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1.0 INTRODUCTION 
 

In this section we shall learn how to use differential equations for finding curve that 

intersect given curves at right angles, a task that arises rather often in applications. 
 

If for each fixed real value of c the equation 
 

(1) F(x, y, c) = 0 

represents a curve in the xy-plane and if for variable c it represents infinitely  

many curves, then the totality of these curves is called a one-parameter family 

of curves, and c is called the parameter of the family. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 
 

 to find family of curves 

 to be able to solve differential equation of family of curves 

 One should be able to apply orthogonal trajectories to  

(i)  Electrical field.  (2)  Mechanical field. (3)  Temperature 

 also to be able to find approximate solutions to directions fields iteration. 
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Example 1:  Families of curves 

The equation 

 

(2) F(x, y, c) = x + y + c = 0 

represents  a family of parallel straight lines; each line corresponds to precisely 

one value of the parameter c. The equation 

 

(3) F(x, y, c) = x
2
 + y

2
 – x

2
 = 0 

 

Represents a family of concentric circles of radius c with center at the origin. 

 

The general solution of a first-order differential equation involves a parameter c and 

thus represents a family of curves.  This yields a possibility for representing many 

one-parameter families of curves by first-order differential equations.  The practical 

use of such representations will become obvious from our further considerations. 

 

Example 2:  Differential equations of families of curves 

 

By differentiating (2) we see that 

 

    y' + 1 = 0 

 

is the differential equation of that family of straight lines. Similarly, the differential 

equation of the family (3) is obtained by differentiation, 2x + 2yy' = 0, that is, 

 

    y' = x/y. 

 

if the equation obtained by differentiating (1) still contains the parameter c, then we 

have to eliminate c from this equation by using (1).  Let us illustrate this by a simple 

example. 

 

Example 3:  eliminate of the parameter of a family 

 

The differential equation of the family of parabolas 

 

(4) y = cx
2
 

is obtained by differentiating (4), 

 

(5) y'  = 2cx, 

and by eliminating x from (5).  From (4) we have c = y/x
2
, and by substituting 

this into (5) we find the desired result 

 

(6) y' = 2y/x. 

note that we may also proceed as follows.  We solve (4) for c, finding c = y/x
2
, 

and differentiate 
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3.0 MAIN CONTENT 

 

3.1 Orthogonal Trajectories 
 

In many engineering and other applications, a family of curves is given, and it is 

required to find another family whose curves intersect each of the given curves at right 

angles.
14

 The curves of the two families are said to be mutually orthogonal, they form 

an orthogonal net, and the curves of the family to be obtained are called the 

orthogonal trajectories of the given curves (and conversely); cf. fig. 1. 

 

Let us mention some familiar examples.  The meridians on the earth’s surface are the 

orthogonal trajectories of the parallels.  On a map the curves of steepest descent are 

the orthogonal trajectories of the contour lines.  In electrostatics the equipotential lines 

and the lines of electric force are orthogonal trajectories of each other.  An illustrative 

example is shown in Fig. 2.  We shall see later that orthogonal trajectories are 

important in various fields of physics, for example, in hydrodynamics and heat 

conduction. 

 

Given a family of curves F(x, y, c) = 0 that can be represented by a differential 

equation 

 

(7) y' = f(x, y) 

 

we may find the corresponding orthogonal trajectories as follows.  From (7) we see 

that a curve of the given family that passes through a point (x0, y0) has the slop f(x0, 

y0) at this point.  The slop of the orthogonal trajectory through (x0, y0) at this point 

should be the negative reciprocal of (x0, y0), that is, - 1/f(x0, y0), because this is the 

condition for the tangents of the two curves at x0, y0) to be perpendicular.  

Consequently, the differential equation of the orthogonal trajectories is 

 

(8)     

 

 

 

and the trajectories are obtained by solving this new differential equation. 

 

 

 

y'  = 
y)f(x,

1
  
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Fig. 1: Curves and their  Fig. 2: Equipotential lines  

   orthogonal trajectories and lines of electric force (dashed) 

between two concentric cylinders 

 
14

Remember that the angle of intersection of two curves is defined to be the angle 

between the tangents of the curves at the point of intersection. 

 

Example 4: Orthogonal trajectories 

Find the orthogonal trajectories of the parabolas in Example 3. 

 

Solution: From (6) we see that the differential equation (8) of the orthogonal 

trajectories is 

    y' = - 
y2

x

y/x2

1
  

By separating variables and integrating we find that the orthogonal tracjectories are 

the ellipses 

    
2

x 2

 + y
2
 = e

*    
…(fig. 3) 

 

Example 5: Orthogonal trajectories 

Find the orthogonal trajectories of the circles 

 

9) x
2
 + 2(y – c)y' = 0. 

 

Solution:  we first determine the differential equation of the given family, by 

differentiating (9) with respect to x we obtain 

 

10) 2x + 2(y – c)y' = 0. 

 

We must eliminate c. solving (9) fir x, we have 
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11) c = 
y2

yx 22
 

 

By inserting this into (10) and simplifying we get 

 

  x + 
y2

xy 22
y' = 0 or y' = 

22 yx

xy2


. 

From this and (8) we see that the differential equation of the orthogonal trajectories is 

 

  y' = - 
xy2

yx 22
 or 2xyy' – y

2
 + x

2
 = 0. 

 

The orthogonal trajectories obtained by solving this equation (cf. example 1 in sec. 

1.4) are the circles (fig. 4) 

 

  (x – c)
2
 + y

2
 = c 

 

              
 

Fig. 3: Parabolas and their orthogonal  Fig. 4: Circle and their trajectories in 

Example 4      orthogonal trajectories (dashed) in      

Example 5 

 

In the next section we motivate and discuss two methods of obtaining approximate 

solutions without actually solving a given differential equation. The first method, 

called the method of direction fields, can relatively easily produce a general picture 

of the solutions (with limited accuracy) and is of great practical interest. The second 

method, Picard’s iteration, is more theoretical; its practical value is limited, since it 

involved integrations. 

 

SELF ASSESSMENT EXERCISES 

 

i. 4y – x + c = 0 

ii. (x – c)
2
 + y

2
 = 4 

iii. (x – c)
2
 + y

2
 = c

2
/2 

iv. x
2
 – y

2
 = c 
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Represent the following families of curve in the form (1), sketch some of the curves. 

 

v. All nonvertical straight lines through the point (4, – 1). 

vi. The catenaries obtained by translating the catenary y = cosh x in the direction 

of the straight line y = - x. 

 

Using differential equations, find the orthogonal trajectories of the following curves.  

Graph some of the curves and the trajectories. 

 

1) y = 2x + c 

2) y = cx
3
 

 

3.2 applications of Orthogonal Trajectories 

 
3) (Electric field) If an electrical current is flowing in a wire along the z-exist, the 

resulting equipotential lines in the xy-plane are concentric circles about the 

origin, and the electric lines of force are the orthogonal trajectories of these 

circles.  Find the differential equation of these trajectories and solve it. 

 

4) (Electric field)  Experiments show that the electric lines of force of two 

opposite charges of the same strength at (– 1, 0) and (1, 0) are the circles 

through ( - 1, 0) and (1, 0).  Show that these circles can be represented by the 

equation x
2
 + (y – c)

2
 = 1 + c

2
.  Show that the equipotential lines (orthogonal 

trajectories) are the circles (x + c*)
2
 + y

2
 = c*

2
 – 1, which are dashed in Fig. 5 

on the next page. 

 

Other forms of the differential equations  Isogonal trajectories 

 

5) Show that (8) may be written in the following form and use this result for 

determining the orthogonal trajectories of the curves y = cx . 

dy

dx
 = - f(x, y). 

6)   Show that the orthogonal trajectories of a given family g(x, y) = c can be 

obtained from the differential equation 

xg/

yg/

dx

dy




  

7) Isogonal trajectories of a given family of curves are curves that intersect the 

given curves at a constant angle θ . Show that at each point the slops m1 and m2 

of the tangents to the corresponding curves satisfy the relation 

 

21

12

mm1

mm




 = tan θ  = const. 

Using this formula, find curves which intersect the circles x
2
 + y

2
 = c at an angle of 

45
o
. 
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8) Using the Cauchy – Riemann equations (Prob. 43), find the orthogonal 

trajectories of e
x
 cos y = c. 

 

3.3 Approximate Solutions: Direction Fields, Iteration 
 

In applications, it will often be impossible or not feasible or not necessary to solve 

differential equation exactly.  Indeed, there are various differential equations, even of 

the first order, for which one cannot obtain formulas for solutions.  
15

 There are other 

differential equations for which such formulas can be derived, but they are so 

complicated that they are practically useless.  Finally, since a differential equation is a 

model of a physical or other system, and in modeling we disregard factors of minor 

influence in order to keep the model simple, the differential equation will describe the 

given situation only approximately, and an approximate solution will often be 

practically as informative as an exact solution. 
 

Approximate solutions of differential equations can be obtained by numerical 

methods. These are discussed in sec 20.1 and 20.2.  at present we shall consider the 

method of direction field, which is a geometric procedure, and then the so-called 

Picard iteration, which gives formulas for approximate solutions. 
 

3.3.1 Method of Direction Fields 
 

In this method we get a rough picture of all solutions of a given differential equation 
 

1)      

 

 

without actually solving the equation.  The idea is quite natural and simple, as follows. 

 

We assume that the function f is defined in some region of the xy-plane, so that at 

each point in that region it has one (and only one) value.  The 
15

Reference  [All] in 

Appendix 1 includes more than 1500 important differential equations and their 

solutions, arranged in systematic order and accompanied by numbers references to 

original literature. 
 

Solutions of (1) can be plotted as curves in the xy-plane.  We do not know the 

solutions, but we see from (1) that a solution passing through a point (x0, y0) must 

have the slope f(x0, y0) at this point.  This suggests the following method. 
 

Ist Step (Isoclines).  We graph some of the curves in the xy-plane along which f(x, y) 

is constant.  These curves 
 

    f(x, y) = k = const 
 

are called curves of constant slope or isoclines.  Here the value of k differs from 

isoclines to isocline.  So these are not yet the solution curves of (1), but just auxiliary 

curves. 
 

2
nd

 Step (Direction field).  Along the isocline f(x, y) = k we draw a number of 

parallel short line segments (lineal elements) with slope k, which is the slop of 

y' = f(x, y) 
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solution curves of (1) at any point of that isocline.  This we do for all isoclines which 

we graphed before.  In this way we obtain a field of lineal elements, called the 

direction field of (1). 

 

3rd Step (Approximate solution curves).  With the help of the lineal elements we 

can now easily graph approximation curves to the (unknown) solution curves of the 

given equation (1) and thus obtain a qualitatively correct picture of these solution 

curves. 
 

It suffices to illustrate the method by a simple equation that can be solved exactly, so 

that we get a feeling for the accuracy of the method. 
 

Example 1: Isoclines, direction field 

Graph the direction field of the first-order differential equation 

 

2) y' = xy 

 

and an approximation to the solution curve through the point (1, 2).  Compare with the 

exact solution. 

 

Solution:  The isoclines are the equilateral hyperbolas xy = k together with the 

coordinate axes.  We graph some of them.  Then we draw lineal elements by sliding a 

triangle along a fixed ruler.  The result is shown in Fig. 6, which also shows an 

approximation to the solution curve passing through the point (1, 2). 

 

By separating variables, y = 2/x 2

ce . The initial condition is y(1) = 2.  Hence 2 = ce
1/2

, 

and the exact solution is 

 

    y = 2/1)(x 2

e2  . 

 

                       
 

Fig. 7: Direction field of the differential equation (2) 
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3.3.2 Picard’s Iteration method
16

 

 
This method gives approximate solutions of an initial value problem 

 

3)        

 

 

Which is assume to have a unique solution in some interval on the x-axist containing 

x0. Picard’s existence and uniqueness theorem, which we shall discuss in the next 

section. Its practical value is limited because it involves integrations that may be 

complicated. 

 

The basic idea of Picard’s method is very simple.  By integration we see that (3) may 

be written in the form 

 

 

4)             

 

 

Where t denotes the variable of integration.  In fact, when x = x0 the integral is zero 

and y = y0, so that (4) satisfies the initial condition in (3); furthermore, by 

differentiating (4) we obtain the differential equation in (3). 

 

To find approximations to the solution y(x) of (4) we proceed as follows.  We 

substitute the crude approximation y = y0 = const on the right; this yields the 

presumably better approximation 

 

  y1(x) = y0 + 
x

x
0

0

dt)yf(t, . 

 

In the next step we substitute the function y1(x) in the same way to get 

 

  y2(x) = y0 +  
x

x
1

0

dt(t)]yf[t,  

 

etc. The nth step of this iteration gives an approximating function 

 

5)       

 

 

In this way we obtain a sequence of approximations. 

 

  y1(x),  y2(x),……….. yn(x),………, 

 

and we shall see in the next section that the conditions under which this sequence 

converges to the solution y(x) of (3) are relatively general. 

y' = f(x, y),    y(x0) = y0 

y(x) = y0 + 
x

x 0

dty(t)]f[t,  

yn(x) = y0 +  

x

x
1n

0

dt(t)]yf[t, . 
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16
EMILE PICARD (1856 – 1941), French mathematician, professor in Paris since 

1881, also known for his important contributions to complex analysis (see Sec 14.10 

for his famous theorem). 

 

An iteration method is a method that yields a sequence of approximations to an 

(unknown) function, say, y1, y2 …., where the nth approximation, yn, is obtained in the 

nth step by using one (or several) of the previous approximations, and the operation 

performed in each step is the same.  This is a practical advantage, for instance in 

programming for numerical work. 

 

In the simplest case, yn is obtained from yn-1; denoting the operation by T, we may 

write 

 

   yn = T(yn-1). 

 

Picard’s method is of this type, because (5) may be written 

 

  yn(x) = T(yn-1(x)) = y0 +  

x

x
1n

0

dt(t))yf(t, . 

 

To illustrate the method, let us apply it to an equation we can readily solve exactly, so 

that we may compare the approximations with the exact solution.  The example to be 

discussed will also illustrate that the question of the convergence of the method is of 

practical interest. 

 

Example 2:  Picard iteration 

Find approximate solution to the initial value problem 

 

   y' = 1 + y
2
, y(0) = 0 

 

Solution:  In this case, x0 = 0, f(x, y) = 1 + y
2
, and (5) becomes 

 

  yn(x) =    
x

0

x

0

2

1n

2

1n .dt(t)yx(t)]y[1   

 

Starting from y0 = 0, we thus obtain (cf. Fig. 8) 

 

  y1(x) = x +  
x

0
xdt0  

   

  y2(x) = x +  
x

0

32 x
3

1
xdtt  

 

  y3(x) = x +  









x

0

753

2
3

x
63

1
x

15

2
x

3

1
xdt

3

t
t  
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etc. of course, we can obtain the exact solution of our present problem by separating 

variables (see Example 2 in Sec 1.2), finding 

 

6)   y(x) = tan x = x + ...x
315

17
x

15

2
x

3

1 753               









2

π
x

2

π
. 

 

The first three terms of y3(x) and the series in (6) are the same.  The series in (6) 

converges for |x| <  /2.  This illustrates that the study of convergence is of practical 

importance. 

 

The next section, the last of Chap. 1, concerns the problems of existence and 

uniqueness of solutions of first-order differential equations. These problems are of 

greater relevance to engineering applications than one would at first be inclined to 

believe. This is so because modeling involves the discarding of minor factors, and in 

more complicated situations it is often difficult to see whether some physical factor 

will have a minor or major effect, so that one may not be sure whether a model is 

faithful and does have a solution, or a unique solution, even though the physical 

system can be expected to behave reasonably.  The matter becomes even more crycial 

in connection with numerical methods: make sure that the solution exists before you 

try to compute it. 

 

                                           
 

Fig 8:  Approximate solutions in Example 2 

 

 

SELF ASSESSMENT EXERCISES 

 

Direction fields 
 

In each case draw a good direction field.  Plot several approximate solution curves.  

Then solve the equation analytically and compare, to get a feeling for the accuracy of 

the present method. 
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i. y' = - y/x 

ii. y' = - x/y 

iii. y' = x + y 

iv. 4yy' + x = 0 

v. (Verhulst population model) Draw the direction field of the differential 

equation in Prob. 54 of Sec. 1.7, with a = 0.03 and b = 1.6. 10
-4

 and use it to 

discuss the general behavior of solutions corresponding to initial greater and 

smaller than 187.5 
 

vi. Apply Picard’s method to y' = y, y(0) = 1, and show that the successive 

approximations tend to y = e
x
, the exact solution. 

 

vii. In Prob. 12, compute the values y1, y2(1), y3(1) and compare them with the 

exact value y(1) = e = 2.718
.......

. 
 

Apply Picard’s method to the following initial value problems.  Determine also 

the exact solution.  Compare. 
 

viii. y' = xy, y(0) = 1 

ix. y' = 2y, y(0) = 1 

x. y' – xy = 1, y(0) = 1. 

 

 

4.0 CONCLUSION 

 
We now end this unit by giving a summary of what we have covered in it. 

 

5.0 SUMMARY 

 
Applications are included at various places. The unit part entirely devoted to 

applications are 3.3.1 and 3.3.2. on separable and linear equation respectively.  And 

are applied to electrical circults and on orthogonal trajectories, that is curves that 

intersect given curves at right angles. 

 

Direction field (3.3.1) help in sketching families of solutions curves, for instance, in 

order to gain an impression of their general behaviour. 

 

Picard’s iteration method gives approximate solutions of initial value problems by 

iteration. 

 

6.0 TUTOR MARKED ASSIGNMENT 
 

In each case draw a good direction field.  Plot several approximate solution curves 

then solve the equation analytically and compare, to get a feeling for the accuracy of 

the present method; 
 

1) y' = - 
x

y
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2) y’ = - 
y

x
 

3) y' – x + y 

4) 4yy' + x = 0 

5) draw the direction field of the differential equation 
dt

dy
 = ay – by

2
 a>0, b> 0. 

with a = 0.03 and b= 1.6 x 10
-1

 and use it to discuss the general behaviour of 

solutions corresponding to initial conditions greater and smaller than 187.5. 

6) apply Picard’s method to 
dx

dy
 = y,  y(0) = 1 and show that the successive 

approximations tends to y = e
x
, the exact solutions. 

7) In the i.e. 
dx

dy
 + 3y = e

2x
+ 6, compute the values y1(1), y2(1), y3(1) and compute 

them with the exact value y(1) = e = 2.718. 

 

Apply Picard’s method to the following initial value problems.  Determine also the 

exact solution. 

Compare 

 

8) a) 
dx

dy
 = y,  y(0) = 1 

9) b) 
dx

dy
 = 2y,  y(0) = 1. 

10) c) 
dx

dy
 - xy = 1,  y(0) = 1. 
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