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1.0  INTRODUCTION   
 

 In this unit, you will learn about certain differential operations which can be performed on 

scalar and vector fields. These operations have wide-ranging applications in the physical 

sciences. The most important operations are those of finding the gradient of a scalar field and 

the divergence and curl of a vector field. Central to all these differential operations is the 

vector operator   which is called Del (or sometimes, nabla).  

 

2.0  OBJECTIVES 
 

 At the end of this unit, you should be able to:  
  

 define the operator Del ( )  

 apply the operator in finding gradient of function ),,( zyx  

 give physical interpretation to gradient of  ),,( zyx  

 solve correctly, exercises involving the use of gradient.  

 

 

3.0  MAIN CONTENT 
 

3.1  Operator Del ( )  
 

Consider the operator  )(del  defined by: 

k
z

j
y

i
x 












                                      ……………… ……….. (1) 

 

Equation (1) is called operator Del. It has a lot of physical application in vector analysis as 

we shall see shortly. 
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If ),,( zyx  and  ),,( zyxA  have continuous first partial derivatives in a region, we can define 

the gradient of  ),,( zyx  as: 

 

(1)   Gradient:     The gradient of  ),,( zyx   is defined by: 

 

k
z

zyx
j

y

zyx
i

x

zyx
grad
















),,(),,(),,( 
  

    

3.2  Interpretation of Gradient of ),,( zyx              
 

One interesting application of   grad   can be view as follows:  
  

czyx ),,(                                                 …..................................... (2) 
  
Let equation (2) be equation of a surface then,    is normal to this surface. To see this, let  

),,( zyx  be a scalar field. 

 

Consider the differential defined by: 
 

dzkdyjdxidr                                          …………………….…. (3) 

 

The corresponding differential in  ),,( zyx  is  
 

dz
z

dy
y

dx
x

d
















                          ……………………….… (4) 

 

=  dr.                                                      …………………………. (5) 

 

Now if  c  then  0d  therefore,   

 

0.  dr                                                     ………………………… (6) 

Hence   is normal to the surface given by the equation  czyx ),,(  

 

Examples: 

 

 (1)  Find the gradient of the scalar field 32 zxy  

Solution:  kzxyjxyzizy 32332 32   

 

(2)   Given the function yzyxzyx  2),,(   at the point (1, 2,-1) find its rate of change 

with distance in the direction   .32 kjia    At this same point, what is the greatest 

possible rate of change with distance and in which direction does it occur? 

 

Solution: 

  

Gradient of   is given by  

ykjzxxyiyzyx  )(2)( 22  
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Now at the point   (1, 2,-1),   ki 24   

 

The unit vector in the direction of a is â = ),32(
14

1
kji  so the rate of change of   with 

distance s in this direction is 

 

14

10
)64(

14

1
ˆ.  a

ds

d



 

 

From the above discussion, at the point (1, 2,-1), dsd /  will be greatest in the direction of  

ki 24   and has the value   20   in this direction. 

 

The gradient obeys the following laws: 

 

ggradffgradgfggrad

gradggradfgfgrad





)(

)(
 

 

In addition to these, we note that the gradient operation also obey the chain rule as in 

ordinary differential calculus, i.e. if      and    are scalar fields in region R, then 

            



 




 )]([                            …………………………… (7) 

 

4.0  CONCLUSION 
 

In this unit, you have learnt about gradient of vector and scalar fields. In the next unit, we 

shall examine divergence of a vector field and how it relies on the operator Del. It is very 

important for you to learn this operator very well before you make any meaningful progress 

beyond this point. 

 

 

5.0  SUMMARY 
 

You have learnt the following in this unit: 

 

 The operation Del ( ) is defined as 

k
z

j
y

i
x 












  

 If  ),,( zyx   is a scalar field then the gradient of  ),,( zyx  is defined as  

grad k
z

j
y

i
x 















 . 

 

 The corresponding differential of ),,( zyx  is given as 

dz
z

dy
y

dx
x

d
















  = dr.  
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 Where,     
dzkdyjdxidr   

 If  czyx ),,(   then,  0d  this implies that 

0.  dr , hence    is normal to the surface given by czyx ),,(    

  

 

6.0  TUTOR-MARKED ASSIGNMENT 
 

1. If  32 yzx  and A= ykxjyxzi 22 2   find (i)      (ii)  A.  

2. Prove that   is a vector perpendicular to the surface czyx ),,(  where c is a 

constant. 

3. If  322 xzyx   find   and 2  

 

 

7.0  REFERENCES/FURTHER READING 
 

Wrede, R. C. and Spegel M. (2002). Schaum’s and Problems of Advanced Calculus, 

McGraw – Hill N. Y. 

 

Keisler, H. J. (2005). Elementary Calculus. An Infinitesimal Approach, 559 Nathan 

Abbott, Stanford, Califonia, USA.  
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1.0  INTRODUCTION  
 

Divergence can be considered as a quantitative measure of how much a vector field diverges 

(spread out) or converges at any given point. For example, if we consider the vector field 

),,( zyxv  describing the local velocity at any point in a fluid then the divergence is equal to 

the net rate of outflow of fluid per unit volume, evaluated at a point. We will be exposed to 

mathematical exposition of this very important concept in this unit. The prerequisite to our 

learning this unit is the thorough understanding of the unit 1 of this module. 

 

2.0  OBJECTIVES 
 

 At the end of this unit, you should be able to: 
 

 explain the divergence of a vector field 

 explain the Laplacian 

 solve the exercises at the end of this unit. 

 

3.0  MAIN CONTENT 
 

3.1  The Divergence of a Vector Field 
 

Suppose we are given a vector field  ),,( zyxv  in the domain D of space, given three scalar 

functions .,, zyx vvv  suppose these functions possess partial derivatives in D then the 

divergence is defined as: 

 

z

v

y

v

x

v
divv zyx














                             ……………………………. (1) 

 

 Formula (1) can be written in the symbolic form: 

 

divv = v.  which implies: 



MTH 282                                                                                            MODULE 2 

193 

 

)).((. kvjvivk
z

j
y

i
x

v zyx 













 = 

z

v

y

v

x

v zyx














   .........…… (2) 

 

The divergence defined above has a physical significance. In fluid dynamics, it appears as a 

measure of the rate of decrease of density at a point. More precisely, 

  

Let ),,,( tzyxuu   denote the velocity vector of a fluid motion and let ),,,( tzyx   denote 

the density. 

 

Then  uv   is a vector whose divergence satisfies the equation. 

 

Then,       
t

divv






                                            ………………… (3) 

 

Equation (3) is called continuity equation of fluid mechanics. If fluid is incompressible, this 

reduce to the simpler equation 

 

          0divu                                                            ………………… (4) 

 

The divergence also plays an important role in the theory of electromagnetic fields. To see 

this, we note that the divergence of the electric force vector E satisfies the equation defined 

by: 

               

      4divE                                                         …………………  (5) 

 

Where    is the charge density. Thus where there is no charge, equation (5) reduces to  

        

      0divE                                                            …………………. (6) 

 

The divergence has the following basic properties: 

 

(1)  div (u+v) =div u+div v 

 

 (2)   ugradffdivufudiv .)(                              ……………......…. (7) 

 

 

3.1.1  The Laplacian 
 

Let ),,( zyxfw    then the Laplacian of w  is defined as 

 

2

2

2

2

2

2
2

z

w

y

w

x

w
w














                                    …………………....… (8) 

 

The origin of the 2  lies in the interpretation of    as a vector differential operator defined 

before as: 
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k
z

j
y

i
x 












                                        ……………….......….  (9) 

 

Symbolically,  
 

2

2

2

2

2

2
2 .

zyx 












                           ……………………….  (10) 

 

If  ),( yxfz   and has second derivatives in the domain D and  
 

02  z                                                            …………………….  (11) 

                                         

In the domain D, the z is said to be harmonic in D. We also used the same term for a function 

of three variables which has continuous second derivatives in a domain D in space and 

whose Laplacian is 0 in D. The two equations for harmonic functions: 
 

0,0
2

2

2

2

2

2

2

2

2

2


























z

w

y

w

x

w

y

z

x

z
            …………………….....…. (12) 

 

are known as the Laplacian equations in two and three dimensions respectively. 

 

Remark:  In the theory of elasticity, we have the following equation: 

 

02
4

4

22

4

4

4
















y

z

yx

z

x

z
                            …………………….……. (13) 

 

The combination which appears above can be expressed in terms of the Laplacian as follows: 

 

   )( 22 z  
4

4

22

4

4

4

2
y

z

yx

z

x

z














            ………................….……. (14)                   

 

The expression in (14) is called biharmonic expression whose solutions are termed 

biharmonic functions. Harmonic functions arise in the theory of electromagnetic fields, in 

fluid dynamics, in the theory of heat conduction, and many other parts of physics. 

 

 

3.2  Illustrative Examples 
   

1)   Given that A= ykxjyxzi 22 2  , find the divergence of A. 

    

Solution:  The divergence of A is defined as  

. A= 

yzyx
z

y
y

xz
x

ykxjyxzik
z

j
y

i
x

2)2()()(

)2).((

22

22































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2)   Prove that ).().().( AAA    

 

Solution:   ).().( 321 kAjAiAA    

 

                               = )()()( 321 A
z

A
y

A
x















 

                              = )( 321
321

z

A

y

A

x

A
A

z
A

y
A

x 






























 

                               = )).(()).(( 321321 kAjAiAk
z

j
y

i
x

kAjAiAk
z

j
y

i
x

































 

= ).().( AA    

    

3).  Given that  322 xzyx    find 2  

 

Solution:  2 Laplacian of )3()2()4(. 222 xz
z

x
y

xxy
x















   

                                                                  = xzy 64   

 

4.0  CONCLUSION  
 

In this unit, you have learnt about divergence of vector field, you have also learnt about 

Laplacian and discussed various applications of these concepts to physical phenomenal. You 

are advised to read this unit properly and carefully, before moving to other unit.  

 

 

5.0  SUMMARY 
 

It should be noted that divergence is a measure of how much a vector field spread out or 

converges. 

 

If ),,( zyxv  is a vector field, then its divergence is defined as  

 

z

v

y

v

x

v
divv zyx














  

  

We may derive from the definition of divergence and also define Laplacian as follows: 

 

2

2

2

2

2

2

).(
z

f

y

f

x

f
gradf














  

 

We also considered other physical application such as application of biharmonic functions of 

the form 

4

4

22

4

4

4
22 2)(

y

z

yx

z

x

z
z














  in the theory of elasticity. 
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6.0  TUTOR-MARKED ASSIGNMENT 
 

1. Given that the vector field ,32 zkyjxiv   verify that the divergence of v (div v) is 

zero. 

2. Evaluate [ )]().( 222 kzjyixyjxi   

3. Given that 32 yzx   and A= ykxjyxzi 22 2 . Evaluate )( Adiv   

 

 

7.0  REFERENCES/FURTHER READING 
 

Wrede, R. C. and Spegel M. (2002). Schaum’s and Problems of Advanced Calculus, 

McGraw – Hill N. Y. 

 

Keisler, H. J. (2005). Elementary Calculus. An Infinitesimal Approach, 559 Nathan 

Abbott, Stanford, Califonia, USA.  
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1.0  INTRODUCTION  
 

In this unit, we will learn about curl of a vector field. This concept has a wide range of 

application in physical phenomenal such as electromagnetic theory. Those concepts we 

learnt earlier such as gradient of vector field and divergence theory will be applied later in 

the theory of orthogonal curvilinear co-ordinates systems. 

 

2.0  OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 define curl of vector field correctly 

 interpret the physical implication of curl of vector field 

 solve all the associated mathematical problems involving the curl of vector fields.  

 

3.0    MAIN CONTENT 
 

3.1  The Curl of a Vector Field 
 

We can define the curl of a vector field as follows: 

 

Let ),,( zyxv  be a vector field then, the curl of vector  ),,( zyxv  is 

 

Curl v= 

zyx vvv

zyx

kji

v











                        ..…………… (1) 

 

Equation (1) can be expressed as: 

Curl v = k
y

v

x

v
j

x

v

z

v
i

z

v

y

v xyzxyz )()()(




























    ……………. (2) 
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This vector field has a meaning independent of the choice of axes. We shall see this in the 

treatment of orthogonal curvilinear co-ordinates to be considered in the next module. 

 

The curl of vector field is important in the analysis of the velocity field of fluid dynamics 

and in the analysis of electromagnetic force fields. For example, curl can be interpreted as 

measuring angular motion of a fluid and the condition is: 

 

                                               Curl v = 0            ……………………  (3)                                          

 

For a velocity field v characterises what are termed irrotational flows. The analogous 

equation is given as: 

 

                                                 Curl E = 0         ……………………  (4) 

 

For the electric force vector E, it holds when only electrostatic forces are present. 

 

Recall that: if 0 V  in a region, we say that the flow is irrotational in that region. The 

implication of this is that the circulation around a closed curve in a simple region where the 

flow is irrotational is zero. If the fluid is incompressible and there is no distribution of 

sources or sink in the region, we have also  .0. V  since the condition 0 V  implies the 

existence of a potential   such that  

                                               

                                                V          ………………………   (5) 

 

We see that if also  0. V  then it follows that  .0. 2    That is, in the flow of an 

incompressible irrotational fluid without distributed sources or sinks the velocity vector is 

the gradient of a potential   which satisfies the equation 

 

                                           02     or   0
2

2

2

2

2

2
















xyx


  ……. (6) 

 

Equation (6) is known as Laplace’s equation already discussed in (Unit 2, Module 2) 

 

Generally, in any continuously differentiable vector field F with zero divergence and curl in 

a simple region, the vector F is the gradient of a solution of Laplace’s equation.  

 

Solutions of this equation are called harmonic functions.   

 

 

3.2  Illustrative Examples 
 

1)  If   A = kyzyzjxixz 423 22   . Find  A  (or curl A) at the point (1,-1, 1) 

 

 

 



MTH 282                                                                                            MODULE 2 

199 

 

Solution: 

)22()( 423 kyzyzjxixzk
z

j
y

i
x

A 













  

=   

423 22 yzyzxxz

zyx

kji














 

 

= [ kxz
y

yzx
x

jyz
x

xz
z

iyzx
z

yz
y

)](2([)]2()([)]2()2( 324324





























 

= kjxyzkjxziyxz 4343)22( 224   at point (1,-1, 1) 

 

2)  If  yzkxzjyixA 222    find CurlCurlA   

 

Solution: 

 
   )( AcurlcurlA   

 

 = ])2()22[(

22

2

2

kzxizx

yzxzyx

zyx

kji
















  

 

= jx

zxzx

zyx

kji

)22(

2022 2
















 

 

 

 

3)  Prove that 0)(    

 

Solution:  

)()( k
z

j
y

i
x 















  

 

                                =  

zyx

zyx

kji


























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= [( k
xyyx

j
zxxz

i
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This is only true when  is continuously differentiable, hence the order of the differentiation 

is immaterial. 

 

 

4.0  CONCLUSION 
 

In this unit you have learnt about curl and various applications of curl to physical situations. 

Study this unit carefully before moving to the next unit of this course. 

 

 

5.0  SUMMARY 
 

We recall that in this unit we defined a curl of a vector field, as 

 

   Curl =   

zyx vvv

zyx

kji












 

 

You are required to master this formula properly because of its physical application as we 

proceed in studying this course. 

 

 

 

6.0  TUTOR-MARKED ASSIGNMENT 
 

Obtain the curls of the following vectors: 

 

i.  )cos1(sin.)/()(.,., yjxyiivyxyjxiiiiriixi   

 

If curlA = 0 where A= )()( kzjyixxyz nnnm   show that either m = 0 or n = -1 

 

If v = r (a.r) where a is a constant vector show that  

 

Curlv = ra   (ii) curl ara 2)(   
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