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1.0 INTRODUCTION 
 

The simple pendulum is one of the most common examples of simple harmonic 

motion, at least as far as laboratory observation of oscillatory motions is concerned. A 

harmonic motion is one for which the restoring force obeys Hooke’s law, provided the 

displacement from equilibrium position is small. In that case the displacement, 

velocity and acceleration towards the equilibrium position are represented by simple 

sinusoidal functions of time or linear combinations of them. The term simple comes 

into the definition as a result of the fact that the amplitude and therefore energy of the 

system is conserved (constant) when dissipative (friction type) forces are negligible. 

Then the curves of the dynamic variables such as displacement, velocity and 

acceleration will be pure sine or cosine curves. 

 

We are interested in this type of motion because, as you will recall from your college 

physics, vibratory motion is one of the four fundamental motions in nature. Vibratory 

or periodic motion is a prototype of the motions of most physical systems. The 

structures of buildings, bridges and crystals such quartz used for the construction of 

your wrist watch are in a state of vibration at all times. The motion of electrons in an 

antenna that transmits or receives a radio signal is vibratory.  

 

In this unit you will study the simple mathematical formulation of this important type 

of motion and discuss the properties of the solutions of its differential equation.        

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 derive the equation of a simple pendulum 



MTH 251                                            MODULE 3 

247 

 

 show that the equation of a simple pendulum is a particular case of the   more 

general equation of a simple harmonic oscillator 

 demonstrate an understanding of the dependence of the period of  a simple 

pendulum on the length and local gravitational acceleration. 

 Solve simple problems involving the simple solutions of the equation of the 

simple pendulum. 

 discuss elastic systems in terms of Hooke’s law 

 calculate the energy stored in an elastic system 

 show that a spring force is conservative. 

  

3.0 MAIN CONTENT 
 

3.1 The Simple Pendulum 

 

Consider a mass m suspended from a light inextensible string of length l, such that the 

mass is free to swing from side to side in a vertical plane, as shown in Fig. a.  This 

setup is known as a simple pendulum.  Let  be the angle subtended between the string 

and the downward vertical.  Obviously, the equilibrium state of the simple pendulum 

corresponds to the situation in which the mass is stationary and hanging vertically 

down (i.e.,  = 0).  The angular equation of motion of the pendulum is simply 

 

I 


  =                                     (523) 

 

where I is the moment of inertia of the mass, and  is the torque acting on the system.  

For the case in hand, given that the mass is essentially a point particle, and is situated 

a distance l from the axis of rotation (i.e., the pivot point), it is easily seen that I = ml
2
. 
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The two forces acting on the mass are the downward gravitational force, mg, and the 

tension, T, in the string. Note, however, that the tension makes no contribution to the 

torque, since its line of action clearly passes through the pivot point. From simple 

trigonometry, the line of action of the gravitational force passes a distance l sin  from 

the pivot point. Hence, the magnitude of the gravitational torque is m g l sin .  

Moreover, the gravitational torque is a restoring torque: i.e., if the mass is displaced 

slightly from its equilibrium state (i.e.,  = 0) then the gravitational force clearly acts 

to push the mass back toward that state.  Thus, we can write 
 

  =  -m g l sin  .                 524  

   

Combining the previous two equations, we obtain the following angular equation of 

motion of the pendulum: 
 

l 


  = -g sin.                                   (525) 
 

Unfortunately, this is not the simple harmonic equation.  Indeed, the above equation 

possesses no closed solution which can be expressed in terms of simple functions. 

 

Suppose that we restrict our attention to relatively small deviations from the 

equilibrium state.  In other words, suppose that the angle  is constrained to take fairly 

small values. We know, from trigonometry, that for less than about 6
0
 it is a good 

approximation to write  

sin   .                                 (526) 

 

Hence, in the small angle limit, reduces to 

l 


  = -g ,                                    (527) 

 

which is in the familiar form of a simple harmonic equation.  Comparing with our 

original simple harmonic equation, and its solution, we conclude that the angular 

frequency of small amplitude oscillations of a simple pendulum is given by  

 

 = 
l

g
.                                  (528) 

 

In this case, the pendulum frequency is dependent only on the length of the pendulum 

and the local gravitational acceleration, and is independent of the mass of the 

pendulum and the amplitude of the pendulum swings (provided that sin    remains 

a good approximation).  Historically, the simple pendulum was the basis of virtually 

all accurate time-keeping devices before the advent of electronic clocks.  Simple 

pendulums can also be used to measure local variations in g. 
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3.2 Hooke’s Law 
 

Consider a mass m which slides over a horizontal frictionless surface. Suppose that the 

mass is attached to a light horizontal spring whose other end is anchored to an 

immovable object. See Fig. Let x be the extension of the spring: i.e., the difference 

between the spring’s actual length and its unstretched length. Obviously, x can also be 

used as a coordinate to determine the horizontal displacement of the mass. According 

to Hooke’s law, the force f that the spring exerts on the mass is directly proportional to 

its extension, and always acts to reduce this extension.  Hence, we can write 

 

  f = - kx,                                  (159) 

 

where the positive quantity k is called the force constant  and measures the stiffness of 

the spring.  Note that the minus sign in the above equation ensures that the force 

always acts to reduce the spring’s extension: e.g., if the extension is positive then the 

force acts to the left, so as to shorten the spring. 

 

 
 

     Mass on a spring 

 

According to Eq. (140), the work performed by the spring force on the mass as it 

moves from displacement xA to xB is  
 

W =  
B

A
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Note that the right-hand side of the above expression consists of the difference 

between two factors: the first only depends on the final state of the mass, whereas the 

second only depends on its initial state. This is a sure sign that it is possible to 

associate a potential energy with the spring force.  Equation (155), which is the basic 

definition of potential energy, yields 
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U(xB) – U(xA) = - 22
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 .  (161) 

 

Hence, the potential energy of the mass takes the form 
 

U(x) = 2

2

1
kx .                       (162) 

 

Note that the above potential energy actually represents energy stored by the spring – 

in the form of mechanical stresses – when it is either stretched or compressed.  

Incidentally, this energy must be stored without loss, otherwise the concept of 

potential energy would be meaningless.  It follows that the spring force is another 

example of a conservative force. 

 

It is reasonable to suppose that the form of the spring potential energy is somehow 

related to the form of the spring force. Let us now explicitly investigate this 

relationship. If we let xB  x and xA    0 then Eq. (161) gives 

 

U(x) = ')'(
0

dxxf
x

                          (163) 

 

We can differentiate this expression to obtain 

 

f = 
dx

dU
  .                          (164) 

 

Thus, in 1-dimension, a conservative force is equal to minus the derivative (with 

respect to displacement) of its associated potential energy. This is a quite general 

result.  For the case of a spring force: U = (1/2) kx
2
, so f = -dU/dx = -kx. 

 

As is easily demonstrated, the 3-dimensional equivalent to Eq. (164) is 

 

F = .,, 
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              (165) 

 

For example, we have seen that the gravitational potential energy of a mass m moving 

above the Earth’s surface is U = m g z, where z measures height off the ground. It 

follows that the associated gravitational force is 

 

f = (0, 0, -mg).               (166) 

 

In other words, the force is of magnitude m g, and is directed vertically downward. 

 

The total energy of the mass shown in Fig. 42 is the sum of its kinetic and potential 

energies: 
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E = K + U = K + 
2

1
kx

2
.              (167) 

 

Of course, E remains constant during the mass’s motion.  Hence, the above expression 

can be rearranged to give 
 

K = E - 
2

1
kx

2
.               (168) 

 

Since it is impossible for a kinetic energy to be negative, the above expression 

suggests that x  can never exceed the value 
 

x0 = 
k

E2
.      (169) 

 

Here, x0 is termed the amplitude of the mass’s motion.  Note that when x attains its 

maximum value x0, or its minimum value –x0, the kinetic energy is momentarily zero 

(i.e., K = 0). 

 

2.0 CONCLUSION 
 

As in the summary. 

 

5.0 SUMMARY 
 

In this unit you have been introduced to the equation of a simple pendulum. It is a particular 

case of the more general equation of a simple harmonic oscillator.  

 

The period of the motion is independent of its mass but depends on its length and the value of 

the local gravitational acceleration. 

 

Simple harmonic oscillations are observed only for small displacements from their 

equilibrium positions. Their restoring forces will then obey Hook’s law of elasticity. 

 

For an elastic system, the work done by the elastic forces manifests as the change in its 

potential energy. The total energy is the sum the kinetic and potential energies interchanged 

as the elastic system is alternately stretched and compressed. 

   

6.0 TUTOR-MARKED ASSIGNMENT  

 
i. Explain the term Hooke’s Law 

ii. show that a spring force is conservative. 
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