
MTH 251                                           MODULE 1 

 

 

192 

MODULE 1 STATIC: System of live vectors 
 

Unit 1  Vectors 

Unit 2  the Electromagnetic Field 

Unit 3  Tensors 

    

                                                                                                      

UNIT 1 VECTORS 

 

CONTENTS 

 

1.0   Introduction     

2.0    Objectives         

3.0     Main Content   

3.1 Definition and Elementary Properties 

3.2 The Vector Product 

3.3 Differentiation and Integration of Vectors 

3.4 Gradient, Divergence and Curl 

3.5 Integral Theorems  

3.6 Curvilinear Co-ordinates 

4.0    Conclusion         

5.0    Summary         

6.0    Tutor-Marked Assignment       

7.0    References/Further Reading       

 

1.0 INTRODUCTION 
 

A vector could be defined as a quantity which has both magnitude and direction. The 

vector a may be represented geometrically by an arrow of length  drawn from any 

point in the appropriate direction. In particular, the position of a point P with respect 

to a given origin O may be specified by the position vector r drawn from O to P. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 define a vector. 

 freely discourse some elementary properties of vector. 

 know about vector product. 

 know about differentiation and integration of vector. 

 know about Gradient, Divergence and Curl. 

 know about integral theorem. 

 know about Curvilinear Co-ordinates. 
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3.0     MAIN CONTENT 
 

3.1 Definition and Elementary Properties 
 

A vector a is a quantity specified by a magnitude, written a or 
, and a direction in space. It is to be contrasted with a scalar, which is a quantity 

specified by a magnitude alone. The vector a may be represented geometrically by an 

arrow of length  drawn from any point in the appropriate direction. In particular, the 

position of a point P with respect to a given origin O may be specified by the position 

vector r drawn from O to P. 

 

Any vector can be specified, with respect to a given set of Cartesian axes, by three 

components. If  are the Cartesian co-ordinates of P, then we write r = , 

and say that  are the components of r. (See Fig. A.I.). We often speak of P as 

‘the point r’. When P coincides with O, we have the zero vector 0 = (0, 0, 0) of length 

0 and indeterminate director. For a general vector a, we write a =  

 . 

 

The product of a vector a and a scalar c is ca = . If c > 0, it is a vector in 

the same direction as a, and of length ca; if c < 0, it is the opposite direction, and of 

length  In particular, if c = 1/a, we have the unit vector in the direction of a written 

as, à = a / . 

 

Addition of two vectors a and b may be defined geometrically by drawing one vector 

from the head of the other, as in Fig. A. 2. (This is the ‘parallelogram law’ for addition 

of forces). Subtraction is defined similarly by Fig. A.3. in terms of components, 

 

a + b = . 

 

It is often useful to introduce three unit vectors i, j, k, pointing in the directions of the 

axes, respectively. They form what is known as an orthonomal triad – a set 

of three mutually perpendicular vectors of unit length. It is clear from Fig. A.1 that 

any vector r can be written as a sum of three vectors along the three axes. 

 

 R =                                            (1) 

 

If   is the angle between the vectors a and b, then by elementary trigonometry the 

length of their sum is given by 

 

. 

 

It is useful to define the scalar product a.b (
,
a dot b

’
) as 

 
        (2) 
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Note that this is equal to the length of a multiplied by the projection of b on a, or vice 

versa. 

 

In particular, the square of a is:  
 

    (3) 

  
      

Thus we can rewrite the relation above as 

(a+b)
2
 = a

2
+b

2
+2a.b, 

 

And similarly 

  

 (a-b)
2
 = a

2
+b

2
-2a.b. 

 

All the ordinary rules of algebra are valid for sums and scalar products of vectors, 

save one. (For example, the commutative law of addition, a + b = b + a is obvious 

from Fig. A. 2, and the other laws can be deduced from appropriate figures). The 

exception is the following: for two scalars, the equation  implies that either 

 (or, of course, that both = 0), but we can find two non-zero vectors for 

which a.b = 0. In fact, this is the case if , that is if the vectors are orthogonal:  

 

a.b = 0 if a ┴ b. 

(i.e vector a is perpendicular to vector b) 

 

The scalar products of the unit vectors i, j, k are 

 

i
2
 = j

2
 = k

2
 = 1,    (4) 

i.j = j.k = k.i = 0. 

  

Thus, taking the scalar product of each in turn with (1), we find 

  i.r = x,   j.r = y,   k.r = z.   (5) 

 

These relations express the fact that the components of r are equal to its projections on 

the co-ordinate axes. 

 

More generally, if we take the scalar product of two vectors a and b, we find 

 

  a.b = axbx + ayby + azbz,    (6) 

 

and, in particular, 

  r
2
 = r

2
 = x

2
+y

2
+z

2
.    (7) 
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3.2 The Vector Product 
 

Any two nonparallel vectors a and b drawn from 0 define a unique axis through 0 

perpendicular to the plane containing a and b. It is useful to define the vector product 

a ۸b (‘a cross b’, sometimes written a x b) to be a vector along this axis whose 

magnitude is the area of the parallelogram with edges a, b, 

 
    (8) 

 

 

(See Fig. A.4.). To distinguish between the two opposite directions along the axis, we 

introduce a convention: the direction of  is that in which a right-hand screw would 

move when turned from a to b.  

 

A vector whose sense is merely conventional, and would be reversed by changing 

from a right-hand to a left-hand convention is called an axial vector, as opposed to an 

ordinary or polar vector. For example, velocity and force are polar vectors, but angular 

velocity is an axial vector (see §5.1). The vector product of two polar vectors is thus 

an axial vector. 

 

The vector product has one very important, but unfamiliar, property. If we interchange 

a and b, we reverse the sign of the vector product, 

 

     (9) 

 

It is essential to remember this fact when manipulating any expression involving 

vector products. In particular, the vector product of a vector with itself is the zero 

vector, 

 
 

More generally,   vanishes if  = 0 or , 

 

 
 
 

If we choose our co-ordinate axes to be right-handed, then the vector products of i, j, k 

are 

   
           (10) 

 

 
 

 

Thus, when we form the vector product of a and b we obtain 
 

 
 



MTH 251                                           MODULE 1 

 

 

196 

This relation may conveniently be expressed in the form of a determinant. 

 

.    (11) 

 

From any three vectors a, b, c, we can form the scalar triple product  
. Geometrically, it represents the volume V of the parallele-piped with 

adjacent edges a, b, c. (See Fig. A.5.) For, if  is the angle between c and  , then  

 

 
 

Where A is the area of the base, and h = c cos  is the height. The volume is 

reckoned positive if a, b, c form a right-handed triad, and 

 

 

 

 

 

 

 

 

Fig. 5 

 

Negative if they form a left-handed triad. For example,  but  

 

In terms of components, we can evaluate the scalar triple product by taking the scalar 

product of c with (A.11). We find 

 

                                         (12) 
 

Either from this formula, or from its geometrical interpretation, we see that the scalar 

triple product is unchanged by any cyclic permutation of a, b, c, but changes signs if 

any pair is interchanged, 

 

     
 

         (13) 

 

 

Moreover, we may interchange the dot and cross, 

 

      (14) 

 

c 

h 

b 
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(For this reason, the more symmetrical notation [a, b, c] is sometimes used for the 

scalar triple product.) 

 

Note that the scalar triple product vanishes if any two vectors are equal, or parallel. 

More generally, it vanishes if a, b, c are coplanar. 

 

We can also form the vector triple product  since this vector is perpendicular 

to  it must lie in the plane of a and b, and must therefore be a linear combination 

of these two vectors. It is not hard to show, by writing out the components, that 

 

    (15) 

Similarly, 

    (16) 

 

Note that these expressions are unequal, so that we cannot omit the brackets in a 

vector triple product. It is useful to notice that in both these formulae the term with 

positive sign is the middle vector b times the scalar product of the other two. 
 

3.3 Differentiation and Integration of Vectors 
 

We are often concerned with vectors which are functions of some scalar parameter, 

for example the position of a particle as a function of time, r(t). The vector distance 

travelled by the particle in a short time interval  
 is  

 
. 

 

(See Fig. A.6.). The velocity, or derivative with respect to t, is defined just as for 

scalars, as the limit of a ratio,  

ѓ =    (17) 

 

In the limit, the direction of this vector is that of the tangent to the path of the particle, 

and its magnitude is the speed in the usual sense. In terms of co-ordinates, 

 

 
 

Derivatives of other vectors are defined similarly. In particular, we can differentiate 

again to form the acceleration vector . 

 

It is easy to show that all the usual rules for differentiating sums and products apply 

also to vectors. For example, 
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Though in this case one must be careful to preserve the order of the two factors, 

because of the antisymmetry of the vector product. 

 

Note that the derivative of the magnitude of r, dr/dt, is not the same thing as the 

magnitude of the derivative . For example, for a particle moving in a circle, r is 

constant, so that  but clearly  is not zero in general. In fact, applying the rule 

for differentiating a scalar product to  we obtain 

 

 
   

Which may also be written 

 

    (18) 

 

 

Thus the rate of change of the distance r from the origin is equal to the radial 

component of the velocity vector. 

 

We can also define the integral of a vector. If v = dr/dt, then we also write  

 
 

and say that r is the integral of v. If we are given v(t) as a function of time, and the 

initial value of r, r(t0), then the position at any later time is given by the definite 

integral. 

 

     (19) 

 

 

 This is equivalent to the three scalar equations for the components, for example 

 

 
 

 

One can show, exactly as for scalars, that the integral in (19) may be expressed as the 

limit of a sum. 
 

3.4 Gradient, Divergence and Curl 
 

There are many quantities in physics which are functions of position in space; for 

example, temperature, gravitational potential or electric field. Such quantities are 

known as fields. A scalar field is a scalar function  
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 (x, y, z) of position in space; a vector field is a vector function A (x,y,z). We can 

also indicate the position in space by the position vector r, and write  (r) or A(r).  

 

Now let us consider the three partial derivatives of a scalar field, . 

They form the component of a vector field, known as the gradient of  and written 

grad  , or . To show that they really are the components of a vector, we 

have to show that it can be defined in a manner which is independent of the choice of 

axes. We note that if r and r + dr are two neighboring points, then the difference 

between the values of  at these points is 
 

   (20) 

 

Now, if the distance  is fixed, then this scalar product takes on its maximum value 

when dr is in the direction of  Hence we conclude that the direction of   is the 

direction in which  increases most rapidly. Moreover, its magnitude is the rate of 

increase of  with distance in this direction. (This is the reason for the name 

‘gradient’.) Clearly, therefore, we could define  by these properties, which are 

independent of any choice of axes. 

 

We are often interested in the value of a scalar field  evaluated at the position of a 

particle, (r(t)). From (20) it follows that the rate of change of (r(t)) is 

 

.                 (21) 

 

The symbol  may be regarded as a vector which is also a differential operator (like 

d/dx), given by 

 

      (22) 

 

 

We can also apply it to a vector field A. The divergence of A is defined to be 

 

Div A =                      (23) 

 

 

And the curl of A to be * 

 

        (24) 
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This latter expression is an abbreviation for the expanded form 

 

 
 

 

In particular, we may take A to be the gradient of a scalar field,  Then its 

divergence is called the Laplacian of , 

 

    (25) 

 

 

Just as  we find that the curl of a gradient vanishes, 

 

        (26) 

 

For example, its z component is 

 

 
 

Similarly, one can show that the divergence of a curl vanishes, 

 

              (27) 

 

The rule for differentiating products can also be applied to expressions involving  . 

For example,  is a sum of two terms, in one of which  acts on A only, and in 

the other on B only. The gradient of a product of scalar fields can be written  

 

 
 

But, when vector fields are involved, we have to remember that the order of the 

factors as a product of vectors cannot be changed without affecting the signs. Thus we 

have 

 

, 

  

And similarly 

 

 
 

An important identity, analogous to the expansion of the vector triple product (A.16) 

is 

 

    (28) 
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Where of course 

 
 

It may easily be proved by inserting the expressions in terms of components. 

 

3.5 Integral Theorems 

 

There are three important theorems for vectors which are generalizations of the 

fundamental theorem of the calculus, 

 

         
First, consider a curve C in space, running from r0 to r1. (see Fig. A.7.) Let the 

directed element of length along C is dr. If  is a scalar field, then, according to (20), 

the change in  along this element of length is 

    d =   

Thus, integrating from r0 to r1, we obtain the first of the integral theorems, 

 

                  (29) 

 

The integral on the left is called the line integral of  along C. This theorem may be 

used to relate the potential energy function V(r) for a conservative force to the work 

done in going from some fixed point r0, where V is chosen to vanish, to r. Thus, if 

 then 

               (30) 

When F is conservative, this integral depends only on its end-points, and not on the 

path C chosen between them. Conversely, if this condition is satisfied, we can define 

V by (30), and the force must be conservative. The condition that two line integrals of 

the form (30) should be equal whenever their end-points coincide may be restated by 

saying that the line integral round any closed path should vanish. Physically, this 

means that no work is done in taking the particle round a loop which returns to its 

starting point. The integral round a closed loop C is usually denoted by the symbol . 

Thus we require 

 

                 (31) 

 

for all closed loops C. 

 

This condition may be simplified by using the second of the integral theorems – 

Stokes’ theorem. Consider a curved surface S, bounded by the closed curve C. If one 

side of S is chosen to be the ‘positive’ side, then the positive direction round C may be 

defined by the right-hand screw convention. (See Fig. A.8). Take a small element of 
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the surface, of area dS, and let n be the unit vector normal to the element, and directed 

towards its positive side. Then the directed element of area is defined to be dS = ndS. 

Stokes’ theorem states that if A is any vector field, then 

 

               (32) 

 

The application of this theorem to (31) is immediate. If the line integral round C is 

required to vanish for all closed curves C, then the surface integral must vanish for all 

surfaces S. But this is only possible if the integrand vanishes identically. So the 

condition for a force F to be conservative is 

 

                 (33) 

 

We shall not prove Stokes’ theorem. However, it is easy to verify that it is true for a 

small rectangular surface. Suppose S is a rectangle in the xy-plane of area dxdy. Then 

dS = kdxdy, so the surface integral is  

    (A.34) 

 

The line integral involves four terms, one from each edge. The two terms arising from 

the edges parallel to the x-axis involve the x component of A evaluated for different 

values of y. They therefore contribute 

 

 
Similarly, the other pair of edges yield the first term of (34). 

We can also find a necessary and sufficient condition for a field B(r) to have the form 

of a curl, 

 

 
 

By (A. 27), such a field must satisfy 

  

                           (35) 

 

The proof that this is also a sufficient condition (which we shall not give in detail) 

follows much the same lines as before. One can show it is sufficient that the surface 

integral of B over any closed surface should vanish, 

 

 
   

And then use the third of the integral theorems, Gauss’ theorem. This states that if V is 

a volume in space bounded by the closed surface S, then for any vector field B, 
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               (36)  

  

Where dV denotes the volume element dV = dxdydz, and the positive side of S is taken 

to be the outside. 

 

It is again easy to verify Gauss’ theorem for a small rectangular volume dV = dxdydz. 

The volume integral is 

 

               (37) 

 

The surface integral consists of six terms, one for each face. Consider the faces 

parallel to the xy-plane, with directed surface elements k dxdy and –k dxdy. Their 

contributions involve k.B = Bz evaluated for different values of z. thus they contribute 

 

 
 

Similarly, the other terms of (37) come from the other faces. 

 

3.6 Curvilinear Co-ordinates 
 

One of the uses of the integral theorem is to provide expressions for the gradient, 

divergence and curl in terms of curvilinear co-ordinates. 

 

Consider a set of orthogonal curvilinear co-ordinates q1, q2, q3, and denotes the 

elements of length along the three co-ordinate curves by h1dq1, h2dq2, h3dq3. For 

example, in cylindrical polars, 

 

     (38) 

 

and in spherical polars 

 

    (39) 

 

Now consider a scalar field  and two neighbouring points (q1, q2, q3) and (q1, q2, q3 

+ dq3). Then the difference between the values of  at these points is 

 

 
 

Where  is the component of  in the direction of increasing q3. Hence we 

find 

 

                (40) 
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with similar expressions for the other components. Thus, in cylindrical and spherical 

polars, we have 

 

               (41) 

 

and 

 

               (42) 

 

To find an expression for the divergence, we use Gauss’ theorem, applied to a small 

volume bounded by the co-ordinate surface. The volume integral is 

 

 
 

In the surface integral, the terms arising from the faces which are surfaces of constant 

q3 are of the form  evaluated for two different values of q3. They 

therefore contribute 

 

 
 

 

Adding the terms from all three pairs of faces, and comparing with the volume 

integral, we obtain 

 

           (43) 

 

 

In particular, in cylindrical and spherical polars, 

 

      (44) 

 

And 

            (45) 

 

To find the curl, we use Stokes’ theorem in a similar way. If we consider a small 

element of a surface q3 = constant, bounded by curves of constant q1 and q2, then the 

surface integral is 
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In the line integral round the boundary, the two edges of constant q2 involve A1h1dq1 

evaluated for different values of q2, and contribute 

 

 
 

 Hence, adding the contribution from the other two edges, we obtain 

 

            (46) 

 

With similar expressions for the other components. Thus, in particular, in cylindrical 

polars. 

 

         (47) 

 

 

And in spherical polars 

 

             (48) 

 

 

Finally, combining the expressions for the divergence and gradient, we can find the 

Laplacian of a scalar field. It is 

 

  
          (49) 

 

In cylindrical polars 

 

              (50) 

 

And, in spherical polars, 

 

        
                (51) 
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4.0  CONCLUSION 
 

In conclusion, having read through this unit, the student should be able to use vector 

approach to solve some Engineering, mechanics and physics related problems. More 

so, students are advised to try all the trial exercises giving to them to enhance their 

comprehension of the unit. It worth to mention here that; this unit is a perquisite to 

other units and some other courses in mathematics and physics respectively.  

 

5.0 SUMMARY 
 

What you have learnt in this unit concerns: 

  that any vector r can be written as a sum of three vectors along the three axes 

thus: R =                                             

If   is the angle between the vectors a and b, then by elementary trigonometry the 

length of their sum is given by 

 

. 

 

Obviously, we define the scalar product a.b (
,
a dot b

’
) as 

 

         
Remark; ) is equal to the length of a multiplied by the 

projection of b on a, or vice versa. 

 

We alsi note that the square of a is:   
    

Thus we can rewrite the relation above as     (a+b)
2
 = a

2
+b

2
+2a.b, 

 

And similarly     (a-b)
2
 = a

2
+b

2
-2a.b. 

 

All the ordinary rules of algebra are valid for sums and scalar products of vectors, 

save one. (For example, the commutative law of addition, a + b = b + a is obvious 

from Fig. A. 2, and the other laws can be deduced from appropriate figures). The 

exception is the following: for two scalars, the equation  implies that either 

 (or, of course, that both = 0), but we can find two non-zero vectors for 

which a.b = 0. In fact, this is the case if , that is if the vectors are orthogonal:  

 

a.b = 0 if a ┴ b. 

(i.e vector a is perpendicular to vector b) 

 

 

The scalar products of the unit vectors i, j, k are 

 

i
2
 = j

2
 = k

2
 = 1,     

i.j = j.k = k.i = 0. 

( 
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More generally, if we take the scalar product of two vectors a and b, we find 

 

  a.b = axbx + ayby + azbz,    

 

and, in particular, 

  r
2
 = r

2
 = x

2
+y

2
+z

2
.    

 

Vector product 
Any two nonparallel vectors a and b drawn from 0 define a unique axis through 0 

perpendicular to the plane containing a and b.  

 

     
 

The vector product has one very important, but unfamiliar, property. If we interchange 

a and b, we reverse the sign of the vector product, 

 

      
 

Thus, when we form the vector product of a and b we obtain 
 

 
 

This relation may conveniently be expressed in the form of a determinant. 

 

.     

 

From any three vectors a, b, c, we can form the scalar triple product 
. Geometrically, it represents the volume V of the parallele-piped with 

adjacent edges a, b, c. (See Fig. A.5.) For, if  is the angle between c and  , then  

 

 
 

Where A is the area of the base, and h = c cos  is the height.  

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

i. By drawing appropriate figures, prove the following laws of vector (a+b)+c = 

a+(b+c), 

 

 
 

Note that a, b, c need not be coplanar.) 
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ii. Show that  

iii. Evaluate  

iv. Prove that  (Hint: Show first that in  

 may be replaced by its projection on the plane normal to a, and then 

prove the result for vectors in this plane). 

v. Evaluate the components of  in cylindrical polar co-ordinates using the 

identity (A. 28). Show that they are not the same as the scalar Laplacians of the 

components of A.  
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1.0 INTRODUCTION      
 

Electromagnetic theory lies outside the scope of this book. However, since we have 

discussed various examples involving electromagnetic fields, it may be useful to 

summarize some relevant properties of these fields here. We shall simply quote the 

results without proof, and we shall not consider the case of dielectric or magnetic 

media. We shall use Gaussian units, but quote the forms appropriate to SI units in 

brackets. 

 

2.0 OBJECTIVE 
 

At the end of this unit, you should be able to discussed various examples involving 

electromagnetic fields. 

 

2.0 MAIN CONTENT 
 

3.1 The Electromagnetic Field 
 

The basic equations of electromagnetic theory are Maxwell’s equations. In the 

absence of dielectric or magnetic media, they may be expressed in terms of two fields, 

the electric field E and the magnetic field B. There are two equations involving these 

fields alone, 

 

   (1) 

 

    (2) 

 

And two more involving also the electric charge density  and current density j, 

 

              (3) 

   (4) 
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The basic set of equations is completed by the Lorentz force equation, which 

determines the force on a particle of charge q moving with velocity v,  

 

 

  (5) 

 

From (B.2), it follows that there must exist a vector potential A such that 

 

       (6) 

 

Substituting in (B.1), we then find that there must exist a scalar potential  
 such that 

   (7) 

 

 

These potentials are not unique. If  is any scalar field, then 

 

 
 

      (8) 

 

Define the same fields E and B as do  and A. The transformation (B.8) is called a 

guage transformation. In particular, we can always choose   so that the new 

potentials obey the Lorentz gauge condition 

 

   (9) 

 

It is only necessary to choose  to be a solution of 

 

 
 

When the Lorentz guage condition is satisfied, we find from (3). (4) and the identity 

(28) that the potentials satisfy 

 

          (10) 

 

And 

           (11) 
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When there is no electric charge or current density, these are three-dimensional wave 

equations, which describe a wave propagating with velocity c. 

 

For the static case, in which all the fields are time-independent; Maxwell’s equations 

separate into a pair of electrostatic equations, 

 

          (12) 

 

Identical with (6.46) and (6.47), and a pair of magneto static equations, 

 

                    (13) 

 

Equation (10) reduces to Poisson’s equation (6.48), and (B.11) expresses the vector 

potential similarly in terms of the current density. The solution of (11) for this case is 

similar to (6.15), namely 

 

          (14) 

 

[Here and below the SI form is obtained by the replacement ] Thus, given a 

static distribution of charges and currents, we can calculate explicitly the scalar and 

vector potentials, and hence find the fields E and B.  

 
 

As a simple example, we consider a circular current loop of radius a in the xy-plane, 

carrying a current J. The equation (14) then reduces to a single integration round the 

loop, 

 

          (15) 

The evaluation of this integral is much simplified by considerations of symmetry. 

Since the current lies in the xy-plane, Az is clearly zero. Now let us consider a point P 

with co-ordinates (x, 0, z). (See fig. B.1) For each point Q on the loop, there will be 

another point Q’, equidistant from P. The contributions of small elements of the loop 
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at Q and Q’ to the component Ax will cancel. Thus the only non-zero component at P 

is Ay. Its value is 

 

1/2
 

 

Now we shall assume that the loop is small, so that  Then the denominator is 

approximately 

 
 

Whence 

 

 
 

It is clear that at an arbitrary point the only non-vanishing component of A will be in 

the  direction of polar co-ordinates. If we define the magnetic moment  of the loop 

to be 

 

                   (16) 

 

Then the vector potentials is 

  

                  (17) 

 

[Here and below the SI form is obtained by ] The co-responding magnetic 

field is easily evaluated using (A.48). 

It is 

                              (18) 

 

This is a magnetic dipole field. It has precisely the same form as the electric dipole 

field (6.11). 

 

 

4.0 CONCLUSION 
 

In conclusion the magnetic dipole field has precisely the same form as the electric 

dipole field. 
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5.0 SUMMARY 
 

What you have learned in this unit concerns the basic equations of electromagnetic 

theory and these are known as   Maxwell’s equations. As a simple example, we 

consider a circular current loop of radius a in the xy-plane, carrying a current J. 

 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

i. Calculate the vector potential due to a short segment of wire of directed length 

ds, carrying a current J, placed at the origin. Evaluate the corresponding 

magnetic field. Find the force on another segment of length ds’ carrying current 

J’, at r. Show that this force does not satisfy Newton’s third law. (To compute 

the force, treat the current element as a collection of moving charges).  
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UNIT 3 TENSORS 
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1.0 INTRODUCTION 
 

Scalars and vectors are the first two members of a family of quantities known as 

tensors, and described by 1, 3, 9, 27….. Components. Scalars and vectors are called 

tensors of rank 0, and of rank 1, respectively. In this appendix, we shall be concerned 

with the next member of the family, the tensors of rank 2, often called dyadic. We 

shall use the word tensor in this restricted sense, to mean a tensor of rank 2.  

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to recognize scalar and vector as   the first 

two members of Tensors (i.e. to mean a tensor of rank 0 and rank 1 respectively) and 

the recognition of dyadic to mean a tensor of rank 2 

 

3.0 MAIN CONTENT 
 

3.1 Elementary Properties: The DOT Product 
 

Tensors occur most frequently when one vector b is defined as a linear function of 

another vector a, according to 

 

 
    (1) 

 
 

 

We have already encountered one set of equations of this type-the relations (9.17) 

between the angular velocity  and angular momentum J of a rigid body. 

 

It will be convenient to introduce a slight change of notation. We write a1, a2, a3 in 

place of ax, ay, az, so that (1) may be written 
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      (2) 

 

Where i and j run over 1, 2, 3. In this notation, the scalar product of two vectors is 

 

                (3) 

 

Tensors are commonly denoted by sans-serif capitals, like T. The nine components of 

a tensor T may conveniently be exhibited in a square array, or matrix 

  

    (4) 

 

Note that the first subscript labels the rows, and the second, the columns. 

 

In view of the similarity between the expressions (2) and (3), it is natural to extend the 

dot notation, and write (2) in the form 

 

 
For instance, the relation (9.17) may be written 

 
 

Where I is the inertia tensor. 

 

We can then form the scalar product of this vector with another vector c, and obtain a 

scalar  

 

      (5) 

 

For example, it follows from (9.22) that the kinetic energy of a rigid body is 

 

 
 

For any tensor T, we define the transposed tensor  by 

 

 
This corresponds to reflecting the array (4) in the leading diagonal. From (5) we see 

that in general c.T.a is not the same as a.T.c. In fact, 
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So that 

 

     (6) 

 

Note that he dot always corresponds to a sum over adjacent subscripts. 

 

The tensor T is called symmetric if  or, equivalently,  . In this case, the 

array (4) is unchanged by reflection in the leading diagonal. An equivalent condition 

is that, for all vectors a and c, 

 

      (7) 

 

Similarly, T is called anti-symmetric (or skew-symmetric) if . For 

example, consider the relation giving the velocity of a point in a rotating body,  
 

 
 

This is a linear relation between the components of r and v, and can therefore be written in 

the form 

 
  

Where T is some suitable tensor. It is easy to see that its components are given by 

 

     (8) 

 

This tensor is clearly anti symmetric. Note that its diagonal elements  are necessarily zero. 

In fact, any ant symmetric tensor may be associated with an axial vector in this way, and vice 

versa. 

 

There is a special tensor 1 called the unit tensor, or identity tensor, which has the property 

that 

 

       (9) 

 

For all vectors a. Its components are 

 

 
 

Or, written out in detail, 

 

      (10) 
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3.2 Sums and Products; The Tensor Product 
 

The sum of two tensors may be defined in an obvious way. The tensor  

 is the tensor with components  Its effect on a vector a is 

given by 

R.a=  (S.a) + (T.a) 

 

For example, it is easy to show that any tensor T can be written as a sum of a 

sysmmetric tensor S and an anti symmetric tensor A. in fact, T = S + A, where S = 

 and A = . 

 

We can also define the dot product of two tensors, S .T. if c = S.b and b = T.a, then 

it is natural to write c = S.( T.a) = (S .T).a. In terms of components, 

 

 
 

Hence S .T = R is the tensor with components 

 

      (11) 

 

Once again, the dot signifies summation over adjacent subscripts. Note the rule for 

constructing the elements of the product: to form the element in the ith row and kth 

column of S .T, we take the ith row of S, and the kth column of T, multiply the 

corresponding elements, and sum. (This is known as the rule of matrix multiplication.) 

It is important to realize that, in general, T .S ≠ S .T. in fact, T .S = Q has 

components 

 

 
 

There is one special case in which these products are equal, namely the case S= 1. It 

is easy to see that 

 

1.T = T.1 = T, 

 

So that 1 plays exactly the same role as the unit in ordinary algebra. From any two 

vectors a and b we can form a tensor T whose components are   This tensor 

is written T = a b, with no dot or cross, and is called the tensor product or dyadic 

product of a and b. note that 
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T.c = (ab)
.
c = a(b

.
c), 

 

So that the brackets are in fact unnecessary. The use of the tensor product allows us to 

write some earlier results in a different way. For example, for any vector a, 

 

1
.
a = a = i(i.a) + j(j

.
a) + k(k

.
a) 

  = (ii + jj + kk)
.
a, 

 

So that 

 

  ii + jj + kk = 1,     (12) 

 

 

as may easily be verified by writing out the components. Similarly, we may write 

(9.16) in the form 

 

J =  

 

Where the inertia tensor is given explicitly by 

 

 

I =       (13) 

 

It is easy to check that the nine components of this equation reproduce (9.15). 

 

It is clear that if T = ab, then . In particular, it follows that the tensor (13) is 

symmetric 

 

 

3.3 Eigenvalues; Diagonalization of a Symmetric Tensor 
 

Throughout this section, we consider a given symmetric tensor T. A vector a is called 

an eigenvector of T if 

 

T
.
a =         (14) 

 

Where λ is a number called eigenvalue. Equivalently, the equation (14) may be written 

 

(T – λ1)
.
a = 0, 
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Or, written out in full, 

 

 
 
 

 

These are the same kind of equations that we discussed in Chapter 12 in connection 

with normal modes. (Compare (12.15). As in that case, the equations are mutually 

consistent only if the determinant of the coefficients vanishes, 

 

 
 

When expanded, this determinant is a cubic equation for λ whose three roots are all 

real, or else one real and two complex conjugates of each other. 

 

We shall now show that the latter possibility can be ruled out. For. Suppose λ is a 

complex eigenvalue, and a = (a1, a2, a3) the corresponding eigenvalue, whose 

components may also be complex. We shall denote the complex conjugate eigenvalue 

by λ*. Then, taking the complex conjugate of  

 

T
.
a = λa, 

 

We obtain 

 

 T
.
a* = λ*a*, 

Where a* =  Multiplying these two equations by a* and a respectively, we 

obtain 

 

a*
.
 T

.
a = λa*

.
a, 

a
.
 T

.
a* = λ*a

.
a*. 

 

 

4.0 CONCLUSION 

In this unit we want to conclude by  considering a given symmetric tensor T. A vector 

a which  is called an eigenvector of T if 

 

T
.
a =          

 

Where λ is a number called eigenvalue. Equivalently, T
.
a =    may be written   

(T – λ1)
.
a = 0, 
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5.0 SUMMARY 
 

The summary of what you have learnt is as in the conclusion.  
 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

i. define the term Tensor 

ii. state some properties of Tensor that you are taught 

iii. under what consideration can you ascertain that  

 T
.
a =    may be written as  (T – λ1)

.
a = 0, 
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