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1.0  INTRODUCTION 
 

The solution to the equation 012 x  has no real roots because there is no real 

number whose square root is -1. In order to solve problem such as this, 

mathematicians evolve a way out of this logjam by assuming that there exist a 

number 1i . With this, we can conclude that the roots of the equation 012 x  

are ix  . Similarly, we find that the roots of the equation 0522  xx  are ix 21 . 

 

2.0  OBJECTIVES 
 

At the end of this unit, you should be able to: 

 define complex numbers 

 perform mathematical operations with complex numbers 

 find modulus and argument of complex numbers 

 solve exercises on complex numbers. 

 

3.0  MAIN CONTENT 
 

3.1 Definition of Complex Numbers 
  

Given that a  and  b  are real numbers, then the number ibac   is called a complex 

number. a  and b  are known as the real and imaginary parts of the complex number 

respectively. When 0a  the complex number is purely imaginary and when 0b  

then the complex number is real. The conjugate of the complex number c  is denoted 

by:   
ibac 
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SELF-ASSESSMENT EXERCISE  

 

Find the conjugate of the following expressions: 

 

i.  3-3i   ii.  2i  iii.  -3+4i   iv.  3-4i 

 

3.2  Operations with Complex Numbers 
 

In this section, we shall consider some mathematical operations on complex numbers. 

 

(1)   Note that in complex number, 

 
)()()()( dbicaidciba   

 

(2)  )()()()( dbicaidciba   

 

(3)   22))(( baibaiba   since  12 i  

 

(4)  If  idciba   then  ca   and db   

 

(5)   
22
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      =  
22
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dc

adbcibdac




 

 

SELF-ASSESSMENT EXERCISE  

 

i.  Find the real and imaginary parts of 

 

 
)3(

)2)(1(

i

ii
z




  

 

ii.   Let iz 631    and find: 

    (a)  21zz     
1

2

2

1 )(,)(
z

z
c

z

z
b  

iii.  Simplify  

 

 (a)  )43()62()95( iii   

 

 (b)  )52)(74( ii   

 

iv  Multiply  )34( i  by an appropriate factor to give a product that is entirely real. 

What is the result? 
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3.3 Modulus and Argument of a Complex Number  
 

Let r be the length of OP, suppose the <XOP ,  then  22 yxr   and 
x

y
tan ,  r  

is called the  modulus of  z  and written ,z   is called  the argument or amplitude of  

and written as zarg  or amz . 

 

Examples:  

 

1. Find the modulus and argument of the complex number 

  

)3(

)2)(1(

i

ii
z




   

 

Solution:   

 

  
i

i

i
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i
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z
















3
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3

122
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Therefore, 

 

    
10
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3

31 iii

i

i

i

i
z 











  

 

Hence,  iz    therefore  1z  and arg z=
2


 

2.   If  
)1(

)1(

it

itb
aiyx




  where a and b are real constant and ,,, tyx  are real 

variables show that the locus of the point ),( yx as t, varies as a circle.   

 

Solution: 

 

  Let  
)1(

)1(

it

itb
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


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          =  
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.
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        =  
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Equating the real parts and the imaginary parts in each side of the equation, we have: 
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22

2

1
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1
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bt
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t
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x







  

 

Thus, 

 

 222)( byax   

 

Hence, the locus of the point ),( yx  is a circle centre (a,0) and radius b.  

 

We may represent complex numbers in the polar form as follows: 

 
  sincos irriyxz   

  

Compare coefficients then  

 
  sin,cos ryrx   

We refer to this as the polar representation of the complex numbers. 

 

4.0  CONCLUSION 
 

We have shown the way to handle complex numbers. we shall deal with some 

problems into detail in complex variables. 

 

5.0  SUMMARY 
 

Recall that with clearly defined notation you can handle complex number as we 

handle real numbers ordinarily in algebra. You should study carefully before moving 

to the next unit. 

 

6.0  TUTOR-MARKED ASSIGNMENT 
 

1. Establish the following results: 

  

 (a)  Re( )Re()Re()Re(,),Re()Re() 21212121 zzzzbutzzzz  in general 

 (b)  )Im()Im()Im(,),Im(Im()Im( 21212121 zzzzbutzzzz  in  general 

 (c)  
,,, 21212121 zzzzbutzzzz 
 in general 

2..   Express the following quantities in the form a + ib where a and b are real 

          (a) 3)1( i     (b)    
i

i





1

1
   (c)  )2

4
sin( i


 

3..   Prove the following 

(a)  )Re(2 zzz     (b)  )Im(2 zizz    (c) zz )Re(  
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1.0  INTRODUCTION 
 

In this unit, we shall examine complex numbers in polar forms. The polar form of 

complex numbers presents interesting results which will be examined in this unit. 

 

2.0  OBJECTIVES 
 

At the end of this unit, you should be able to:  

      express complex numbers in polar form 

 carry out  multiplication and division of complex numbers 

 recall the Demoivre’s theorem and apply it appropriately 

 find roots and work with fractional powers of complex numbers 

 solve correctly the exercises that follows after the unit. 

 

3.0  MAIN CONTENT 
 

3.1  Multiplication and Division of Complex Numbers 
 

Let )sin(cos 1111  irz     and  )sin(cos 2222  irz     then, 

 

 )sin)(cossin(cos 22112121  iirrzz   

 

 = )sincoscos(sin)sinsincos(cos 2121212121   irr  

 

 =  )]sin()[cos( 212121   irr  

 

From the above, you could see that 

 

 2121 . zzzz   
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We also note that 

 

2121 argarg)arg( zzzz  , and that 

 

 
)(

)(

222

111

2

1





iSinCosr

iSinCosr

z

z




  

 

 = )])([( 2211

2

1  iSinCosiSinCos
r

r
  

 

 =  )]()([ 2121

2

1   iSinCos
r

r
 

 

Therefore, 

 

2

1

2

1

z

z

z

z
   and  21

2

1 argarg)arg( zz
z

z
  

 

3.2  Demoivre’s Theorem 
 

Recall that: 

 

)()())(( 21212211   iSinCosiSinCosiSinCos   

 

Note that, 

 

111111 22))((  iSinCosiSinCosiSinCos   

 

This is equivalence to 

 

11

2

11 22)(  iSinCosiSinCos   

 

Also, 

 

11

3

11 33)(  iSinCosiSinCos   

  

If we continue in this way, we find that: 

 

1111 )  iSinnCosniSinCos n   

This is known as the Demoivre’s theorem for positive integer index. 

 

It can be shown that the theorem is true for all rational values of n. 

 

Now suppose n is a negative integer and we let n = -m where m is a positive integer 

then, 
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m

m

iSinCos
iSinCos

)(

1
)(





   

 

=  )()()()(  niSinnCosmiSinmCos   

 

 

We can also prove for fractions. Recall that by Demoivre’s theorem  

 

q

q

p
i

q

p
)sin(cos    = piSinCosiSinpCosp )(     

 

 It follows that   
q

p
iSin

q

p
Cos      is a  qth   root of   PiSinCos )(    

 

Demoivre’s theorem has been proved for all rational values of n. 

 

We need to find other values of q

p

iSinCos )(   . 

 

To do this, suppose that: 

 

 )()(  iSinCosiSinCos q

p

  

 

Then,  

 

)sin(cossincos)sin(cos)sin(cos  qiqpipii qqqp   

 

Equating the real and imaginary parts, we have 

 

 qpqp q sinsin;coscos   

 

By squaring and adding, we obtain  

 

12 q  and since  ,  the modulus of a complex number is  +ve 1  therefore 

 

 qq sinsin;coscos  , and these equation are satisfied by 

 

0;2  kkpq   or any integer. 

 

Therefore, 

 

q

kp 


2
  
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3.3  Roots and Fractional Power of a Complex Number 
 

If n is a positive integer, the nth roots of a complex number are by definition the value 

of which satisfies the equation  

 

zn   

 

If  )sin(cos  i   and  )sin(cos  irz   then 

 

)sin(cos)sin(cos  iri nnn     where 

 

rn    and   kn 2   k is an integer or zero. By definition rand,,  are +ve, such 

that  n r   also,  
n

k


2
  

 

Taking in succession the values of k = 0, 1, 2, 3… n, we find that 

 

n

k
i

n

k  2sin2cos 



   has n distinct values. Hence, there are n distinct nth roots 

of z given by the formula. 

 

 ]
2sin2cos

[
n

k
i

n

k
rn

k








 ,    k=0, 1, 2, 3,…, n-1 

 

In a situation where n is a rational number say  qandp
q

p
n ,,,  are integers and q is 

+ve, the value of  nz  are the values of  which satisfy the equation  

      

           pq z  

 

Hence if )sin(cos  irz   then the q values of q

p

z given by the formula 

 

 








 





q

m
i

q

m
r

q p

m




2sin2cos
, where 

 
q pr  is the unique positive qth root of   pr  

 

 

Example:   

 

Find the fifth roots of -1 

 

 



MTH 282                                                                              MODULE 4 

 

 

Solution:  

 

Recall that:   

 

-1=  sincos i  

 

Now if   

 

 )2sin()2cos(15  kikz  , k=0,1,2,3,…, 

 

Therefore, 

 

5

)2sin(

5

)2cos(  k
i

k
z





  

 

,4,3,2,1,0k  hence, the solutions are: 

   

5
sin

5
cos


iz   

 

5

3
sin

5

3
cos


iz   

 

5

5
sin

5

5
cos


iz   

 

5

7
sin

5

7
cos


iz   

 

5

9
sin

5

9
cos


iz   

 

 

3.4  The nth Roots of Unity 
 

We recall that  10sin0cos  i  this implies that: 

 

,2sin2cos1 kik     k=0, 1, 2, 3… 

If   denotes the root   
n

k
i

n

k  2
sin

2
cos  , k=0, 1, 2, 3…, then nth root of unity may be 

written in the form 

 
132 ,...,,,,1 n  

 

We see that they form a geometric progression whose sum   








1

1 n

   is equal to 0. 
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We also note that the nth root of unity is represented in the Argand diagram by points 

which are vertices of a regular polygon of n sides inscribed in the circle. 

 

Example: 

 

Solve the equation  0123456  zzzzzz  and deduce that 

 

2

1

7

6
cos

7

4
cos

7

2
cos 


 

 

Solution:   

 

We know that: 

 

1

1
1

7
23456






z

z
zzzzzz , hence we consider the equation 

 

017 z    

 

We also note that:  

 

kiki  2sin2cos0sin0cos1  , hence  

 

6,5,4,3,2,1,0,
7

2
sin

7

2cos
 k

k
i

k
z


 

 

Equation  017 z  is satisfied by 

 

7

2sin

7

2cos
,,,1

k
i

k
zbyandz


 , therefore the given equation is satisfied by 

 

,....5,.4,3,2,1,
7

2
sin

7

2
cos  k

k
i

k
z


 

The sum of these roots is 

 

2 









7

6
cos

7

4
cos

7

2
cos


 

 

But from the given equation the sum of the roots is also -1.  

 

Therefore, 

 

2

1

7

6
cos

7

4
cos

7

2
cos 


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4.0  CONCLUSION 
 

In this unit, we have studied some theorems and determined the roots of equation 

using complex variables. You are required to study this unit properly before 

attempting to answer questions under the Tutor-Marked Assignment. 

 

5.0  SUMMARY 
 

You recall that you learnt about Demoivre’s theorem, both for integer quantity and 

fractional quantity. Also, you learnt about roots of unity among others. You are to 

study them properly in order to be well equipped for the next course in mathematical 

methods. 

 

6.0  TUTOR-MARKED ASSIGNMENT 
 

1.  Obtain the roots of the equation 

 053)112(3 2  iziz   in the form a+ib where a  and b are real. 

2.  Express  43 sincos  as a sum of cosines of multiple of   

3.  Prove that 1cos18cos48cos326cos 246     

 

 

By putting 

 

    2cosx or otherwise, show that the roots of the equation 

 

03369664 23  xxx   are  
























18

7
cos,

18

5
cos,

18
cos 222 

 and deduce that 

 

12
18

7
sec

18

5
sec

18
sec 222 























 
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