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1.0 INTRODUCTION 
 

In Unit 1 we discussed the basic concepts related to ordinary differential equations.  

Further in the introduction to Block 2, we have mentioned that the governing 

differential equations in many physical or biological problems are not necessarily of 

first order.  Besides the differential equations arrived at, in discussing the above said 

models may be linear or non-linear.  Even among linear differential equations, the 

coefficients of the differentials may be constants or a function of an independent 

variable.  In this unit we classify the general linear differential equations into two 

broad categories: 
 

i) homogeneous and non-homogeneous 

ii) equations with constant coefficients and variable coefficients. 
 

For a general linear differential equation with variable coefficients, we shall state the 

conditions under which a unique solution can be found.  Further, we shall learn 

methods of finding the complete solutions of homogeneous differential equations with 

constant coefficients. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 
 

 identify linear differential equations with constant as well as with variable 

coefficients 
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 identify homogeneous and non-homogeneous linear differential equations 

 describe the conditions under which a unique solution of a linear differential 

equation exists 

 write the complete primitive of a given differential equation when its various 

independent integrals are known 

 classify solutions of non-homogeneous equations into complementary function 

and particular integral 

 obtain a solution for a homogeneous linear differential equation with constant 

coefficients. 

 

3.0 MAIN CONTENT 

 

3.1 General Equation 

 
We begin our discussion by considering the most general linear differential equation 

which is of the form 

 

a0 (x) 
n

n

d y

dx
 + a1 (x) 

n 1

n 1

d y

dx




 + ….+ an-1 (x) 

dy

dx
 + an (x) y = b (x)   …(1) 

 

For, a0(x) = 0, the differential equation is of nth order.  The coefficients a0(x), a1(x), 

…., an(x) are functions of independent variable x.  Eqn. (1) is called general linear 

differential equation of nth order with variable coefficients. 

 

In case coefficients a0(x), a1(x),….an(x) are all constants and do not depend on x, then 

Eqn. (1) will be termed as general linear differential equation of nth order with 

constant coefficients.  For example, equation  
3

3

d y

dx
 + 3 

2

2

d y

dx
 + y = x

2
 is a third order 

linear differential equation with constant coefficients. 

 

Further, the right hand side of Eqn. (1), i.e., b(x) may assume one of the following 

forms: 

i) b(x) = 0 

ii) b(x) = constant 

iii) b9x) a function of x. 

 

when b(x) = 0, Eqn. (1) is classified as the general homogeneous linear differential 

equation.  This is also known as the reduced equation of Eqn. (1).  For example, 

equation 

 
3

3

d y

dx
 - 4 

2

2

d y

dx
 + 

dy

dx
 + 6y = 0 

is a third order linear differential equation.  But if b(x) in Eqn. (1) is a constant or a 

function of x, then Eqn. (1) is called general non-homogeneous linear differential 

equation. 
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Equation 
4

4

d y

dx
 + 

3

3

d y

dx
 + 3y = x

2
 + 1 is a linear non-homogeneous equation of 4

th
 order 

with constant coefficients; where equation x
3
 

2

2

d y

dx
 + x

2
 
dy

dx
 + xy = 2 is a second order 

non-homogeneous linear differential equation with variable coefficient. 

 

Now suppose that we are required to find the solution of Eqn. (1) on some interval 1 

which also satisfy, at some point x0 =  1 the conditions, 

 

y(x0) = y0, y'(x0) =,…., y
(n-1)

 (x0) =  (n 1)

0
y        …(2) 

 

Note: Depending on the context, i could represent [a, b] [0,  ], [ - , [   and so on. 

 

Where y0, 
'

0
y , …., (n 1)

0
y   are arbitrary constants, then Eqns. (1) and (2) together 

constitute an initial-value problem (IVP). The values y(x0) = y0 y'(x0) = 
'

0
y ,….., (n 1)

0
y   (x0) = (n 1)

0
y   are called initial conditions. 

 

In the case of a linear second order equation, we can interpret geometrically a solution 

to the initial value problem 

 

an-2(x) 
2

2

d y

dx
 + an-1(x) 

dy

dx
 + an(x) y = b(x) 

 

y(x0) = y0, y'(0) = 
'

0
y  

as a function defined on I whose graph passes through (x0, y0) such that the slope of 

the curve at the point is the number 
'

0
y . 

 

You may note here that an equation of the form (1) may not always have a solution.  

Moreover, even if its solution exists it may not be unique. 

 

Let us now study the conditions under which the solution of Eqn. (1), if it exists shall 

be unique. 

 

3.1.1 Conditions for the Existence of a unique solution 
 

We may write the general non-homogeneous linear differential Eqn. (1) in the 

form  

 

L(y) = [a0(x) D
n
+ a1(x) D

n-1
 + … + an-1(x) D + an(x)] y = b(x)   …(3) 

Where D = 
dy

dx
, D

2
 = 

2

2

d

dx
, …, D

n
 = 

n

n

d

dx
. 

 

] 
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The expression in the parentheses in Eqn. (3) is termed as a symbolic polynomial or 

operator polynomial or simply a differential operator. 

 

Thus we have herein introduced linear differential operator L of order n given by the 

expression 

 

L = a0(x) D
n
 + a1(x)D

n-1
 + … + an-1(x) D + an(x)     …(4) 

 

In unit 8, we shall learn, in more details, about the differential operators and their 

properties. 

 

We now choose an interval I = [ ,  ] for ,   real and assume that the coefficients 

a0(x), a1(x), …., an(x) and the function are continuous one-valued functions of x 

throughout the interval and that a0(x) does not vanish at any point of the interval. 

 

We know that the complete solution of Eqn. (3) shall involve arbitrary constants 

whose number is equal to the order of the highest derivative involved in it, i.e., n in 

this case.  In order to obtain a unique solution of Eqn. (3), it is necessary to specify n 

initial conditions in terms of constant values of 

 

y, 
dy

dx
, …., 

n 1

n 1

d y

dx




 

 

at any point x0 of the interval [ ,  ]. 

 

We now state a theorem which gives the conditions whose fulfillment guarantee the 

existence and uniqueness of the solution of Eqn. (3). 

 

Theorem 1:  If the functions a0(x), a1(x), …., an(x) and b(x) are continuous function 

of x in the interval [ ,  ] and a0(x) does not vanish at any point of that interval, then 

the initial Eqn. (3) admits of a unique solution of the form y = f(x), which together 

with its first (n-1_ derivatives, is continuous in [ ,  ] and satisfies the following 

initial conditions: 
 

 y(x0) = y0  

0x x

dy

dx 

 
 
 

 = 
'

0
y ,…., 

0

n 1

n 1

x x

d y

dx







 
 
 

 = 
(n 1)

0
y 

, 

where x0 is a point of the interval  [ ,  ]. 

 

We shall not be proving this theorem here as it is beyond the scope of the present 

course.  However, if the functions a0(x), a1(x),…., an(x) are constants, we shall give 

the solution of the corresponding equation in Sec. 5.4 when b(x) = 0 and in units 6, 7 

and 8 when b(x)   0. 
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We now illustrate this theorem with the help of a few examples. 

 

Example 1: Show that y = 3e
2x

 + e
-2x

 – 3x is a unique solution of the initial value 

problem 

 

y" – 4y = 12x 

y(0) = 4 h'(0) = 1. 

 

Solution:  We have y = 3e
2x

 + e
-2x

 – 3x, therefore, 

 y' = 6e
2x

 – 2e
-2x

 3 and y" = 12e
2x 

+ 4e
-2x

 

Now y" = 4y = 12e
2x

 + 4e
-2x

 – 4(3e
2x

 + e
-2x

 – 3x) 

   = 12e
2x

 + 4e
-2x

 – 12e
2x

 – 4e
-2x

 + 12x 

   = 12x 

Also, y(0) = 3e
2.0

 + e
-2.0

 – 3.0 = 4 

 Y'(0) = 6e
2.0

 – 2e
-2.0

 – 3 = 1. 

 

Thus, y = 3e
2x

 + e
-2x

 – 3x is a solution of the given initial value problem. Moreover, 

the given differential equation is linear and the coefficients as well as b(x) = 12x are 

continuous on any interval containing x = 0.  We conclude from Theorem 1 that the 

given function is the unique solution of the given initial vlue problem. 

 

Remember that both the requirements in Theorem 1, that is ai(x), i = 0, 1, …., n be 

continuous and a0(x)   0 for every x in some interval say I are important.  

Specifically, if a0(x) = 0 for some x in the interval then the solution of a liner initial 

value problem may not be unique or may not even exist. 

 

We now illustrate this through an example. 

 

Example 2:  Obtain the value of c for which the function  

 

 y = cx
2
 + x + 3 

 

is a unique solution of the initial value problem 

x
2
y" – 2xy' + 2y = 6, 

 y(0) = 3, y'(0) = 1 

On the interval [-  ,  ]. 

 

Solution:  Since y' = 2cx + 1 and y" = 2c, it follows that  

 X
2
y" – 2xy' + 2y = x

2
(2c) – 2x(2cx + 1) + 2(cx

2
 + x + 3) 

         = 2cx
2
 – 4cx

2
 – 2x + 2cx

2
 + 2x + 6 

         = 6 

Also, y(0) = c.(0)
2
 + 0 + 3 = 3 

and y' (0) = 2c.0 + 1 = 1 

 

Thus, y = cx
2
 + x + 3 is a solution of the given problem for all values of c in the given 

interval.  The problem does not have a unique solution. In this case although the given 
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equation is liner and its coefficients and b(x) = 6 are continuous everywhere but the 

coefficient of y" i.e., x
2
 is zero at x = 0. 

 

You may now try the following exercise. 

 

You might be familiar with the liner dependence and independence of a set of 

functions on an interval.  Before we study some elementary properties of the solution 

of linear differential equations, etc us recall these two concepts which are basic to the 

study of linear differential equations. 

 

3.1.2 Linear Dependence and Independence 
 

We begin with the following two definitions. 

 

Definition:  A set of function y1(x), y2(x),…., yn(x) is said to be linearly independent 

on an interval I if there exist constants.  c1, c2, …., cn(x) not all zero, such that 

 

c1y1(x) + c2y2(x) +….+ cnyn(x) = 0 

 

For every x in the interval. 

 

Definition:  A set of functions y1(x), y2(x),…., yn(x) is said to be linear independent  

on an interval I, if it is not linearly dependent on the interval. 
 

In other words, a set of functions is linearly independent on an interval if the only 

constant for which 
 

 c1y1(x) + c2y2(x) + ….. + cnyn(x) = 0, 

For every x in the interval, are c1 = c2 = …. = cn = 0. 
 

It is easy to understand these definitions in the case of two functions y1(x) and y2(x).  

If the functions are linearly dependent on an interval, then there exists constants c1 and 

c2, both are not zero, such that for every x in the interval  
 

 c1y1(x) + c2y2(x) = 0 

 

Since c1   0, it follows that 
  

 y1(x) = - 2

1

c

c
 y1(x), 

 

That is, if two functions are linearly dependent, then one is a constant multiple of 

the other.  Conversely, if y1(x) = c2y2(x) for some constant c2, then 

 (- 1) y1(x) + c2y2(x) = 0 

 

for every x on some interval.  Hence the functions are linearly dependent, at least one 

of the constants (namely, c1 = -1) is not zero.  We thus conclude that two functions 
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are linearly independent when neither is a constant multiple of the other on an 

interval. 

 

Functions, y1(x) = sin2x and y2(x) = sinx cosx are linearly dependent on the interval [- 

 , ] since c1 sin2x  + c2 sinx cosx = 0 is satisfied for every real x with  
 

C1 = 
1

2
  and c2 = - 1.   

 

In the consideration of linear dependence or linear independence, the interval on 

which the functions are defined is important.  We now illustrate it through an 

example. 

 

Example3:  Show that the function y1(x) = x and y2(x) = |x| are 

i) linearly independent on the interval [- ,   ]. 

ii) linearly dependent on the interval [0,  ]. 

 

Solution:  
(i)  it is clear that in the interval [ - ,  ] neither function is a constant multiple of 

the other (see Fig. 1) 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 

 

Thus in order to have c1y1(x) + c2y2(x) = 0 for every real x, we must have c1 = 0 and c2 

= 0. 

 

(ii) For y1(x) = x and y2(x) = |x| in the interval [0,  ] 

 c1x + c2 |x| = c1x + c2x = 0 

is satisfied for any non zero choice of c1 and c2 for which c1 = - c2. 

Thus y1(x) ands y2(x) are linearly dependent on the interval [0,  ]. 

 

You may try the following exercises: 

 

The procedure given for examining the linear dependence or independence of a set of 

functions appears to be quite involved.  We, therefore, outline below sufficient 

condition of examining the linear independence of a set of n functions. 

 

x o 

Y  

y1 = x  

x o 

Y  
y1 = |x | 
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Suppose that y1(x), y2(x),…., yn(x) are n functions on an interval I possessing 

derivative upto (n – I)th order. If the determinant. 

 

W(y1(x), y2(x), …., yn(x)) = 

1 2 n

' ' '

1 2 n

(n 1) (n 1) (n 1)

1 2 n

y y y

y y y

. . .

. . .

y y y  

 

 

Is not zero for at least one point in the interval I, then the functions y1(x), …., yn(x) are 

linearly independent on the interval. 

 

This provides a sufficient condition for the linear independence of n functions on an 

interval. The determinant W(y1(x), y2(x),…., yn(x)) is called the Wronskian of the 

functions. It is named after a Polish mathematician Josef Maria Hosene Wornski 

(1778 – 1853). 

 

The functions y1(x) = sin
2
x and y2(x) = 1-cos 2x, for instance are linearly dependent 

on [ ,  ] because 

 
2sun x 1 cos2x

2sin x cox 2sin 2x


  = 2sin

2
x sin 2x – 2sin x cos x + 2sin x cos x 2x 

     = sin 2x [2sin
2
x – 1 + cos 2x] 

  = sin 2x [2sin
2
x – 1 + cos

2
x – sin

2
x] 

  = sin 2x [sin
2
x + cos

2
x – 1] 

  = 0 

in example 3 we saw that y1(x)= x and y2(x) = |x| are linearly independent on [- , ]. 

However, we cannot compute the Wronskian as y2 is not differentiable at x = 0. 

 

Remember that in the above condition the non-vanishing of the Wronskian at a point 

in the interval provides only a sufficient condition.  In other words, if W(y1y2,..,yn) =0 

for x in an interval, it does necessarily mean that the functions are linearly dependent 

on the interval. We leave it for you to verify it yourself. 

 

With above background in mind we are now set to study the elementary properties of 

the solutions of linear differential equations. 

 

3.2 Elementary Properties of the Solutions 

 
The general homogeneous linear differential equation corresponding to Eqn. (3) is  

 

L(y) = [a0(x)D
n
 + a1(x)D

n-1
 + …+ an-1(x)] y = 0 
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i.e., L(y) = 
n

n r

r
r 0

a (x) D y 0



        …(5) 

 

We can clearly think of the form of the solutions of linear differential equations by 

making use of the following elementary theorems: 

 

Theorem 2: If y = y1 is a solution of Eqn. (5) on an interval 1, then y = cy1 is also its 

solution on I, where c is any arbitrary constant. 

 

Proof:  We know that 

 D
r
 (cy

1
) = cD

r
y

1
 

Also, L(cy
1
)     = 

n
n r

r 1
r 0

a (x) D (cy )



  

     = c 
n

n s

s 1
s 0

a (x) D y



  

     = c L(y1). 

     = 0 (L(y1) = 0) 

 

Thus, if y = y1 is a solution of Eqn (5), so y = cy1. for instance, the function y = x
2
 is a 

solution of the homogeneous linear equation. 

 

 X
2
y" – 3xy' + 4y = 0 on ]0,  [. 

 

Hence y = cx
2
 is also solutions. For various of c, we see that y = 3x

2
, y = ex

2
, y = 0 … 

are all solutions of the equation on the given interval. 

 

Have you notice that a homogeneous linear differential equation always possesses 

the trivial solution y = 0?  If not, you can check it now. 

 

Now let us look at another property of the solutions of linear differential equations. 

 

Theorem 3:  If y = y1, y2, …, ym are m solutions of homogeneous linear differential 

Eqn. (5) on an interval 1, then y = c1y1 + c2y2 + …. + cmym is also a solution of Eqn. 

(5) on 1, where c1, …., cm are arbitrary constants. 

 

Proof: If y1 (i = I, …, m) are solutions of Eqn. (5) then 

L(y1) = 0 (for i = 1, 2, …., m)      …(6) 

We know that 

 D
r
 [c1y1 + c2y2 + …+ cmym] 

 = D
r
 (c1y1) + D

r
 (c2y2) + …+ D

r
 (cmym) 

 = c1 D
r
 (y1) + c2 D

r
 (y2) + …+ cm D

r
 (ym) 

now, L(c1y1 + c2y2 + …+  cmym) 

 = 
n

0r

  ar(x) D
n-r 

(c1y1 + c2y2 + … + cmym) 

 = c1 
n

0r

 ar(x) D
n-r

 y1 + c2 
n

0r

  ar(x) D
n-r

 y2 + … + cm 
n

0r

  ar(x) D
n-r

 ym 
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 = c1 L(y1) + c2 L(y2) + … + cm L(ym) (using Eqn. (5)) 

= c1.0 + c2.0 +… + cm.0 (using Eqn. (6)) 

= 0 

 

Hence if y1, y2 …. ym are solutions of Eqn. (5), then y = c1y1 + c2y2 + … + cmym is also 

a solution of Eqn. (5). 

Theorem 3 is known as the superposition principle. 

 

Let us now consider an example. 

 

Example 4: Show that if y1 = x
2
 and y2 = x

2
 Inx are both solutions of the equation 

x
3
y" = 2xy' + 4y = 0 on the interval ]0,  [.  Then c1x

2
 + c2x

2
 Inx is also a solution of 

the equation on the given interval. 

 

Solution: We have y = c1x
2
 + c2x

2
 Inx 

Now y' = 2c1x + 2c2x Inx + c2x 

 y" = 2c1 + 2c2x Inx + 3c2 

 y" = 
x

c2 2  

 

therefore, x
3
y" – 2xy' + 4y 

 = x
3
 









x

c2 2  - 2x (2c1x + 2c2x Inx + c2x) + 4c1x
2
 + 4c2x

2
 Inx 

 = 2c2x
2
 – 4c1x

2
 – 4c2x

2
 Inx – 2c2x

2
 + 4c1x

2
 + 4c2x

2
 Inx 

 = 0 
 

Thus, y = c1x
2
 + c2x

2 
Inx is also a solution of the equation on the interval. 

 

Theorem 2 and 3 represent properties that non-linear differential equations, in general, 

do not possess.  This will become more clear to you after you have done the following 

exercises. 

Let us now consider the following definition which involves a linear combination of 

solutions. 

 

Definition:  Let y1, y2, …, yn be n linearly independent solutions of homogeneous 

linear differential Eqn. (5) of degree n on an interval I.  Then  

 

 y = c1y1(x) + c2y2(x) + … + cnyn(x), 

 

where c1, i = 1, 2, …, n are arbitrary constants is defined to be the general solution or 

the complete primitive of Eqn. (5) on I. 

 

The above definition automatically generates our interest in knowing when n 

solutions, y1, y2, …, yn of the homogeneous differential Eqn. (5) are linearly 

independent.  Surprisingly, the nonvanishing of the Wronskian of a set of n such 

solutions on an interval I is both necessary and sufficient for linear independence. 

That is, 
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If y1, y2, …, yn) be n solutions of homogeneous linear nth order differential EQn. (5) 

on an interval I, then the set of solutions is linearly independent on I if and only if 

W(y1, y2, …, yn)   0 

For every x in the interval.  Such a set y1, …., yn of n linearly independent solutions of 

Eqn. (5) on I is said to be a fundamental set of solutions on the interval. 

 

For instance, the second order equation y" – 9y = 0 possesses two solutions 

 

 y1 = e
3x

 and y2 = 3
-3x

 

 

Since W (3
3x

, e
-3x

) = 
x3x3

x3x3

e3e3

ee





= -6   0 

 

For every value of x, y1 and y2 form a fundamental set of solution on ]-  ,  [.  The 

general solution of the differential equation on the interval is 

 

 y = c1 e
3x

 + c
2
 e

-3x
 

 

so far we have discussed the properties pertaining to the solution of homogeneous 

linear equations.  We now turn our attention to the non-homogeneous linear 

equation.  To this effect, we consider a theorem due to D’ Alembert (1762 – 1765) 

which defines the general solution of a non-homogeneous linear equation. 

 

Theorem 4: If y = Y0(x) is any solution of the non-homogeneous linear differential 

Eqn. (3) on an interval I and if y = Y(x) is te complete primitive of the corresponding 

homogeneous linear differential Eqn. (5) on the interval, then  

 

 Y0(x) + Y(x) 

 

Is the general solution of Eqn. (3) on the given interval. 

 

Proof:  Since Y0(x) is a solution of Eqn. (3), 

L[Y0(x)] = b(x)         ...(7) 

 

also, Y(x) is the complete primitive of Eqn. (5), 

L[Y0(x)] = 0         …(8) 

 

further, in Theorem 2 and 3 above, we have seen that the operator Dr and linear 

differential operator L are distributive.  Thus, using relations (7) and (8), we get 

 

L(y) = L[Y0(x) + Y(x)], 

        = L[Y0(x)] + L[Y(x)] 

        = B(x) + 0 

 

Thus, y = Y0(x) + Y(x) is a solution of Eqn. (3). 

 



MTH 232                                                                                                                                               MODULE 4 

143 

 

Since y(x) = Y0(x) + Y(x) involves n arbitrary constants (due to presence of n 

arbitrary constants in Y(x)), it is, therefore, the general solution of Eqn. (3). 

 

If Y(x) is chosen as to satisfy the condition (2) and if Y0(x), for some point x0 of the 

interval I, is such that 

Y0(x0) = 0 = 
0xx

0

dx

dY











 = 

0xx

2

0

2

dx

Yd
















= … = 

0xx

1n

0

1

dx

Yd




















, 

 

Which is possible provided that b(x) is not identically zero, then the solution 

 

y = Y0(x) + Y(x)         …(9) 

also satisfies the conditions. 

 

y(x0) = y0, 
0xxdx

dy











 = '

0y ,…., 

0xx

1n

1n

dx

yd















= y0

n-1
 

 

we usually refer the solution of Eqn. (5) in the form (9) as the general solution of the 

non-homogeneous linear differential Eqn. (3) and it consist of two parts: 

 

i) The complete primitive of Eqn. (5) (the corresponding homogeneous part of 

Eqn. (3)) in the form 

 

Y(x) = c1y1(x) + c2y2(x) + …. + cnyn(x). 

 

Which contains n arbitrary constants. The solution y = Y(x) of Eqn. (5) is 

known as complementary function of Eqn (3).  We denote the complementary 

function  

Y)x) by yc(x). 
 

ii) Any solution y = Y0(x) of Eqn. (3), (which cannot be obtained by assigning any 

particular value to the arbitrary constants in yc(x) is known as particular 

integral of Eqn. (3).  We denote Y0(x) by yp(x). 
 

Thus, we may write Eqn. (9) in the form y(x) = yp(x) + yc(x). 

 

You may then ask the natural question – how to find the solution y(x) of Eqn. (3)? 
 

In the next section we give you the methods of finding the complementary function 

yc(x) of the given linear equation with constant coefficients.  Since the complementary 

function refer to the solution of the homogeneous equation corresponding o the given 

equation, we consider the general nth order homogeneous linear differential equation 

with constant coefficients. 
 

You may recall that in Sec. 5.2, we had mentioned that if the coefficients of y and its 

derivatives in Eqn (1) are constants and a0  0, then Eqn (1) is termed as linear 

differential equation of nth order with constant coefficients. Further, we had 
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mentioned that if the right hand side of Eqn. (1) is zero, then it will be classified as 

homogeneous linear differential equation for this reason 

 

Eqn. (1) i.e. the function b(x) is also called non-homogeneous term of Eqn. (1).  Thus, 

the general nth order homogeneous linear differential equation with constant 

coefficients may be expressed as 

 

n

n

dx

yd
 + a1 1n

1n

dx

yd




 + …. + an-1 
dx

dy
 + any = 0      …(10) 

 

where the coefficients a1, a2, …., an are constants. 

 

we would like to mention here that in writing  Eqn. (10) we have taken the coefficient 

of 
n

n

dx

yd
 as unity.  Even if it is not so, dividing throughout by the coefficient of 

n

n

dx

yd
 

(which is also assumed to be constant), the equation can be reduced to the form (10). 

 

Let us now discuss the methods of solving EQn. (10). 

 

3.3 Method of Solving Homogeneous Equation with Constant 

Coefficients 
 

The method of solving Eqn. (10) was given in the year 1739 by Leonhard Euler (1707 

– 1783) who was born in Basel, Switzerland and was one of the most distinguished 

mathematicians of the eighteenth century. 

 

The method is as follows: 

 

Assume that y = e
mx

 is a solution of Eqn. (10). On replacing y and its derivatives upto 

order n by e
mx

 and m
n
 e

mx
 in Eqn. (10), we get 

(m
n
 + a1m

n-1
 + … + an-1 m + an) e

mx
 = 0      …(11) 

since e
mx

   0 for real values of x, Eqn. (11) is satisfied if 

m
n
 + a1m

n-1
 + … + an-1 m + an = 0       …(12) 

Eqn. (12) is called an auxiliary equation or characteristic equation corresponding 

to differential Eqn (10). 

 

You might have observed that an auxiliary equation of a homogeneous or non-

homogeneous linear differential operator on replacing D by some finite constant m 

and equating it to zero. 

 

You may wonder why we assumed the solution of Eqn. (10) in the exponential form.  

This is because we know that the linear first order equation 
dx

dy
 + ay = 0. 

Where a is a constant, has the exponential solution y = c1 e
-ax

 on [ - ,  ].  Therefore, 

it is natural to determine whether exponential solution exist on [ - ,  ].   For higher 

order equations of the form (10). 
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In the discussion to follow, you will be surprised to see that all solutions of Eqn. (10) 

are exponential functions or constructed out of exponential functions. 

 

Let us now consider the following examples:   
 

Example 5:  Write auxiliary equation corresponding to the differential equation  

(D
6
 + 12D

4
 + 48

2
 + 64) y = 0 

Solution:  Replacing D by m in the linear differential operator of the given equation, 

the auxiliary equation becomes 

m
6
 + 12m

4
 +48m

2
 + 64 = 0 

 

Example 6:  Write the characteristic equation corresponding to the differential 

equation 

(D
2
 + 2aD + b

2
) y = c sinwx. 

 

Solution:  On replacing D by m in the homogeneous part of the given equation and 

equating it to zero, we arrive at the following characteristic equation 

m
1
 + 2am + b

2
 = 0 

 

remember that while writing the auxiliary equation for non-homogeneous differential 

equation, he non-homogeneous part is neglected. 

 

Auxiliary Eqn. (12) is a polynomial in m of degree n and, it can have at the most n 

roots. 

 

Let m1, m2, …, mn be the n roots.  Then the following three possibilities arises; 

I) Roots of auxiliary equation may be all real and distinct, 

II) Roots of auxiliary equation may be all real, but some of the roots may be 

repeated. 
III) Auxiliary equation may have complex roots. 

 

We now proceed to find the solution of Eqn. (10) for these three cases one by one. 

 

Case 1:  Auxiliary equation has real and distinct roots: 

Let the roots m1, m2, …, mn of auxiliary Eqn. (12) be real and distinct. 
 

Now suppose m = m1.  Since m1 is a root of auxiliary Eqn. 912), clearly xm1e is an 

integral of Eqn. (10) and satisfies it on the interval [-  , ]. 
 

Similarly, for m = m2, 
xm2e is a solution of Eqn. (10) and xm1e  and xm2e  are also 

linearly independent on the interval since 
 

W( xm1e , xm2e ) = 
xm

2

xm

1

xmxm

21

21

emem

ee
 

  = (m2 – m1) 
x)m(m 21e

    0  for m1  m2.   
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Now, the n roots of Eqn (12), namely m1, m2, …, mn are real and distinct solutions, 
xm1e , xm2e , …, xmne  are all distinct and linearly independent solutions of Eqn. (10). 

 

Sin Eqn. (10) is of nth ordr and we have n distinct and linearly independent solutions, 

therefore, we can express the complete solution of Eqn (10) as 

y = c1
xm1e  + c2

xm2e + … + cn
xmne ,       …(13) 

 

where c1, c2, …, cn are arbitrary constants. 

We now illustrate this case with the help of a few examples. 
 

Example 7:  Solve 2 
2

2

dx

yd
 + 5

dx

dy
 - 12y = 0 

 

Solution:  The given equation can be written as 

(2D
2
 + 5D – 12) y = 0 

the auxiliary equation is 

2m
2
 + 5m – 12 = 0 

  (2m – 3) (m + 4) = 0 

  m = 3/2, - 4  

 

here the roots are real and distinct. 

 

Hence complete solution of the given differential equation is y = c1e
(3/2)x

 + c2e
-4x

, 

where c1 and c2 are arbitrary constants. 

 

Let us look at another example. 
 

Example 8:  If 
2

2

dx

yd
 - a

2
y = 0, show that y = Acosh ax + Bsinh ax is the complete 

solution. 

 

Solution:  The auxiliary equation corresponding to the given differential equation is  

m
2
 – a

2
 = 0 

  (m – a) (m + a) = 0 

  m = a, - a. 

 

roots being real and distinct, the general solution of the given equation is 

y = c1e
ax

 + c2e
-ax 

 

From the definition of hyperbolic functions, we know that 

 Cosh ax = 
2

1
 (e

ax
 + e

-ax
)       …(14) 

and sinh ax = 
2

1
 (e

ax
 – e

-ax)       
…(15) 

adding relations (14) and (15), we get 

e
ax

 = cosh ax + sinh ax 

Substrating relation (15) from (14), we get 

e
-ax

 = coshax – sinhax 
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the general solution of given differential equation can thus be written as 

y = c1 (cosh ax + sinh ax) c2 (cosh ax – sinh ax) 

  y = (c1 + c2) cosh ax +(c1 – c2) sinh ax 

  A cosh ax + B sinh ax, 

where A = c1 + c2 and B = c1 – c2 are two arbitrary constants. 

 

We now consider an initial value problem. 

 

Example 9:  Solve the equation 

 
2

2

d x

dx
 - 4x = 0 

with the conditions that when t = 0, x = 0 and 
dx

dt
 = 3. 

 

Solution:  The auxiliary equation corresponding to the given equation is  

m
2
 – 4 = 0 

  (m – 2) (m + 2) = 0 

  m = 2, -2 

 

hence the general solution of the differential equation is 

x = c1e
-2t

. 

we now apply the given conditions at t = 0.we have 

dx

dt
 = 2c1e

-2t
 

Condition that x = 0 when t = 0 gives 

0 = c1 + c2, 

and the condition that 
dx

dt
 = 3 when t = 0 gives 

3 = 2c1 – 2c2 

 

From the two equations for c1 and c2, we conclude tht  

C1 = 
3

4
 and C2 =  - 

3

4
.  Therefore,  

 X = 
3

4
 (e

2t
 – e

-2t
) 

 

Which can also be put in the form  

x =  sinh 2t. 

Now you may try the following exercises. 

 
We now take up the case when the roots of auxiliary equation are all real but some of 

them are repeated. 
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Case II: Auxiliary Equation has real and repeat roots: 
 

Let two roots of auxiliary Eqn. (12) be equal, say m`1 = m2.  then solution (13) of Eqn. 

(10) becomes 

y = (c1 + c2) 
1m x

e  + c3 
3m x

3  + … + cn 
nm x

e  
 

Since (c1 + c2) can be replaced by a single constant, this solution will have (n -1) 

arbitrary constants. 
 

We know that the general or complete solution of an nth order linear differential 

equation must contain n arbitary constants; hence the above solution having (n -1) 

arbitrary constants is not the general solution. 

 

To obtain general solution in this case let us reqrite Eqn. (10) in the form 

L1 (y) = (D
n
 + a1D

n-1
+

.. an-1 D + any = 0      …(16) 

Where D = 
d

dx
and D

n
 = 

n

n

d

dx
 and L1 is a linear differential operator. 

 

If m1, m2, …, mn are the roots of auxiliary equation corresponding to, Eqn. (16), then 

Eqn.(16) can be written as 

 

D – m1) (D – m2) … (D – mn) y = 0         (17) 

 

It is clear that when all the n roots m1, m2, …, mn are real and distinct the complete 

solution of Eqns. (16) or (17) is constituted by the solutions of the n equations. 
 

(D – m1) y = 0, (D – m2) y =0 …. (D – mn) y = 0 

in case the two roots are equal say m1 = m2, then Eqn. (17) takes the form 

(D =- m1)
2
 (D – m3) … (D - mn) y = 0 

and then solutions corresponding to two equatl roots are the solutions of  

(D – m1)
2
 y = 0 

  (D – m1) [(D – m1) y] = 0       …(18) 

Let (D – m1) y = v         …(19) 

Then Eqn. (18) reduces to 

(D – m1) V = 0 

  
dV

dx
 - m1V = 0 

 

it is a linear differential equation of the first order and its solution (ref. Sec. 3.3 of unit 

3) is 

V = c1
1m x

e  

With this value of V, Eqn. (19) becomes 

(D – m1) y = c1
1m x

e  

which is again a linear differential equation of the first order and is solution is  

y = 1m x
e  (c + c1x), 

c1, c2 being constants. 
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Similarly, the solution of Eqn. (17) corresponding to three equal roots say m1 = m2 = 

m3, are the solutions of 

(D – m1)
3
y = 0 

  (D – m1) [(D = m1)
2
y] = 0 

 

te (D – m1)
2
 y = z in the above equation.  Solving the equation for z and putting the 

value of z obtained in the above equation, we have  

(D – m1)
2
y = c1

1m x
e  

 

Substituting gain (D – m1) y = t and proceeding as before, we get 

(D – m1) y = 1m x
e  (c2 + c1x) 

The solution of above linear differential equation of first order is 

 

y = 1m x
e  

21

2 3

c
x c x c

2

 
  

 
 

 

thus, it is clear that if a root m1 of Eqn. (16) is repeated r times, then solution 

corresponding to this root will be of the form 

 

y = 1m x
e  (A1 + A2x + A3x

2
 + … + Arx

r-1
) 

and the general solution of Eqn. (16) will then be 

y = 1m x
e (A1 + A2x + A3x

2
 + … + Arx

r-1
) + Ar+1 

r 1m x
e   + … + An

nm x
e   …(20) 

We now illustrate the above discussion with the help of a few examples. 

 

Example 10:  Solve 
4

4

d y

dx
 - 

3

3

d y

dx
 - 9

2

2

d y

dx
 - 11 

dy

dx
 - 4 y = 0 

 

Solution:  The given differential equation can be written as 

 

(D
4
 – m

3
 – 9D

2
 – 11D – 4) y = 0 

Auxiliary equation of the given equation is 

M
4
 – m

3
 – 9m

2
 – 11m – 4 = 0 

  (m + 1)
3
 (m – 4) = 0 

  m = - 1, - 1, - 1, 4 

 

here the root – 1 is repeatred three times and root 4 is distinct.  Hence, using Eqn. 

(20), the general solution of the given differential equation is  

y = (A + Bx + Cx
2
) e

-x
 + De

4x
, 

where A, B, C and D are arbitrary constants. 

 

Let us consider another example. 
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Example 11: Find the complete solution of 

(D
4
 – 8D

2
 + 16) y = 0 

 

Solution: In this case the auxiliary equation is 

m
4
 – 8m

2
 + 16 = 0 

 (m
2
 – 4)

2
 = 0 

  (m- 2)
2
 (m + 2)

2
 = 0 

m = 2,2, - 2, - 2  
 

here 2 and -2 are both repeated. Therefore, the method of repeated real roots will be 

separately applied to each repeated root. Hence the complete solution of the given 

differential equation is 
 

y = (A + Bx) e
2x

 + (C + Dx) e
-2x

. 

 

and now some exercises for you. 
 

Now we shall discuss the case when the auxiliary equation may have complex roots. 

 

Case III: Auxiliary Equation has complex roots: 
 

If the roots of auxiliary Eqn. (12) are not all real, then some or, may be, all the roots 

are complex. We know from the theory of equations that if all the coefficients of a 

polynomial equation are real, then its complex roots occur in conjugate pairs. In Eqn. 

(12), all the coefficients are assumed to be real constants and hence complex roots, if 

any, must occur in conjugate pairs. 
 

Let one such pair of complex roots of Eqn 912) be m1 =   - i , where  and   are 

real and i
2
 = - 1. Formally, there is no difference between this case and case I, and 

hence the corresponding terms of solution are 

 

y = c1 
( i )xe    + c2 

( i )xe    

    = xe  [c1
i x i x

2
[e c e ]           …(21) 

 

however, in practice we would prefer to work with real functions instead pf complex 

exponentials. To achieve this, we make use of the Euler’s formula, namely, 
ie cos   i sin  and ie   = cos  - i sin , 

 

where   is any real number.  Using these results, the expression (21), which is the part 

pf the solution corresponding to complex roots, becomes 

 
xe  [c1 (cosx +  i sinx) + c2 (cosx – i sinx)] 

 =  xe  [(c1 + c2) cosx + (c1 – c2) i sinx]      

 

Since c1 + c2 are arbitrary constants, we may write 

 

A = c1 + c2 and B = i(c1 – c2),  
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So that A and B are again arbitrary constants, though not real.  Expression (21) now 

takes the form 
 

 xe  [Acosx + Bsinx]        …(22) 
    

Further, if the complex root is repeated, then the complex conjugate root will also be 

repeated and the corresponding terms in the solution can be written, using the form 

(20), as 
x( i )e    (c1 + c2x) + x( i )e    (c3 + c4x) 

Proceeding as above and writing 

A = c1 + c3 B = i(c1 – c3) C = c2 + c4 D = i(c2 – c4), 

The above expression can be written as 
xe  [(A + Cx) cosx + (B + Dx) sinx]      …(23) 

 

in the case of multiple repetition of complex roots, the results are obtained analogous 

to those in the case of multiple repetition of real roots. 

 

We now illustrate this case of complex roots with the help of a dew examples. 

 

Example 12:  For the differential equation 
 

4

4

d y

dx
 - m

4
y = 0, show that its solution can be expressed in the form  

y = c1 cos mx + c2sin mx + c3 cosh mx + c4 sinh mx. 

 

Solution:  The given differential equation can be expressed as 

(D
4
 – m

4
) y = 0 

 

In this case since m is used as a constant in the given differential equation, we can 

replace D by some other letter,   say. 

So, the auxiliary equation is 

( 4
 – m

4
) = 0 

  ( 2
 – m

2
) ( 2

 + m
2
) = 0 

    = m, - m,   im 
 

Now the solution corresponding to roots + m and – m can be obtained as we have 

done in Example 8 and write it as 

 

C3 cosh mx + c4 sinh mx 

Solution corresponding to imaginary roots + im and –im will be 

Ae
imx + Be

-imx 
 

Which can be written as 
 

A(cos mx + i sin mx + B(cos mx – i sin mx) 

= (A + B) cos mx + i (A – B) sin mx 

= c1 cosmx + c2 sinmx 
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where c1 = (A + B) and c2 = i(A – B) are constants. 

Hence the general solution of the given differential equation is 

 

Y = c1 cos mx + c2 sin mx + c3 cosh mx + c4 sinh mx 

 

Let us look at another example. 

 

Example 13:  Solve 
4

4

d y

dx
 - 4

3

3

d y

dx
 + 8 

2

2

d y

dx
 - 8

dy

dx
 + 4y = 0 

 

Solution:  in this case is 

M
4
 – 4m

3
 + 8m

2
 – 8m + 4 = 0 

  (m
2
 – 2m + 2)

2
 = 0 

 [m – (1 + i)]
2
 [m – (1 – 9)]

2
 = 0 

  m = 1 + i, 1 + i, 1 – i. 

 

Roots are complex and repeated in this case. 

Hence the general solution can be written as 

Y= (c1 + xc2) e
(1+i)x

 + (c3 + xc4) e
(1-i)x

 

   = e
x
 [(c1 + xc2) e

ix 
+ (c3 + xc4) e

-ix
] 

   = e
x
 [(c1 + xc2) (cosx + i sinx) + (c3 + xc4) (cosx – i cinx)] 

   = e
x
 {[(c1 + xc2) + x(c2 + c4)] cosx + i [(c1 – c3) + x(c2 – c4)] sinx} 

   = e
x
 [(A + Bx) cosx + (C + Dx) sinx] 

where A = (c1 + c3), B = (c2 + c4), C = i (c1 – c3) and D = i )c2 – c4) are all constants. 

You may now try the following exercise. 

 

4.0 CONCLUSION 
 

We now end this unit by given a summary of what we have covered in it. 

 

5.0 SUMMARY 
 

In this unit we have covered the following: 

 

1) The general linear differential equation with dependent variable y and 

independent variable x is termed as an equation. 
 

a) with variable coefficients if the coefficients of y and its derivatives are 

functions of x. 

b) with constant coefficients if the coefficients of y and its derivatives are 

all constants. 

c) homogeneous if the terms other than those of y and its derivatives are 

absent. 

d) non-homogeneous if the terms other than those of y and derivatives are 

present and are constants or functions of independent variable x. 
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2) A solution of general linear differential equation exists and is unique if 

conditions of Theorem 1 are satisfied. 
 

3) A set of functions y1(x), y2(x), …, yn(x) defined on an interval I is linearly 

dependent if for constants c1, c2, .., cn not all zero, we have for every x in I, 

 c1y1(x) + c2y2(x) + …, + cnyn(x) = 0. 

4) A set of functions y1(x), y2(x),…, yn(x) on I is linearly independent on I if it is 

not linearly dependent on I. 

5) If y =  y1 is a solution of homogeneous linear differential equation on I, so is y 

= c1 on I, where c is arbitrary constant. 

6) If y = y1, y2, …, ym are solutions of linear homogeneous differential equation 

on I, so is y = c1y1 + c2y2 + … + cmym on I, where c1, c2, …, cm are arbitrary 

constants. 

7) If y1, y2,…, yn are linearly independent solutions of an nth order homogeneous 

linear differential equation on an interval I, 

 then  

 y = c1y1 + c2y2 + … + cnyn 

 (where c1,c2,…, cn being arbitrary constants) 

 is defined as the complete primitive of the given equation on I. 
 

8) For a non-homogeneous equation 

a) the complete primitive of the corresponding homogeneous part is called 

it complementary function. 

b) particular solution of the non-homogeneous part involving no arbitrary 

constant is called its particular integral. 

c) Complementary function and particular integral constitute its general 

solution. 
 

9) Solution y, of an nth order linear differential equation 

 
n

n

d y

dx
 + a1 

n 1

n 1

d y

dx




 + … + an-1 

dy

dx
 + an y = 0 

 with constant coefficients a1, …., an-1, an having n roots m1, m2, …, mn, when 

 a) roots are real and distinct, is 

  y = c1 
1m x

e  + c2
2m x

e  + … + cn 
nm x

e  

 b) roots are real and repeated, say m1 = m2 = …, = mr, is  

  y = (c1+ c2x + … + crx
r-1

) 1m r
e + cr+1

1 1m x
e   + …., + cn

nm x
e . 

 c) roots are complex and one such pair is     i , is 

  y = xe  (c1 cosx + c2 sinx) 

  corresponding to that pair of roots. 

 

6.0 TUTOR MARKED ASSIGNMENT 
 

1. Verify if the function y = 
1

4
 sin 4x is a unique solution of the initial value 

problem 
 

 y' + 16y = 0 

 y(0) = 0, y'(0) = 1. 
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2. In the following problems verify that the given function y1 and y2 are the 

solutions of the corresponding equations.  Decide whether the set {y1, y2} of 

solutions is linearly dependent or independent. 

 

 a) y" – y = 0, y1 = e
x
 and y2 = e

-x
 over -  < x <   

 b) y" + 9y = 0, y1 = cos3x and y2 = cos 3x
2

 
 

 
over -   < x <  . 

 c) y" - 2y' + y = 0 y1  = e
x
 and y2 = xe

x
 over -   < x <  . 

 

3. Construct an example to show that a set of functions could be linearly 

independent on some interval and yet have a vanishing Wronskian. 

 

4. Verify that y = 1/x is a solution of the non-linear differential equation y" = 2y
3
 

on the interval ]0,  [, but the constant multiple y = c/x is not a solution of the 

equation when c  0, and c   1. 

 

5. Functions y1 = 1 and y2 = Inx are solutions of the non-linear differential 

equation y" + (y')
2
 = 0 on the interval ]0, [. Then  

  

a) is y1 + y2 a solution of the equation? 

b) is c1y1 + c2y2, a solution of the equation, where c1 and c2 are arbitrary 

constants? 

 

6. Solve the following equations: 

 

 a) 
3

3

d y

dx
 - 6 

2

2

d y

dx
 + 11 

dy

dx
 - 6y = 0 

 b) 9 
2

2

d y

dx
 + 18 

dy

dx
 - 16y = 0 

 c) 
3

3

d y

dx
 + 2 

2

2

d y

dx
 - 5 

dy

dx
 - 6y = 0 

 

7. In the following equations find the solution y for x = 1: 

 

 a) (D
2
 – 2D – 3) y = 0; when x  = 0, y = 4 and y' = 0 

 b) (D
3
 – 4D) y = 0, when x = 0, y = 0 y' = 0 and y" = 2. 

 

8. Find the complete primitive of the following equations: 

 

 a) 
3

3

d y

dx
 - 

2

2

d y

dx
 - 8 

dy

dx
 + 12y = 0 

 b) 
4

4

d y

dx
 - 2 

3

3

d y

dx
 - 3 

2

2

d y

dx
 + 4 

dy

dx
 + 4Y = 0 
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 c) 
3

3

d y

dx
 + 

2

2

d y

dx
 - 

dy

dx
 - y = 0 

 d) 
3

3

d y

dx
 -3 

2

2

d y

dx
 + 3

dy

dx
 - y = 0 

 

9. Find the general solution of the following equations subject to the conditions 

mentioned alongside: 

 

 a) (D
2
 + 4D + 4)y = 0; when x = 0, y = 1 and y' = - 1  

 b) (D
3
 – 3D – 2) y = 0; when x = 0, y' = 9 and y" = 0 

 c) (D
4
 + 3D

3
 + 2D

2
) y = 0; when x = 0, y = 0, y' = 4, y" = - 6, y" = 14. 

10. Find the general solution of the following Equations: 
 

 a) 
2

2

d y

dx
 - 2

dy

dx
 + (

2
 + 

2
) y = 0 

 b) 
4

4

d y

dx
 + a

4
y

 = 0 

 c) 
2

2

d y

dx
 + 8

dy

dx
 + 25y = 0 
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UNIT 2 METHOD OF UNDETERMINED COEFFICIENTS 
 

CONTENTS 

 

1.0 Introduction 

2.0 Objectives 

3.0 Main Content 

3.1 Types of Non-Homogeneous Terms for which the Method is Applicable 

  3.1.1 Non-homogeneous Term is an Polynomial 

3.1.2 Non-homogeneous Term is an exponential function 

3.1.3 Non-homogeneous Term is a sine or a cosine Function 

3.1.4 Non-homogeneous Term is a product of an exponential and a 

polynomial 

3.1.5 Non-homogeneous Term is a product of a polynomial, an 

Exponential and a Sinusoidal function 

 3.2 Observations and constraints of the method 

4.0 Conclusion 

5.0 Summary 

6.0 Tutor Marked Assignment 

7.0 References/Further Readings 
 

1.0 INTRODUCTION 

 
In Unit 5, we learnt that in order to find the complete integral of a general non-

homogeneous linear differential equation, namely 

 

L(y) = a0 
n

n

d y

dx
 + a1  

n 1

n 1

d y

dx




+ ….+ an-1 

dy

dx
 + any = b(x)    …(1) 

 

where ao, a,, ... , a, are constants, it is necessary to find a general solution of the 

corresponding homogeneous equation that is, the complementary function and then 

add to it any particular solution of Eqn. (1). In Sec. S.3 we discussed the methods of 

determining complementary function of linear differential equations with constant 

coefficients having auxiliary equations with different types of roots. But how do we 

find a particular solution of these equations? We shall now be considering this 

problem in this unit. 

 

Variety of methods exist for finding particular integral of a non-homogeneous linear 

differential equations. The simplest of these methods is the method of undetermined 

coefficients. Basically, this method consists in making a guess as to the form of trial 

solution and then determine the coefficients involved in the trial solution so that it 

actually satisfies the given equation. You may recall that we had touched upon this 

method in Sec. 3.3 of Unit 3 for finding the particular integral of non-homogeneous 

linear differential equations of the first order having constant coefficients. In this unit 

we shall be discussing this method in general for finding the particular integral of 

second and higher order linear differential equations with constant coefficients. 
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2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 identify the types of non-homogeneous terms for which method of 

undetermined coefficients can be successfully applied. 

 write the form of trial solutions when non-homogeneous terms are 

polynomials, exponential functions or their combinations. 

 describe the constraints of this method. 

 

3.0 MAIN CONTENT 

 

3.1 Types of Non-Homogeneous Terms for Which the Method is 

Applicable 
 

The method of undetermined coefficients, as we have already mentioned in Sec. 6.1, 

is a procedure for finding particular integral y^ in a general solution y(x) = yc(x) °f 

equations of the form (1). The success of this method is based on our ability to guess 

the probable form of particular solutions. 
 

We know that the result of differentiating functions such as x
r
 (r > 0, an integer) an 

exponential function xe (  constant) or sinmx or cosmx (m constant) is again a 

polynomial, an exponential or a linear combination of sine or cosine functions 

respectively. Hence, if the non-homogeneous term b(x) in Eqn. (1) is a polynomial an 

exponential function, or a sine or cosine function then we can choose the particular 

integral to be a suitable combination of polynomial, an exponential. I sinusoidal 

function with a number of undetermined constants. These constant! I then be 

determined so that the trial solution satisfies the given equation. 

 

Note:  A function which is a combination of a sine function (or cosine function) with 

an exponential function and/or a polynomial is a sinusoidal function. 

 

Thus the types of non-homogeneous term for which the method of undetermined 

coefficients is successfully applicable are 

 

i)      polynomials 

ii)     exponential functions 

iii)    sine or cosine functions 

iv)    a combination of the terms of types (i), (ii) and (iii) above. 

 

We shall now discuss the method of undetermined coefficients to find the particular 

integral for these various types of non-homogeneous terms one by one. 
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3.1.2 Non-homogeneous term is an Exponential Function: 

 
Let us suppose that the non-homogeneous term b(x) in Eqn. (1) is an exponential 

function of the form xe ( a constant). 

 

In other words, suppose we have to solve an equation. 

 

L(y) = a0 
n

n

d y

dx
 + a1 

n 1

n 1

d y

dx




 + … + an-1 

dy

dx
 + any = xe     …(6) 

 

The appropriate form of the trial solution can be taken as 

yp(x) = A xe           …(7) 
 

provided xe is not a solution of the homogeneous differential equation corresponding 

to Eqn. (1) (i.e.,   is not a root of the auxiliary equation). 

 

If  is a root of Eqn. (6), then the choice (7) would not give us any information for 

determining the value of A.  in that case, we can take yp(x) = Ax xe as the trial 

solution.  If  is r-times repeated root of the auxiliary equation, then the suitable form 

of the trial solution for determining particular integral will be 

 

yp(x) = Ax
r xe          …(8) 

 

substituting this value of yp in Eqn. (6) and equating coefficients of xe on both sides, 

we can find the value of undermined coefficient A and thus find the particular integral 

(8). 

 

For a better understanding of whatever we have discussed above let us take up a few 

examples. 

 

 

Example 3:  Find the general solution of the differential equation 

 
2

2

d y

dx
 + 3 

dy

dx
  + 2y = 3e

x
. 

 

Solution: Auxiliary equation is 

(m + 1) (m + 2) = 0 

 m = -1, -2, 

C.F. = c1e
-x

 + c2e
-2x 

 

Since e
x
 is not a part of the complementary function, hence trial solution for finding a 

particular integral can be taken as 

yp(x) = Ae
x
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Substituting this value of yp in the given differential equation, 

we get 

2Ae
x
 + 3Ae

x
 + Ae

x
 = 3e

x
 

 6Ae
x
 = 3e

x
 

 

Equating coefficient of e
x
 on both sides, we get 

6A = 3,  A = 
1

2
 

hence  

P. I = 
1

2
 e

x
 

The general solution fo the given differential equation is 

y = c1e
-x

 + c2e
-2x

 + ---- e
x
 

let us consider another example which illustrate the case of repeated roots of an 

auxiliary equation. 
 

Example 4: solve  
3

3

d y

dx
  - 3

2

2

d y

dx
 + 3 

dy

dx
- y = 12e

x
 

 

Solution: Auxiliary equation is 

(m – 1)
3
 = 0 

 m = 1, 1, 1. 

C.F. = (c1 + c2x + c3x
2
) e

x 

 

Since non-homogeneous term of the given differential equation is e
x
 which is present 

in the complementary function and moreover I is 3-times repeated root of the auxiliary 

equation, we take the form of trial solution to be 

yp(x) = Ax
3
e

x
. 

 

Note that in the selection of the trial solution yp(x) no smaller power of x will give us 

the particular integral. Moreover, it is not similar to any term of complementary 

function of the given equation. 

 

On substituting this value pf yp in the given differential equation, we get  

- Ax
3
3

x
 + 3A [x

3
e

x
 + 3x

2
e

x
] – 3A [x

3
e

x
 + 6x

2
e

x
 6xe

x
] 

+ A [x
3
e

x
 + 9x

2
e

x
 + 18xe

x
 + 6e

x
] = 12e

x 

 

Equating coefficients of e
x
 on both sides, we get 

6A = 12,  a = 2. 

Thus, P.I. = 2x
3
e

x 

The general solution of the given differential equation is 

y = (c1 + c2x + c3x
2
) e

x
 + 2x

3
e

x 

 

And now an exercise for you. 
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You may also come across the situation when b(x) in Eqn. (1) is a sum of two or more 

functions.  Suppose b(x) = b1(x) + b2(x); then from the superposition principle we 

have the P.I. yp(x) of L(y) = b(x) to the equal to yp = yp1 + yp2, where yp1 is a P.I. of 

L(y) = b1(x) and yp2 is a P.I. of L(y) = b2(x).  This enables us to decompose the 

problem of solving linear equation L(y) = b(x) into simpler problem an example. 

 

Example 5: find a general solution of 
 

2

2

d y

dx
- 2 

dy

dx
- + y = e

x
 + 4. 

 

Solution: Auxiliary equation is 

M
2
 – 2m + 1 = 0 

 (m – 1)
2
 = 0 

 m = 1, 1. 

 C.F. = (c1 + xc2) e
x 

 

To find the particular solution we first consider equation 
+ y = e

x
          …(9) 

 

1 is a repeated root of the auxiliary equation, we consider the trial solution 

yp1 = Ax
2
e

x
 

 

on substituting yp1 in Eqn. (9), we find that 

(2Ae
x
 + 4xAe

x
 + x

2
Ae

x
) – 2(2xAe

x
 + x

2
Ae

x
) + Ax

2
e

x
 = e

x
 

 

comparing the coefficient of e
x
 on both sides, we have 

2Ae
x
 = e

x
 

 A = 
1

2
 

 yp1

2x

2
 e

x
 

Now consider the equation 

 
2

2

d y

dx
- 2 

dy

dx
  y = 4         ...(10) 

 

Since no-homogeneous term is a constant, we try yp2 = A and find that A = 4 satisfies 

(10).  Hence a particular solution of the given equation is 

 

yp = yp1 + yp2 = 
2x

2
e

x
 = 4 

A general solution will them be 



MTH 232                                                                                                                                               MODULE 4 

161 

 

y = c1e
x
 + c2xe

x
 + 4 + 

2x

2
e

x
 

The term b(x) can be a combination of many more terms like this.  We may have b(x) 

= x + e
x
, b(x) = x + x

3
, b(x) = 3 + x

2 
etc.  In these cases, we can obtain particular 

integral using I and II discussed above and by finding yp1 and yp2 as we have done in 

Example 5. 
 

We shall give you the general method of finding P.I. when we discuss cases IV and V. 
 

You may try these exercises. 
 

We can now take up the case when b(x) in Eqn. (1) is either a sine or a cosine 

function. 

 

3.1.3 Non-homogeneous Term is a Sine or a Cosine Function 
 

After going through I and II above and attempting the exercises given so far, you 

know how to handle b(x) when it is polynomial, an exponential function or a 

combination of both.  Now can you say how this case is handled when b(x) is a sine or 

a cosine function? 

 

We know that the linear differential operator when applied to sinx or cosx will 

yield a linear combination of sinx and cosx .  Therefore, if the non-homogeneous 

term b(x) of differential Eqn. (1) is of the form 

 

B(x) = 
1

 sinx or 
2

 cosx   or 
1

 sinx   + 
2

 cosx  

We can take the trial solution in the form 

 

yp(x) = Acosx  + Bsinx         …(11) 

provide i   are not roots of the auxiliary equation corresponding to the given 

differential equation.   

 

If i   are r-times repeated roots of the auxiliary equation, then we can take the form 

of trial solution to be 

yp(x) = x
r
(Acosx  + Bsinx )       …(12) 

 

We then substitute the value of yp(x) in the form (11) or (12), whichever is applicable 

in Eqn. (1) and equate the coefficients of sinx and cosx  on both sides of the 

resulting equation.  This gives us equations for obtaining the values of A and B in 

terms of known quantities.  Knowing the values of A and B, particular integral of Eqn. 

(1) is obtained from relations (11) or (12). 

 

We now illustrate this theory with the help of a few examples. 
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Example 6: Find the general solution of  
 

4

4

d y

dx
  - 2 

2

2

d y

dx
 + y = sinx 

 

Solution: Auxiliary Equation is 

(m
4
 – 2m

2
 + 1) = 0 

 (m
2
 – 1)

2
 = 0 

 m = 1, 1, - 1, -1 

 C.F. = (c1 + c2x) e
x
 + (c3 + c4x) e

-x
 

 

Since ------ i is not a root of the auxiliary equation, that is, term sinx does not appear 

in the complementary function, we can take the trial solution in the form 

yp(x) = Asinx + Bcosx. 

 

Substituting this value of yp in the given differential equation, we get 

(Asinx + Bcosx) – 2(-Asinx – Bcosx) + (Asinx + Bcosx) = sinx 

 4Asinx + 4Bcosx = sinx 

 

Equating coefficients of sinx and cosx on both sides, we get 

4A = 1  A = 
1

4
 

and 4B = 0  B = 0 

Thus, yp(x) = 
1

4
 sinx 

and the complete solution of the differential equation is 
 

y =(c1 + c2x) e
x
 + (c3 + c4x) e

-x 
+ 

1

4
 sinx. 

 

Let us look at another example. 

 

Example 7: Solve the initial value problem 
2

2

d y

dx
 + y = 2cosx, y(0) = 1, y'(0) = 0 

 

Solution: The auxiliary equation is 

m
2
 + 1 = 0 

 m =  i 

 C.F. = c1cosx + c2sinx 

 

Now since  i is a root of the auxiliary equation i.e., cosx itself appears in the 

complementary function, we take the form of the trial solution as 

yp(x) = x (Asinx + Bcosx) 
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Substituting the value of yp(x) in the equation, we get 

2(Acosx – Bsinx) + x( - Asinx – Bcosx) + x(Asinx + Bcosx) = 2cosx 

 2Acosx – 2Bsinx = 2cosx 

 

Comparing the coefficients of sinx and cosx on both sides, we get 

2A = 2  A = 1 and B = 0. 

Therefore, 

yp(x) = xsinx 

and the general solution is 

y(x) = c1cosx + c2sinx + xsinx 

we now use initial conditions to determine c1 and c2 

Now y(0) = 1 gives c1 = 1 

And y'(0) = 0 gives c2 = 0 

Thus, y(0) = cosx + xsinx 

 

You may now try the following exercises. 

 

In the example considered so far, did you notice that the function b(x) itself suggested 

the form of the particular solution yp(x)? in fact, we can expand the list of functions 

b(x) for which the method of undetermined coefficients can be applied to include 

products of these functions as well.  We now discuss such cases. 

 

3.1.4 Non-homogeneous Term is a Product of an Exponential and a 

Polynomial 

 
Let us suppose that b(x) is of the form 

b(x) = xe [b0x
k 
+ b1x

k-1
 + …. + bk-1x + bk] = xe Pk(x) 

with this form of b(x), Eqn. (1) reduces to 

a0 
n

n

d y

dx
 + a1 

n 1

n 1

d y

dx




+…. + an-1 

dy

dx
 + an = xe  [b0x

k
 + b1x

k-1
 + 

   … + bk-1x + bk]      …(13) 

 

We now take the trial solution in the form 

yp(x) = xe  [A0x
k
 + A1x

k-1
 +….+ Ak-1x + Ak]     …(14) 

provide    is not a root of the auxiliary equation corresponding to Eqn. (13).  If   is 

a root of the auxiliary equation, say, it is r-times repeated root of the auxiliary 

equation then we modify the trial solution as 

yp(x) = x
r xe  [A0x

k
 + A1x

k-1
 +…+ Ak-1x + Ak]     …(15) 

 

Remember that in Eqn. (15) no smaller power of x will yield a particular integral.  

Here r is the smallest positive integer for which every term in the trial solution (15) 

will differ from every term occurring in the complementary function corresponding to 

Equ (13). 
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In order to determine the constants A0, A1,…., Ak we substitute yp(x) in the form (14) 

or (15) as the case may be in eqn. (13) and then compare the coefficients of xe on 

both sides.  For a better understanding of whatever we have discussed above, let us 

consider an example. 

 

Example 8: Solve 
3

3

d y

dx
- 

dy

dx
 = xe

-x
 

 

Solution:  Auxiliary equation is 

m
3
 – m = 0 

 m(m
2
 –1) = 0 

 m = 0, - 1, 1 

C.F. = c1 + c2e
-x

 + c3e
x 

 

Here the non-homogeneous term is xe
-x

 appears in the complementary function. 

Further, ( -1) is a non-repeated root of the auxiliary equation.  Thus, we take the form 

of trial solution as 

yp(x) = x [B + Ax] e
-x

 = Ax
2
e

-x
 = Ax

2
e

-x
 + Bxe

-x 

substituting this value of yp in the given differential equation, we get 

- A [-x
2
e

x
 + 2xe

-x
] + A [-x

2
e

-x
 + 6xe

-x
 – 6e

-x
] – B (-xe

-x
 + e

-x
) + 

 B(-xe
-x

 + 3e
-x

) = xe
-x

 

 

Comparing the coefficients of xe
-x

 and e
-x 

on both sides, we get 
 

4A = 1  A = 
1

4
 

and –6A + 2B = 0  B = 
3

4
 

Hence yp(x) = 
1

4
 x

2
e

-x
 + 

3

4
 xe

-x
 = 

xe

4



 (x
2
 + ex) 

And the general solution is 
 

y = c1 + c2e
-x

 + 
xe

4



(x
2
 + 3x). 

 

You may now try the following exercise. 

 

Lastly, we take up the case when b(x) is a product of a polynomial, an exponential 

function and a sinusoidal function. 

 

3.1.5 Non-homogeneous Term is a Product of a Polynomial, an 

Exponential and a Sinusoidal function 
Let us suppose that the non-homogeneous term b9x) in Eqn. (1) has one of the 

following two forms: 
 

b(x) = xe Pk(x) sin x  or b(x) xe  Pk(x) cos x ,     …(16) 
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where Pk(x), as given by Eqn. (2), is apolynomial of degree k or less and   and   are 

any real numbers.  You may recall Euler’s formula and write  
( i )xe    = xe  cosx + i xe  sinx  

or, equivalently, we have 
xe  cosx = Real ( ( i )xe   ) 

        = 
( i )x ( i )xe e

2

   
  

and xe  sinx = Imaginary ( ( i )xe   ) 

    = 
( i )x ( i )xe e

2i

   
 

Hence b(x) in Eqn. (16) reduces to 

b(x) = (b0x
k
 + b1x

k-i
 +….+ bk) 

( i )x ( i )xe e

2i

    
 
 

 

or b(x) = (b0x
k
 + b1x

k-1
 + … + bk) 

( i )x ( i )xe e

2

    
 
 

 

 

In either of the above two cases, we take the trial solution in the form 

yp(x) = (A0x
k
 + A1x

k-1
 + …+ Ak) (

( i )xe   ) 

      (B0x
k
 + B1x

k-1
 + …+ Bk) (

( i )xe   ) 

or, equivalently, 

yp(x) = (A0x
k
 + A1x

k-1
+ …+ Ak) 

xe  cosx + 

     (B0x
k
 + B1x

k-1
 + …+ Bk) 

xe  sinx, 

provided i    is not a root of the auxiliary equation. 

 

If ( i   ) is r-times repeated root of the auxiliary equation, we can then modify the 

trial solution by multiplying it by x
r
.  We then substitute the trial solution in Eqn. (1) 

and equate the coefficients of like terms on both sides to determine A0, A1, …., Ak and 

B0, B1, …., Bk.  Substituting these values of undetermined coefficients in the trial 

solution, we get the particular integral. 

 

Let us now illustrate the above case with the help of a few examples. 

 

Example 9: find the appropriate form of trial solution for the differential equation 

 
4

4

d y

dx
 + 2 

3

3

d y

dx
 + 2 

2

2

d y

dx
= 3e

x
 + 2xe

-x
 + e

-x
 sinx 

 

Solution: Auxiliary equation is 

m
4
 + 2m

3
 + 2m

2
 = 0 

 m
2
(m

2
 + 2m + 2) = 0 

 m = 0, 0, - 1   i 

 C.F. = c1 + c2x + e
-x

 (c3sinx + c4cosx) 
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Here the non-homogeneous term is 3e
x
 + 2xe

-x
 + e

-x
 sinx 

 

Since the term e
-x

 sinx also appear in C.F., the appropriate form of the trial solution is 

 

yp = Ae
x
 + (Bx + C) e

-x
 + xe

-x
 (Dcosx + Esinx). 

 

We now take up an example in which b(x) is a product of a polynomial an exponential 

and a sinusoidal function. 

 

Example 10: Write down the form of the trial solution for the equation 

 
2

2

d y

dx
+ 2 

dy

dx
 5y = x

2
e

-x
 sinx 

 

Solution: the auxiliary equation is 

m
2
 + 2m + 5 = 0 

 m =  - 1  2i 

The roots are not equal to –1  i. Hence the for of trial solution is  

yp = (A0x
2
 + A1x + A2) e

-x
cosx + (B0x

2
 + B1x + B2) e

-x
sinx 

 

Note that the form of trial solution taken in Case v above is the most general form.  

This is because the trial solutions taken in Cases I –IV are particular forms of Case V. 

 

And now some exercise for you. 

 

After going through the Cases I – V above and attempting the exercises given, you 

must have understood the method of undetermined coefficient quite well. Did you 

make certain observations about the method? Let us now summarize the observations 

and constraints of this method. 

 

3.2 Observations and Constraints of the Method 

 
1) Method is straight forward in application. 

2) It can be used by any learner who is not familiar with more elegant techniques 

of finding the solutions f the differential equations such as inverse operators 

and variation of parameters, which involve integrations and which we shall be 

discussing in the subsequent units. 

3) Success of this method depends to a certain extent on the ability to guess an 

appropriate form of the trial solution. 

4) If the non-homogeneous term is complicated and the trial solution involves a 

large number of terms, then determination of coefficients in the trial solution 

becomes laborious. 

5) This method is not a general method of finding the particular solution of 

differential equations.  It is applicable to linear non-homogeneous equations 

with constant coefficients and with restricted forms of the no-homogeneous 

terms. 
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4.0 CONCLUSION 
 

We now end this unit by giving a summary of what we have covered in it. 

 

5.0 SUMMARY 
 

In this unit, we have covered the following: 

 

1) Method of undetermined coefficients is applicable if 

a) The equation is a linear equation with constant coefficients. 

b) The non-homogeneous term is either a polynomial, an exponential 

function, a sinusoidal function or a product of these functions. 

 

2) The results giving trial solutions corresponding to different non-homogeneous 

terms in the equation L(y) = b(x), where the equation L(y) = 0 has r-times 

repeated roots are summarized in the following table. 
 

Non-homogeneous term b(x)  Trial solution, yp(x) 

Pp(x) = b0x
k
 + b1x

k-1
 + … + bk-1

x + b
k x

r
(A0x

k-1
 +…+ Ak) 

xe       x
r
(A xe ) 

sin x

cos x





     x

r
(Asin x  + Bcos x ) 

xe  Pk(x)     x
r xe (A0x

k
 +….+ Ak) 

xe Pk(x) 
sin x

cos x





    

r k x

0 k

k x

0 x

x [(A x ... A )e sin x

(B x ...) B )e cos x]





  

   
 

 

3) Observations and constrains of the method. 

 

6.0 TUTOR MARKED ASSIGNMENT 

 
1. Find a form of particular integral of the following equations 

 

 a) 
2

2

d y

dx
 + 

dy

dx
 + y = x

2
 + 1 

 b) 
4

4

d y

dx
 - 

3

3

d y

dx
 - 

2

2

d y

dx
 + 

dy

dx
 = x

2
 

 

2. Determine the general solution of the following equations. 

  

 a) 
2

2

d y

dx
 + 3 

dy

dx
 + 2y = 4x

2
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 b) 
3

3

d y

dx
 + 4 

dy

dx
 = x 

 

3. Find a particular integral of the following differential equations. 

 

 a) 
3

3

d y

dx
-  4 

dy

dx
 = e

-2x
 

b) 
3

3

d y

dx
 - 

2

2

d y

dx
 + 

dy

dx
 + 1 = e

-x
 

 

4. Find a general solution of the following differential equations: 

 

 a) 
2

2

d y

dx
 - 3 

dy

dx
 + 2y = x

2
 (e

x
 + e

-x
) 

 b) 2 
2

2

d y

dx
 + 8y = x

3
 + e

2x
 

5. Solve the following initial value problems: 

 

 a) 
2

2

d y

dx
 - y = e

2x
. y(0) = -1, y'(0) = 1. 

 b) 
2

2

d y

dx
 - 4 

dy

dx
 + 4y + e

2x
 = 0, y(0) = y'(0) = 0. 

 

6. Solve the following equations: 

 

 a) 
4

4

d y

dx
+ 4 

2

2

d y

dx
 = sin2x 

 b) 
3

3

d y

dx
 - 

dy

dx
 = 2cosx 

 

7. Solve the following initial value problems: 

 

 a) 
2

2

d y

dx
 + 4y = sinx, y(0) = 2, y'(0) = -1 

 b) 
2

2

d y

dx
 - 

dy

dx
 - 2y = cosx – sin2x, y(0) = 

7

20


, y'(0) = 

1

5
 

 
 

8. Solve the following equations: 

 

 a) 
2

2

d y

dx
 + 9y = x

2
3xe  

 b) 
2

2

d y

dx
 - 4 

dy

dx
 + 4y = 4x e

2x 
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9. Write the form of the trial solution for each of the following: 

 

 a) 
2

2

d y

dx
 + 2 

dy

dx
 + 3y = xcos3x – sin3x 

 b) 
2

2

d y

dx
 + 2 

dy

dx
 + 5y = xe

-x
cos2x 

 c) 
2

2

d y

dx
 - 5 

dy

dx
 + 6y = xe

x
cos2x 

 d) 
2

2

d y

dx
 + y = x

2
 sinx 

 e) 
2

2

d y

dx
 - 4 

dy

dx
 + 5y = xe

2x
sinx 

 

10. Find the general solution of the following equations. 

 a) 
3

3

d y

dx
- 4 

dy

dx
 =  x + 3cosx + e

-2x
 

 b) 
4

4

d y

dx
- 

3

3

d y

dx
 - 

2

2

d y

dx
 = x

2
 + 4 + xsinx 

 c) 
3

3

d y

dx
 + 

dy

dx
 = x

3
 + cosx 
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UNIT 3 METHOD OF VARIATION OF PARAMETERS 
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1.0 INTRODUCTION 
 

In unit 6, we discussed the method of undetermined coefficients for determining 

particular solution of the differential equation with constant coefficients when its non-

homogeneous term is of a particular form (viz, a polynomial, an exponential, a 

sinusoidal function etc). 

 

In this unit we familiarize you with an alternative approach fir determining a 

particular solution that can be applied even when the coefficients of the differential 

Equation are functions of the independent variable and the non-homogeneous term 

may not be of a particular form. Such an approach is due to Joseph Louis Lagrange 

(1736 – 1813) and is termed as variation of parameters.  Even though the approach is 

quite general bit is limited in its scope in the sense that it can be utilized in situations 

where the fundamental solution set for the reduced equation is known. Also, it can be 

used for first and higher order equations alike though its appreciation can be well 

understood for the later set of equations. The method requires for its applicability the 

complete knowledge of fundamental solution set of the reduced equation and for 

equations with variable coefficients the determination of this set may be extremely 

difficult. In the case of linear differential equations with variable coefficients, at times, 

it may not be possible to find all linearly independent solutions of the reduced but at 

least one or more may be obtainable. For such situations Jean le Rond d’Alembert 

(1717 – 1783), a French mathematician and a physicist, developed a method that is 

often called the method of reduction of order. When one or more solutions of 

reduced equation are known that D’Alembert’s method can be used to derive an 

equation of order lower than that of a given equation and obtain the rest of the 

solutions of a reduced equation as well as the particular integral of the non-

homogeneous term. We shall be discussing the method of reduction of order in Sec. 

7.3 of the unit.  For some particular forms of the second order linear differential 

equations with variable coefficients, we have also listed some rule by which one 

integral of the homogeneous equation an be guessed. 
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However, there exist linear differential equation with variable coefficients if second 

and higher order for which we may not be able to guess any integral of its 

complementary function. But, among such equations is a class of equations known as 

Euler’s equation or homogeneous linear differential equations, where, by certain 

substitution, it is possible to find all the integrals of its complementary function.  In 

Sec. 7.4, we shall be discussing the method of solving Euler’s equations and those 

equations which are reducible to Euler’s form. 

 

2.0 OBJECTIVES 

 
At the end of this unit, you should be able to: 

 

 Use the method of variation of parameters to find particular integral of non-

homogeneous linear differential equations with constant or variable 

coefficients. 

 Use the method of reduction of order to find the complete integral of the linear 

non-homogeneous equation of second order when one integral of the 

corresponding homogeneous equation is known. 

 Write down one integral for second order linear homogeneous differential 

equation with variable coefficients in certain cases merely through inspection. 

 Solve Euler’s equations. 

 

3.0 MAIN CONTENT 

 

3.1 Variation of Parameters 
 

Let us not discuss the details of the method by considering the non-homogeneous 

second order linear equation. 

 

L[y] = y" + a1(x) y' +a2(x)y = b(x),    …(1) 

 

Where we have taken the coefficients of y" to be 1 and a1(x), a2(x), and b(x) are 

defined and continuous on some interval J. Let [y1(x), y2(x)] be a fundamental 

solution set for the corresponding homogeneous equation 

 

L[y] = 0         …(2) 

 

Then we know that the general solution of (2) is given by 

Yc(x) = c1y1(x) + c2y2(x),      …(3) 

 

Where c1 and c2 are constants.  To find a particular solution of the non-homogeneous 

equation, the idea associated with the method of variation of parameters is to replace 

the constants in Eqn. (3) by function of x.  That is, we seek a solution of Eqn. (1) of 

the form 

yp(x) = u1(x)y1(x) + u2(x)y2(x),     …(4) 
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where u1(x) and u2(x) are unknown functions to be determined. Since we have 

introduced two unknowns, we need two equations involving these functions for their 

determination. 

 

In other words, we impose two conditions which the functions u1 and u2 must satisy in 

order that relation (4) is a solution of Eqn. (1).  We call these conditions the auxiliary 

conditions. These conditions are imposed in such a way that the calculations are 

simplified. Let us see how this is done. 

 

Now if relation (4) is a solution of Eqn. (1), then it must satisfy it.  Thus, first we 

compute y'p(x) and y"p(x) from Eqn. (4). 

 

y '

p
 = (u '

1
y1 + u '

2
y2) + (u1y

'

1  +u2y
'

2 )    …(5) 

 

To simplified the computation and to avoid second order derivatives for the unknown 

u1, u2 in the expression for y "

p
, let us choose the first auxiliary condition as 

u'1y1 + u
'

2
y2 = 0              …(6) 

 

Thus relation (5) becomes 

y '

p
 = u1y

'

1  + u2y
'

2               …(7) 

and  
 

y '

p
 = u

'

1
y

'

1
 + u

'

1 y "

1
 + u

'

2
y

'

2  +u2y
"

2             …(8) 
 

Substituting in Eqn (1), the expressions for yp, y
'

p
 and y "

p
 as given b Eqn. (4), (7) and 

(8), respectively, we get 

b(x) = L[yp] 

= (u
'

1
y

'

1
 + u1 y

"

1  + u
'

2
y

'

2
 + u2y

"

2
) + a1( 1

u '

1
y +

2
u '

2
y ) + a2( 1

u y1 + 
2

u y2) 

= ( '

1
u

'

1
y + 

' '

2 2
u y ) + 

1
u ( "

1
y + a1 

'

1
y +a2y1) + u2(

"

2
y + a1

'

2
y  + a2y2) 

= (
'

1
u '

1
y +

' '

2 2
u y ) + 

1
u  L[y1] + 

2
u  L[y2]        …(9) 

since y1 and y2 are the solution of the homogeneous equation, we have 

L[y1] = L[y2] = 0 

 

Thus Eqn. (9) becomes 
'

1
u '

1
y  + 

' '

2 2
u y  = b(x)          …(10)  

which; is the second auxiliary condition. 

 

Now if we can find u1 and y2 satisfying Eqns. (16) and (10), viz., 
' '

1 1 2 2

' ' ' '

1 1 2 2

y u y u 0

y u y u b(x)

 


  
       …(11) 
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then yp given by Eqn. (4) will be a particular solution  of Eqn. (1).  In order to 

determined u1, u2 we first solve the linear system of Eqns (11) for 
'

1
u  and 

'

2
u . 

Algebraic manipulations yield 

 

'

1
u (x) = 2

1 2

b(x)y (x)

W(y , y )


, '

2
u (x) = 1

1 2

b(x) y (x)
,

W(y , y )
   …(12) 

where 

W(y1, y2) = 
1 2

' '

1 2

y y

y y
 = y1 

'

2
y  -  y2 

'

1
y  

 

is the Wronskian of y1(x) and y2 (x). 

 

Note that this Wronskian is never zero on J, because {y1, y2} is a fundamental solution 

set. 

On integrating 
'

1
u (x) and 

'

2
u given by Eqn. (12), we obtain 

 

yp(x) = 2

1 2

b(x) y (x)

W(y , y )


  dx, u2(x) = 1

1 2

b(x) y (x)

W(y , y )
  dx        …(13)  

Hence 

yp(x) = y1(x) 2

1 2

b(x) y (x)

W(y , y )


  dx + y2(x) 1

1 2

b(x) y (x)

W(y , y )
  dx ...(14) 

 

is a particular integral of Eqn. (1). 

 

We now sum up the various steps involved in determining a particular solution of 

Eqn. (1). 

 

Step 1: Find a fundamental solution set {y1(x), y2(x)} for the corresponding 

homogeneous equation. 

 

Step II:  Assume the particular integral of Eqn (1) in the form 

yp(x) = u1(x) y1(x) + u2(x) y2(x) 

and determine u1(x) and u2(x) by using the formula (13) directly or by first solving the 

system of Eqns. (11) for ------- and then integrating. 

 

Setp III:  Substitute u1(x) and u2(x) into the expression for yp(x) to obtain a particular 

solution. 

 

We now illustrate these steps with the help of the following examples. 
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Example 1: Determine the general solution of the differential equation 

 
2

2

d y

dx
 + y = secx, 0 < x < 

2


 

 

Solution: Step I: The auxiliary equation corresponding to the given equation is 

m
2
 + 1 = 0 

 m =  i 

and the two solutions of the reduced equation are 

y1(x) = cosx 

and 

y2(x) = sinx. 

Hence the complementary function is given by 

Yc(x) = c1cosx + c2sinx. 

 

Step II: To find particular integral, we write 

yp(x) = u1(x) cosx + u2(x)sinx     …(15) 

p
dy

dx
  = [-u1(x)sinx + u2(x)cosx] + 1

du

dx
 cosx + 2

du

dx
 sinx 

 

Let us take the first auxiliary condition as 

1
du

dx
  cosx + 2

du

dx
 sinx = 0     …(16) 

 

So that  

p
dy

dx
= - u1(x)sinx + u2(x)cosx 

 

Differentiating the above equation once again, we get 

p
dy

dx
 = - u1(x)cosx = u2(x)sinx – sin 1

du

dx
+ cosx 2

du

dx
  …(17) 

Since yp(x) must satisfy the given equation, we substitute in the given equatin the 

expression for yp and ----- fom Eqns. (15) and (17), respectively, and obtain 

 - sinx 1
du

dx
 + xosx 2

du

dx
 = secx     …(18) 

On solving Eqns. (16) and (18) for 1
du

dx
 and 2

du

dx
, we get 

1
du

dx
 = - tanx, 2

du

dx
 = 1, 

which on integration yields 

u1(x) = In(cosx)  and u2(x) = x 
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Step III: Substituting the values of u1(x) and u2(x) in Eqn. (15) we obtain a particular 

solution of the given equation in the form 

yp(x) = cosx In(cosx) + xsinx 

and the general solution is 

y = c1cosx + c2sinx + xsinx + cosxIn(cosx) 
 

Note that in Eqn. (1) we have taken the coefficients of y" to be 1. if the given equation 

is of the form a0(x)y" + a1(x)y' + a2(x)y = b(x), then before applying the method it 

must be put in the form y" + p(x)y' + q(x)y = g(x)y = g(x) as we have done in the 

following example. 
 

Example 2: Find the general solution of 

(1 – x
2
) 

2

2

d y

dx
 - 

1

x
 
dy

dx
 = f(x)       …(19) 

 

Solution: Step 1: We first rewrite the given equation in the form 
2

2

d y

dx
 - 

2

1

x(1 x )

dy

dx
 = 

2

f (x)

(1 x )
 

The corresponding homogeneous equation is 
2

2

d y

dx
 - 

2

1

x(1 x )
 
dy

dx
 = 0      …(20) 

This is a first order equation in 
dy

dx
.  To solve this we put 

dy

dx
 = p. Then Eqn. (20) 

reduces to 

dp

dx
 - 

2

1

x(1 x )
 p = 0 

or 
1

p
 dp = 

2

dx

x(1 x )
       …(21) 

 

Now Eq. (21) is in variable separable form and can be expressed as 

dp

p
 = 

2

1 x

x 1 x

 
  

 dx 

 

Integrating we get 
 

P = 1

2

c x

1 x
 

or  
dy

dx
 = 1

2

c x

1 x
         …(22) 

 

Integrating Eqn. (22), once again, we get the solution of Eqn. (20) in the form 

Yc(x) = - 21 x  + c2        …(23) 

where c1 and c2 are arbitrary constants. 
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Step II: For the given differential equation, assume a particular solution in the form 

yp(x) = u1(x) 21 x  + u2(x) 

 
p

dy

dx
 = 

2

x

1 x




 u1 + 

2 1 2
du du

1 x
dx dx

 
  

 
 

 

We choose the first auxiliary condition as 

21 x  1
du

dx
 + 2

du

dx
 = 0        …(24) 

Then 

p
dy

dx
 = 

2

x

1 x




 u1 

and 

2

p

2

d y

dx
 = - 

2 3/ 2

1

(1 x )
 u1 - 

2

1

1 x
 1
du

dx
 

 

Substituting, from above, the expressions for '

p
y  and "

p
y in Eqn. (19), we get 

- x 21 x  1
du

dx
 = f(x)        …(25) 

as our second auxiliary condition. 

Solving Eqns. 924) and (25) for 
'

1
u  and

'

2
u  and integrating, we get 

U1(x) = - 
2

f (x)

x 1 x
  dx and u2(x) = 

f (x)

x
  dx 

Step III: The expressions for u1(x) and u2(x) when substituted in yp(x) gives a 

particular integral in the form 

Yp(x) = - 
21 x

2

f (x)

x 1 x
 dx + 

f (x)

x
  dx 

 

Hence a general integral o fthe given differential equation is 

Y = - c1 
21 x  + c2 - 

21 x  
2

f (x)

x 1 x
  dx + 

f (x)

x
  dx 

You may now try the following exercises. 

 

If you have carefully gone through Example 1 and 2 above, and also attempted 1. And 

2., you will find that the results of second order non-homogeneous linear differential 

equations can be put in the form of the following theorem. 

 

Theorem 1: If the functions a0(x), a1(x), a2(x) and b(x) are continuous on some 

interval J and if y1 and y2 are the linearly independent solutions of the homogeneous 

equations associated with the differential equation 

A0(x) 
2

2

d y

dx
 + a1(x) 

dy

dx
 + a2(x)y = b(x),    …(26) 

then a particular solution of Eqn. (26) is given by 
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yp(x) = -y1(x) 2

0 1 2

y (x) b(x)

a (x) W(y , y )
 dx + y2(x) 1

0 1 2

y (x) b(x)

a (x) W(y , y )
 dx     

       ...(27) 

where w(y1, y2) is the Wronskian of y1(x) and y2(x). 

 

Remark:  In using the method of variation of parameters for finding a particular 

integral of a given equation, it is advisable to choose a particular integral yp(x) = u1(x) 

y1(x) + u2(x) y2(x), and then proceed to find u1(x) and u2(x) as we have done in 

Examples 1 and 2 above.  It is usually avoided to memorise formulas given by Eqns. 

(13) or (27).  But since the procedure involved is somewhat long and complicated  and 

moreover, it may not always be easy or even possible to evaluate the integrals 

involved, these formulas turn out to be useful.  In such cases, the formulas for yp(x) 

provide a starting point for the numerical evaluation of yp(x). 

 

The method of variation of parameters which we have discussed for non-

homogeneous second order equations can be easily generalized to nth order equations 

of the form 

 

A0(x) 
n

n

d y

dx
 + a1(x) 

n 1

n 1

d y

dx




 + …+ an(x)y = b(x) 

 

where a0(x), a1(x),……, an(x), b(x) are continuous in some interval J. The learner 

interested into the details of the method for a higher order equation may refer to the 

Appendix at the end of the Unit.  We shall not be giving the details at this stage but, 

however, illustrate it through an example. 

 

Example 3:  Find the general solution of 

 
3

3

d y

dx
 - 6 

2

2

d y

dx
 + 11 

dy

dx
 - 6y = e

2x
 

 

Solution: Step I:  The auxiliary equation corresponding to the given equation is 

m
3
 – 6m

2
 + 11m – 6 = 0 

 (m – 1) (m
2
 – 5m + 6) = 0 

 (m – 1) (m – 2) (m – 1) = 0 

thus the linearly independent solutions are 

y1(x) = e
x
, y2(x) = e

2x
 , y3(x)  = e

3x 
,
      

and the complementary function is given by 

yc(x) = c1e
x
  + c2e

2x 
+ c3e

3x
      …(28) 

 

Step II: To find particular integral, we write 

yp(x) = u1(x)e
x
 + u2(x)e

2x
 + u3(x)e

3x
    …(29) 


p

dy

dx
+ (

'

1
u e

x
 + 

'

2
u e

2x
 + '

3
u  e

3x
) + (u1 e

x
 + 2u2e

2x
 + 3u3e

3x
) 
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Let the first auxiliary condition be 
'

1
u ex + 

'

2
u e

2x
 + 

'

3
u e

3x
)  = 0     …(30) 

Thus 
'

p
y  =  u1e

x
 + 2u2e

2x
 + 3u3e

3x 

and 
"

p
y  = 

'

1
u  e

x
 + 2

'

2
u e

2x
 + 3

'

3
u  e

3x
) + (u1e

x
 + 4u2e

2x
 + 9u3e

3x) 

 

Let us choose the second condition as 

 
'

1
u e

x
 + 2

'

2
u  e

2x
 + 3 '

3
u  e

3x
 = 0     …(31) 

Then 
"

p
y  = u1e

x
 + 4u2e

2x
 + 9u3e

3x 

 "

p
y  =  (u

'

1
u e

x
 + 4

'

2
u  e

2x
 + 9

'

3
u  e

3x
) + (u1e

x
 + 8u2e

2x
 + 27u3e

3x
) 

Substituting the values of yp,
'

p
y , "

p
y  and "'

p
y  in the given equation, we get 

 

(
'

1
u  e

x
 + 4

'

2
u  e

2x
 + 9

'

3
u  e

3x
) + (u1e

x
 + 8u2e

2x
 + 27u3e

3x
) 

- 6(u1e
x
 + 4u2e

2x
 + 9u3e

3x
) + 11(u1e

x
 + 2u2e

x
 + 2u2e

2x
 + 3u3e

3x
) 

- 6(u1e
x
 + u2e

2x
 + u3e

3x
) = e

2x
     …(32) 


'

1
u  e

x
 + 4

'

2
u  e

2x
 + 9

'

3
u  e

3x
 = e

2x
, 

which is our third auxiliary condition 

Thus, we get the system of equations 

 
' x ' 2x ' 3x

1 2 3

' x ' 2x ' 3x

1 2 3

' x ' 2x ' 3x 2x

1 2 3

u e u e u e 0

u e 2u e 3u e 0

u e 4u e 9u e e

  


   
   

       …(33) 

 

Solving Eqns. (33) for '

1
u , '

2
u  and  '

3
u , we get 

'

1
u  = 

1

2
 e

x
, '

2
u  = - 1 and '

3
u  = 

1

2
 e

-x
 

Integrating, we get 

u1 = 
1

2
e

x
, u2 = - x and u3 = 

1

3
 e

-x
 

 

Step III: We get a particular integral in the form 

yp(x) = 
1

2
 e

2x
 – xe

2x
 - 

1

2
 e

2x
 = - xe

2x
, 

and the general solution is 

y = c1e
x
 + c2e

2x
 + c3e

2x
 – c3e

3x
 – xe

2x, 

 

You may now try this exercise. 
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Clearly the method of variation of parameters has an advantage over the method of 

undermined coefficients in the sense that it always yields a particular solution yp 

provided all the solutions of the corresponding homogeneous equation are known.  

Moreover, its application is not restricted to particular forms of the non-homogeneous 

term.  In the next section we will discuss a technique which is very similar to the 

method of variation of parameter. 

 

3.2 Reduction of Order 
 

For a given nth order linear homogeneous differential equation, if one nontrivial 

solution is known, then the method of reduction of order, as the name suggests, 

reduces the equation to an (n- 1)th order equation. Thus, if we can find in some way, 

one or more linearly independent solutions of the reduced equation, we can 

accordingly reduce the order of the given differential equation.  In other words, if p 

independent solutions of a homogeneous linear corresponding to an nth order equation 

are known, where p < n, then the technique can be used to obtain a linear equation of 

order (n- p). This fact is particularly interesting when n = 2, since the resulting first 

order equation ca always be solved by the methods we have done in Block 1. That is, 

if we know one solution of the homogeneous linear differential equation of the second 

order, we can solve the non-homogeneous equation by the method of reduction of 

order and obtain both a particular solution and a second linearly independent solution 

of the homogeneous equation.  Let us now see how method works for a second order 

linear equation. 

 

Consider a second order non-homogeneous equation of the form (1), viz., 
2

2

d y

dx
 + a1(x) 

dy

dx
 + a2(x) y = b(x), 

where a1(x), a2(x) and b(x) are continuous on some interval J. Suppose that y = y1(x) is 

a nontrivial solution of the corresponding homogeneous equation  
2

2

d y

dx
 + a1(x) 

dy

dx
 + a2(x)y  = 0     …(34) 

 

Then y = cy1(x) is also a solution of Eqn. (34) for some constant c.  We now replace 

the constant c by an unknown function v(x) and take a second trial solution in the 

form 

 

y = v(x)y1(x) 

Now,  

y' = v'y1 + vy '

1
 

y" = v"y1 + 2v' y
'

1
 + vy

"

1
 

substituting from above the expression for y, y' and y"  in the given equation, we get 

(v"y1 + 2v'y
'

1
 + vy

"

1
) + a1(v'y1 + vy

'

1
) + a2vy1 = b(x) 

  v"y1 + v' (2y '

1
 + a1y1) + v(y "

1
 + a1y

'

1
 + a2y1) = b(x)  …(35) 
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Since y1 is a solution of Eqn. 934), the last term on the l.h.s. of Eqn. (35) is zero. 

Therefore Eqn. (35) reduces to 

v"y1 + v'(2y '

1
 + a1y1) = b(x)      …(36) 

 

Let
dv

dx
 = p(x), so that Eqn. (36) becomes 

dp

dx
 + 

'

1 1 1

1

2y a y

y


 p = 

1

b(x)

y
      …(37) 

This is a first order linear differential equation with integrating factor 

 

I.F. = EXP 
'

1 1 1

1

2y a y
dx

y

 
 
 
  

Now 
'

1 1 1

1

2y a y
dx

y


 = 2Iny1 + 

1
a (x) dx 

 I.F. = 2

1
y  1a (x)dxe = 2

1
y  h(x), where h(x) = e

a--(x)dx
 

Thus Eqn. (37) reduces to 

 
2

1
y h(x)p(x) = c1 +  b(x) y1h(x) dx 


dv

dx
 = 

2

1

1

y h(x)
1 1

c b(x) y h(x) dx    

 

Integrating the above equation once again, we obtain 

V(x) = c2 + c1 2

1

1

y h(x)
 dx + 

2

1

1

y h(x)
 1

b(x) y h(x) dx 
  dx 

Thus the general solution of the given equation can be expressed as 

 

y = v(x)y1 (x) = c2y1(x) + c1y1(x) 
2

1

1

y h(x)
  

 

+ y1(x) 
2

1

1

y h(x)
 1

b(x) y h(x) dx 
   dx  …(38) 

 

Note that the function y1(x) 
2

1

1

y h(x)
 , in the second term on the r.h.s. of Eqn. (38), is 

the 2
nd

 linearly independent solution of Eqn. (34) and the last term on the r.h.s. is a 

particular integral of the given non-homogeneous equation. 

 

We now take up an example to illustrate the theory. 

 

Example 4: Find the general solution of 

x
2
y" – xy' + y = x

1/2
, 0 < x < , 

Given that y1 = x is a solution of the corresponding homogeneous equation. 
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Solution: The given equation is 

x
2
y" – xy' + y = x

1/2
       …(39) 

Let us take y = xv(x) as a trial solution for Eqn. (39).  So that 

y' = v + xv' 

v" = 2v' + xv" 

Substituting for y, y' and y" from above in Eqn. (39), we obtain 

x
2
(2v' + xv") – x(v + xv') + xv = x

1/2 

 x
3
v" + x

2
v' = x

1/2 

 v" + ----- v' = x
-5/2      

…(40) 

 

Eqn. (40) is a linear differential equation in v'.  ts integrating factor is 

I.F. = 
1

dx
xe


= e
Inx 

= x 

 

Therefore, Eqn. (40) yields 

V' x =  x.x
-5/2

 dx + c1 

 v' = c1 x
-1

 – 2x
-3/2 

Integrating once again, we have 

v = c1 Inx + 4x
-1/2

 + c2 

Thus, 

y = xv = c1x Inx + c2x + 4x
1/2

 

is the general solution of Eqn. 939). 

 

And now some exercise for you. 

 

From that above it is seen that if one solution of the second order linear homogeneous 

Eqn. (34) is known, then the second linearly independent solution and a particular 

integral of the associated non-homogeneous equation can be determined. 

 

We now give some rules, which will help you to find one integral included in the 

complementary function merely by inspection. 

 

For a homogeneous equation of the form (34) if 

 

Rule I: 1 + a1(x) + a2(x) = 0, then y = e
x
 is an integral of the Eqn. (34). 

For instance, consider an equation 

xy" – y' + (1 – x) y = x
2
e

-x
      …(41) 

 

To bring it to the form (34), we write it a 

y" - 
1

x
y' + 

1 x

x

 
 
 

 y = xe
-x

 

Thus, a1(x)  = - 
1

x
 and a2(x) = 

1

x
 - 1 

Now 1 + a1(x) + a2(x) = 1 - 
1

x
 + 

1

x
 - 1 = 0 
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Thus, according to Rule 1, y = e
x
 is an integral of the equation. You can verify your 

result by substituting y = e
x
 in the given equation and check if it satisfies the given 

equation. 

 

Rule II: a1(x) + xa2(x) = 0 then y = x is an integral of the Eqn. (34) 

Consider the equation, 

91 – x
2
) y" + xy' – y = x((1 – x

2
)

3/2
 

This equation can be written as 

y" + 
2

x

1 x
 y' - 

2

1

1 x
 y = x 21 x  

Comparing the above equation with Eqn. (34), we have 

a1(x) = 
2

x

1 x
 and a2(x) = - 

2

1

1 x
. 

Here a1(x) + xa2(x) = 0, hence by the above rule y = x is an integral of the 

homogeneous equation corresponding to the equation. 

 

Rule III: 1 – a1(x) + a2(x) = 0, then y = e
-x

 is an  integral of the Eqn. (34) 

 

Rule IV: 2 + 2xa1(x) + x
2
 a2(x) = 0, then y = x

2
 is an integral of the Eqn. (34). 

 

Rule V: 1 + 1 2

2

a (x) a (x)


 
 = 0,  > 0, then y = e

x
 is an integral of the Eqn. (34). 

 

Note that in applying Rules I – V the given equation should be first put in the form of 

Eqn. (34). 

 

You may now try the following exercise. 

 

So far you have seen that the method of variation of parameters can be used only for 

those differential equation for which we know all the linearly independent solutions of 

the corresponding homogeneous equation.  Method of reduction of order is helpful for 

finding complete solution of the second order non-homogeneous linear equations even 

if one solution of the corresponding homogeneous equation is known.  There exists 

certain rules which, at once, give one solution merely through an inspection, included 

in the complementary function of the second order linear equations with constant 

coefficients.  But, no rules exist which may help to guess one or more integrals 

included in the complementary function when the equation is or order higher than two 

and is having variable coefficients.  However, there exists a class of linear differential 

equations with variable coefficients known as Euler’s equations for which it is 

possible to find all the linearly independent integrals of the complementary function. 

In the next section we take up the method of solving Euler’s Equations. 
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3.3 Euler’s Equations 
 

Consider the following differential equations 

x
3
 

3

3

d y

dx
 + x

2
 

2

2

d y

dx
 + 4x  + 2y = e

x
     …(42) 

x 
2

2

d y

dx
 + 2x 

dy

dx
 + 2y = e

x
      …(43) 

(2x – 1)
3
 

3

3

d y

dx
+ (2x – 1) 

dy

dx
 - 2y = sinx    …(44) 

 

All the three equations given above are linear as the dependent variable y and its 

derivative appear in their first degree and moreover there is no term involving the 

product of the two.  Out of the three equations, only Eqn. (42) is such that the powers 

of x in the coefficients are equal to the orders of the derivatives associated with 

them. This type of equation known as homogeneous linear differential equation or 

Euler’s Equation. Eqn (43) is linear but not homogeneous.  Eqn. (44) is not of 

Euler’s from form but can be reduced to Euler’s form by the substitution X = 2x – 1. 

Here we shall consider only equations of the form (42) and (44). 

 

The general form of Euler’s equation of nth order is 

x
n

n

n

d y

dx
 + P1 x

n-1
n 1

n 1

d y

dx




 + P2x

n-2
 

n 2

n 2

d y

dx




 + ….+ Pn-1

dy

dx
 + Pny = f(x),     

       ...(45) 
 

where P1, P2, …, Pn are constants and right hand side is a constant or a function of x 

alone. 
 

Eqn. (45) can be transformed to an equation with constant coefficients by changing 

the independent variable through the transformation 

 

z = Inx or x = e
z
 

 

with this substitution, we have 

dy

dx
 = 

dy

dz
.

dz

dx
 = 

1

x
  

dy

dz
 

  x 
dy

dx
 = 

dy

dz
 = D1y, where D1 = 

d

dz
 

Also 
2

2

d y

dx
 = 

d

dx
 

1 dy

x dz

 
 
 

 = - 
2

1

x
 
dy

dz
+ 

1

x
 

2

2

d y

dx

dz

dx
 

           = 
2

1

x

2

2

d y dy

dz dz

 
 

 
 

  x
2
 

2

2

d y

dx
 = 

2

2

d y

dz
 - 

dy

dz
 = (D 2

1
 - D1) y = D1 (D1 – 1) y 
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Proceeding as above, we shall, in general, get 

x
n

n

n

d y

dx
 =  D1 (D1 – 1) (D1 – 2) …. (D1 - n 1)  y 

Thus, Eqn (45) is transformed to the equation 

[D1 (D1 – 1) – (D1- n 1)  + P1 D1(D1 – 1) ….( D1 n 2)  + … 

… + Pn-2 D1 (D1 – 1) + Pn-1 D1 + Pn] y = f(e
z
)   …(46) 

 

Eqn. (46) is an equation with constant coefficients and its complementary function can 

be determined by the methods given in Unit 5.  For obtaining its particular integral 

either the method of undetermined coefficients (as given in Unit 6 subject to the form 

of f(e
z
)), or the method of variation of parameters can be utilized if the solution of 

Eqn. (46) is 

y = g(z), 

then the solution of Eqn. (45) will be 

y = g(Inx) 

we illustrate this method by the following examples 

 

Example 5: Solve x
2
 

2

2

d y

dx
- x  

dy

dx
+ y = Inx 

 

Solution:  It is Euler’s equation of order 2. To solve it, let 

x = e
z
 or z = Inx 


dy

dx
 = 

dy

dz
.

dz

dx
 = 

1

x
  

dy

dz
 x 

dy

dx
 =

dy

dz
= D1y, where D1 = 

d

dz
 

 
2

2

d y

dx

d

dx

1 dy

x dz

 
 
 

= - 
2

1

x
 
dy

dz
+ 

1

x

2

2

d y

dz

dz

dx
 = 

2

1

x
 

2

2

d y dy

dz dz

 
 

 
 

 x
2 

2

2

d y

dx

  
=

 
D1 (D1 – 1) y  

Substituting for 
dy

dx
and  

2

2

d y

dx
 in the given equation, we get 

[D1 (D1- 1) - D1 + 1] y = z 

 [--- - 2 D1 + 1] y = z        …(47) 

A.E. is 

m
2
 – 2m + 1  0 

 m =  1, 1 

 C.F. = (c1 + cz) e
z
 

To find P.I. of Eqn. (47), let us assume that 

yp = u1(z) e
z
 + u2(z) ze

z
      …(48) 

 
p

dy

dz
 = 

'

1
u e

z
 + 

'

2
u  ze

z 
+u1e

z
 + u2 (ze

z
 + e

z
) 

 

As first auxiliary condition, assume that 
'

1
u  e

z
 + 

'

2
u  ze

z
 = 0,       …(49) 
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so that 

p
dy

dz
 = u1e

z
 + u2(z + 1) e

z
      …(50) 

 

Differentiating once again, we have 

 

p
dy

dz
 = '

1
u e

z
 + '

2
u (z + 1) e

z
 + u1e

z
 + u2e

z
 (z + 1) + u2e

z
  …(51) 

 

If yp(z) is a solution of Eqn. (47), it must satisfy it.  Hence substituting the expression 

for yp, and --- and --- from Eqn. (48), (50) and (51), respectively, in Eqn. (47), we 

obtain the second auxiliary condition as 

 
'

1
u e

z
 + (z + 1) e

z
 = z       …(52) 

 

Solving  Eqn. (49) and (52) for-------, we get 
'

2
u e

z
 = z and e

z
 '

1
u  = - z

2
 

 '

1
u = - z

2
 e

-z
 and --- = ze

-z 

 

Integrating the above equation, we get 

u1 = -  z
2
 e

-z
 dz 

    = - 
z

2 ze
z 2 z e dz

1



 
  

 
 

    =  + z
2
 e

-z
 – 2 

z

2 ze
z e dz

1



 
  

 
 

    = z
2
 e

-2
 + 2z e

-z
 + 2e

-z 

and u
2 =  z e

-z
 dz = - ze

-z
 +  e

-z
 dz = - z e

-z 
 e

-z
 

 

Substituting the values of u1(z) and u2(z) in Eqn. (48), a particular integral of Eqn. 

(47) can be expressed in the form 

yp(z) = (z
2
 + 2z + 2) e

-z
. e

z
 + ( - z – 1) e

-z
 ze

z
 

         = (z
2
 + 2z + 2) – z(z + 1) 

         = z
2
 + 2z + 2 – z

2
 – z 

         = z + 2 

and the general solution of Eqn. (47) is 

y = (c1 + c2z) e
z
 + z z + 2 

 

Replacing z by In x, the general solution f the given equation is  

y = (c1 + c2Inx). x + Inx + 2 

 

The complementary function of Euler’s Eqn. (45) can also be found by assuming y = 

x
m

 in the homogeneous part of the equation and then finding the values of m.  we 

illustrate it through the following example. 
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Example 6: Solve x
3
 

3

3

d y

dx
 - x

2
 

2

2

d y

dx
 - 6x 

dy

dx
 + 18y = 0 

 

Solution: Let y = x
m

 

 
dy

dx
 = m x

m-1
 

2

2

d y

dx
 = m (m – 1) (m – 2) x

m-3
 

 

Substituting the above values in the given equation, we get 

[m (m – 1) (m – 2) … m(m – 1) – 6m + 18] x
m

 = 0 

  (m
3
 – 4m

2
 – 3m + 18) x

m 
= 0 

 

thus, if 

m
3
 – 4m

2
 = 3m + 18 = 0,      …(53) 

then y = x
m

 satisfies the given equation. 

Equ. (53) is an algebraic equation of 3rd degree in m and its root are  

M = - 2, 3, 3. 

Thus, y = x
-2

, y = x
3
 and y = x

3
 are the solutions of the given equation.  hence the 

general solution of the given equation is 

y = c1x
-2

 + x
3
(c2+ c3 (Inx)) 

 

Note: Had all the roots of Eqn. (53) been real and different, the solutions 

corresponding to these roots would have been independent solutions and the general 

solution would have been pf the form 

y = c1
1mx + c2

2mx + c3
3m

x  

 

In the case of repeadted real roots of Eqn. (53), if a root m1 is repeated r times, the 

integral corresponding to root m1 is 

[c1 + c2Inx + c3 (Inx)2 +…+ cr (Inx)
r-
1] 1mx   

 

Further, if Eqn. (53) had a pair of complex roots, say i   , then the corresponding 

part of the complementary function would have been  

x  [c1 cos ( Inx) + c2sin ( Inx)] 

we illustrate the case of complex roots by the following example. 

 

Example 7: Solve x
2
y" + xy' + 4y = 0 

Solution:  Substituting y = x
m
 in the given equation, we get  

[m(m – 1) + m + 4] x
m
 = 0 

Thus y = x
m

 satisfies the given equation if 

m(m – 1) + m + 4 = 0 

  m
2
 + 4 = 0 

  m =   2i 

 

 



MTH 232                                                                                                                                               MODULE 4 

187 

 

 

Hence, the general solution of the given equation is 

 

y = c1 cos (2Inx) + c2sin(2Inx) 

You may now try the following exercises. 
 

Earlier we mentioned that Eqn. (44) is not Euler’s equation, but can be reduced to 

Euler’s form by the substitution X = 2x – 1.  We now consider such equations which 

are reducible to Euler’s form. 

 

Equations Reducible to Euler’s form 

Consider the general nth order equation 

(ax + b)
n

n

n

d y

dx
+ (ax +b)

n-1
P1

n 1

n 1

d y

dx




+…+(ax + b) Pn-1

dy

dx
+Pny = f(x),    ...(54) 

where a, b, P1, …, Pn are all constants. 

Equations of the form (54) can be reduced to Euler’s equations by substituting  X = ax 

+ b. 

With this substitution 

dy

dx
 = a 

dy

dX
, 

2

2

d y

dx
 = a

2
 

2

2

d y

dx
, …, 

n

n

d y

dx
 = a

n
 

n

n

d y

dX
 

and Eqn. (54) reduces to the equation, 

 

a
n
 X

n
 

n

n

d y

dx
 + a

n-1
 X

n-1
 

n 1

n 1

d y

dx




+ …+ aX Pn-1 

dy

dx
+ Pny = g(X),            …(55) 

 

where g is transformed form of the function f. 

 

Eqn. (55) is now in Euler’s form and can solved by the methods given earlier. 

 

However, Eqn. (54) can be directly reduced to an equation with constant coefficients 

by substituting ax + b = e
z
, instead of first substituting ax + b = X and then X = e

z
. 

 

We illustrate the above theory with the help of following example. 

 

Example 8:  Solve (3x + 2)
2
 

2

2

d y

dx
 + 3 (3x + 2) 

dy

dx
 - 36y = 3x

2
 + 4x + 1 

 

Solution:  The given equation is an equation reducible to Euler’s equation.  We can, 

however, reduce it to an equation with constant coefficients by a single substitution. 

 

3x + 2 = e
z
 or z  = In (3x +2) 

 

 
dy

dx
 = 

dy

dz
  

dz

dx
 = 

1

3x 2
. 3 

dy

dz
  (3x + 2) 

dy

dx
 = 3 

dy

dz
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and 
2

2

d y

dx
 = 

d

dx
 

3 dy

3x 2 dz

 
  

 = 
2

2

3

(3x 2)




  

dy

dx
 + 

3

3x 2
 

2

2

d y

dz
 
dz

dx
 

     = 
2

2

3

(3x 2)
 

2

2

d y dy

dz dz

 
 

 
 

 

Substituting y' and y" from above in the given equation, we get 

 

9 
2

2

d y dy

dz dz

 
 

 
 + 3.3 

dy

dz
 - 36y = 

1

3
 [e

2z
 – 1] 

 


2

2

d y

dz
 - 4y = 

1

27
 (e

2z
 – 1)      …(56) 

A.E is 

m
2
 – 4 = 0 m =   2 

 

Hence C.F. = yc = c1e
2z

 + c2e
-2z 

To find a particular integral, we write 

yp(z) = u1(z) e
2z

 + u2(z) e
-2z

      …(57) 


p

dy

dz
 = '

1
u e

2z
 + '

2
u  e

-2z
 + 2 (u1e

2z
 – u2e

-2z
) 

As the first auxiliary condition, let 
'

1
u  e

2z
 + '

2
u  e

-2z
 = 0       …(58) 

so that 

p
dy

dz
 = 2 (u1e

2z
 – u2e

-2z
)      …(59) 

Differentiating Eqn. (59) once again, we get 

p
dy

dz
 = 2( '

1
u e

2z
 - '

2
u e

-2z
) + 4u1e

-2z
 + 4u2e

-2z
   …(60) 

 

Since yp(z) must satisfy Eqn. (56), hence on combining Eqn. (57), (59) and (60) we 

get the second auxiliary condition as 

 

2( '

1
u  e

2z
 - '

2
u  e

-2z
) = 

1

27
 (e

2z
 – 1) 

  
'

1
u  e

2z
 - 

'

2
u  e

-2z
 = 

1

54
 (e

2z
 – 1)     …(61) 

 

Solving Eqns. (58) and (61) for 
'

1
u  and 

'

2
u , we get 

'

1
u  = 

1

108
 (1 – e

-2z
) and 

'

2
u  = - 

1

108
 (1 – e

2z
) 

 

Integrating 
'

1
u  and 

'

2
u , we get 
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u1 = 
1

108
 

2ze
z

2

 
 

 
 e

2z
 - 

1

108
 

2ze
z

2

 
 

 
 

on substituting the values of u1(z) and u2(z) in relation (57), a particular solution of 

Eqn. (56) is obtained in the form. 

 

yp = 
1

108

2ze
z

2

 
 

 
 e

2z
 - 

1

108
 

2ze
z

2

 
 

 
 e

-2z
 

= 
1

108
 z (e

2z
 – e

-2z
) + 

1

108
 

 The general solution of Eqn. (56) is 

y = c1e
2z

 + c2e
-2z

 + 

1

108
 z [e

2z
 – e

-2z
] + 

1

108
 

and the required solution of the given equation is 

y = c1 (3x + 2)
2
 + 2

2

c

(3x 2)
 + 

1

108
 In(3x + 2) 2

2

1
(3x 2)

(3x 2)

 
  

 
 + 

1

108
 

 

You may not try the following exercises. 
 

4.0 CONCLUSION 
 

We now end this unit by giving a summary of what we have covered in it. 
 

5.0 SUMMARY 
 

In this unit we have studied the details concerning the following results: 
 

1) Let y1 and y2 be the linearly independent solutions of the reduced equation of a 

non-homogeneous second order linear differential equation with constant or 

variable coefficients.  Then on substituting y = y1u1(x) + y2u2(x) and imposing 

the conditions (11), the particular integral of the given equation can be found. 
 

2) If y = y1(x) is one solution of the reduced equation, then on substituting 

y = y1(x) v(x) 

the second solution of the reduced equation and a particular integral of the 

corresponding non-homogeneous equation can be determined. 
 

3) Rules for finding one integral included ion the complementary function of 

equations of the form (34) by mere inspection are given by the following table: 

  

Condition satisfied                               One integral 

1 + a1(x) + a2(x) = 0                              y = e
x
 

1 – a1(x) + a2(x) = 0                               y = e
-x

 

a1(x) + xa2(x) = 0                                   y = x 

2 + 2x a1(x) + x
2
 a2(x) = 0                     y = x

2
 

1 + 1
a (x)


 + 2

2

a (x)


 = 0,   > 0              y = xe  
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4) Differential equation with variable coefficient of the form 

 

 x
n
 

n

n

d y

dx
 + P1x

n-1
 

n 1

n 1

d y

dx




 + P2x

n-2
 

n 2

n 2

d y

dx




 +…+ Pn-1x

dy

dx
 + Pny = f(x), 

where P1, P2,…, Pn are constants and in which the powers of x in the 

coefficients are equal to the orders of the derivatives associated with them, is 

known as Euler’s equation.  This equation can be reduced to an equation with 

constant coefficients by using the substitution x = e
z
. 

 

6.0 TUTOR MARKED ASSIGNMENT 

 
1. Determine a particular integral, using the method of variation of parameter for 

the following differential equations: 

 

 a) y" + y = cosec x, 0 < x < 
2


 

 b) y" – 2y' + y xe
x
 Inx, x > 0 

 c) y" + y = tanx, 0 < x < 
x


 

 

2. Find a general solution of the following differential equations, given that the 

functions y1(x) and y2(x) for x > 0 are linearly independent solutions of the 

corresponding homogeneous equations. 

 

 a) x
2
y" – 2xy' + 2y = x + 1; y1(x) = x, y2(x) = x

2
 

 b) x
2
y" + xy' – y = x

2
e

x
; y1(x) = x, y2(x) = 

1

x
 

 c) xy" – (x + 1)y' + y = x
2
; y1(x) = e

x
, y2(x) = x + 1 

 

3. Using the method of variation of parameters, find the general solution of the 

following equations: 

 

 a) y" – y' = x
2
 

 b) y" – 2y" – y' + 2y = e
3x

 

 

4. Solve the following differential equations: 

 

 a) x
2
y" – 2xy' + 2y = 4x

2
, x > 0; y1(x) = x 

 b) x
2
y" + 5xy' – 5y = x

-1/2
, x > 0; y1(x) = x 

 

5. A solution of the differential equati0n 

 X
2
 (1 – x

2
) 

2

2

d y

dx
 - x

3
 
dy

dx
- 2y = 0 
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 Is y1 = 
21 x

x


.  Use the method of reduction of order to find a general 

solution. 

 

6. Solve equation 

 X(xcosx – 2sinx) 
2

2

d y

dx
 + (x

2
 + 2) sinx 

dy

dx
 - 2 (xsinx + cosx) y = 0 

 Given that y = x
2
 is a solution. 

 

7. Verify that y1(x) = e
x
 is a solution of the homogeneous equation corresponding 

to Eqn. (41). 

 

8. Find an integral included in the complementary function of the following 

equations, merely by inspection: 

 

 a) y" – cotx y' – (1 – cotx) y = e
x
 sinx 

 b) (x sinx + cosx) y" + x (cosx) y' – y cosx = x 

 c) (3 – x) y" – (9 – 4x) y' + (6 – 3x) y = 0 

 

9. Solve the following equations: 

 

 a) (x
2
D

2
 + 3xD) y = 

1

x
 

 b) (x
2
D

2
 + xD – 1) y = x

m
 

 c) 3 2

2 3

4 5 2
D D D

x x x

 
   

 
 y = 1 

10. Solve the following equations. 

 

 a) [(x + a)
2
 D

2
 – 4 (x + a) D + 6] y = x 

 b) [(1 + x)
2
 D

2
 + (1 + x) D + 1] y = 4 cos [In (x + 1)]. 
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