to y, those terms in a(x, y) which do not involve x. 

 

Step 3: The sum of the two expressions obtained in steps 1 and 2 equated to a 

constant is the required solution. 

 

We now illustrate these various steps with the help of an example. 

 

Example 11:  Solve (x
2
 – 4xy – 2y

2
) dx + (y

2
 – 4xy – 2x

2
) dx = 0. 

 

Solution:  Here a(x, y) = y
2
 – 4xy – 2x

2
 and b(x, y) = x

2
 – 4xy – 2y

2
 

x

a




  = - 4y – 4x and 

y

b




 = - 4x – 4y 

x

a




  = 

y

b




; hence it is an exact equation. 

 

Step1:  Integrating b(x, y) w.r.t.x. regarding y as a constant, we have 
 

 (x
2
 – 4xy – 2y

2
) dx = 

3

3x
 - 2x

x
y – 2xy

2
. 

 

Step 2:  We integrate those terms in a(x, y) w.r.t.y, which do not involve x.  There is 

only one such term namely, y
2
. 

 

  y
2
 dy = 

3

3y
. 

 

Step 3:  The required solution is the sum of expressions obtained from Steps 1 and 2 

equated to a constant, that is. 

 

3

3x
 - 2x

2
y – 2xy

2
 + 

3

3y
 = c1, 

or x
3
 – 6x

2
y – 6xy

2
 + y

3
 = c. 

 

where c and c1 are constants. 

 

Note that the test for an exact differential equation and the general procedure for 

finding the solution can sometimes be simplified. We can pick out those terms of a(x, 

y) dy + b(x, y) dx = 0 that obviously form an exact differential or can take the form 

f(u) du. The remaining, expression which is less cumbersome than the original can 

then be tested and integrated. This is illustrated by the following example. 

 

Example 12:  Solve xdx +ydy + 
22 yx

ydxxdy




 = 0. 

 

Solution:  Note that the first two terms on the left hand side of the given equation are 

exact differentials and hence need not be touched. Dividing the numerator and 

denominator of the last term by x
2
, we get 

 

x
2
d(

y
/x) 
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xdx + ydy + 
2)/(1

)/(

xy

xyd


 = 0 

Now each term of the above equation is an exact differential.  Integrating, we get 

 

2

y

2

x 22

 + tan
-1

 
x

y
 = c 

as the required solution with c as a constant. 

 

You may now try the following exercises. 

 

In practice the differential equations of the form a(x, y) dy + b(x, y) dx = 0 are rarely 

exact, since the condition in Theorem 1 requires a precise balance of the functions a(x, 

y) and b(x, y). But they can often be transformed into exact equations on 

multiplication by a suitable function F(x, y)   0. This function is then called an 

integrating factor. The question we, now, must ask is: if 

 

a(x, y) dy + b(x, y) dx = 0 

 

is not exact, then how to find a function 

 

F(x, y)   0 so that 

F(x, y) [a dy + b dx] = 0 
 

Is exact? In the next section we shall give an answer to this question. 

 

3.4 Integrating Factor 

 
We begin with a very simple equation, namely, 

 

y' + y = 0                …(40) 

 

In this case a(x, y) = 1 and b(x, y) = y.  Here 
x


 a(x, y) = 0 

and 
y


 b(x, y) = 1 and hence the given equation is not exact.  Let us multiply Eqn. 

(40) by e
x to get 

 

e
x
y' + e

x
y = 0                  …(41) 

 

you may now check that Eqn. (41) is an exact equation. Thus Eqn. (40) is not exact 

whereas when we multiply EQn. (40) by e
x
 the resulting equation becomes an exact 

one. 

 

Here e
x
 is termed as integrating factor for Eqn. (40). 

 

We now give the following definition. 
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Definition: A factor, which when multiplied with a non-exact differential equation 

makes it exact, is known as an integrating factor (abbreviated as I.F.). 

 

The term I.F., to solve a differential equation, was first introduced by Fatio de Duillier 

in 1687. 

 

For a given equation, there may not be a unique integrating factor. 

 

Consider, for example, the equation 

 

ydx – xdy = 0                 …(42) 

 

You can check that Eqn. (42) is not exact, but when multiplied by
2y

1
, it becomes 

 

2y

xdyydx
 = 0 

which is exact.  This can now be written as d 








y

x
 = 0 and thus has for its solution 

y

x
 

= c with c being an arbitrary constant. 

 

Further, when Eqn. (42) is multiplied by
xy

1
, it becomes 

y

dy

x

dx
  = 0, 

 

which is given exact and has its solution as Inx –Iny = c. 

 

you may notice that this solution can be transformed into the earlier solution obtained 

through the I.F. 
2y

1
.  Also Eqn. (42) when multiplied by

2

1

x
 reduces to an exact 

equation 
2x

y
dx - 

x

dy
 = 0 or, - d 









x

y
 = 0 with | - 

x

y
 = c as its solution. 

 

Thus, we have seen that some of the integrating factors for Eqn. (42) are
2y

1
, 

xy

1
 and 

2

1

x
 

 

Now the question arises: Is this the case only with Eqn. (42) or, in general, does an 

equation of the form a(x, y) dy + b(x, y) dx = 0 have infinitely many integrating 

factors? 
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An answer to this question is given in Theorem 2. 
 

Before we give you this theorem, here is an exercise for you. 

 

Theorem 2:  The number of integrating factors for the equation 

A(x, y) dy + b)x, y) dx = 0 

is infinite 

 

proof:  Let g(x, y) be an integrating factor of the given equation. Then, by definition  

g(x, y) 







 y)b(x,

dx

dy
y)a(x,  = 0               …(43) 

is an exact differential equation. 

 

Therefore, there exist a function h(x, y) such that 

dh = g(x, y) 







 y)b(x,

dx

dy
y)a(x,  = f(h)dh = d [  f(h)  dh]       …(44) 

 

Since the term on the right hand side of Eqn (44) is an exact differential, the term in 

the left must also be an exact differential. Therefore, g(x, y).f(h) is an integrating 

factors of the given differential equation. 
 

Since f(h) is an arbitrary function of h, hence the number of integrating factors for 

equation a(x, y) dy + b(x, y) dx = 0 is infinite. 

 

This fact is, however, of no special assistance in solving the differential equations. 
 

So far, in our discussion we have not paid any attention to the problem of finding the 

integrating factors. In general, it is quite difficult to obtain an integrating factor for a 

given equation. However, rules for finding the integrating factors do exist, we shall 

now take up these rules one by one. 

 

Rules for finding integrating factors 
 

Rule 1: Integrating factors of obtainable inspection: Sometime integrating factors 

of a differential equation can be seen at a glance, as in the case of EQn. (42) above.  

We give below some more examples in this regard. 

 

Example 13: Solve (1 + xy) ydx + (1 – xy)xdy = 0, x>0, y > 0 …(45) 

 

Solution:  Rearranging the terms of Eqn. (45), we get 

ydx + xdy + xy
2
dx – x

2
ydy = 0 

  d(xy) + xy
2
dx – x

2
ydy = 0                  …(46) 

 

It is immediately seen that multiplication by  
22yx

1
 makes Eqn. (46) exact and the 

equation becomes 
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y

dy

x

dx

yx

d(xy)
22

  = 0 

 

integrating, we get 

 - 
xy

1
 + Inx – Iny = Inc, 

or x = cy e
1/(xy)

 (where c is a constant). 

 

Example 14:  Solve (x
4
e

x
 – 2my

2
x) dx + 2mx

2
y dy = 0. 

 

Solution:  We can write the given equation as 

 

x
4
e

x
 dx + 2m (x

2
ydy

 – 
xy

2
dx) = 0 

 

  x
4
e

x
 dx + 2mx

3
y d 









x

y
 = 0 

Dividing by x
4
, we get 

dx + 2m 
x

y
 d 









x

y
 = 0 

  d





















2

x

x

y
me  = 0 

thus 
4x

1
has served the role of an integrating factor in this case. 

 

The required solution is, then, given by 

e
x
 + m

2

x

y








 = c with c as a constant. 

 

We would like to mention that determination of an integrating factor by inspection is a 

skill and can be developed through practice only. 

 

At this stage you may try the following exercises by finding an integrating factor 

through inspection. 
 

Rule II: For a homogeneous equation a(x, y)dy + b(x, y) dx -= 0, when bx + ay   

0, then 
aybx

1


 is an integrating factor. 

 

Proof:  Consider an equation 

a(x, y) dy + b(x, y) dx = 0 

 

Now ady + bdx = 


























y

dy

x

dx
ay)(bx

y

dy

x

dx
ay)(bx

2

1
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bxay

bdxady




  = 

































y

dy

x

dxaybx

y

dy

x

dx

2

1

ayx
 

 

since the given equation is homogeneous, therefore a and b are of the same degree in x 

and y and therefore 
aybx

aybx




 can be written as a function of 

y

x
, say 









y

x
f . 

 

bxay

bdxady




  = 











































y

dy

x

dx

y

x
f

y

dy

x

dx

2

1
 

 

          =  

















y

x
Ind)f(exy)d(In

2

1 Inx/y  

          = 

















y

x
IndFxy)d(In

2

1
 

 

          =  d 


















y

x
InF

2

1
Inxy

2

1
     …(47) 

 

where d f 








y

x
 = f(e

Inx/y
) d 









y

x
In . 

Since right hand side of  Eqn. (47) is an exact differential, it shows that 
bxay

1


 is an 

integrating factor for the homogeneous equation a(x, y)dy + b(x, y)dx = 0. 

 

We illustrate this rule by the following example. 

 

Example 15: Solve (x
2
y – 2xy

2
) dx – (x

2
 – 3x

2
+y) dy = 0. 

 

Solution:  Here the given equation is homogeneous and 

a(x, y) = x
3
 + 3x

2
y  and b(x, y) = x

2
y – 2xy

2
 

bx + ay = x(x
2
y – 2xy

2
) + y( - x

3
 + 3x

2
y) = x

2
y

2
   0, 

22yx

1
  is an integrating factor. 

Multiplying the given differential equation by 
22yx

1
, we get 











x

2

y

1
 dx - 










y

3

y

x
2

 dy = 0, 

or 
2y

x

x

dx
2

y

dy
3

y

dx
  dy = 0, 

f 

df 
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or 







 dy

y

x

y

dx
2

 + 
x

dx
2

y

dy
3   = 0,  

or d 








y

x
 + d(3 Iny + 2 Inx) = 0. 

 

Therefore, the solution is 

y

x
 + 2 Iny – 2 Inx = c1  and c are constants. 

Note: In case bx + ay = 0, then 
x

y

b

a
  and the given equation reduces to 

dx

dy
 = 

x

y
, 

Whose solution is straightaway obtained as x = cy. 
 

You may now try this exercise. 
 

Rule III: when bx – ay  0 and the differential equation a(x, y) dy + b(x, y) dx = 0 

can be written in the form yf1(x y) dx + xf2(xy) dy = 0 then 
aybx

1


 is an 

integrating factor. 

 

Proof:  If equation a(x, y) dy + b(x, y)dx = 0 can be written in the form yf1(xy)dx + 

xf2(xy)dy = 0 

 

Then evidently, 

 

λ
(xy)yf

b

(xy)xf

a

12

 , say 

a = λ xf2(xy) and b = λ yf1(xy) 

 

Also ady + bdx = 


























y

dy

x

dx
ay)(bx

y

dy

x

dx
ay)(bx

2

1
 

aybx 




bdxady
 = 































y

dy

x

dx

y

dy

x

dx

2

1

aybx

aybx
 

          =  





















y

x
Indd(Inxy)

ff

ff

2

1

21

21  

          = 

















y

x
Indxy)d(Inf(xy)

2

1
 

   where f(xy) = 
21

21

ff

ff




 

           = 



































y

x
Inddf(Inxy)

2

1
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           =  d 
















f(In(xy))

2

1

y

x
In

2

1
 

 

where dF (In xy) = f(x, y) d(In xy), 

which is an exact differential. 

Hence, 
aybx

1


 is an integrating factor. 

 

We now illustrate this through the following example. 

 

Example 16:  Solve y(xy + 2x
2
y

2
) dx + x(xy – x

2
y

2
)dy = 0, 

 

Solution:  Here a = x(xy – x
2
y

2
) and b = y(xy + 2x

2
y

2
) 

bx – ay = xy[xy + x
2
y

2
 – xy + 2x

2
y

2
] 

      = 3x
3
y

3
   0. 

 


33yx3

1
 is an I.F. 

Multiplying the given equation by 
33yx3

1
, we get 

23yx3

1
 (xy + 2x

2
y

2
) dx + 

32yx3

1
(xy – x

2
y

2
) dy = 0 

 

or 
yx3

dx
2

 + 
y3

dy

xy3

dy

x3

dx3
2
  = 0 

 

or
y

dy

3

1

x

dx

3

2

xy3

dy

yx3

dx
22









  = 0 

 

or d













 Iny

3

1
Inx

3

2

xy

1

3

1
 = 0. 

 

Therefore, the solution is 

3

1
Inx

3

2

xy3

1
 Iny = c1 where c1 is a constant. 

or   1

2 c3InyInx
xy

1
c for c being an arbitrary constant. 

or In 










y

x2

 = c + 
xy

1
. 

 

Note: If bx – ay = 0, i.e., 
x

y

b

a
 , then given equation will be of the form 

x

y


dx

dy
 and 

have a solution xy = c. 
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Before we go to the next rule here is an exercise for you. 

 

Rule IV: When 

















x

a

y

b

a

1
 is a function of x alone, say f(x), then dxf(x)e  is an I.F. 

of the equation ady + bdx = 0. 

 

Proof:  Consider the equation dxf(x)e  (ady + bdx) = 0  …(48) 

 

Let c = b dxf(x)e and d = a dxf(x)e  

Then Eqn. (48) reduces to c dx + d dy = 0 

Now, 
y

b

y

c









 dxf(x)e  

and 
x

a

x

d









 dxf(x)e  + a dxf(x)e  f(x) 

   = dxf(x)e














f(x)a

x

a
 

   = dxf(x)e
















































f(x)

x

a

y

b

a

1
because

x

a

y

b

x

a
 

   = 
y

b



 dxf(x)e  

   = 
y

c




 

 

therefore, the equation c dx + d dy = 0 is exact. 

 

Hence dxf(x)e  is an I.F. of the equation ady + bdx = 0. 

 

We illustrate this rule with the help of the following example. 

 

Example 17:  Solve (x
2
 + y

2
) dx – 2xydy = 0. 

 

Solution:  Here a = 2xy, b = x
2
 + y

2
 

 

y

b




  = 2y and 

x

a




 = - 2y.  thus, 

y

b




   

x

a




. 

Here 

















x

a

y

b

a

1
 = 

xy2

1


 (2y + 2y) = - 

x

2
, which is a function of x alone. 

 

I.F. = 
dx

x

2

e


 = 
2

Inx2

x

1
e   
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Multiplying the given equation by 
2x

1
, we get 

2x

1
(x

2
 + y

2
) dx - 

x

y2
 dy = 0, 

 

i.e., dx 
2

2

x

y
 dx - 

x

y2
 dy = 0, 

i.e., dx + d 











x

y2

 = 0      …(49) 

 

integrating Eqn. (49), the required solution is obtained as  

x - 
x

y2

 = c (a constant) 

You may now try this exercise. 

Rule V: When 

















x

a

y

b1

b
 is a function of y alone, say f(y), then ydf(x)e  is an I.F.  

of the differential equation 

a dy + b dx = 0. 

 

The proof of this rule is similar to the proof of Rule IV above and we leave this as an 

exercise for you (see E 13). 

 

We however illustrate the use of Rule V with the help of following example. 

 

Example 18: Solve (3x
2
y

4 
+ 2xy) dx + (2x

3
y

3
 – x

2
) dy = 0. 

 

Solution:  Here a =  2x
3
y

3
 – x

2
 and b = 3x

2
y

4
+2xy

 

y

b




  = 12x

2
y

3 
+ 2x and

  

x

a




 = 6x

2
y

3
 – 2x 

Here 

















x

a

y

b1

b
 = 

xy2yx3

1
42 

 (12x
2
y

3
 + 2x – 6x

2
y

3
 + 2x) 

 = 
x2yxy(3

x2yx2(3
32

32




 = 

y

2
, which is a function of y alone. 

 

Hence, I.F. = 
|dy

y

2

e


|e
-2Iny

 = y
-2

 = 
2y

1
. 

 

Multiplying the given equation by the I.F. = y
-2

,  and on rearranging th terms, we get 

 

(3x
2
y

2
 dx + 2x

3
ydy) + 










 dy

y

x
dx

y

x2
2

2

 = 0 
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i.e., d(x
3
y

2
) + d 











y

x2

 = 0 

Integrating the above equation, we get 

x
3
y

2
 + 

y

x 2

 = c, where c is a constant of integration. 

i.e., x
3
y

3
 + x

2
 = cy, which is the required solution. 

 

And now an exercise for you. 

 

Rule VI:  If the differential equation is of the form 
βαyx  (mydx + nxdy) = 0, where βα, , m and n are certain constants, then x

km-

1α
y

kn-1-β  
 is an integrating factor, where k can assume any value. 

Proof:  Multiplying the given equation by I.F., we get 

 

X
km-1

 y
kn-1

 (mydx + nxdy) = 0, 

or km x
km-1

 y
kn

 dx + kn x
km

y
kn-1 

dy = 0 

or (x
km-1

y
kn

) = 0, which is an exact differential. 

 

It may be noted that if the given differential equation is of the form 
βαyx (mydx + nxdy) + 1β1α yx (m1ydx + n1xdy) = 0 

then also I.F. can be determined. 

 

By Rule VI, β1knα1km yx   will make the first term exact, while 
β1nkα1mk 11111 y


x will 

make the second term exact, where k and k1 can have any value. 

 

Now these two factors will be identical if 

 

kn-1- = k1m1 – 1- 1 

and kn -1-β = k1n1-1-β 1. 

 

Values of k and k1 can be found tp satisfy these two algebraic equations.  Then either 

factor is an integrating factor of the above equation. 

 

We now consider an example to illustrate this rule. 

 

Example 19:  Solve (y
3
 – 2yx

2
) dx + (2xy

2
 – x

3
) dy = 0. 

 

Solution:  On rearranging the term of the given equation, we can write 

y
2
(ydx + 2xdy) – x

2
(2ydx + xdy) = 0    …(50) 

 

For the first term,  = 0,β = 2, m = 1 and n = 2 and hence its I.F.is x
k-1

y
2k-1-2

 

For the second term 1α = 2, 1β  = 0, m1 = 2, n1 = 1 and hence for the second term I.F. is  
1k21k2 11 yx
  

these two integrating factors will be identical if 
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k-1 = 2k1 -1-2 

and 2k-1-2 = k1 – 1       …(51) 

 

solving the system fo Eqn. (51) for k and k1, we get k = 2 and k1 = 2 and, therefore, 

integrating factor for Eqn. (50) is 

x
2-1

 y
4-1-2

, i.e., xy. 

 

Multiplying Eqn. (50) by xy, we get 

xy
3
 (ydx + 2xdy) – x

3
y (2ydx + xdy) = 0 

xy
4
dx + x

2
y

3
dy – (2x

3
y

2
dx + x

4
ydy = 0 

  
2

1
 (2xy

4
dx + 4x

2
y

3
dx) – 

2

1
(4x

3
y

2
dx + 2x

4
y

4
dy) = 0 

  
2

1
 d[2x

2
y

4
] - 

2

1
 d[x

4
y

2
] = 0      …(52) 

 

Integrating Eqn. (52), we get the required solution as 

2

yxyx 2442 
 = c1 (a constant) 

or x
2
y

2
(y

2
 – x

2
) = 2c1 = c ( a constant). 

 

You may now apply your knowledge about these rules and try to solve the following 

exercises. 

 

4.0 CONCLUSION 
 

We now end this unit by giving a summary of what we have covered in it. 

 

5.0 SUMMARY 
 

In this unit we have covered the following: 
 

1) An equation 
dx

dy
 = f(x, y) is called a separable equation or an equation with 

separable variables if f(x, y) = X(x) Y(y).  to solve a separable equation, we 

can write it as 

 a(y) 
dx

dy
 + b(x) = 0 

 For some a(y) and b(x).  Integrating w.r. to x and equating it to a constant, we 

get its solution. 

 

2) a) A real-valued function h(x, y) of two variables x and y is  

  called a homogeneous function of degree n, if h( λ x, λ y) = λ
n
h(x, y), 

where n is a real number and λ  is any constant. 

 

 b) A differential equation 
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dx

dy
 = f(x, y) 

 is called a homogeneous differential equation of first order when f is a 

homogeneous function of degree zero. 
 

c) A homogeneous differential equation reduces to separable equation by the 

substitution y = vx, where v is some function of x. 
 

3) Equations of the form 

dx

dy
 = 

c'yb'xa'

cbyax




where a, b, c, a', b', c' are constants and 

b'

b

a'

a
  can be 

reduced to homogeneous equations by the substitution x' = x + h, y' = y + k, 

where h and k are such that ah + bk + c = 0 and a'h + b'k + c' = 0. 

In case 
b'

b

a'

a
  = 

m

1
, say, then substitution ax + by = v reduces this type of 

equations to separable equations. 
 

4) An exact differential equation s formed by equating an exact differential to 

zero. 
 

5) The differential equation 

A(x, y)dy + b(x, y)dx = 0 

 

6.0 TUTOR MARKED ASSIGNMENT 

 
1. Solve the following equations. 

 

 a) (1 – x)dy – (1 + y) dx = 0 

 

 b) y – x 
dy

dx
 + 

2

2

1 y

1 x




 = 0 

 

 c)  y – x 
dy

dx
 = a 2 dy

y
dx

 
 

 
 

 

 d) 3e
x
 tan ydx + (1 – e

x
) sec

2
 ydy = 0 

 

c)  
dy

dx
 = e

x-y
 + x

2
 e

-y 

 

2. Solve the following equations satisfying initial condition indicted alongside. 

a) 2xy 
dy

dx
 = 1 + y

2
, y(2) = 3  x, y > = 
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b) 
dy

dx
 = - 4xy, y(0) = y0y > 0 

 

c) 
dy

dx

2y xxe  , y(0) = 0 

 

d) y 
dy

dx
 = g, y (x0) = y0 

 

3. Solve the following equations. 

 

 a) 
dy

dx
 = 

y

x
 for x [0, ]and for x [ -  , 0] 

 

 b) 
dy

dx
 = 

2x y

3x 2y




 

 

 c) (x sin 
y

x
) dy – (y sin

-1
 

y

x
 - x) dx = 0 

 

 d) x 
dy

dx
 = y (Iny – Inx + 1) 

 

 e) x dy – y dx = 2 2x y dx.  

 

4. Solve the following equations subject to the indicated initial conditions. 

 a) 2x
2
 
dy

dx
 = 3xy + y

2
, y(1) = -2 

 

 b) (x + ye
y/x

) dx – xe
y/x

 dy = 0, y(1) = 0 

 

 c) (y
2
 + 3xy) dx = (4x

2
 + xy) dy, y(1) = 1. 

  

 d) y
2
dx + (x

2
 + xy + y

2
) dy = 0, y (0) = 1. 

 

5. Solve the following equations. 

 

 a) 
dy

dx
= 

2y x 4

y 3x 3

 

 
 

 

 b) (7y – 3x + 3) 
dy

dx
+ (3y – 7x + 7) = 0 
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 c) (2x + y + 1) dx + (4x + 2y – 1) dy = 0 

 

 d) (x + y) dx + (3x + 3y – 4) dy = 0 

 

6. Prove that the following equations are exact and solve them. 

 

a) (ycos(x) + 2x e
y
) + (sin(x) + x

2
e

y
 + 2)y' = 0 

b) y' = - 
cybx

byax




 (a,b,c,d are given real constants). 

c) 96x + y/x) + (Inx + y)y' = 0, x   1. 

 

7. Determine the values of k for which the equations given below are exact and 

find the solution for these values of k. 

 

a) x + kyy' = 0 (k   0) 

b) y + kxy' = 0 (k   0) 

c) (2y e
2xy

 + 2x) + k x e
2xy

y' = 0 

 

8. In each of the following equations verify that the function F(x, y), indicated 

alongside is an I.F. of the equation: 

 

i. 6xy dx + (4y + 9x
2
) dy = 0; f(x, y) = y

2
 

ii. –y
2
 dx + (x

2
 + xy) dy = 0; f(x, y) = 

yx

1
2

 

iii. ( - xy sin x + 2y cos x) dx + 2x cos x dy = 0; F(x, y) = xy. 

 

9. Solve the following equations. 

 

a) y(2yx + e
x
) dx – e

x
 dy = 0 

b) ydx – xdy + Inx dx = 0  x, y > 0. 

c) (xy – 2y
2
) dx – (x

2
 – 3xy)dy = 0 

 

10. Solve (x
4
 + y

4
) dx – xy

3
dy = 0. 

 

11. Solve y(x
2
y

2
 + 2) dx + x(2 – 2x

2
y

2
) dy = 0. 

 

12. Solve (x
2
 + y

2
 + x) dx + xy dy = 0. 

 

13. Prove Rule V above. 

 

14. Solve (2xy
4
e

y
 + 2xy

3
 + y) dx + (x

2
y

4
e

y
 – x

2
y

2
 – 3x) dy = 0 

 

15 Solve the following equations. 

a) (x
2
+ y

2
 + 2x) dx + 2y = 0 

b) x
2
y dx – (x

3
 + y

3
) dy = 0 

c) (y
4 
+ 2y)dx + (xy

3
 + 2y

4
 – 4x) dy = 0  x, y > 0. 
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d) (y
2
 + 2x

2
y)dy + (2x

3
 – xy)dy = 0 

e) (2x
2
y – 3y

4
) dx + (3x

3
 + 2xy

3
) dy = 0 

 

16. Solve the following equations. 

 

a) (x + y)
2
 

dx

dy
 = a

2
 

b) ydx + dy = 0 

c) 1 + 







 siny

y

x

dx

dy
 = 0 

d) (3y
2
 + 2xy) = (2xy + x

2
) 

dx

dy
 = 0  x > 0, y > 0. 

e) y + y2
 + 












y1

y
xy2  

dx

dy
 = 0 

f) 2x
2
y

2
 + 3x(1 + y

2
) 

dx

dy
 = 0 

g) 
dx

dy
 + 

x

y2
 = 0, y   0 
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