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1.0 INTRODUCTION 
 

In unit 2, we have discussed methods of solving some first order first degree 

differential equations, namely, 

 

i) differential equations which could be integrated directly i.e., separable and 

exact differential equations, 

 

ii) equations which could be reduced to these forms when direct integration is not 

possible. These includes homogeneous equations, equations reducible to 

homogeneous form and equations that become exact when multiplied by an I.F. 

 

in this unit, we focus our attention on another very important type of first order first 

degree differential equations known as linear equations. These equations are 

important because of their wide range of applications, for example, the physical 

situations we gave in Sec. 1.5 of unit 1 are all governed by linear differential 

equations.  In this unit, we shall solve some of these physical problems. 

 

The problem of integrating a linear differential equation was reduced to quadrature by 

Leibniz in 1692. In December, 1695, James Bernoulli proposed a solution of a non-

linear differential equation of the first order, now known as Bernoulli‟s equation. 
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In 1696, Leibniz pointed out Bernoulli‟s equation may be reduced to a linear 

differential equation by changing the dependent variable. We shall discuss this 

equation in the later part of this unit along with some other equations, which may not 

be of first order or first degree but which can be reduced to linear to linear differential 

equations. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 identify a linear differential equation 

 distinguish between homogeneous and non-homogeneous linear differential 

equation 

 obtain the general solution of a linear differential equation 

 obtain the particular integral of a linear equation by the methods of 

undetermined coefficients and variation of parameters 

 use general properties of the solutions of homogeneous linear equations for 

finding their solutions 

 obtain the solution of Bernoulli‟s equation 

 obtain solution to linear equations modeled for certain physical situations. 

 

3.0 MAIN CONTENT 

 

3.1 Classification of First Order Differential Equations 

 
We begin by giving some definitions in this section.  You may recall that in Unit 1 we 

defined the general form of first order differential equation to be 

 

g 








dx

dy
yx,  = 0 

 

and if the equation is of first degree, then it can be expressed as 

 

dx

dy
 = f(x, y) 

 

In the above equation if the function f(x, y) be such that it contains dependent variable 

y in the first degree only, then it is called a linear differential equation.  Formally, we 

have the following definition. 

 

Definition:  We say that a differential equation is linear if the dependent variable and 

all its derivatives appear only in the first degree and also there is no term involving the 

product of the derivatives or any derivative and the dependent variable. 
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For example, equation 
dx

dy
 + 

x

y2
 = x

3
 and 

2

2

dx

yd
+ 

dx

dy
 = x sin x are linear differential 

equations. However 
dx

dy
 + x

2
 = 10 is not linear equation of the presence of the term y 

dx

dy
. 

The general form of the linear differential equation of the first order is 

a(x) 
dx

dy
 = b(x)y + c(x)      …(1) 

where a(x), b(x) and c(x) are continuous real valued functions in some interval IR. 

If c(x) is identically zero, then Eqn. (1) reduces to 

 

a(x) 
dx

dy
 = b(x)y       …(2) 

 

Eqn. (2) is called a linear homogeneous differential equation. 

When c(x) is zero, Eqn. (1) is called non-homogeneous (or inhomogeneous) linear 

differential equation 

 

Note: You may note that the word homogeneous as it is used here has a very different 

meaning from that used in Sec. 2.3, unit 2. 

 

Any differential equation of order one which is not of type (1) or (2) is called a non-

linear differential equation. 
 

On dividing Eqn. (1) by a(x) for x s.t a(x)  0, it can be put in the more useful form 

dx

dy
 + P(x) y = Q(x),       …(3) 

where P a. I Q are functions of x alone or are constants.  Consider, for instance, the 

equation 
dx

dy
 = y 

It is a linear homogeneous equation.  Here a(x) = 1 and b(x) = 1.  Similarly, 

dx

dy
 = 0, 

dx

dy
 = e

x
y are also linear homogeneous equation of order one with  

 

a(x) = 1, b(x) = e
x
 and c(x) = x. 

 

Next consider the differential equation 
dx

dy
 = |y|. 

 

You know that |y| = y for   0 and |y| = - y for y < 0. Hence, in order to solve this 

equation, we will have to square it and the resulting equation is neither of type (1) nor 

of (2).  It is a case of non-linear equation.  Similarly, 
dx

dy
 = y is a non-linear equation 
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because of the term 
dx

dy
.  Again 

dx

dy
 = cos y is a non-linear equation (as cos y can be 

expressed as an infinite series in powers of y). 

 

You may now try this exercise. 

 

You will realize the need for classification of linear differential equation into 

homogeneous and non-homogeneous equations when we discuss some properties 

involving the solution of linear homogeneous differential equations.  But first let us 

talk about the general solution of linear non-homogeneous equation of type (1) or (3). 

 

3.2 General Solution of Linear Non-Homogeneous Equation 
 

Consider Eqn. (3) , viz., 

dx

dy
 + P(x)y = Q(x) 

 

In the discussion that follows, we assume that Eqn. (3) has a solution.  You can see 

that in general, Eqn (3) is not exact.  But we will show that we can always find an 

integrating factor μ (x), which makes this equation exact – a useful property of linear 

equations. 

 

Let us suppose that Eqn. (3) is written in the differential form 

 

dy + [P(x)y – Q(x)] dx = 0      …(4) 

 

Suppose that μ (x) is an I.F. of Eqn. (4).  Then 

 

μ (x) dy + μ (x) [P(x)y – Q(x)] dx = 0    …(5) 

 

is an exact differential equation.  By Theorem 1 of Unit 2, we know that Eqn. (5) will 

be an exact differential if  

x


(μ (x) =

y


(μ (x)[P(x)y – Q(x)]}    …(6) 

 

or 
dx

dμ
 = μP(x) 

 

This is a separable equation from which we can determine μ (x). we have  

μ

dμ
  = P(x)dx 

or In |μ | =  P(x) dx       …(7) 

 

so that μ (x) = e
 P(x)dx

 is an integrating factor for Eqn. (4). 
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Note that we need not use a constant of integration in relation (7) since Eqn. (5) is 

unaffected by a constant multiple.  Also, you may note that Eqn. (4) is still an exact 

differential equation even when Q(x) = 0.  In fact Q(x) plays no part in determining 

 

μ (x) since we see from (6), that 
y


 μ (x) Q(x)  = 0.  Thus both 

e
 P(x)dx

dy + e
 P(x)dx

 [P(x)y – Q(x)] dx and 

e
 P(x)dx

dy + e
 P(x)dx

 P(x)y dx 

 

are exact differentials. 

 

We, now, write Eqn. (3) in the form 

e
 Pdx

 







 y

dx

dy
 = Q e

 Pdx
 

 

This can also be written as 

dx

d
 (y e

 Pdx
) = Q e

 Pdx 

 

Integrating the above equation, we get 

 

y Pdxe  Q Pdxe  dx + α , where α  is a constant of integration 

or y = Pdxe   Q Pdxe  dx + α Pdxe      …(8) 

 

For initial value problem, the constant α  in Eqn. (8) can be determined by using initial 

conditions. Relation (8) gives the general solution of Eqn. (3) and can be used as a 

formula for obtaining the solution of equation of the form (3). As a matter of advice 

we may put it that one need not try to learn the formula (8) and apply it mechanically 

for solving linear equations. Instead, one should use the procedure by which (8) is 

derived:  multiply by Pdxe and integrate. 

 

In case of linear homogeneous equation, the general solution can be obtained by 

putting Q = 0 in Eqn. (8) as 

 

y = α Pdxe   

 

Note that the first term on the right hand side of Eqn. (8) is due to non-homogeneous 

term Q of Eqn. (3). It is termed as the particular integral of the linear non-

homogeneous differential equation, that is, particular integral of Eqn. (3) is  
Pdxe    Q Pdxe dx. 

 

The particular integral does not contain any arbitrary constant. 
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The solution of linear non-homogeneous equation and its corresponding linear 

homogeneous equation are nicely interrelated. We give the first result, in this 

direction, in the form of the following theorem: 

 

Theorem 1:  In IR, if y1 be a solution of linear non-homogeneous differential Eq. 

(3), that is, 

 

dx

dy
 + P(x)y = Q(x) 

and if z be a solution of corresponding linear homogeneous differential equation 

 

dx

dy
 + +(x)y = 0,       …(9) 

then the function y = y1 + z is a solution of Eqn. (3) on I. 

 


dx

dy
 = 

dx

dy1  + 
dx

d z
       ..(10) 

 

Since y1 P(x)y1 = Q(x)    

 

dx

dy1  + P(x)y1 = Q(x)       …(11) 

 

Also since z is a solution of (9), therefore 

 

dx

d z
 + P(x)z = 0       …(12) 

 

On combining Eqns. (10) – (12), we get 

 

dx

dy
 = [Q(x) – P(x)y1] + [-P(x)z] 

       = Q(x) – P(x) [y1 + z] 

       = Q(x) – yP(x)                  as  ( y1 + z = y), 

 

i.e., 
dx

dy
 + P(x)y = Q(x). 

 

Hence y =  y1 + z is a solution of Eqn. (3) and this completes the proof of the theorem. 

 

From this theorem, it should be clear that any solution of Eqn. (3) must contain 

solution of Eqn. (9) (corresponding linear homogeneous equation). 

 

In case, the function Q(x) on the right-hand side of Eqn. (3) is a linear combination of 

functions, then we can make use of the following theorem: 
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Theorem 2:  Let yi be a particular solution of 

dx

dy
 + P(x)y = Qi(x), 

 

where Qi(x) are continuous functions defined on an interval I for I = 1, 2,…., n.  then 

the function yp = y1 + y2 +…+ yn, defined on I, is a particular solution of 

 

dx

dy
 + P(x)y = Q(x), 

 

where Q(x) = Q1(x) + Q2(x) +….+ Qn(x),  xI. 

 

The proof of this theorem is simple and is left as an exercise for you. 

 

We now take up some examples and illustrate the method of finding the solution of 

linear non-homogeneous differential equations. 

Example 1: Solve x
dx

dy
 + y = x

3
 

 

Solution: The given differential equation can be written as 

dx

dy
 + 

x

1
 y = x

2
         …(13) 

 

it is a linear equation.  Comparing it with Eqn (3), we have 

P = 
x

1
. So I.F. = Pdxe  = dx)/1(e x  = e

Inx
 = x 

 

Multiplying Eqn. (13) by x, we get 

   x 
dx

dy
 + y = x

3
 

i.e., 
dx

d
 (xy) = x

3
, which is exact. 

 

Integrating, we get 

xy = 
4

x 4

 + c, 

 

c being a constant, as the required solution. 

 

Example 2: Solve x
dx

dy
 - ay = x + 1 

 

Solution: Clearly the given equation is linear and can be written in the form 

dx

dy
 - 

x

a
y = 

x

1x
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I.F. = dxa/x)(e  = e
-aInx

 = 
aInxe



= 
ax

1
 

 

Multiplying the given equation by
ax

1
, we get 

ax

1

dx

dy
 - 

1ax

a


 y = 
1x

1x



a

, 

i.e., 
dx

d
 








ax

y
= 

1x

1x



a

 

 

Integrating the above equation w.r.t.x, we get 

ax

y
= 

1ax

1x





dx + c (c is constant) 

     = 
a

x

1a

x a1a








+c. 

 

Thus y = 
a

1

a1

x



+ cx

a
 is the required solution. 

 

Let us look at another example in which the role of x and y has been interchanged. 

 

Example 3:  Solve y Iny 
dy

dx
 + x – Iny = 0. 

Solution:  This equation is of first degree in x and
dy

dx
.  Hence it is a linear equation 

with y as independent variable and x as dependent variable. 

 

Then given equation can be written as 

dy

dx
 + 

y

1

yIny

x
 ,         …(14) 

I.F. = e
 1/(y In y) dy 

 
         = e

In(Iny) 

              
= Iny 

 

Multiplying Eqn. (14) by Iny, we get 

 

Iny 
dy

dx
 + 

y

1
 x = 

y

1
Iny, 

i.e., 
dy

d
(x Iny) = 

y

1
 Iny. 

 

Integrating the above equation w.r.t.y, we get 

xIny = 
y

1
 Iny dy + c, 



MTH 232                                                                                       ELEMENTARY DIFFERENTIAL EQUATION 

72 

 

        = 
2

(Iny)2

+ c, c is a constant, 

or 2x Iny = (Iny)
2
 + c1, is the required solution where c1 = 2c. 

 

let us consider another example. 

 

Example 4:  solve the equation ydx + (3x – xy + 2) dy = 0 

 

Solution:  Since the product y dy occurs here, the equation is not linear in dependent 

variable y.  it is, however, linear if we treat variable y as independent variable and x as 

dependent variable.  Therefore, we arrange the terms as 

y dx + (3 – y) x dy = - 2 dy, 

and write it in the standard form 

dy

dx
 + 








1

y

3
x = - 

y

2
, for y   0       …(15) 

Now,  







1

y

3
dy = 3 In|y|, 

So that an integrating factor for Eqn. (15) is 

e
(3In|y|-y)

 = e
-y

 e
3In|y| 

   
= 

ye
e

3|y|In 
 

   = |y|
3
e

-y 

 

If follows that for y > 0, y
3
e

-y
 is an integrating factor and for y > 0, -y

3
 e

-y
 serves as an 

integrating factor for the given equation.  In either case, we are led to the exact 

equation 

 

y
3
 e

-y
 dx + y

2
 (3 – y e

-y
 x dy = - 2y

2
e

-y 
dy, 

i.e., d(xy
3
y

-y
) = - 2y

2
e

-y
 dy. 

 

Integrating the above equation w.r.t.y, we get 

xy
3
e

-y
 = - 2  y

2
 e

-y
 dy 

 = 2y
2
 e

-y
 + 4y e

-y 
+ c (Integrating by parts) 

 

Thus, we can express the required solution as 

xy
3
 = 2y

3
 + 4y + 4 + ce

y
, where c is an arbitrary constant. 

 

You may try the following exercises. 

 

We have seen that general solution of a linear non-homogeneous differential Eqn. (3) 

is given by Eqn. (8), which involves integrals. We remark that an equation y' = f(x, y) 

is said to be solve when its solution is reduced to the expression of the form  h(x) dx 

or  ø(y) dy for some h(x) and ø(y) even if it is impossible to evaluate these integrals 

in terms of known functions.  Further, the reduction of the solutions from one form to 

a simpler form may require as much labour as the solving of the equations. In solution 

(8) of Eqn. (3), Pdxe    Q(x) Pdxe   dx is the particular integral of Eqn. (3) and the 
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evaluation of this integral will depend on the form of Q(x). This evaluation may 

sometimes turn out to be a tedious task. But, there are other methods by which 

particular integral in some cases can be obtained without carrying rigorous integration.  

We shall briefly discuss these methods now.  As these methods are more helpful for 

higher order differential equations, we shall discuss them in greater detail in next 

course book. 

 

3.2.1 Method of Undetermined Coefficients 
 

This method is applicable when in Eqn. (3), i.e., 

 

dx

dy
 + P(x)y = Q(x), 

P(x) is a constant and Q(x) is any of the following forms: 

 

i) an exponential 

ii) A polynomial in x 

i) of the form cos x  or sin x  

ii) a linear combination of i), ii) and iii) above. 

 

The general procedure is to assume the particular solution with arbitrary or unknown 

constants and then determine the constants. 

 

We know that on differentiating functions such as αxe (α  constant), x
r
 (r > 0 is an 

integer), sin x  or cos x  (β constant), we again obtain an exponential, a polynomial 

or a function which is a linear combination of sine or cosine function.  Hence if the 

non-homogeneous term Q(x) in Eqn. (3) is in any of the forms (i) – (iv), above, then 

we can choose the particular integral accordingly to be a suitable combination of the 

terms n(i) – (iv). 

 

We now take up different cases according to the forms of Q(x). 

 

Case 1: Q(x) = k e
mx

, k and m are real constants, that is, Q(x) is an exponential 

function.  In this case, we prove the result in the form of the following theorem. 

 

Theorem 3:  If a, k and m are real constants, then a particular solution of 

dx

dy
 + ay = k e

mx
 

is given by 

yp(x) = 













amifkxe

amife
m)(a

k

mx

mx

 

 

Proof:  in this case, since Q(x) is an exponential function, we assume yp(x) = re
mx

 to 

be a particular solution of Eqn. (16), where r is some constant to be determined.  Now 

yp(x) must satisfy Eqn. (16). 
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Thus, we get 

Rm e
mx

 + ar e
mx

 = ke
mx

 

Or r = 
ma

1


 if m   - a. 

 

Therefore, yp(x) = 
ma

1


 e

mx
 if m   - a. 

In case m + a = 0, i.e., m = - a, then you may verify that yp(x) = kx e
mx

 satisfies Eqn. 

(16).  The reasoning for this sort solution will be given when we discuss this method 

in detail in Block 2.  However, we illustrate this case by the following example. 

 

Example 5:  Solve y' – y = 2e
x
 

 

Solution: On comparing the given equation with Eqn. (16), we find that a = - 1, k = 2, 

and m = 1 

Also, m + a = -1 + 1 = 0 m = -a. 

By Theorem 3, a particular integral is 2xe
x
. 

Further, I.F. = 1)P.(eee xdxPdx    

Therefore, required solution, following relation (8), is 

y = P.I + c e
x
, 

i.e., y = 2xe
x
 + c e

x. 

 

You may now try this exercise. 

 

Case II: Q(x) = 


n

0i

i

i xa  

That is, Q(x) is a polynomial of degree n.  In this Eqn. (3) reduces to  

 

dx

dy
 + ay = 



n

0i

i

i xa        …(17) 

If a = 0 in Eqn. (17), then particular solution is 

Yp(x) = 






n

0i

1ii x
1i

a
, which follows by direct integration. 

If in Eqn. (17), a   0, then we assume 

yp(x) = 


n

0i

i

i xP  (Q(x) being a polynomial in this case), 

And determine real numbers P0, P1, …., Pn so that particular solution yp(x) satisfies 

Eqn. (17). 
 

Substituting this value of yp(x) in Eqn. (17) (with y replaced by yp(x)), we have 

 





n

1i

1i

i xiP  + 


n

0i

i

i xaP  = 


n

0i

i

i xa (a   0)    …(18) 
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Equating the coefficients of like power of x on both sides of Eqn. (18), we get 

 

Coeff. Of x
i
: (I +1)Pi+1 + aPi = ai for I = 0, 1, 2, …., (n-1) 

Coeff. Of x
n
: aPn = aa        …(19) 

 

Since Q(x) is a polynomial of degree n, thus an   0 and we can solve EQn. (19) for P0 

P1,….Pn.  from Eqn. (19), we get 

 

Pn = an/a 

Pn-1 = 
a

1

a

na
a n

1n 







 , 

Pn-2 = an-2-
a

1n
 (an-1-

a

n
 an) 

a

1
, and so on. 

 

We illustrate this method with the help of following example. 

 

Example 6:  Find the particular solution of 
dx

dy
+ 2y = 2x

2
 + 3. 

 

Solution:  We note that, in this case, Q(x) is a polynomial of degree 2.  Assume a 

particular solution of the form 

 

yp(x) = 


n

0i

i

i xP = P0 + P1x + P1x
2. 

 

Substitution of yP(x) in the given equation yields 

(P1 + 2P2x) + 2(P0+P1x+P2x
2
) = 2x

2
 + 3.      …(20) 

 

Equating the coefficients of like powers of x on both side of Eqn. (20), we get 

Coeff. of x
2
: 2P2 = 2 or P2 = 1. 

Coeff. of x
2
: 2P2 = 2 or P2 = 1. 

Coeff. of x
0
: P1 + 2P0 = 3 or P0 = 2. 

 

Hence, required particular solution is 

yP(x) = x
2
 –x + 2. 

And now an exercise for you. 

 

Case III: Q(x) = sin βx  or cos βx  or a βx  + b cos βx  

Where β , a and b are real constants. 

 

In all these cases, we assume a particular solution of the form c sin βx  + d cos βx . 

 

On substituting this solution in the given equation and equating the coefficients of sin 

βx  and cos βx  on both sides, we determine the constants c and d. 
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Let us illustrate this case by an example. 

 

Example 7:  Find the particular integral of 

  
dx

dy
 + y = cos 3x 

solution:  Here Q(x) = cos 3x. 

 

Hence, any particular solution of the given differential equation must be a 

combination of sin 3x and cos 3x. let the particular solution be 

yP(x) = c cos 3x + d sin 3x 

On substituting this value of yP(x) in the given equation, we get 

 

(-3c sin 3x + 3x cos 3x) + (c cos 3x + d sin 3x) = cos 3x …(21) 

 

comparing the coefficients of cos 3x and sin 3x on both sides of Eqn. (21), we get 

 

c + 3d = 1 and d – 3c = 0 

or c = 
10

1
and d = 

10

3
 

 

Hence, the particular solution is 

yp(x) = 
10

1
 (3 sin 3x + cos 3x) 

we now take up an example which is a combination of all the three cases discussed 

above. 

 

Example 8:  Compute the general solution of 

dx

dy
 + y = e

x
 + x + sin x      …(22) 

 

Solution:  Here Q(x) = Q1(x) + Q2(x) + Q3(x), 

With Q1(x) = e
x
, Q2(x) = x and Q3(x) = sin x. 

You may recall Theorem 2; if y1, y2 and y3 are particular solutions of 

dx

dy
 + y = e

x
        …(23) 

dx

dy
 + y = x        …(24) 

and 

dx

dy
 + y = sin x       …(25) 

respectively, then yp = y1 + y2 + y3 is a particular solution of the given equation. 

Consider Eqn. (23).  Let the particular solution be 

Y1 = re
x
. 

 

Substituting this in Eqn. (23), we get 

re
x
 +re

x
 = e

x
   r = 

2

1
 



MTH 232                                                                                                                                                 MODULE 2 

77 

 

y1 = 
2

1
 e

x
        …(26) 

 

For Eqn. (24) we assume the particular solution as 

y2 = a1x + a0. 

Substituting this in Eqn. (24), we get 

a1 + a1x + a0 = x       …(27) 
 

comparing coefficients of like powers of x on both side of Eqn. (27), we get 

a0 + a1 = 0 

a1 = 1,    a0 = -1, a1 = 1 

Hence y2 = x-1       …(28) 

 

In the case of Eqn (25), assume particular solutions as 

y3 = c sin x + d cos x. 

Substituting this in Eqn. (25), we get 

c cos x – d sin x + c sin x + d cos x = sin x   …(29) 
 

On equating the coefficients of sin x and cos c on both sides of Eqn. (29), we get 

c – d = 1 

c + d = 0   c = 
2

1
 and d = - 

2

1
 

y
3
 = 

2

1
 (sin x – cos x)      …(30) 

 

Hence, particular solution of Eqn. (22) can be obtained from Eqn. (26), (28) and (30) 

as 

yp(x) = y1 + y2 + y3 = 
2

1
 e

x
 + x -1 + 

2

1
 (sin x – cos x) 

 

The solution of homogeneous pat of Eqn. (22), i.e. 

dx

dy
 + y = 0 

is given by 

y

1
 

dx

dy
 + 1 = 0 

Integrating the above equation, we get 

In y + x = In α , for some constant α , 

i.e., 
α

y
 = e

-x
 

or y = α  e
-x

 

 

Hence complete solution of Eqn. (22) is given by 

y = α  e
-x

 + 
2

1
 e

x
 + x-1 + 

2

1
 (sin x – cos x) 

 

How about trying an exercise now? 
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We thus studied the method of undetermined coefficients for finding the particular 

integral of the non-homogeneous linear differential EQn. (3). We saw that this method 

would be applicable only for a certain class of differential equations – those for which 

P(x) is a constant and Q(x) assumes either of the forms αxe , x
r
, sin βx  or cos βx , or 

their combinations. We shall, now, study a method that carries no such restrictions. 

 

3.2.2 Method of Variation of Parameters 
 

Consider the non-homogeneous linear Eqn. (3), namely, 

 

dx

dy
 + P(x)y(x) = Q(x). 

the homogeneous equation corresponding to the above linear equation is  

dx

dy
 + P(x) y(x) = 0. 

 

Further we know , from Eqn. (8), that the solution yh(x) of the homogeneous linear 

equation is given by 

yh(x) = α  Pdxe  ,       ..(31) 

 

where α  is a constant. 

 

In tis method we assume that α , in Eqn. (31), is not a constant but a function of x.  

that is, we vary α  with x and assume that the resulting function 

y(x) = α (x) Pdxe         …(32) 

 

is a solution of Eqn. (3).  That is, we try to determine α (x) such that y given by Eqn. 

(32) solves Eqn. (3).  In other words, we determine a necessary condition on α (x) so 

that y defined by relation (32), is a solution of Eqn. (3). 

 

On combining Eqns. (3) and (32), we get 

dx

d
[α (x) dx)P(e x ] + P(x) [α (x) dx)P(e x ] = Q(x). 

i.e., α (x) = Q(x) Pdxe  ] + α '(x) dx)P(e x  + P(x) α (x) dx)P(e x  = Q(x), 

i.e., α '(x) = Q(x) dx)P(e x  

Integrating w.r.t.x, we get 

α (x) = β  +  Q(x) dx)P(e x dx     …(33) 

 

whereβ  is a constant of integration. 

Substituting the value of α (x) from eQn. (33) in relation (32), the solution to Eqn. (3) 

can be expressed as 

y(x) = β dx)P(e x + dx)P(e x  Q(x) dx)P(e x dx 
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You may note here that the solution obtained above is same as the one given by Eqn. 

(8) that has been obtained directly. Further, the method of variation of parameter 

neither simplifies any integration/solution nor provides any other form of the solution 

for first order first degree differential equation. It only provides an alternative 

approached to arrive at the general solution in this case. However, as we shall see later 

in next course book, this method turns out to be quite powerful in discussing equations 

of higher order. 
 

Using the method of undetermined coefficients/variation of parameters or otherwise 

you may now try this exercise. 
 

Now let us discuss some properties of linear homogeneous differential equations, 

which give us some insight into qualitative theorem rather than quantitative solutions. 

 

3.3 Properties of the Solution of Linear Homogeneous Differential 

Equation 
 

In this section we shall discuss certain properties enjoyed by linear homogeneous 

differential equation. We start with a very important property called superposition 

principle. 

 

Theorem 4:  (Superposition Principle) 

If y1 and y2 are any two solution of the linear homogeneous Eqn. (9), i.e., 

dx

dy
  + P(x) y(x) = 0. 

 

Then y1 + y2 and cy1 are also solutions of Eqn. (9), where c is a constant. 

 

Proof:  Since y1 and y2 are both solutions of Eqn. (9), therefore 

dx

dy1  + P(x)y1 = 0 and       …(34) 

 
dx

dy 2 + P(x)y2 = 0,       …(35) 

Let h(x) = y1 + y2 


dx

dh
 = 

dx

dy1  + 
dx

dy 2 , 

 = - P(x)y1 – P(x)y2, (using Eqn. (34) and (35)) 

 = - P(x) (y1 + y2), 

 = - P(x) h(x), 

i.e., 
dx

dh
 + P(x) h(x) = 0, which shows that h(x) = y1 + y2 is indeed a solution of Eqn. 

(9). 

Next, multiplying Eqn. (34) by c (a constant), we get 

c
dx

dy1  + cP(x)y1 = 0, 
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i.e. 
dx

d
 (cy1) + P(x). (cy1) = 0, 

which shows that (cy1) is also a solution of Eqn. (9). 

 

In many branches of sciences, y1 + y2 is called superposition of y1 and y2 and hence 

the name superposition principle for Theorem 4. 

 

The conclusions of Theorem 4 can be reframed as – the set of real (or complex) 

solution of Eqn. (9) forms a real (or complec) vector space (ref. Block 1, MTE-02, a 

course on linear algebra). 
 

Do you think Theorem 4, holds for non-homogeneous linear equation? Consider the 

non-homogeneous equation y' = 2x. 

 

The functions (1 + x
2
) and (2 + x

2
), x R are two solution of  

y' = 2x         …(36)  
 

their sum (2+x
2
) + (2+x

2
) = 3 + 2x

2
, x R  does not satisfy Eqn. (36) since 

dx

d
 (3 + 

2x
2
) = 4x  2x,  x R . 

 

Thus, Theorem 4 need not be true for a non-homogeneous linear equation does it work 

for a non-linear equation? Let us look at 

y' = - y
2 

       …(37) 

which has solutions y1(x) = 
x)(1

1


 and y2 = 

x21

1


on an interval 

I = [0,  ]. This is true because 

y1'(x) = - 
2x)(1

1


 = - 1

2y , 

and  

y2'(x) = - 
2x)2(1

2.2


= - 2

2y , 

Let y = y1 + y2.  Here y is well defined on I. Also, by simple computation, we have 

y'(x) = - 
2x)(1

1


 - 

2x)2(1

2.2


 = - 

22

2

x)2(1x)(1

5)x12x(8




  …(38) 

 

on the other hand, 

- y
2
(x) = - 

22

2

x)2(1x)(1

)9x24x16(




      …(39) 

 

from relations (38) and (39), it is clear that y = y1 + y2 is not a solution of (37). 
 

In the next exercise we ask you to show an example of a non-linear equation whose 

solution is y1 but cy1 is not a solution, i.e., the later part of Theorem 4 need not be true 

for a non-linear equation. 
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Mostly we study the real solutions of Eqn. (1).  You may recall that the functions a 

and b in Eqn. (1) (defined on I) are assume to be valued.  The reason for restricting the 

study to real solutions will be clear from the following theorem. 
 

 

Theorem 5:  If y = p + iq is a complex valued function defined on I, which satisfies 

Eqn. (2),  that is, a(x) 
dx

dy
 = b(x)y(x), then the real part p of y and the imaginary part q 

of y are also solutions of Eqn. (2) on I. 

(recall here that a and b are real valued continuous functions) 

 

proof:  By definition y = p+iq and so y' = p' + iq'.  Since y satisfies Eqn. (2), we have 

a(x) {p'(x) + iq'(x)} = b(x) {p(x) + iq(x)} …(40) 

 

since a and b are real valued, on equating the real and imaginary parts in Eqn. (4), we 

get 

a(x)p (x) = b(x)p(x), 

and  

a(x)q' (x) = b(x)q(x), 

which shows that p and q are solution of Eqn. (2) on I. 

 

Theorem 5 is also true for higher order linear homogeneous equations which will be 

discussed in our later blocks and the proof is virtually on the same lines. But the 

theorem may fail if we replace Eqn. (2) by an arbitrary non-linear equation or a linear 

non-homogeneous equation.  For instance, consider the first order non-linear equation 

yy' = -2x
3
        …(41) 

 

the function y(x) = ix
2
, x R  is a complex valued solution of Eqn. (41), since  

y'(x) = 2ix 

and y(x)y'(x) = (ix) (ix
2 

= -2x
3
. 

 

The real par p of y is the zero function.  i.e., p(x) = 0.  But p is not a solution of Eqn. 

(41) (since 2x
3
  0 for all x R ). 

 

The following exercise shows that Theorem 5 may fail in the case of non-

homogeneous linear equations. 

 

We shall now be giving another interesting result concerning linear homogeneous 

equation a(x) 
dx

dy
 = b(x)y(x), which can also be written as 

y' = g(x)y,        …(42) 

 

where g(x) = 
a(x)

b(x)
, is a real valued continuous function defined on I.  Result which we 

are going to state is a consequence of the uniqueness of solutions of initial value 

problem for linear equations. 
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Theorem 6:  Let y be a solution of the Eqn. (42) on the interval such that y(x1) = 0 for 

some x1 in I.  Then y = 0 on I. 

 

Proof:  Consider the initial value problem 

y' = g(x) y, 

y(x1) = 0 

 

By hypothesis, y is a solution of Eqn. (42).  But the function z, defined by z(x) = 0 for 

all x I ), also satisfies Eqn. (42) (because z'(x) = 0, g(x)z(x) = 0 and z(x1) = 0).  By 

the uniqueness theorem for the initial value problem for linear equation (refer 

Theorem 1, Unit 1), we have z = y or in other words, y(x) = 0 for x I . This completes 

the proof.  Just as we have seen in the case of Theorem 4 and 5, Theorem 6 may not 

be true for non-linear or linear non-homogeneous equations. Consider, for instance, 

the following non-linear differential equation. 

 

y' = 2√y, x[0,  ]       …(43) 

Let c>0. we define the function y on [0,   ] by 

y(x) = 








xcifc)2(x

cx0if0
2

 

from the definition of y, we have 

y'(x) = 








x|cify(x),2c)2(x

cx0if0
 

(Note that y is differentiable at x = c and, in fact, its right as well as left derivative is 

zero at x = c). 

y'(x) = 










x|cify(x)2c)2(x

cx|0),(20 xy
 

 

which shows that y satisfies Eqn (43) for all x > 0.  We notice, here, that y vanishes on 

the interval [0, c] and yet y is a non zero function on [0,  ]; which shows that the 

conclusions.  For example, y(x) = cos x + sin, x R is a solution of Theorem 6 may 

not be true for non-linear equations. 

 

similarly, we can show that Theorem 6 is not valid for linear non-homogeneous 

equation.  for example, y(x) = cos x + sin x, x R  is a solution of 

y' = y – 2sin x, x R .      …(44) 
 

But, y(x) is zero at many points (like x = -
4


, - 

4


 + 2 , …) 

 

and assume both negative and positive values.  Yet y is a non-linear function which 

solves Eqn. (44). 

 

Did you notice that in Theorem 6 we did not take a general linear homogeneous 

equation? we only considered linear homogeneous initial value problem.  Why? 
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Well, consider the linear homogeneous equation 

 

sin x y'(x) = cos x y(x)      …(45) 

 

The function y(x) = sin x, x R  is a non-zer solution of Eqn. (45), which vanishes at 

many points of R (like x = 0, π , π2 ,…..) and also changes sign. 

 

You may now try this exercise. 

 

In Theorem 4 to 6, we have given some properties of linear homogeneous equations 

and corresponding initial value problems. But, none of the results stated asserts the 

existence of solutions of linear equations or corresponding initial value problem.  

Such results are called qualitative properties of solution of linear equations and their 

corresponding initial value problems. 

 

Sometimes equations which are not linear can be reduced to the linear form by 

suitable transformations of the variables. 

 

In the next section we shall take up such equations. 

 

3.4 Equations Reducible to Linear Equations 
 

Let us consider an equation of the form 

f'(y) 
dx

dy
 + P(x), f(y) = Q(x)      …(46) 

where f'(y) is the differential coefficient of f(y). 

 

An interesting feature of Eqn. (46) is that it is a non-linear differential equation of the 

first order that can be reduced to the linear form by putting v = f(y). With this 

substitution Eqn. (46) reduced to 

 

dx

dy
 + P(x)v = Q(x), 










dx

dy
(y)f'

dx

dy
 , 

which is a linear equation with v as dependent variable and x as independent variable. 

 

A very important and famous equation of this form, about which we have already 

mentioned in Sec 3.2, is known as Bernoulli’s Equation, named after James 

Bernoulli, who studied it in 1695 for finding its solution. The equation is or the form. 

dx

dy
 + Py = Qy",       …(47) 

where P an Q are functions of x above and n is neither zero nor one.  Dividing Eqn 

(47) by y
n
, we get 

y
-n

 
dx

dy
 + P y

1-n
 = Q       …(48) 
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in the year 1696, Leibniz pointed out that Eqn. (48) can be reduced to a linear 

equation by takeny
1-n

 as the new dependent variable. 

 

On putting v = y
1-n

 in Eqn. (48), it reduces to 

 

n1

1

 dx

dy
 + P v = 0.       …(49) 

which is a linear differential  in v and x. Eqn. (49) can now be solve by the known 

methods. 

 

Note that when n= 0 Eqn. (47)is a linear non-homogeneous equation and when n = 1, 

Eqn. (47) is a linear homogeneous equation.  we now illustrate this method with the 

help of a few examples. 

 

Example 9:  Solve 
dx

dy
 - 

x1

tany


 = (1 + x)e

x
 sec y   …(50) 

 

Solution:  Dividing Eqn. (50) by sec y, we get 

cos y 
dx

dy
 = 

x1

siny


= (1+x)e

x
      …(51) 

If we put sin y = f(y), then f'(y) = cos y and hence Eqn. (51) is of the form 

 

f'(y) 
dx

dy
 - 

x1

1


 f(y) = (1+x)e

x
     …(52) 

which is of the type (46).  To reduce it to linear from, we put 

v = f(y) = sin y 

Then Eqn (52) reduces to 

dx

dv
 - 

x1

1


v = (1+x)e

x
 

 

it is a linear equation with I.F. = 
dx

x1

1

e 


 = e
-In(1+x)

 = 
x1

1


 

 

Multiplying the above equation by I.F., we get 

dx

d









 x1

1
.v  = 

x1

1


(1+x) e

x
. 

 

Integrating w.r.t.x, we have 

v 
x1

1


 = e

x
 + c , c being a constant 

i.e., v = (1+x)e
x
 + c(1+x). 

Substituting sin y for v, the required solution of the given Eqn. (50) is sin y = (1+x)e
x
 

+ c(1+x) 

Let us look at another example in which n is neither 0 nor 1. 
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Example 10:  Solve y(axy + e
x
) dx – e

x
 dy = 0 

 

Solution:  The given equation can be rearranged as 

e
x

dx

dy
 = e

x
y + axy

2, 

i.e., 

dx

dy
 - y = axy

-x
y

2
       …(53) 

 

it is a Bernoulli‟s equation with n = 2. 
 

To solve it, let y
1-2

 = v, i.e., v = 
y

1
. 


dx

dv
 = -

2y

1
 

dx

dy
 

Consequently, Eqn. (53) reduces to 

- 
dx

dv
 - v = axe

-x
       …(54) 

 

it is a linear equation with I.F. = dx1e   = e
x
 

Multiplying both sides of Eqn. (54) by I.F., we get 

dx

d
 (ve

x
) = - ax 

Integrating w.r.t.x, we get 

V e
x
 = -  ax dx + c. 

        = - 
2

ax 2

 + c 

Replacing v by 








y

1
, the required solution can be expressed as 

E
x
 = y 










2

ax
c

2

, 

 

Remark: There are many second or higher order linear equations which can be solved 

easily by reducing them to linear first order equations by making some transformation 

of the variables. We shall take up such equations later in next course book when we 

discuss second order equations. 

 

You may now try the following exercises. 

 

You may recall that in Unit 1, we discussed some physical situations expressed in 

terms of differential equations. In the following section we have attempted to solve 

some of them. 
 

Applications of Linear Differential Equations 
 

Let us consider the problem discussed in Unit 1 one by one. 
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I. Population model 

 

You may recall that while studying the equation for population problem we had 

arrived at the initial value problem. (ref. Eqns. (32) and (33) of unit 1) 

dt

d
 N(t) = k N(t) 

 N(t0) = N0       …(55) 

Since k is a constant in Eqn. (55), the first of the equations in (55) is a linear 

differential equation of order one.  From Sec. 3.3 we know that its solution is 

 

N(t) = N(t0) exp (k(t-t0))      …(56) 

In Eqn. (56), we normally assume that N(t0) is specified. If k is known then we can 

find the solution using relation (56). In reality, it is too hard to measure k (which gives 

the rate of growth).  In a particular case, we can actually find the exact value of k if 

we know the value of N at t1 (t1  t0). The details are shown in the following example. 

 

Example 11: Assuming that the rate of growth of a species is proportional to the 

amount N(t) present at time t, find the value of N(t) given that N(0) = 100 and after 

one unit of time, the size of the specie has grown to 200. 

 

Solution:  In this case t0 = 0, N(0) = 100. The solution of the problem is given by   

N(t) = 100 exp (kt), t 0 

 

We determine k from the additional condition N(1) = 200 (N(1) = size of population at 

time t = 1). 

Thus 200 = 100 exp (k)   k = In2 

 

Hence the solution is 

 

N(t) = 100 exp (t In2) = 100 exp (In2
t
) 

Or N(t) = (100) 2
t
 

 

In this problem the constant k has been determined from the given date. 

 

In the following exercise we ask you to solve a similar problem. 

 

Let us now discuss the problem of decay of radioactive material. 

 

II. Radioactive Decay 

 

In unit 1, (Ref. Eqn. (35)), we have seen that equation which governs the radioactive 

decay of a given radioactive material is 

y'(t) = k y(t)        …(57) 

 

Note: Half-life is the time needed for the material to reduce itself to half of its original 

mass. 
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Where y(t) is the mass of the radioactive material at time t and k < 0 is a real constant. 

Eqn. (57) can be used to find the half-life of the radioactive material. 

 

In the following example we consider this problem in detail. 

 

Example 12:  A radioactive substance with a mass of 50 gms. Was found to have a 

mass of 40 gms. After 30 years.  Find its half-life. 

 

Solution: The mass y(t) of the material satisfies 

 

y(t)ky(t)
dt

d
  

.,gms50y(0)  

.gms40y(30)        ...(58)  

 

The solution of the first two equations in Eqns. (58) can be expressed as 

y(t) = 50 exp (kt), 

 

Using the third equation in Eqn. (58), we can write. 

y(30) = 40 = 50 exp (30k), 

or exp (30k) = 4/5, 

i.e., k = 
30

1
 In 









5

4
 

 

thus, the mass y(t) satisfies 

y(t) = 50 exp 








5

4
In

30

t
      …(59) 

 

Let t1 be its half-life, i.e., after time t1 the mass reduces to 
2

50
 = 25 gms. 

Then y(t1) = 25       …(60) 

 

We are required to find t1.  using condition (60), Eqn. (59) reduces to 

25 = 50 exp 







5/4In

30

t1  

or t1 In (4/5) = 30 In (1/2)        

i.e. t1 = 30 (In (1/2))/In (4/5)     …(61) 

 

so after t1 years (t1 defined by Eqn. (61)), the mass of the material will be 25 gms. 

 

Let us now deal with the temperature variations of a hot object. 
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III. Newton’s Law of Cooling 

 

The temperature of a hot a hot body kept in a surrounding of constant temperature T0 

has been discussed in Unit 1 and the governing equation of the temperature T of the 

body is 

 

T'(t) = k(T(t) – T0)       …(62) 

(Ref. Eqn. (34) of Unit 1) 

 

we illustrate this by the following example. 

 

Example 13:  A rod of temperature 100
o
C is kept in a surrounding of temperature 

20
o
C.  If the temperature of the rod was found to be 80

o
C after 10 minutes, find the 

temperature T(t) of the rod. 

 

Solution: We are required to solve 

dt

d
 T(t) = k(T(t) – 20)      …(63) 

 

Let us put y(t) = T(t) – 20. Then y'(t) = T'(t) and Eqn. (63) reduces to 

dt

d
 y(t) = k y(t)       ..(64) 

Eqn. (63) is not a linear homogeneous equation whereas Eqn. (64) is which explains 

the reason for introducing y) Along with Eqn. (64), we have 

 

a) y(0) = T(0) – 20 = 100 – 20 = 80
o
C, 

b) y(10) = T(10) – 20 = 80 – 20 = 60
o
C   …(65) 

 

the solution of Eqn. (64), with the condition 65(a), is 

y(t) = 80 exp (kt) 

with this value of y and condition (65b), we have 

y(10) = 60 = 80 exp (k. 10) 

or, k = 
10

1
 In (6/8) = 

10

1
 In (3/4) 

Hence the value of y is determined by 

 

y(t) = 80 exp 







In(.75)

10

t
, 

and the temperature T is given by 

T(t) = 80 exp 







In(.75)

10

t
 + 20 

 

And now an exercise for you. 
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4.0 CONCLUSION 
 

We now end this unit by giving a summary of what we have covered in it. 

 

5.0 SUMMARY 
 

In this unit we have covered the following points: 

 

1) The general form of the linear equation of the first order is 
dx

dy
 + P(x)y = Q(x), 

(see Eqn. (3)) 

Where P(x) and Q(x) are continuous real-valued functions on some interval 

IR. 
 

When Q(x) = 0 it is called homogeneous linear differential equation of order 

one. 

When Q(x)   0, it is called non-homogeneous (or inhomogeneous) linear 

differential equation of order one. 

I.F. for this equation of dxP(x)e  and the general solution is given by 

y = dxP(x)e  .  Q(x) dxP(x)e    

Here, dxP(x)e    Q(x) dxP(x)e  is the particular solution of the equation. 
 

2) The sum of the solution of linear non-homogeneous differential equation of the 

form (3) and the solution of its corresponding homogeneous equation is again a 

solution of the equation. 
 

3) If in the differential equation 

dx

dy
 + P(x)y = Q(x), 

 

P(x) is a constant and Q(x) is any of the forms αxe (α  constant), x
r
(r > 0, an 

integer), sin βx or cos βx (β constant) or a linear combination of such functions, 

then method of undetermined coefficients can be applied to find the particular 

solution of the equation and the particular integrals for different Q(x) are given 

by the following table 

 

P(x)  Q(x)   Particular Integral 

a(constant e
mx

 (m constant) 













amifxe

amif
am

e

mx

mx

 

a  

integer)an

0(ixa
n

0i

i

i



        

























n

0i

i

i

n

0i

1ii

0aifxP

0aifx
1i

a
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    with Pn = 
a

a n , Pn-1 = 









a

na
a

a

1 n
1n , 

           Pn-2 = 










  )a

a

n
(a

a

1n
a

a

1
a1n2n and so on 

a  sin βx or cos βx     A linear combination of 

           sin βx  and cos βx  

 or A sin βx  + B cos βx (β , A, B constants) 

 

4) Method of variation of parameters for finding the solution of non-homogeneous 

linear differential equation 

dx

dy
 + P(x)y = Q(x) 

 

5) Some properties of the solution of linear homogeneous differential equation 

dx

dy
 + P(x)y = 0 are 

a) (Superposition Principle): If y1 and y2 are any two solutions of the 

equation, then y1 + y2 and cy1 are also solution of the equation, where c 

is a real constant. 
 

b) If a complex valued function y = p+iq, defined on 1, is a solution of the 

equation, then real part of p of y and imaginary part q of y are also 

solutions of the equation on 1. 
 

c) If y be a solution of the equation on I such that y(x1) = 0 for some x1 in 

I, then y = 0 on I. 
 

6) a) Bernoulli‟s equation 

dx

dy
 + P(x)y = Q(x) y

n
, 

where P and Q are functions of x alone and n is neither zer nor one, 

reduces to a linear equation by the substitution v = y
1-n

. 
  

b) Equations of the type 

  f'(y) 
dx

dy
+ P(x) f(y) = Q(x) 

  reduce to linear equations by the substitution f(y) = v. 
 

7) The differential equations governing physical problems such as population 

model, radioactive decay and Newton‟s law of cooling have been solved. 
 

6.0 TUTOR MARKED ASSIGNMENT 
 

1. From the following equations, classify which are linear and which are non-

linear. 
 

Also state the dependent variable in each case. 
 

a) 
dx

dy
 - y = xy

2
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b) rdy – 2ydx = (x – 2) e
x
 dx. 

c) 
dt

di
- 6i = 10 sin 2t 

d) 
dx

dy
 + y = y

2
e

x
 

e) ydx + (xy + x-3y) dy = 0 

f) (2s – e
2t

) ds = 2(se
2t

 – cos 2t) dt 

 

2. Prove Theorem 2. 
 

3. Solve the following equations: 
 

c) (x
2
 + 1) 

dx

dy
 + 2xy = 4x

2
 

d) 
dx

dy
 + 

x

2
y = sin x 

e) sec x 
dx

dy
 + y  = sin x 

f) (1 + y
2
) dx = (tan

-1
y – x) dy 

g) (2x – 10y
3
) 

dx

dy
 + y = 0 

 

4. Solve the following equations. 

 a) y' = y + 
x

e x

   , e ],1[   

 b) y' = y + x + x
3
+

 
x

5
 

 c) y' = y + x sin x e
x
 + x

5
 

 d) y' + 3y = |x|, y(0) = 1. 

 

5. Solve 
dx

dy
 + y = 2ae

x
 

 

6. Solve 
dx

dy
= y + x

2
. 

 

7. Solve the following differential equations: 
  

 a) 
dx

dy
 - y = 6 cos 2x 

 b) 
dx

dy
 + 3y = x

2
 + 3e

2x
 + 4 sin x 

 

8. Solve the following equations: 
 

a) y' – 2y = sin  x + cos  x, y(1) = 1 

b) y' – y = cos 2x + e
x
 + e

2x
 + x 

c) y' – 3y = x
2
 – cos 3x + 2 (Hint: Treat 2 as 2e

0x
) 

d) y' + y = -x – x
2
, y(0) = 0. 

e) Y' – y = e
x
, y(0) = -3. 
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9. Show that y1(x) = - 
x)(1

1


 is not a solution of Eqn. (37) 

 

10. Show that the solution y(x) = e
x
 + ie

x
 – (1+ x) of equation y' = y + x, for x I  = 

R does not satisfy the hypothesis of Theorem 5. 

 

11. Show that y(x) = sin 2x – cos 2x, x R  is a solution of y' = 2y + 4 cos 2x.  

why does Theorem 6 fail in this case? 
 

12. Solve the following equations: 
 

 a) 
dx

dy
 = 

x

1

x

e
2

y

  

 b) 
dx

dy
 + xy = x

3
y

3
 

 c) 3e
x
 tan y + (1-e

x
) sec

2
y 

dx

dy
 = 0 

13. Find the solutions of  
  

 a) 
dx

dy
 + x sin 2y = x

3
cos

2
y 

 b) 
dx

dy
 + y = e

x 
y

3 

 
c) 2x

dx

dy
 + y(6y

2
 –x-1) = 0 

 

14. A culture initially has N0 number of bacteria.  At t = 1 hour, the number of 

bacteria is measured to be 








2

3
 N0. If the rate of growth is proportional to the 

number of bacteria present, determine the time necessary for the number of 

bacteria to triple. 
 

15. Suppose that a thermometer having a reading of 70
o
F inside a house is placed 

outside where the air temperature is 10
o
F.  Three minutes later it is found that 

the thermometer reading is 25
o
F.  Find the temperature reading T(t) of the 

thermometer. 
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UNIT 2 DIFFERENTIAL EQUATIONS OF FIRST ORDER BUT 

NOT OF FIRST DEGREE 

 
CONTENTS 
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2.0 Objectives 

3.0 Main Content 

 3.1 Equations which can be factorized 

 3.2 Equations which cannot be factorized 

  3.2.1 Equations soluable for y 

  3.2.2 Equations soluable for x 

3.2.3 Equations in which independent variables or dependent variable 

is absent 

3.2.4 Equations Homogeneous in x and y 

3.2.5 Equations of the first degree in x and y – clairant‟s 

3.2.6 Riccati‟s Equation 

 3.3 Bernoulli Equation 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor Marked Assignment 

7.0 References/Further Readings 

 

1.0 INTRODUCTION 
 

In unit 1, we discussed the nature of differential equations and various types of 

solutions of differential equations. In Unit 2 and 3, we have given you the methods of 

solving different types of differential equations of first order and first degree. In this 

unit we shall consider those differential equations which are of first order but not of 

first degree. 

 

If we denote 
dx

dy
 by P, then the most general form of a differential equation of the first  

 

order and nth degree can be expressed in the form 

P
n
 + P1p

n-1
 + P2p

n-2
 + …..+ Pn-1p + Pn = 0,    …(1) 

 

Where P1, P2,….., Pn are functions of x and y. 
 

It is difficult to solve Eqn. (1) in its most general form. In this unit we shall consider 

only those forms of Eqn. (1) which can be easily solved and discuss the methods of 

solving such equations. 
 

It was Isaac Newton (1642 – 1727), the English mathematician and scientist, who 

classified differential equations of the first order (then known as fluxional equations) 

in “Methodus Fluxionum et serierum infinitarum”, written around 1671 and published 

in1736. Count Jacopo Riccati (1676-1754), an Italian mathematician, was mainly 

responsible for introducing the ideal of Newton to Italy. Riccati was destined to play 
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an important part in further advancing the theory of differential equations.  In 1712, he 

reduced an equation of the second order in y to an equation of first order in p. In 1723, 

he exhibited that under some restricted hypotheses, the particular equation to which 

the name of Riccati is attached, can be solved. 

 

Later the French mathematician Alexis Claude Clairaut (1713-1765) introduced the 

idea of differentiating the given differential equations in order to solve them.  He 

applied it to the equations that now bear his name and published the method in 1734.  

We shall also be discussing the equations introduced by Riccati and Clairaut in this 

unit. 
                              

                                     
 

Clairaut (1713-1765) 

 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 
 

 find the solution of the differential equations which can be resolved into 

rational linear factors of the first degree; 

 obtain the solution of equations solvable for y, x or p; 

 obtain the solution of the differential equations in which x or y is absent; 

 solve the equations which may be homogeneous in x and y; 

 identify and obtain the solution of Clairaut‟s equation; 

 identify and obtain the solution of Riccati‟s equation. 
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3.0 MAIN CONTENT 
 

3.1 Equations which can be factorized 
 

Let us consider the general form of differential equation of the first order and nth 

degree given by Eqn. (1) namely, 

 

P
n
 + P1p

n-1
 + P2p

n-2
 + …..+ Pn-1p + Pn = 0,      

Where P1, P2,….., Pn are functions of x and y. 

 

For this equation, we shall consider two possibilities: 
 

a) When the left-hand side of Eqn. (1) can be resolved into rational factors of the 

first degree. 
 

b) When the left-hand side of Eqn. (1) cannot be factorized.  

 In this section we shall take up the first possibility. 

 

When Eqn. 91) can be factorized into rational factors of the degree, then it can take 

the form 

 

(p – R1) (p – R2)……(p – Rn) = 0     …(2) 

for some R1, R2, …., Rn, which are functions of x and y. 

 

Eqn. 91) will be satisfied by a value of y that will make any of the factors in Eqn (2) 

equal to zero.  Hence, to obtain the solution of Eqn. (1), we equate each of the factors 

in Eqn. (2) equal to zero.  Thus, we get 

P – R1 = 0, p – R2 = 0, …, p – Rn = 0    …(3) 

 

There are n equations of first degree. Using the methods given in Unit 2 and 3 we can 

now obtain the solution of the above n equations of first order and first degree. 

 

Let us suppose that the solutions desired for Eqn. (3) are 

 



















0)cy,(x,f

;;

0cy,(x,f

0)cy,(x,f

nn

22

11

       …(4) 

where c1, c2,…., cn are the arbitrary constants of integration. 

 

Since each of the constants c1, c2,….., cn can take any one of an infinite number of 

values, thus these solutions remain general even if 

 

C1 =  c2 = ….= cn = c, say. 

In that case, the n solutions will be 
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f1(x, y, c) = 0 

f2(x, y, c) = 0 

f3(x, y, c) = 0 

…. 

…. 

Fn(x, y, c) = 0 

 

These n solutions can be left distinct or we can combine them into one equation, 

namely, 

F1(x, y, c). f2(x, y, c) ….fn(x, y, c) =  

 

The reason of taking all c1, c2,…., cn equal in Eqn. (4) is the fact that Eqn. (2) being of 

first order, its general solution can contain only one arbitrary constant. 

 

We illustrate this method by the following examples: 
 

Example 1: Solve p
2
 +px + py+xy = 0 

 

Solution:  The given equation is equivalent to 

(p+x) (p+y) = 0 

that is, either 

p+x = 0 or, p+y = 0 

In other words,  

dx

dy
 + x = 0, or 

dx

dy
 + y = 0 

 

the solutions of the factors are 

2y = -x
2
 + c 

and  

x = -In |y| + c, for c being an arbitrary constant. 

 

Therefore, the general solution of the given equation is 

(2y + x
2
 – c).(x+In |y| - c) = 0. 

 

Let us look at another example. 

 

Example 2: Solve p
3
 (x + 2y) + 3p

2
(x + y) + (y + 2x)p = 0 

 

Solution:  The given equation is equivalent to 

p[p
2
(x + 2y) + 3p(x + y) + (y + 2x)] = 0 

p[p
2
(x + 2y) + p{(y + 2x) + (x + 2y)} + (y + 2x)] = 0 

  p(p + 1) [(x + 2y)p + (y + 2y)] = 0 
 

its component equations are 

p = 0, p + 1 = 0, (x + 2y)p + (y + 2x) = 0 

Now p = 0 
dx

dy
 = 0, which has the solution 

y = c         …(5) 
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Now p+1 = 0 
dx

dy
+ 1 = 0 

i.e., dy + dx = 0 

which has the solution 

y+x =c        …(6) 

Further, (x + 2y)p + (y + 2x) = 0 

 (x + 2y)dy + (y + 2x)dx = 0 

  d(xy + x
2
 + y

2
) = 0. 

 

Which has the solution 

xy + 
2
 + y

2
 = c       …(7) 

 

Therefore, the general solution of the given equation, from Eqns. (5), (6) and (7), is  

(y –c). (y+x – c). (xy + x
2
 + y

2
 – c) = 0. 

 

You may now try the following exercise. 

 

As you know from algebra, every equation over Q need not have all its roots in Q, i.e., 

it need not be factorizable in Q. 

 

We now take up those equations of form (1) which cannot be factorized into rational 

factors of the first degree. 

 

3.2 Equations which cannot be Factorized 
 

in this case, let the form of Eqn. (1) be 

f(x, y, p) = 0        ….(8) 

 

eqn. (8) is not solvable in its most general form 

 

we shall discuss only those equations of type (8) which possess one or more of the 

following properties. 

 

i) It may be solvable for y. 

ii) It may be solvable for x. 

iii) It may solvable for p. 

iv) Either it may not contain y or it may not contain x, that is, either x or y is 

absent from the differential equation. 

v) It may be homogeneous in x and y. 

vi) It may be of first degree in x and y. 

vii) It may be Riccati‟s equation. 

 

We now discuss these cases one by one. 
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3.2.1 Equation Solvable for y 
 

Consider an equation 

xp
2
 – yp – y = 0       …(9) 

 

we can write Eqn. (9) in the form 

y(p+1) = xp
2
, 

  y = 
1p

xp 2


 

 

That is, Eqn. (9) can be solvable for y in terms of x and p. 
 

Similarly when Eqn. (8), i.e., f(x, y, p) = 0 is solvable for y, then it can be pt in the 

form  
 

y = F(x, p)        …(10) 

 

Differentiating Eqn. (10) w.r. to x, we get an equation of the form 

 

P= ø 








dx

dp
p,x,        …(11) 

 

Eqn. (11) is in two variables x and p; and we may possibly solve and get a relation of 

the type 

 (x, p, c) = 0       …(12) 

for some constant c. 
 

It we now eliminate p between Eqns. (8) and (12), we get a relation involving x, y and 

c, which is the required solution. In the cases when the elimination of p between Eqns. 

(8) and (12) is not possible, we then obtain the values of x and y in terms of p as a 

parameter and these together give us the required solution. 
 

We now illustrate this method with the help of a few examples. 

Example 3: The given equation is solvable for y. 

Solving it for y, we get 

y = p + 
p

x
        …(13) 

Differentiating Eqn. (13) w.r. to x, we get 

p = 
dx

dp

p

1
x

p

1

dx

dp
2 







  

i.e., 
2p

1

dp

dx

p

1
p 








  x = 1      …(14) 

 

this is linear equation of the first order if we consider p as independent variable and x 

as dependent variable. 
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We can write Eqn (14) as, 

1p

p
x

1)1)(pp(p

1

dp

dx
2




       …(15) 

 

For Eqn. (15) 
dp

1)p(p

1
2

e 


is an integrating factor. 

Now, 
dp

1)p(p

1
2

e 


= 
 














dp

p

1

1)2(p

1

1)2(p

1

e  

   = p

2/1)1(p
In

2

e



 = 
p

1)(p 2/12
      

the, the solution of Eqn. (15) is obtained as 

 










1p

1
dp

p

1)(p

1p

p

p

1)(p
x

2

2/12

2

2/12

dp = c + cos h
-1

p, 

or x = p(c + cos h
-1

p) (p
2
 -1)

-1/2     
…(16) 

 

you may notice that elimination of p between Eqns. (13) and (16) is not easy.  

However, by substituting for x from Eqn. (16) in Eqn. (13), 

we get 

 

y = p+(c + cosh
-1

p) (p
2
 -1)

-1/2     
…(17) 

Eqns. (16) and (17) are two equations for x and y in terms of p.  These are the 

parametric equations of the solution of the given differential equat. 

 

Let us look at another example. 

 

Example 4: Solve y = 2px + p
4
x

2
, x > 0. 

 

Solution: The given equation 

y = 2px + p
4
x

2
       …(18) 

is in itself solvable for y. 

 

differentiating it w.r. to x, we get 

p = 2p + 2x 
dx

dp
 + 2xp

4
 + 4x

2
p

3
 
dx

dp
 

  p(1 + 2xp
3
) + 2x

dx

dp
 (1+2xp

3
) = 0, 

  (1+2xp
3
) + (p+2x 

dx

dp
) = 0     ...(19) 

Eqn. (19) holds when either of the factors (1+2xp
3
) or (p + 2x 

dx

dp
) is zero. 

First consider the factor 

 

P+ 2x 
dx

dp
 = 0 
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
pdx

dp2
 + 

x

1
 = 0 

 

Integrating the above equation w.r.t.x, we get 

2 In |p| + In |x| = constant. 

p
2
x = c, (c an arbitrary constant) 

or p = 
x

c
. 

 

Substituting this value of p in the given Eqn. (18), we get 

 

Y = 2 2ccx  

Which is the required solution. 

 

If we consider the factor 1 + 2xp
3
 = 0 in Eqn. (19), then by eliminating p between this 

factor and given Eqn. (18), we get another solution.  This solution will not contain any 

arbitrary constant and is the singular solution of the given equation. 

 

How about trying an exercise now? 

 

We next consider the case when Eqn. (8) is solvable for x. 

 

3.2.2 Equations Solvable for x 
 

Consider an equation of the form 

P
3
 – 4xyp + 8y

2
 = 0       ...(20) 

It is difficult to solve Eqn. (20) for y whereas it is easy to solve it for x as a function of 

y and p and write 

 

x = 
yp4

y8p 23
. 

 

In such cases when equation of the form (8) is solvable for x, and can be put in the 

form  

x = g(y,p)        …(21) 

then to solve it, we differentiate Eqn. (21) w. r. to y, and get an equation of the form 

p

1
= ø 









dx

dp
p,y,  

on solving this equation we obtain a relation between p and y in the form  

f(y,p,c) = 0,        …(22) 

where c is an arbitrary constant. 

 

Now, we may eliminate p between Eqn (21) and (22) to obtain the solution or, x and y 

may be expressed in terms of p as we have done in Sec. 4.3.1. 
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Remark: Note that when Eqn. (8) is solvable for y, we differentiate it w.r. to x, 

whereas, when it is solvable for x, we differentiate it w. r. to y. 

 

We illustrate this method by the following examples. 

 

Example 5:  Solve p = tan 











2p1

p
x . 

Solution:  The given equation can be written as 

X = tan
-1

p + 
2p1

p


              ...(23) 

 

Differentiating Eqn. (23) w. r. y, we get 

p

1
 = 

2p1

p


 

dy

dp
+ 

22

2

)p(1

p)p(2)p(1





dy

dp
 

     = 
22

222

)p(1

p2p1p1




  

    = 
22)p(1

2

 dy

dp
 

  dy = 
22)p(1

p2


 dp       …(24) 

 

Note that Eqn. (24) is in variable separable form. 

Integrating Eqn. (24), we get 

 

y = c - 
2p1

1


,       …(25) 

c being an arbitrary constant. 

 

It is not possible to eliminate p between Eqns. (23) and (25).  Thus, Eqns. (23) and 

(25) together constitute the solution of the given equation in terms of parameter p. 

 

Let us look at another example. 

 

Example 6:  Solve p
2
y + 2px =  x, y and p > 0 

 

Solution:  We can write the given equation in the form 

 

X = 
2

py

p2

y
         ...(26) 

 

Differentiating Eqn. (26) w.r. to y, we get 
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p

1
 = 

p2

1
+ 

dy

dp

2

y

2

p

dy

dp

p

1

2

y
2









 , 


p2

1
 +

2

y

2

p
  

dy

dp
 










2p

1
1  = 0 

  
p2

p1 2
 + 

2

y
 









 
2

2

p

p1
  

dy

dp
 = 0 

  
p2

p1 2
  










dy

dp

p

y
1  = 0      …(27) 

 

In Eqn. (27), we may have 

p2

p1 2
 = 0 

or 









dy

dp

p

y
1  = 0. 

If we have first factor equals zero, then p
2
 = -1. 

 

Thus real solution of the given problem is obtained when 

y

1
 + 

p

1

dy

dp
 = 0 

Here variables are separable.  Integrating, we get 

Iny + Inp = Inc 

  py = c 

or p =  
y

c
        …(28) 

Eliminating p between Eqn.s (26) and (28), we get 

 

X = 
c2

y2

 - 
y

c
 

2

y
 

or x = 
c2

y2

 - 
2

c
, 

which is the required solution. 

 

Note that you could also have solved Example 6 by taking y = 
2p1

p2


 and then 

proceeding as in sec. 4.3.1. 

 

You may now try the following exercise. 

 

We now consider Eqn. (8) with the property that Eqn. (8) may be solvable for p.  in 

that case Eqn. (8) which is of nt degree in p, in general, is reduced to n equations of 

the first degree and this case has been considered in Section 4.2. 
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We next take up the case when Eqn. (8) may not contain either independent variable 

x, or, dependent variable y explicitly. 

 

3.2.3 Equations in which Independent Variable or Dependent Variable is 

Absent 
 

We shall consider the two cases separately. 

 

Case 1: Equations not containing the independent variable: 

 

When Eqn. (8) does not contain independent variable explicitly then the equation has 

the form 

 

f(y,p) = 0        …(29) 

 

For instance, consider the equation 

y - 
2p1

1


 = 0. 

 

This equation does not contain x explicitly.  Also, it is readily solvable for y, since it 

can be written in the form 

y = 
2p1

1


        …(30) 

 

Eqn. (30) can, now, be solved by the method discussed in Sec. 4.3.1. In case Eqn. (29) 

is solvable for p, then we can write it in the form 

p = 
dx

dy
 = ø(y)       …(31) 

 

The integral of Eqn. (31) will, then, give us the solution of Eqn. (29). 

To be more clear, let us consider the following example. 

 

Example7:  Solve y = 2p + 3p
2
 

 

Solution:  We have 

 

y = 2p + 3p
2
 

which is already in the form y = F(p). Following the method discussed in sec. 4.3.1, 

we differentiate it w. r. t. x, so that 

 

p = 2
dx

dp
 + 6p 

dx

dp
 

or 
p62

p


 = 

dx

dp
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Here variable are separable and we have 

dx = 







 6

p

2
 dp 

 

Integrating, we get 

x = 6p + 2In |p| + c.       … (33) 

c being an arbitrary constant. 

Since it is not possible to eliminate p from Eqns. (32) and (33), these equations 

together yield the required solution in terms of the parameter p. 

 

Let us look at another example 

 

Example 8: Solve y
2
 = a

2
 (1 + p

2
)     … (34) 

 

Solution:  The given equation is an equation in y and p only.  It can be written as 

 

P
2
 = 

2

2

a

y
 - 1 

Solving for p, we get 

p= 
1a

y
2

2


 

Either p = 
1a

y
2

2


or p = -

1a

y
2

2


, 

Now p 
2

2

a

y
1 gives 

22 ay

a


dy = dx. 

 

Integrating the above equation, we get 

A In |y + 22 ay  | = x + c, 

c being an arbitrary constant. 

 

Similarly, p = - 
2

2

a

y
1 , on integration, yields 

a In |y + 22 ay  | = -x + c (c being a constant). 

 

Hence, the general solution of the given equation is 

 

[a In |y + 22 ay  | - x – c] [a In |y + 22 ay  | + x – c] = 0 
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Note that we solve Eqn. (34) for p. You could also have integrated it by solving it for 

y. 

 

We next consider the equations in which the dependent variable is absent. 

 

Case II: Equations not containing the dependent variable: 

In this case Eqn. (8) has the form 

g(x, p) = 0 or x = F(p)      …(35) 

 

As in case 1, Eqn. (35) is either solvable for p or solvable for x.  if it is solvable for p, 

then it can be written as 

 

p = ψ (x) 

which, on integration, gives the solution of Eqn. (35) 

 

If Eqn. (35) is solvable for x, then it corresponds to the case discussed in Section 

4.3.2. 

 

We give below examples to illustrate the theory. 

 

Example 9:  Solve x(1+p
2
) = 1 

 

Solution:  The given equation can be written as 

 

x = 
2p1

1


        …(36) 

 

Differentiating Eqn. (36) w.r. to y, we get 

p

1
 = 

22)p(1

p2




 

dy

dp
, 

i.e., dy 
22

2

)p(1

p2




dp 

i.e., dy =  2 














222 )p(1

1

p1

1
dp 

Here variables are separable.  Integrating, we get 

 

y = - 2 tan
-1

p + 1  22)p(1

dp


 + c     …(37) 

c is a constant. 

Eqns. (36) and (37) together yield the required solution with p as parameter. 

 

Note that problem in example 9 could have also been done by solving it for p. we 

illustrate this method in the next example. 
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Example 10:  Solve p
2
 – 2xp + 1 = 0 

 

Solution:  The given equation is 

P
2
 – 2xp + 1 = 0 

Solving for p, we get 

 

p = 
2

4x4x2 2
 = x   1x2  

Either p = x + 1x2  or p = x - 1x2  

Now p = x + 1x2 , on integration yields 

 

y = 
2

x 2

 + 
2

1xx 2
 - 

2

1
 In |x + 1x2 | + c, 

 

c being an arbitrary constant. 

 

Similarly, p = x - 1x2  yields 

 

y = 
2

x 2

 - 
2

1
 x 1x2 + 

2

1
In |x + 1x2 | + c, 

 

Hence, the general solution of the given equation is 

[x
2
 + x 1x2  - In |x + 1x2 | - 2y + c1] [x

2
 – x 1x2  + In|x + 1x2 |-2y + c1]  = 

0. 

Where c1 = 2c is an arbitrary constant. 

 

And now some exercise for you. 

 

We next discuss the case when Eqn. (8) may be homogeneous in x and y 

 

3.2.4 Equations Homogeneous in x and y 
 

In this case, Eqn. (8) can be expressed in the form 

 

Ø 








x

y
p,  = 0        …(38) 

 

For solving Eqn. (38), we can proceed in two ways.  In case Eqn. (38) is solvable for p 

then it can be expressed as 

 

P = 
dx

dy
 = f 









x

y
       …(39) 
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We already know from our knowledge of unit 2 that equations of the type (39) can be 

solved by using the substitution y = vx. 

 

The second possibility, that is, when Eqn. (38) is solvable for y/x, then it can be put in 

the form 

 

x

y
 = ψ (p) or y = xψ (p). 

 

In this case we can proceed as in Sec. 4.3.1.  Differentiating the above equation w.r. to 

x, we get 

 

p =ψ (p) + xψ '(p) 
dx

dp
 

  
x

dx
 = 

ψ(p)p

dp(p)ψ'


       …(40) 

Eqn. (40 is in variable separable form.  On integrating, it yields 

 

In|x| = c +  ψ(p)p

(p)ψ'


dp 

        = c + ø(p), say. 

 

The elimination of p between this equation and y = xψ (p) will give us the required 

solution.  But it is not always easy to eliminate p, so it may be retained as the 

parameter. 

 

To understand the theory, we take an example. 

 

Example 11:  Solve y
2
 + xyp – x

2
p

2
 = 0  x, y, p > 0. 

 

Solution:  The given equation is homogeneous in y and x and it may be written as 

p
2
 - 









x

y
 p - 

2

x

y








 = 0      …(41) 

Solving Eqn. (41) for p, we get 

 

p = 
2

4(y/x)(y/x)(y/x) 22 
 = (y/x)  

1 5

2

 
 
 

 

Thus 
dx

dy
 = 

x

y
  

1 5

2

 
 
 

or 
dx

dy
 =  

1 5

2

 
 
 

 
x

y
 

 

Let y = vx, then 
dx

dy
 = v + x 

dx

dy
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v + x 
dx

d v
 = v

1 5

2

 
 
 

 and v + x 
dx

d v
 = 

1 5

2

 
 
 

v 

  x 
dx

d v
 = 

5 1

2

 
 
 

v and x 
dx

d v
 =  

1 5

2

  
 
 

v 

 

Integrating, we get 

 

In xc = In v
2/(√5-1)

 and In xc = In v
-2/(√5+1) 

Or xc = (y/x)
 2/(√5-1)

 and xc = (y/x)
 -2/(√5+1)

 

or  y = x (xc)
(√5-1)/2

 and y = x(xc)
-(√5+1)/2

 

 

Hence the general solution is 

 

[y-x(xc)
 (√5-1)/2

]. [y-x(xc)
 -(√5+1)/2

] = 0 

i.e., y
2
 – xy [(xc)

 (√5-1)/2
 + (xc)

 -(√5+1)/2
] + x

2
 (xc)

-1
 = 0 

 

Now you may try the following exercise. 

 

We next discuss the case when Eqn. (8) may be of first degree in x and y. 

 

3.2.5 Equations of the First Degree in x and y – Clairaut’s equation 
 

When Eqn. (8) is of first degree in x and y, it is solvable for x and y both and hence 

can be put in either of the following forms. 

 

y = xf1(p) +  f2(p)       …(42) 

or x = yg1(p) + g2(p)       …(43) 

 

Hence, we can use the methods discussed in Sec. 4.3.1 and 4.3.2 to solve equations of 

the for (42) and (43), respectively. 

 

However, if in Eqn. (42), f1(p) = p, then we get one particular form of this equation 

known as Clairaut’s Equation and about which we have already mentioned in sec. 

4.1. 

 

Thus the Clairaut‟s equation is of the form 

y = px + f(p)        …(44)  

 

In Eqn. (44), f(p) is a known function which contains neither x nor y explicitly.  also, 

note, that Eqn. (44) can be non-linear.  For instance, y = px + p
2
 and y = x + e

p
 are 

examples of Caliraut equation.  But equations y = xy + p
2
 or y = xp + yp

2
 are not of 

the Clairaut‟s form. 

 

On differentiating Eqn. (44) w.r. to x, we have 

p = p + p'x + f'(p)p'       …(45) 
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  p' [x + f'(p)] = 0 

Then either p' = 
dx

dp
 = 0       …(46) 

Or, x + f'(p) = 0       …(47) 

 

The solution of Eqn. (46) is p = c, where c is an arbitrary constant.  Thus, we can write 

the general solution of Eqn. (44) as 

 

y = cx + f(c)        …(48) 

Note that Eqn. (48) is an equation of a family of straight lines. 

 

Now consider Eqn. (47).  Since f(p) and f'(p) are known functions of p, Eqns. (47) and 

(44) together constitute a set of parametric equations giving x and y in terms of the 

parameter p. 

 

If we can eliminate p from Eqn. (44) and (47) and if the resulting equation satisfies 

Eqn. (44), we get another solution of Eqn. (44) (could be an implicit solution).  This 

solution does not contain an arbitrary constant and is a singular solution of Eqn. (44). 

 

We give you some examples to help you understand this method. 

 

Example 12:  Solve (y')
2
 + 4xy' – 4y = 0    …(49) 

 

Solution:  With p = y', Eqn. (49) can be written as 

 

y = px + 
4

1
 p

2
,       …(50) 

 

which is in the Clairaut‟s form.  Differentiating Eqn. (50) w.r. to x, we get 

p = p + p'x + 
2

p
p' 

p'(x + 
2

p
)  = 0 

 

then either p = 0 which gives p = c ( a constant)   …(51) 

or x + 
2

p
 = 0        …(52) 

 

From Eqns. (50) and (51), we obtain 

 

y = cx + 
4

c2

 

as the solution of Eqn. (50).  Eliminating p from Eqns. (50) and (52), we get 

y = x(-2x) + 
4

1
( -2x)

2
, 

i.e., y(x) = - x
2
, 
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which contains no arbitrary constant. Since this value of y satisfies Eqn. (50), it is the 

singular solution of Eqn. (50). 

 

Let us look at another example. 

 

Example 13:  Solve y  = xp + 
p

1
 

 

Solution:  If we compare the given equation with  Eqn. (44) we notice that in the case 

f(p) = 
p

1
 and f'(p) 

2p

1
.   From Eqn. (48) then the solution is given by 

y = ax + 
a

1
 

where a ( 0) is an arbitrary constant. 

Also in this case, equation corresponding to Eqn. (47) is 

 

0 = x 
2p

1
 

The elimination of p between the above equation and the given equation yields 

y
2
 = 4x, 

which is a singular solution of the given equation. 

 

You may, now, try the following exercises. 

 

Finally, we take up in the next solution, another non-linear equation known as 

Riccati‟s equation, which we mentioned in Sec. 4.1 

 

3.2.6 Riccati’s Equation 
 

Originally, this name was given to the first order differential equation 

 

dx

dy
 + by

2
 = cm

m
,       …(53) 

where b, c and m are constants.  This is known as the special Riccati equation. Eqn. 

(53) is solvable in finite terms only if the exponent m is – 2 or, of the form 
1)k(2

k4




 for 

some integer k. Riccati merely discussed special cases of this equation without 

offering any solutions.  Now a days Riccati‟s equation is usually understood by an 

equation of the form. 

 

y' = a(x) + b(x) y + c(x)y
2
      …(54) 

 

where a, b and c are given functions of x on an interval 1 (of R).  Equations y' = 1 + 

xy + e
x
y

2
 and y' = x + x

2
y + sin (x)y

2
 are example of Riccati‟s equations whereas, 

equations y' = 1 + y + y
3
, and y' = 1 + y + 2y

2
 are not of Riccati‟s type. 
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It is difficult to obtain a solution of Riccati‟s Eqn. (54) containing an arbitrary 

constant.  But, the general solution of Eqn. (53) can be obtained if we have the 

knowledge of a particular solution of Eqn. (53).  This can be done as follows: 

 

Let y1 be a solution of Eqn (53) Then we determine a function v so that y defined bu 

the relation 

 

y = y1 + 
v

1
          …(55) 

is a solution of Eqn. (54). 

Differentiating Eqn. (55) w.r. to x, we get 

 

y' = y1 + v 









2v

1
 

Since  y and y1 satisfy eqn. (54), we have 

y1' = a(x) + b(x)y1 + c(x)y1
2
 

and y1' - 2v

v'
= a(x) + b(x)y + c(x) y

2
 

 

subtracting the second equation from the first, we have 

 

v' 







2v

1
 = b(x) (y1-y) + c(x) (y1

2
 – y

2
) 

or v' = b(x) v
2
(y1 – y) + c(x) (y1 –y) (y1 + y)v

2
   …(56) 

From Eqn. (55), we have 

(y – y1) v = 1 or (y1 – y) v = - 1     …(57) 

Also, (y1 + y)v = (2y1 + y – y1)v = 2y1v + 1 (y – y1)v = 2y1v+1    (using Eqn (57)) 

Now (y1
2
 – y

2
)v

2
 = (y1 – y)v.(y1 + y)v 

        = ( - 1) (2y1v + 1) = - 1- 2y1v   …(58) 

 

Substituting from Eqn (58) in Eqn (55), we get 

v' = - (b(x) + 2c(x)y1)v – c(x),     …(59) 

which is a linear (non-homogeneous) equation for determining a function v. 

 

the general solution of Eqn. (59) contains an arbitrary constant and the substitution of 

this general solution in Eqn. (54 gives us the solution of Eqn. (53) containing an 

arbitrary constant. 

 

Let us now go through some examples to understand the above theory. 

 

Example 14:  Solve y' = - y + x
2
y

2
 

 

Solution:  On comparing this equation with Eqn (53) we find that in this case a = 0, b 

= -1 and c = x
2
 (1 = R).  The given equation is a Riccati‟s Equation which has a 

(particular) solution y1 = 0.  by using the substitution 
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y = y1 + 
v

1
 = 0 + 

v

1
 = 

v

1
 

in Eqn (58), we have v' = v – x
2   

  …(60) 

 

Eqn. (60) is a linear first order equation with  

I.F. = dx1e   = e
-x

 

 

Hence, the general solution of Eqn. (60) is 

v = - e
x
  e

-x
 x

2
+ dx + Ae

x
 

   = (x
2
 + 2x + 2) + Ae

x
 

and the solution of the given equation is 

y = 
2x2xAe

1
2x 

, 

which contains an arbitrary constant. 

 

Let us look at another example. 

 

Example 15: Solve y' = - 1- x
2
 + y

2
. 

 

Solution:  By inspection, we see that y1(x) = - x is a solution of the given equation.  

Comparing the given equation with Eqn. (53), we get a = -1- x
2
, b = 0 and c = = 1. 

 

We look for a function v, so that y = y1 + 
v

1
 = - x + 

v

1
. 

 

In this case Eqn. (58) reduces to  

v' = 2xv – 1 

  
dx

dv
 - 2xv = -1 

 

The integrating factor for this equation is e
-2x

, and so it can be written as  

dx

d
 [e

-2x
v] = - e

-2x 

 

Thus, on integration, we write 

e
-2x

 v = - 
 x2e dx + c 

or, v = e
2x

 [- 
 x2e dx + c] 

 

where c is an arbitrary constant. 

 

So, the required solution is  

 

y(x) = - x + 
ce

e
2

2

 



x

x
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Now the integral 
 x2e dx cannot be evaluated in terms of elementary functions.  

When an initial condition is specified, then integral of the form 


x

x

2t

0

e dt can be used.  

You may now try the following exercises: 
 

3.3 Bernoulli Equation 
 

Reduction of non-linear equation to linear form. 
 

Here, we shall illustrate that certain non-linear first order differential equations may 

be reduced to linear form by a suitable change of the dependent variable. 

 

The differential equation 

y' + p(x)y = g(x)y
a
 

where „a‟ is a real number is call the “Bernoulli Equation”. 

 

For a = 0 and a= 1 the equation is linear, and otherwise it is non-linear. 

 

Set {y(x)}
1-a

 = u(x) and show that the equation assume the linear form. 

 

U' + (1 – a) p(x) u = (1-a) g(x). 

 

Solve the following Berboulli equation 

1) y' + y = 
y

x
 

2) y' + xy = xy
-1

 

3) 3y' + y = *1 – 2x( y
4
 

4) (A population model, the logistic law). Matheus‟s law states that the time rate 

of change of a population y(t) is proportional to x(t). This holds for many 

populations as they are not too large.  A more refined model is the logistic law 

given by 

 

dt

dy
 = ay – by

2
……… (a > 0, b> 0) 

where the “breaking term” = by
2
 has the effect that the population cannot grow 

indefinitely. 

 

Solve this Bernoulli equation. What is the limit of y(t) as t as ? For the united 

state, vertalst predicted in 1845 the values a = 0.03 and b = 1.6 x 10
-4 

where t is 

measured in years and y(t) in millions find the particular solution satisfying 

y(0) = 5.3 (corresponding to the year 1800) and compare the values of this 

solution with some actual values. 
 

 1800 1830 1860 1890 1920 1950 1980 

 5 – 3 13 31 63 105 150 230 
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5) Apply the suitable substitutions, reduce to linear form and solve: 

 

 a) y' cos y + x sin y = 2x 

 b) e
x
y

1
 + 2e

x
y + x = 0 

 

 

4.0 CONCLUSION 

 
We end this unit by giving a summary of what we have covered in it. 

 

5.0 SUMMARY 

 
in this unit we have covered the following: 

 

1) the general differential equation of first order and nth degree is given by Eqn 

(1), namely 

 p
n
 + p1p

n-1
 + P2p

n-2
 + ….+ Pn-1p + Pn = 0 

 where P1, P2 ........, Pn are functions of x and p = 
dx

dy
. 

 

2) If Eqn. (1) can be resolved into rational linear factors of the first order, then 

Eqn. (1) takes the form 

 (p-R1 (p- R2) …… (p – Rn) = 0 

 for some R1, R2,……Rn which are functions of x and y, and 

if f1(x, y, c) = 0, f2(x, y, c) = 0 ….., fn(x, y, c) = 0 are the solutions of p – R1 = 

0, p – R2 = 0 ….., p – Rn = 0 respectively, then 

f1(x, y, c) . f2(x, y, c)…… fn(x, y, c) = 0 

is the general solution of Eqn. (1). 

 

3) If Eqn. (1) cannot be factorized into rational linear factors, the 

 a) it is said to be solvable for y if we can express it as 

  y = F(x,p) (see Eqn. (10)). 

To solve Eqn. (10), differentiate it with respect to x, and it may be 

possible to solve resulting differential equation in x and p.  Elimination 

of p between the solution of resulting differential equation and EQn. 

(10) gives the solution of Eqn. (10). 

 

 b) it is said to be solvable for x if we can express it as 

  x = g(x, p) (see Eqn. (21)). 

To solve Eqn. (21), differentiate it w.r.t.y and it may be possible to solve 

the resulting differential equation in y and p.  Elimination of p between 

the solution of the resulting equation and Eqn. (21) gives the solution of 

Eqn. (21). 
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4) If Eqn. (1) does not contain independent variable or dependent variable 

explicitly and can be put in the form 

f(y, p) = 0   (See Eqn. (29)) 

       or g(x, p) = 0  (see Eqn. (35)) 

 

then it may either be possible to factorize Eqn. (29) into linear factors or it may 

be solvable for y. 

 

Similarly, eqn. (35) can either be factorized or it may be solvable for x. 

 

5) If Eqn. (1) is homogeneous in x and y then either substitution y = vx may 

reduce it to separable equation or it may be put as y = xψ (p), which is solvable 

for y or x. 

 

6) Clairaut‟s equation is an equation of first order and of any degree if it can be 

put in the form 

y = xp + f(p) (see Eqn. (44)) 

This equation is solvable for y and its solution is 

y = cx + f(c) 

 

7) Riccati‟s equation is an equation of the form 

dx

dy
 = a(x) + b(x)y + c(x(y

2
 (see Eqn. (53)) 

where a(x), b(x) and c(x) are given functions on an interval ! of R. 

 

The general solution of Eqn. (53) can be obtained if we know a particular 

solution y1 of Eqn. (53( and then we determine a function v defined by relation 

 

y = y1 + 
v

1
, (see Eqn 54).    …(see Eqn 54) 

so that y is solution of Eqn. (54). 

 

6.0 TUTOR MARKED ASSIGNMENT 
 

1. Solve the following equations: 

 

 a) p
2
y + p(x – y) – x = 0 

 b) p
2
 – 5y + 6 = 0 

 c)  4y
2
p

2
 + 2pxy (3x+1) + 3x

3
 = 0 

 d) 

3

dx

dy








 = ax

4
 

 e) x + yp
2
 = p(1 + xy) 
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2. Solve the following equations: 

 

 a) y = x + a tan
-1

p 

 b) x = y +  Inp 

 c) p
3
 + p = e

y 

 
d) y = p tan p + In cos p 

 

3. Solve the following equations. 

 

 a) p
2
 – py + x = 0 

 b) x = y + a Inp 

 c) x = y + p
2
 

 d) y
2
Iny = xyp + p

2
 

 

4. Solve the following equations: 

 

 a) (y')
2
 – 4 = 0 

 b) sin(y') = 0 

 c) (y')
2
 + 4y' – x

2
 = 0 

 

5. Obtain the solution of the following equations: 

 

 a) exp (y' + (1 + x
2
)) = 1 

 b) (y')
2
 + 2 (x + y)y' + 4xy = 0 

 c) p
2
 – (3x +2y)p + 6xy = 0 

 

6. Solve the following equations. 

 

 a) y = yp
2
 + 2px 

 b) x
2
p

2
 + 4xyp – 8y

2
 = 0 

 

7. Solve the following equations: 

 

 a) y = xp + 
p

a
 (a   0, is a constant) 

 b) y = xp + p
2
 

 c) y = xp + p – p
2
 

 

8. Solve e
4x

 (p – 1) + e
2y

 p
2
 = 0 

 

9. Solve y = x
4
p

2
 – px 

 

10. Solve xy (y – px) = x + py 

 

11. Which of the following are Riccati‟s equation, Clairaut‟s equation or neither. 
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 a) y = 2xp + y
2
p

3
 

 b) y' = e
x
 + e

y
 + y

2
 

 c) y' = (1 + sin 2x) + 
2x1

2


y + e

x
y

2
 

 d) y = 3px + 6y
2
p

2
 

 e) y' = sin x + sin y 

 

12. Find a solution, containing an arbitrary constant (given a particular solution), of 

the following Riccati‟s equations: 

 

 a) y' = 1 – xt + y
2
 (y1(x) = x) 

 b) y' = 2 + 2x + x
2
 – y

2
 (y1(x) = 1 + x) 

 c) y' = 2x – x
2
 – x

2
 – x

4
 + y + y

2
 (y1(x) = x

2
) 

 

13. By eliminating arbitrary constant c from the equation 

 y = 
F(x)cf(x)

G(x)cg(x)




 

 obtain the Riccati‟s equation: 

 (gF – Gf)y' = (gG' – g'D) + (Gf' – gF' + g'F)y + (fF' – fF)y
2
. 

 

14. Show that, when m = 0, Riccati‟s equation 

 
dx

dy
 + by

2
 = cx

m
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