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1.0 INTRODUCTION 
 

Up to now we have dealt mainly with the motion of an object which could be 

considered as a particle or point mass. In many practical cases the objects with which 

we are concerned can more realistically be considered as collections or systems of 

particles. Such systems are called discrete or continuous according as the particles can 

be considered as separated from each other or not. 

 

For many practical purposes a discrete system having a very large but finite number of 

particles can be considered as a continuous system. Conversely a continuous system 

can be considered as a discrete system consisting of a large but finite number of 

particles. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to know about the distinction between 

Discrete and Continuous Systems with examples. 
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3.0     MAIN CONTENT 
 

3.1 Density 
 

For continuous systems of particles occupying a region of space it is often convenient 

to define a mass per unit volume which is called the volume density or briefly density. 

Mathematically, if   is the total mass of a volume  of particles, then the density 

can be defined as 

 

       (1) 

 

The density is a function of position and can vary from point to point. When the 

density is a constant, the systems is said to be of uniform density or simply uniform. 

 

When the continuous system of particles occupy a surface, we can similarly define a 

surface density or mass per unit area. Similarly when the particles occupy a line [or 

curve] we can define a mass per unit length or linear density. 

 

3.2 Rigid and Elastic Bodies 

 

In practice, forces applied to systems of particles will change the distances between 

individual particles. Such systems are often called deformable or elastic bodies. In 

some cases, however, deformations may be so slight that they may for most practical 

purposes be considered non-existent. It is thus convenient to define a mathematical 

model in which the distance between any two specified particles of a system remains 

the same regardless of applied forces. Such a system is called a rigid body. The 

mechanics of rigid bodies is considered in Chapters 9 and 10.   

 

3.3 Degrees of Freedom 
 

The number of coordinates required to specify the position of a system of one or more 

particles is called the number of degrees of freedom of the system. 

 

a) A particle moving freely in space requires 3 coordinates, e.g. (x, y, z), to 

specify its position. Thus the number of degrees of freedom is 3. 

 

 

b) A system consisting of N particles moving freely in space requires 3N 

coordinates to specify its position. Thus the number of degrees of freedom is 

3N. 

 

c) A rigid body which can move freely in space has 6 degrees of freedom, i.e. 6 

coordinates are required to specify the position.  
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Examples on Degrees of Freedom 

 

1. Determine the number of degrees of freedom in each of the following cases: (a) 

a particle moving on a given space curve; (b) five particles moving freely in a 

plane; (c) five particles moving freely in space; (d) two particles connected by 

a rigid rod moving freely in a plane. 

 

(a) The curve can be described by the parametric equations x = x(s), y = 

y(s), z = z(s) where s is the parameter. Then the position of a particle on 

the curve is determined by specifying one coordinate, and hence there is 

one degree of freedom. 

 

(b) Each particle requires two coordinates to specify its position in the 

plane. Thus 5 . 2 = 10 coordinates are needed so specify the positions of 

all 5 particles, i.e. the system has 10 degrees of freedom. 

 

(c) Since each particles requires three coordinates to specify its position, the 

system has 5 . 3 = 15 degrees of freedom. 

 

(d) Method 1 

The coordinates of the two particles can be expressed by (x1, y1) and (x2, 

y2), i.e. a total of 4 coordinates. However, since the distant between 

these points is a constant a [the length of the rigid rod], we have (x1 – 

x2)
2
 + (y1 – y2)

2
 = a

2
 so that one of the coordinates can be expressed in 

terms of the others. Thus there are 4 – 1 = 3 degrees of freedom. 

   

Method 2 

The motion is completely specified if we give the two coordinates of the 

centre of mass and the angle made by the rod with some specified 

direction. Thus there are 2 + 1 = 3 degrees of freedom 

 

2. Prove that the centre of mass of a system of particles moves as if the total mass 

and resultant external force were applied at this point. 

 

Let Fv be the resultant external force acting on particle v while  is the 

internal force on particle v due to particle  . We shall assume fvv = 0, i.e. 

particle v does not exert any force on itself. 

 

By Newton’s second law the total force on particle v is 

 

      (1) 
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Where the second term on the left represents the resultant internal force on 

particle v due to all other particles. 

Summing over v in equation (1), we find 

 

 

  (2) 

 

Now according to Newton’s third law of action and reaction,   so that 

the double summation on the left of (2) is zero. If  we then write 

  and         (3) 

 

 (2) becomes          (4) 

 

Since F is the total external force on all particles applied at the centre of mass 

, the required result is proved 
 

3. A system of particles consists of a 3 gram mass located at 91, 0, - 1 ), a 5 gram 

mass at (-2, 1, 3) and a 2 gram mass at (3, - 1, 1). Find the coordinates of the 

centre of mass. 

 

The positive vectors of the particles are given respectively by 

 

r1 = i – k,  r2 = - 2i + j + 3K,   r3 = 3i – j + k 

       

 then the centre of mass is given by 

 

 

 
 

 Thus the coordinates of the centre of mass are  
 

4. Find the centroid of a solid region  as in Fig. 7 – 3 

Consider the volume element  of the solid. The mass of this volume element 

is 
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Where  is the density [mass per unit volume] and  are the 

dimensions of the volume element. Then the centroid is given approximately 

by 

 

 
 

Where the summation is taken over all volume elements of the solid. 

 

 
 

Taking the limit as the number of volume elements becomes infinite in such a 

way that  we obtain for the centroid of the 

solid: 

 

 

 
 

 

Where the integration is to be performed over , is indicated. 

 

Writing r = xi + yj + zk,  this can also be written in component 

form as 

 

 
 

5. Find the centre of mass of a uniform solid hemisphere of radius a. 

                                                        z 
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By symmetric the centre of mass lies on the z axis [see Fig. 7 – 7]. Subdivided 

the hemisphere into solid circular plates of radius r, such as ABCDEA. If the 

centre G of such a ring is at distance z from the centre O of the hemisphere, r
2
 

+ z
2
 = a

2
. Then if dz is the thickness of the plate, the volume of each right as 

 

 
 

 And the mass is . Thus we have 

  

  

  
 

 

3.4 Centre of Mass 

 

Let r1, r2,……., rN be the position vectors of a system of N particles of masses m1, m2, 

……., mN respectively [see Fig. 7 – 1]. 

 

The centre of mass or centroid of the system of particles is define as that point C 

having position vector 

 

   (2) 

 

Where  is the total mass of the system. We sometimes use or simply 

in place of  
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For continuous systems of particles occupying a region  of space in which the 

volume density is , the centre of mass can be written 

 

         (3) 

 

Where the integral is taken over the entire region  [see Fig. 7.2). If we write 

 

 
 

Then (3) can equivalently be written as 

 

    (4) 

 

And       (5) 

 

where the total mass is given by their 

 

      (6) 

 

or       (7) 

 

 

The integrals in (3), (5) or (7) can be single, double or triple integrals, depending on 

which may be preferable. 

 

In practice it is fairly simple to go from discrete to continuous systems by merely 

replacing summations by integrations. Consequently we will present all theorems for 

discrete systems. 
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3.5 Centre of Gravity 

 

If a system of particles is in a uniform gravitational field, the centre of mass is 

sometimes called the centre of gravity. 

 

 

4.0  CONCLUSION 
 

We shall conclude by saying that In practice it is fairly simple to go from discrete to 

continuous systems by merely replacing summations by integrations. 

 

 

5.0 SUMMARY 
 

What you have learnt in this unit concerns: centre of gravity, centre of mass, density, 

degree of freedom their definitions and examples of each also discussed is their real 

life applications. Rigid and Elastic Bodies are also taught extensively in this unit. 
 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

Show in tabular form the difference between a discrete and a continuous system. Also 

give examples of each. 
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1.0 INTRODUCTION      
 

When we say system of particles, this refers to centre of mass, the motion of a rotating 

ax thrown between two jugglers looks rather complicated, and very different from the 

standard projectile motion alluded to. We deduce from experiment that one point of 

the ax follows a trajectory described by the standard equations of motion of a 

projectile. This special point is called the centre of mass of the ax. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to know momentum of a system of 

particles as stated in the main contents (3.1-3.8) above. 

 

2.0 MAIN CONTENT 
 

3.1 Momentum of a System of Particles 
 

If   is the velocity of , the total momentum of the system is defined as 

 

      (8) 

We can show [see Problem 7.3] that 

      (9) 
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Where  is the velocity of the centre of mass. 

 

This is expressed in the following 

 

Theorem 1. The total momentum of a system of particles can be found by multiplying 

the total mass M of the system by the velocity  of the centre of mass. 
 

3.2 Motion of the Centre of Mass 
 

Suppose that the internal forces between any two particles of the system obey 

Newton’s third law. Then if F is the resultant external force acting on the system, we 

have  

 

              (10) 

 

This is expressed in 

 

Theorem 2. The centre of mass of a system of particles moves as if the total mass and 

resultant external force were applied at this point. 
 

3.3 Conservation of Momentum 
 

Putting F = 0 in (10), we find that 

 

 = constant            (11) 

 

Thus we have 

 

Theorem 3. If the resultant external force acting on a system of particles is zero, then 

the total momentum remains constant, i.e. is conserved. In such case the centre of 

mass is either at rest or in motion with constant velocity. 

 

This theorem is often called the principle of conservation of momentum. It is a 

generalization of Theorem 2 – 8,  
 

3.4 Angular Momentum of a System of particles 
 

The quantity  

                                         (12) 

 

is called the total angular momentum [of moment of momentum] of the system of 

particles about origin O. 
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3.5 The Total External Torque Acting on a System 
 

If  Fv is the external force acting on particle v, then rv X Fv is called the moment of the force 

Fv or torque about O. the sum 

             (13) 

 

is called the total external torque about the origin. 

 

3.6 Relation between Angular Momentum and Total External Torque 
 

If we assume that the internal forces between any two particles are always directed 

along the line joining the particles [i.e. they are central forces], then we can show as in 

problem 7.12 that 

 

                (14) 

 

Thus we have 

 

Theorem 4. The total external torque on a system of particles is equal to the time rate 

of change of the angular momentum of the system, provided the internal forces 

between particles are central forces. 
 

6.  Solved examples on Angular Momentum and Torque 

 

Prove theorem 4: The total external torque on a system of particles is equal to 

the time rate of change of angular momentum of the system, provided that the 

internal forces between particles are central forces. 

 

we have 

 

      (1) 

 

 Multiplying both sides of (1) by rv X, we have 

 

                (2) 

  

 Since                  (3) 

 

 (2) becomes                          (4) 
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 Summing over v in (4), we find 

 

 

      (5) 

 

 Now the double sum in (5) is composed of terms such as 

  
      (6) 

 

Which becomes on writing  according to Newton’s third law, 

 

    (7) 

 

Then since we suppose that the forces are central, i.e.  has the same direction 

as  , it follows that (7) is zero and also that the double sum in (5) is zero. 

Thus equation (5) becomes 

 

 
 

Where  
 

7. Suppose that the internal forces of a system of particles are conservative and 

are derived from a potential 

 

 
 

Where  =  is the distance between 

particles  and v of the systems. 

 

(a) Prove that  where  is the internal force on 

particles v due to particle . 

 

(b) Evaluate the double sum  of problem 7.13 

 

(a) The force acting on particle v is 

 

  (1) 

 

The force acting on particle  is 
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The work done by these forces in producing the displacements drv and  
 of particles v and  respectively is 

 

 
 

 
 

 Then the total work done by the internal forces is 

  

    (3) 

 

The factor  on the right being introduced because otherwise the terms in the 

summation would enter twice. 

 

(b) By integrating (3) of part (a), we have 

 

   (4) 

 

 Where  and  denote the total internal potentials 

 

             (5) 

 

 At times t1 and t2 respectively. 
 
 

8. Prove that if both the external and internal forces for a system of particles are 

conservative, then the principle of conservation of energy is valid. 

 

If the external forces are conservation, then we have 

 

        (1) 

 

         From which             (2) 

 

 Where  and  denote the total external potential  
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 At times t1 and t2 respectively 

 

Using (2) and equation (4) of problem 7.14 (b) in equation (5) of problem 7.13, 

we find 

 

T2 – T1 = V1
(ext)

 – V2
(ext)

 + V1
(int)

  - V2
(int)

 = V1 – V2  (3) 

 

 Where  

            V1 =V1
(ext)

 + V1
(int) 

 and V2 = V2
(ext)

 + V2
(int)

   (4) 

 

Are the respective total potential energies [external and internal] at times t1 and 

t2. We thus find from (3), 

 

 T1 + V1 = T2 + V2  or  T + V = constant   (5) 

 

 Which is the principle of conservation of energy. 
 

 

3.7 Conservation of Angular Momentum 
 

Putting  in (14), we find that 

 

     =  constant              (15) 

Thus we have 

 

Theorem 5. If the resultant external torque acting on a system of particles is zero, 

then the total angular momentum remains constant i.e. is conserved  

 

This theorem is often called the principle of conservation of angular momentum. It is 

the generalization of Theorem earlier discussed. 

 

3.8 Kinetic Energy of a System of Particles 
 

The total kinetic energy of a system of particles is defined as 

 

                     (16) 
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Work 

 

If   is the force (external and internal) acting on particle v, then the total work done 

in moving the system of particles from one state [symbolized by 1] to another 

[symbolized by 2] is 

            (17) 

 

As in the case of a single particle, we can prove the following 

 

Theorem 6. The total work done in moving a system of particles from one state where 

the kinetic energy T1 to another where the kinetic energy is T2, is  

 

W12  =   T2  - T1            (18) 

  

Potential Energy, Conservation of Energy 

 

When all forces, external and internal, are conservative, we can define a total potential 

energy V of the system. In such case we can prove the following. 

 

Theorem 7: If T and V are respectively the total kinetic energy and total potential 

energy of a system of particles, then 

 

T + V = constant           (19) 

 

This is the principle of conservation of energy for systems of particles. 

 

Motion Relative to the Centre of Mass 

 

It is often useful to describe the motion of a system of particles about [or relative to] 

the centre of mass. The following theorems are of fundamental importance. In all 

cases primes denote quantities relative to the centre of mass. 

 

Theorem 8: The total linear momentum of a system of particles about the centre of 

mass is zero. In symbols, 

 

                     (20) 

 

Theorem 9: The total angular momentum of a system of particles about any point O 

equals the angular momentum of the total mass assumed to be located at the centre of 

mass plus the angular momentum about the centre of mass. It could be expressed 

mathematically, thus 
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                  (21) 

 

Theorem 10: The total kinetic energy of a system of particles about any point O 

equals the kinetic energy of translation of the centre of mass [assuming the total mass 

located there] plus the kinetic energy of motion about the centre of mass. Thus, 

 

           (22) 

 

Theorem 11:  The total external torque about the centre of mass equals the time rate 

of change in angular momentum about the centre of mass, i.e. equation (14) holds not 

only for inertial coordinate systems but also for coordinate systems moving with the 

centre of mass. Consequently,  

 

               (23) 

 

If motion is described relative to points other than the centre of mass, the results in the 

above theorems become more complicated. 

 

Impulse 

 

If F is the total external force acting on a system of particles, then 

 

              (24) 

 

is called the total linear impulse or briefly total impulse. As in the case of one particle, 

we can prove 

 

Theorem 12: The total linear impulse is equal to the change in linear momentum. 

Similarly if  is the total external torque applied to a system of particles about origin 

0, then 

 

                (25) 

 

Is called the total angular impulse. We can then prove 
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Theorem 13: The total angular impulse is equal to the change in angular momentum. 

 

4.0 CONCLUSION 
 

In conclusion, as in Theorem, 10. The total kinetic energy of a system of particles 

about any point O equals the kinetic energy of translation of the centre of mass 

[assuming the total mass located there] plus the kinetic energy of motion about the 

centre of mass. Thus, 

 

 
 

5.0 SUMMARY 
 

Some thirteen theorems are discussed in this unit thus: 

 

 The total momentum of a system of particles can be found by multiplying the 

total mass M of the system by the velocity  of the centre of mass. 

 The centre of mass of a system of particles moves as if the total mass and 

resultant external force were applied at this point. 

 If the resultant external force acting on a system of particles is zero, then the 

total momentum remains constant, i.e. is conserved. In such case the centre of 

mass is either at rest or in motion with constant velocity. 

 The total external torque on a system of particles is equal to the time rate of 

change of the angular momentum of the system, provided the internal forces 

between particles are central forces. 

 If the resultant external torque acting on a system of particles is zero, then the 

total angular momentum remains constant i.e. is conserved  

 The total work done in moving a system of particles from one state where the 

kinetic energy T1 to another where the kinetic energy is T2, is  

 If T and V are respectively the total kinetic energy and total potential energy of 

a system of particles, then T+V is a constant. 

 The total linear momentum of a system of particles about the centre of mass is 

zero 

 The total angular momentum of a system of particles about any point O equals 

the angular momentum of the total mass assumed to be located at the centre of 

mass plus the angular momentum about the centre of mass. 

 The total kinetic energy of a system of particles about any point O equals the 

kinetic energy of translation of the centre of mass [assuming the total mass 

located there] plus the kinetic energy of motion about the centre of mass. 

 The total external torque about the centre of mass equals the time rate of 

change in angular momentum about the centre of mass. 

 The total linear impulse is equal to the change in linear momentum. 

 The total angular impulse is equal to the change in angular momentum. 
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Example 

Prove Theorem 10, The total kinetic energy of a system of particles about any point O 

equals the kinetic energy of the centre of mass [assuming the total mass located 

there] plus the kinetic energy of motion about the centre of mass.  

 

The kinetic energy relative to O is 

 

 

     (1) 

 

 but 

 

 
 

 Thus (1) can be written 

 
 

      
 

      
 

       
 

 Since   
 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

i. What can be referred to as being the  generalization of Theorems 

ii. ( 2 – 8)? 

iii. Prof that the total angular impulse is equal to the change in angular 

momentum. 

iv. state the law of conservation of energy. 
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1.0 INTRODUCTION 
 

Often in practice the motion of a particle or system of particles is restricted in some 

way. For example, in rigid bodies [considered in Chapters 9 and 10] the motion must 

be such that the distance between any two particular particles of the rigid body is 

always the same. 

 

As another example, the motion of particles may be restricted to curves or surfaces. 

 

The limitations on the motion are often called constraints. If the constraint condition 

can be expressed as an equation 

 

               (26) 

 

connecting the position vectors of the particles and the time, then the constrain is 

called holonomic. If it cannot be so expressed it is called non-holonomic. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to discussed the following: 

 

 virtual Displacements 

 statics of a System of particles. Principle of Virtual Work 

 equilibrium in Conservative Fields. Stability of Equilibrium 

 D’Alembert’s Principle 
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3.0 MAIN CONTENT 
 

3.1 Virtual Displacements  
 

Consider two possible configurations of a system of particles at a particular instant 

which are consistent with the forces and constraints. To go from one configuration to 

the other, we need only give the vth particle a displacement  from the old to the 

new position. We call  a virtual displacement to distinguish it from a true 

displacement [denoted by drv] which occurs in a time interval where forces and 

constraints could be changing. The symbol  has the usual properties of the 

differential d; for example,  

 

3.2 Statics of a System of particles. Principle of Virtual Work 
 

In order for a system of particles to be in equilibrium, the resultant force acting on 

each particle must be zero, i.e. Fv = 0. It thus follows that  
 = 0 where  is called the virtual work. By adding these we then have 

 

          (27) 

 

If constraints are present, then we can write 

 

         (28) 

 

Where   and  are respectively the actual force and constraint force acting on 

the vth particle. By assuming that the virtual work of the constraint forces is zero 

[which is true for rigid bodies and for motion on curves and surfaces without friction], 

we arrive at 

 

Theorem 14. A system of particles is in equilibrium if and only if the total virtual 

work of the actual forces is zero, i.e. if 

 

      (29) 

 

This is often called the principle of virtual work. 
 

3.3 Equilibrium in Conservative Fields. Stability of Equilibrium 
 

The results for equilibrium of a particle in a conservative force field can be 

generalized to systems of particles. The following theorems summarize the basic 

results. 
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Theorem 15. If V  is the total potential of a system of particles depending on 

coordinates q1, q2, ……., then the system will be in equilibrium if  

 

             (31) 

 

Since the virtual work done on the system is 

 

 
 

(31) is equivalent to the principle of virtual work. 

 

Theorem 16. A system of particles will be in stable equilibrium if the potential V is a 

minimum. 

 

In case V depends on only one coordinate, say q1, sufficient are  

 

 
 

Other cases of equilibrium where the potential is not a minimum are called unstable. 

 

3.4 D’Alembert’s Principle 
 

Although Theorem 14 as stated applies to the statics of a system of particles, it can be 

restated so as to give an analogous theorem for dynamics. To do this we note that 

according to Newton’s second law of motion, 

 

            (30) 

 

Where pv is the momentum of the vth particle. The second equation amounts to saying 

that a moving system of particles can be considered to be in equilibrium under a force 

 i.e. the actual force together with the added force  which is often called the 

reversed effective force on particle v. By using the principle of virtual work we can 

then arrive at 

 

Theorem 17. A system of particles moves in such a way that the total virtual work 

           (32) 

 

With this theorem, which is often called D’Alembert’s principle, we can consider 

dynamics as a special case of statics.  
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Example 

 

Motion Relative to the Centre of Mass 
 

(1) Let rv
’
 and vv

’
 be respectively the position vector and velocity of particle v 

relative to the centre of mass. Prove that (a)  

 

(a) Let rv be the position vector of particle v relative to 0 and  the position 

vector of the centre of mass C relative to O. Then from the definition of 

the centre of mass, 

 

     (1) 

 

 
 

  Where . From Fig. 7 – 8 we have 

    

    
       (2) 

 

  Then substituting (2) into (1), we find 

 

   

 

 
   

From which                                (3) 

 

(b) Differentiating both sides of (3) with respect to t, we have  
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Example 2 

 

In each of the following cases whether the constraint is holonomic or non-holonomic 

and give a reason for your answer: (a) a bead moving on a circular wire; (b) a particle 

sliding down an inclined plane under the influence of gravity; (c) a particle sliding 

down a sphere from a point near the top under the influence of gravity. 

 

(a) The constraint is holonomic since the bead, which can be considered a 

particle, is constrained to move on the circular wire. 

  

(b) The constraint is holonomic since the particle is constrained to move 

along a surface which is in this case a plane  

 

(c) the constraint way of seeing this is to note that r is the position vector of 

the particle relative to the centre of the sphere as origin and a is the 

radius of the sphere, then the particles moves so that . This is a 

non-holonomic constraint since it is not of the form (26), page 170. An 

example of a holonomic constraint would be . 

 

4.0 CONCLUSION 
 

In conclusion, In order for a system of particles to be in equilibrium, the resultant 

force acting on each particle must be zero, i.e. Fv = 0 

 

5.0 SUMMARY 
 

The summaries of what you have learnt are as contained in theorems 14 – 17 above 

thus: 

 Theorem 14. A system of particles is in equilibrium if and only if the total virtual 

work of the actual forces is zero, Called principle of virtual work. 

Theorem 15. If V  is the total potential of a system of particles depending on 

coordinates q1, q2, ……., then the system will be in equilibrium if  

 

 which is equally equivalent to virtual work. 

Theorem 16. A system of particles will be in stable equilibrium if the potential V is a 

minimum. and 

 

Theorem 17. A system of particles moves in such a way that the total virtual work 

given as 

           
 

which is often called D’Alembert’s principle  
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6.0 TUTOR-MARKED ASSIGNMENT 

 
i. Explain the term virtual displacement 

ii. Define D’Alembert’s principle 

iii. define centre of mass 

iv. what do you understand by the momentum of system of        particle 

v. Explain the terms holonomic and nonholonomic constraints. 
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