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1.0 INTRODUCTION 
 
A large class of ordinary differential equations possesses solution expressible over a 
certain interval, in terms of power series. In this unit, we are going to investigate the 
methods of obtaining such solutions. 
 
2.0      OBJECTIVES 
 
At the end of this unit, you should be able to: 
 
 determine the radius of convergence of series; 
 apply series solution method to solving differential equation; and 
 determine ordinary points, and singular points of the differential equation. 
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3.0 MAIN CONTENT 
 

3.1. Series Solution of Ordinary Differential Equation 
  

An expression of the form 
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is called the power series. 
 
To determine for what values of  the series (1) converges we use ratio test 
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Where  

If , the series 
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(3)  is called the Taylor series for  function  at  

A function  that has Taylor series expansion about  
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With a radius of convergence  is said to be analytic at . 

 
The polynomial is analytic at every point, thus sums, differences, products, quotients 
(except at the zeroes of the denominator) of polynomials are analytic at every point. 
 
(i) Determine the radius of convergence of the power series 

    (i)          (ii)   (iii)  (iv)

     (v)  

 
3.2 Determining the Radius of Convergence 
 
If we obtain the Taylor series of a function  about a point , then the radius of 

convergence of the series is equal to the distance of the point  from the nearest 

singularity. 
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(d)  

 
3.3 Ordinary Points and Singular Points of the Differential Equations 

 
We consider the differential equation 

                                                     (4) 

(we assume that , and  are polynomials) 

 
(a) if  , then  is an ordinary point of the equation (1), or 

   ,      

, ,  are analytic at the point  , then   is the ordinary point of 

the equation. 
(b) If the functions , and  are polynomials having no common 

factors, the singular points of equation (1) are the points for which  
 

                                                                               (5) 

 

(c) If              is finite    

 

and         is finite 

 
Then the point  is called the REGULAR SINGULAR POINT of equation (3). 

 
(d)   Any singular point of equation (3) that is not regular singular point is called an 

irregular singular point. 
 

3.3.1   Solution Near an Ordinary Point  
  
 Let us consider the equation 
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                                                                               (8) 

We can write (1) 
 

where    ,      

                                                                         (9) 

or 
                                                          (10) 

(It is natural to assume that ,   at    and  1)0( ay  , 2)0( ay  , 

we can easily calculate the coefficient na a, provided that we could compute infinitely 

many derivatives of p   and q  existing at 0x .  Thus p   and q  must have some 

condition for line calculation of na .  It has been proved that 

   ,        are analytic at 0x ., then the general solution of (6) is  
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Where 0a and 1a  are arbitrary 1y and 2y  are linearly independent series solutions which 

are analytic at 0x . 
 
We shall illustrate the method by examples: 
 
Example 1:  Solve the equation 
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near the ordinary point 0x  
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Because the first two terms of the first sum in (4) are zero. 
We now use the fact that for a power series to vanish identically over any interval, 
each coefficient in the series must be zero 
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Example 2:  Solve the equation 
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near the ordinary point 0x  
Solution:  we assume the solution 
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In equation (2), the coefficient of each power of x  must be zero. 

2

2



 nn a

n

n
a   ,                  for    2n  (3) 
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Activity I 
 
Solve the equation 

0)1(4)1( 2  yxyxy  

about the ordinary point 1x  
 
 
4.0  CONCLUSION 
 
In this unit, we have attempted the series solution method to ordinary differential 
equations. In the subsequent unit, we are going to discuss more about this method in 
greater details. You are supposed to master this unit properly to be well-equipped for 
the next unit. 
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5.0  SUMMARY 
 
Recall that in this unit we discussed power series and radius of convergence for the 
series. We also applied the series to solve differential equations. We derived the 
singular and ordinary points for each of the series solutions. Study this unit properly 
before going to the next unit.  
 
6.0 TUTOR-MARKED ASSIGNMENT 
 
i.  Determine a lower bound for the radius of convergence of series solution about 

each given point 0x  for each of the following differential equations. 

(a)      04)32( 2  yyxyxx    ,  40 x  , 40 x  and  00 x  

(b)  04)1( 3  yyxyx    ,  00 x  , and  20 x  

ii.  Determine whether each of the points  0,1  and 1 is an ordinary point, or 

regular singular point or irregular singular point for the following differential 
equation, 
(a)       032)1(2 224  yxyxyxx  

(b)  0)1(2)3( 2  yxyxyx  

 
7.0  REFERENCES/FURTHER READING 
 
Earl, A. Coddington (1989).An Introduction to Ordinary Differential Equations. India: 

Prentice-Hall. 
 
Francis,B. Hildebrand (2014).Advanced Calculus for Applications. New Jersey: 

Prentice-Hall. 
 
Einar, Hille (1980). Lectures on Ordinary Differential Equations, London:Addison-

Wesley Publishing Company. 
 



MTH 302 MODULE 1 

9 
 

UNIT 2  EULER EQUATION 
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1.0 INTRODUCTION 
 
In this unit, we shall deal with a class of differential equation normally referred to as 
Euler Equation. This type of equation usually possesses solutions that are classified as 
regular singular points of the differential equations. Series solution of this class of 
equation must be attempted with different approach. We shall see this in our treatment 
of this system of equation in this unit.   
 
2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 

 differentiate Euler equations from others; 
 use series solution approach to solve these categories of equations; and 
 solve problems relating to Euler equation. 
 
3.0 MAIN CONTENT 
 
3.1  Euler Equation 
 

2
2

2
( ) 0

d y dy
L y x x y

dx dx
                                                      (1) 

is known as Euler equation. 
It is easy to see that 0x  is a regular singular point of (1) 
In any interval not including the origin, (1) has a general solution of the form. 

)()( 2211 xycxycy     , 

1y and 2y  are linear, independent solution. 

Here we assume that (1) has a solution of the form 
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ry x  
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It is always possible to obtain a real valued solution of Euler equation (1) in the 
interval, by making the following changes 

( 1)
d d

dx d
  ,

2
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d

dx

d
  

in the equation, we have 
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2 2
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It follows that we read one, to replace for x  by x  in the above solution to obtain real 

valued solution valid in any interval not containing the origin 
1.  To solve the Euler equation (1)  

02  yyxyx   

 

in any interval not containing the origin substitute rxy   and compute the root  1r and 

2r of the equation 
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If the roots are real and equal 
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For an Euler equation of the form 
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Change the independent variable by   
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or suppose the solution 

0( )ry x x   

Note: The situation for a general second order differential equation with a regular 
singular point is similar to that for an Euler equation. 
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2. Another method of obtaining the solution of Euler Equation 

02  yyxyx   

Solution: We make the change of variable zex   or xz log and 0x . 
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dy

xdx
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dz

dy

dx

dy 1
  

2 2 2

2 2 2 2 2

1 1 1 1d y d y dz dy d y dy

dx x dz dx x dz x dz x dz
        

 
Substituting their value in the equation 
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2
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dz dz
      

 
This is an equation with constant coefficients 
The auxiliary equation is  
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(ii) If the roots are equal i.e zrezccy )( 21  . 
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(iii) If the roots are complex 
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3.2   Series Solution Near a Regular Singular Point 
 
Consider the equation  
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If all the coefficients use zeros, except 0P and 0q , then (2) reduces to Euler 

equation, which was discussed previously. 
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If some of the nP and nq . 1n  will not be zero.  However, the essential character of 

the solution remains the same.  It is natural to seek the solution of the form of 
“Euler Solution” the power series. 

n
n

n

r xaxy 





0

        (3) 

 
As part of our problem we have to determine 
 

(1) The values of r  for which equation (1) has a solution of the form (3) 
(2) The recurrence relation for the na  

(3) The radius of convergence of the series n
n

n

xa


0

   

We shall illustrate the method by example 
 
Example I:  Find the series solution of the equation 

02)1(2  yyxyx    (1) 

 
Solution:  0x is the regular singular point of the equation. 
 
We assume line solution 
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Now we shift the index of the second series in (3).  We get 
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Once more we reason that the total coefficient of each power of x  in the left member 
of (4) must vanish.  
The second summation does start the contribution, until 1n .  Hence the equation 
determinants c  and n are given by 
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0)12(  rr         (6) 

          
(6) is called the indicial equation. 
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Recurrence relation 
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Next task is to find the solution corresponding to the root 0r  . 
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The general solution is  

21 ByAyy   

Note:  The roots of indicial equation are unequal and do not differ by integer 
 

3.3 Indicial Equation with Equal Roots 
 

Example 2: Solve the equation 

0)21(32  yxyxyx        (1) 

Solution:  0x is regular singular point of (1) 
We assume the solution  
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0122  rr  

1 r  
The recurrence relation is    

2

1

)1(

2


 

rn

a
a n

n         (4) 

,1n  

In which  

,1n 0
2

2

[( 2)( 3)........( 1)]

n

n

a
a

r r r n


   
      (5) 

1

( , ) ( ) ,r n r
n

n

y x r x a r x






          (6) 

in which  

,1n
2

2
( )

[( 2)( 3)........( 1)]

n

na r
r r r n


   

     (7) 

Let us write 

yxyxyxyL )21(3)( 2         

The y  of equation (6) has been so determined that for that y  the Eight member of (8) 

reduced to a single term then 0n .   
Thus  

yxyxyxyL )21(3)( 2         (8) 

       
A solution of the original differential equation is a function y for which 0)( yL .  

Now    taking  1r     makes 0)]1,([ xyL  
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Now differentiate each member of (9) with respect to 

2[ ( , )] [( 1) ]ry x r r x
dr r

 
 


 

2[ ( , )] 2( 1) ( 1) logr rl y x r r x r x x
dr


        (10) 

 
From (9) and 10, it can be seen early that the two solution of the equation 0)( yL  are 

)],([1 rxyy    )1,([  xyy                         (11) 

and 12 )],([ 



 rrxy

r
y                 (12) 

rn
n

n

r xraxrxy 



 )(),(

1

 

1 1

( , )] log ( ) ( ) logr n r n r
n n

n n

y x r x x a r x a r x x
dr

 
 

 


     

1

( , ) log ( ) n r
n

n

y x r x a r x






   

1
1

1

log ( 1) n
n

n

y x a x






    

1 1
1

1

( 1) n
n

n

y x a x


 



    

2

2
( )

[( 2)( 3)...( 1)]

n

na r
r r r n


   

 

log ( ) log 2 2[log( 2) ......log( 1)]n
na r r r n       

1 1 1
( ) 2 ( )[

2 3 1
n na r a r

r r r n
    

   
L L  

1r , we obtain 

2

2
( 1)

( !)

n

na
n

   

2

2 1 1 1
( 1) 2 [1 ....... ]

( !) 2 3

n

na
n n

        

We write 
1

[1 ....... ]nH
n

   

The solutions are 
1

1
1 2

1

2

( !)

n n

n

x
y x

n






   

1 1
1

2 2
1

2
log

( !)

n n
n

n

H x
y x x

n

 




   

The general solution, valid for all finite 0x is 21 ByAyy  . 
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3.4 Indicial Equation with Difference of Roots, a Positive Integer, and 
Non-LogarithmicCase 

 
Solve line equation 

02)4(  yyxyx        (1) 

 
   Solution:  We assume the solution 

 
0

n r
n

n

y a x






         (2) 

1 1
1

0 1

( ) ( )( 5) ( 3)n r n r
n n

n n

L y n r n r a x n r a x
 

   


 

           (3) 

          
The Indicial equation is 

( 5) 0r r    

2 0r  ,  1 5r   

505  s  
We reason that we hope for two power series solutions, one starting with an 0x  term, 
and one with an 5x term. 
 
If we use the longer root 1 5r  , then the 0x  term would never enter.  Thus, we use the 

smaller roots 2 0r  , then the trial solution of the form. 

nn

n

xay 





0

         (4) 

has a chance of picking up both solutions because the 5n sn  term does contain 5x  

0)()3()5()( 1
1

1

1

0

 










 yLxanxannyL n

n
n

n
n

n

 

 
0)( yL  

1)3()5(  nn anann        (5) 

1n   024 01  aa   oaa
2

1
1   

2n   06 12  aa    oaa
12

1
2   

3n   006 13  aa   03 a  

4n   04 34  aa   04 a  

5n   02.0 45  aa   04 a  

6n      

5
6

3

6.1

a
a   

2.7

4 6
7

a
a   

--------------- 
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)5(

))(3( 1




 

nn

an
a n

n  

53.4.5....( 3)

[6.7.8...... ]( 5)!
n

n a
a

n n





 

53.4.5

( 2)( 1) ( 5)!
n

a
a

n n n n


  
 

Therefore, with  0a  and 5a  arbitrary, the general solution may be written 

)
12

1

2

1
1( 2

0 xxay  + 5
5

6

60
[ ]

( 5)! ( 1)( 2)

n

n

x
a x

n n n n






  

  

2
0

1
(1 )

2
a x x   +

5
5

5
0

60
[ ]

!( 5)( 4)( 3)

n

n

x
a x

n n n n






  

  

 
Example 2 Solve the equation 
  03)34(  yyxyx      (1) 

Solution  0x is the regular singular point of (1). 
 
We assume the solution 

rn
n

n

xay 





0

        (2) 

1 1

0 0 0 0

( ) ( )( 1) 4 ( ) 3 ( ) 3 0n r n r n r n r
n n n n

n n n n

L y n r n r a x n r a x n r a x a x
   

     

   

               

1

0 0

( ) ( )( 3) 3 ( 1) 0n r n r
n n

n n

L y a n r n r x a n r x
 

  

 

            (3) 

0n , we get the indicial equation 
0)3( rr  

0r , 3  

1 1
1

0 1

( ) ( )( 3) 3 ( )n r n r
n n

n n

L y a n r n r x a n r x
 

   


 

        

Using the smaller root 31 r  

4 4
1

0 0

( ) ( 3) 3 ( 3) 0n n
n n

n n

L y a n nx a n x
 

 


 

       

 
Recurrence relation is  

1)3(3)3(  nn annna  

1n    oaa )2)(3()1)(2(1   

2n    12 )1)(3()2)(1( aa   

3n    23 )0)(3()3)(0( aa   

4n    1

3



 nn a

n
a  

   34
4

3
aa
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   45
5

3
aa


  

                                   ………………. 

   1

3



 nn a

n
a  

   
3

3

( 3)
6

!

n

na a
n


   

3 2 1 3
0 1 2

3

( )n
n

n

y a x a x a x a x


   



    

 
3 3

3 2 1
0 3

3

9 ( 3)
( 3 ) 6

2 !

n n

n

x
y a x x x a

n

 
  




      

This is the required solution 
 
4.0 CONCLUSION 
 
We have looked at the various problems involving Euler equations in this unit.We also 
examined their various forms of indicial equations. In the next unit, we shall consider 
indicial equation of positive integer and logarithmic case. 
 
5.0  SUMMARY 
 
You will recall that in this unit, a general form of Euler equation was given. We also 
considered the various form of Euler equations. You are required to master this unit 
very well before proceeding to other units.   
 
6.0 TUTOR-MARKED ASSIGNMENT 
 
i. Solve the equation 

0)21(32  yxyxyx  

 
ii. Solve the equation 

02)4(  yyxyx  

 
7.0  REFERENCES/FURTHER READING 
 
Earl, A. Coddington (1989).An Introduction to Ordinary Differential Equations. India: 

Prentice-Hall. 
 
Einar, Hille (1980).Lectures on Ordinary Differential Equations: London: Addison-

Wesley Publishing Company. 
 
Francis, B. Hildebrand(2014).Advanced Calculus for Applications. New Jersey: 

Prentice-Hall. 
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UNIT3  INDICIAL EQUATION WITH DIFFERENCE OF ROOTS, 
POSITIVEINTEGER AND LOGARITHMIC CASE 

 
CONTENTS 
 
1.0  Introduction 
2.0  Objectives 
3.0  Main Content 

3.1 Indicial Equation with Difference of Roots, Positive Integer and 
LogarithmicCase 

3.2  Fourier Series 
3.3 Orthogonality of a Set of Series and Cosines 

4.0  Conclusion 
5.0  Summary 
6.0  Tutor-Marked Assignment 
7.0  References/Further Reading 
 
1.0 INTRODUCTION 
 
In Unit 2, we studied indicial equations where logarithm case was not considered. In 
this Unit, we shall consider the positive and logarithm cases. 
 
2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 
 solve a differential equation whose indicial equation has a  positive integer; and 
 solvea differential equation whose indicial equation has roots with logarithmic 

case. 
 
3.0 MAIN CONTENT  
 
3.1  Indicial Equation with Difference of Roots,Positive Integer 

andLogarithmicCase 
 
We illustrate this method by an example: 
Solve the equation 

0)31()1(2  yxyxxyx  

Solution: We assume the solution 

rn
n

n

xay 





0  

1
0 1

( ) ( 1)( 1) ( 2) 0n r n r
n n

n n

L y n r n r a x n r a x
 

 


 

            

The indicial equation is 
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0)1)(1(  rr      (Putting )0n           (1) 
1,1 r  

1n , the recurrence relation 

)]1).....(1()[2(

)2( 0






nrrrr

anr
an       (2) 

0
0

1

( 2)

( 2)[ ( 1).....(2 1)]

n r
r

n

r n a x
y a x

r r r n





 
  

   
  

 
It follows that 

 
 
For 1r , only one solution can be obtained.   

Note:  for 1r , since there is no power series with skilling 1x , we suspect the 
presence 1r . 
Choose 10  ra , we have  

1

( 1)( 2)
( , ) ( 1)

( 2)[ ( 1).....( 1)]

n r
r

n

r r n x
y x r r x

r r r r n





  
  

   
  

We can obtain two solutions with respect to  
For which 

2[ ( , )] ( 1) ( 1) rL y x r r r x     

We use the same argument as that of equal roots 
Putting 

)1,(1  xyy   

2 1[ ( , )]r

y
y y x r

r






 

1
2( 1)( 3) ( 4)

( , ) ( 1)
( 2) ( 2)

r
r rr r x r

y y x r r x x
r r r r


  

    
 

 

3

( 2)

( 2)[ ( 2).....( 1)]

n r

n

r n x

r r r r n





 


   
 <  

 
Differentiate with respect to r . 

1( 1)( 3)
[ ( , )] log

( 2)

r
r r r r x

y x r x x x
r r r

  
  

 
 

  
21 1 1 1 ( 4) 1 1

1 3 2 2 ( 2) 2

rr x

r r r r r r u r


    

     
 

3

1 1 1 1 1 1
( 2) ( .....

2 2 2 2 3 1
( 2)[( 2)( 3)........(2 1)

n r

n

r n x
n r r r r r n

r r r n






      
      
    

  

 
Putting 1r   , get  

)]2...(2.1)[1(

)1(
3.0.0

1

3
1











n

xn
xxxy

n

n

o  

( ) ( 1)( 1) r
oL y r r a x   
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1

1 0
2 1

3

1 1 1
( 1) { 1 1 (1 ..... }

1 1 2 2log 2 3 { 1 1}
3 ( 1)[1.2...( 2)]

n

n

n x
n ny y x x x x

n








      
       
 

  

)!2(

)1(
3

1

3
1











n

xn
xy

n

n

 

 
1

1 2
2 1

3

[1 ( 1) ]
log 2

( 2)]

n
n

n

n H x
y y x x x

n


 



 
    


  

Problem:  Find line general series solution of the D.E 

064
2

2

 y
dx

dy

dx

yd
x  

and show that it can be expressed in line form 
 
 

 
 
Solution:  0x is a regular singular point of D.E.   
 
Substituting in the D.E 

rn
n

n

xay 





0

 

Changing the index 

1 1
1

0 1

2( )(2 2 1) 0n r n r
n n

n n

n r n r a x a x
 

   


 

      . 

The indicial equation is  

0)12(2 rr ,  0r , 
2

1
 

The recurrence relation is 

 1

( 1)

2( )(2 2 1)
n na a

n r n r





  
, 1n  

(i) 0r , then  

 1

( 1)

2 (2 1)

n

n na a
n n







 

 ,1n  01
)3)(2(

)1(
aa


  

   2 1

( 1)

(4)(5)
a a


  

 
Thus 

  2 0

( 1)

(2 1)!
a a

n





 

 

)]2...(2.1)[1(

)1(
3.0.0

1

3
1











n

xn
xxxy

n

n

o
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Hence the solution is  

)!12(

)1(

0
01




 



 n

x
ay

n

n

 

1
2 2 1

0 0

0

( 1) ( )

(2 1)!

n n

n

a ax
Sin x

nx x






 


  

 

(ii) 
2

1
r , then 

 1
)2)(12(

)1(





 nn a

nn
a  

1n , 
)2)(1(

)1( 0
1

a
a


  

 
)4)(3(

)1( 1
2

a
a


  

------------------------------ 

 
!2

)1( 0

n

a
a

n

n


  

1
2 2

0 0
2

0

( 1) ( )
cos

2 !

n n

n

a ax
y x

nx x






   

Hence the general solution is  

x
y

1
 ( )xBSinxACos   

 
3.2   Fourier Series 
 
1. Orthogonality:  A set of function  is ),.....}(),....(),({ 0 xfxfxf n  said to be an 

orthogonal set with respect to the weight function )(xw over the interval 

bxa  if  

0)()()(  dxxfxfxw mn

b

a
  for nm   

   0   for nm   
Orthogonality is a property widely encountered in certain branches of 
mathematics. Much use is made of the representation of functions in series of 
the form 

)(
0

xfc nn
n





 

In which the nc are numerical coefficients and )}({ xfn   is an orthogonal set. 

 
3.3     Orthogonality of a Set of Series and Cosines 

  
We shall consider the set of function  
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( ), 1, 2,3,
n x

Sin n
c


 K      

 ( ), 0,1, 2,3,
n x

Cos n
c


 K     

or 
2 3

( ), ( ), ( ), , ( ),
x x x n x

Sin Sin Sin Sin
c c c c

   
K K  

2 3
1, ( ), ( ), ( ), , ( ),

x x x n x
Cos Cos Cos Cos

c c c c

   
K K  

 is orthogonal with respect to the weight    function 1)( xw  over the interval 

cxc   
 i.e. 

 0 dx
c

xk
Cos

c

xn
Sin

c

c


, where nk  . 

Before we prove the result, we give some definition to shorten the proof. 
 

(a) Even function:  A function )(xgy   is said to be even y  
)()( xgxg   

For all x . 
 

(b) Odd function:  A function )(xhy   is odd if )()( xhxhy   

For all x. 
 

Example: Sinx is an odd function 
Cosx is an even function 

(c) Most function are neither even or odd, example ( ) 1f x x  . (is one function ) 

(d) If )(xg is an even function  then as well ) 

 dxxgdxxg
cc

c
)(2)(

0 


 

 
Consider the integral 
 

01  


dx
c

xk
Cos

c

xn
SinI

c

c


   for all k  and n . 

It follows at once from the fact that the integrand is an odd function of x .  It does not 
depend upon one fact that k  and n  are integers. 

,2 dx
c

xk
Sin

c

xn
SinI


  nk   

Take 





 d

c
dx

c

x
 ,  







dknCosknCos

c
])()(

2
 ( ) ( )

c
Sin n Sin k d
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kn

knSin

kn

knSinc )()(

2
 

Since kn  and kn  are ve  integers. 

0  
Finally, we consider the integral 
Where 0n , ..,.........1 0n ,  

  





 









kn

knSin

kn

knSinc )()(

2
0  

dx
c

nx
Sindx

c

xn
SinI

c

c

c

c

22
4  




 

let ( )f x  the continuous and differentiable at every point in an interval cxc 

except for a most finite number of points and at more points, let )(xf and )(xf  have 

right and left-hand limits. 
 
Note   
The notation )0( cf is used to denote line right-hand limit of cx  as )(xf from the 

right, i.e.  
( 0) ( )lim

n c

f c f x


   

And Similarly 
( 0) ( )lim

n c

f c f x


   

Denotes, the limit of ( )f x as approaches c from the left. 

 
Since Fourier series for )(xf may not converge to the value )(xf everywhere, it is 

customary to replace the equals sign in equation (8) by the symbol ~which may be 
read “has for its Fourier Series” we write 

0
1

1
( ) ~ ( cos sin )

2
n n

n

n x n x
f x a a b

c c

 



  , 

Where  na and nb are given by (a) and (10) 
 

Example:  Construct the Fourier series, over the interval ,02  x for the function 

defined by 
2, 2 0

( )
, 0 2

x
f x

x x

  
 

 
,    

Solution:  Now )(xf ~ )
2

sin
2

cos(
2

1

1
0

xn
b

xn
aa nn

n








 

In which 

;
2

cos)(
2

1 2

2
dx

xn
xfan


  2,......1,0n  

and 

;
2

sin)(
2

1 2

2
dx

xn
xfbn


 2,......1,n  

dx
xn

xdx
xn

an
2

cos
2

1

2
cos

2

1 2

0

0

2


 


   (a) 
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If   0n            , then 


0 2 2

02

2 1 2 2
[sin [ sin ( ) cos ]

2 2 2 2
n

n x n x n x
a x

  

  
     

 

 
For 0n ,  from (a), we get 

0a  =3 

1
(1 cos )

2
nb n

n



    

 
Thus we write 

]
2

sin
1

2
cos

)1(1
[2

2

3
~)(

22
1

xn

n

xn

n
xf

n

n











 





. 

 
Example 2: Obtain the Fourier series over the interval  to for the function 2x  
 
Solution:  We know  

]sincos[
2

1
~

1
0

2 nxbaax n
nx

n
n






  for   x , where 

;cos
1 2 nxdxxan 




    ,.......2,1,n  

;sin
1 2 nxdxxbn 




    ,.......2,1,n  

2x is an even function, nxsin  is an odd function, thus nxx sin2  is an odd function 

Hence 
0nb . for every n . 

2

02 3

2 sin 2 cos 2sin
[ ]n

x nx x x nx
a

n n n

 

 
   for 0n  

From which 

2 2

2 2 cos 4( 1)
[ ]

n

n

n
a

n n

 




  ,  ,........2,1n  

for 0n  

3
2

3

2
[

2 23
2

0
0






  dxxa  

Therefore, in the interval;   x  

2
1

2
2 cos)1(

4
3

~
n

nx
x

n

n


 






 

Indeed, because of condition of line function involved, we write 

,
cos)1(

4
3

~
2

1

2
2

n

nx
x

n

n


 






for   x . 

 

22

)cos1(2





n

n
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2. Fourier Sine Series:  Sometimes it is desirable to expand the function )(xf  in 

a series involving Sine function only. 
In order to get a Sine series for )(xf we introduced a function )(xg defined as follows 

)()( xfxg     cx 0  

)( xf     0 xc  

 
Thus, )(xg is an odd function over the interval 0 xc .    

Hence 

0
1

1
( ) ~ ( cos sin )

2
n n

n

n x n x
g x a a b

c c

 



  ,  ,......1,0n  

 
It follows that 

1
( ) cos 0

c

n c

n x
a g x dx

c c




      ,......1,0n  

(Note: Integrand is an odd function) and that 
 

dx
c

xn
xg

c
b

c

c
n


sin)(

1
  

2
( ) sin

c

c

n x
f x dx

c c




   

Thus 

1

( ) ~ sinn
n

n x
f x b

c




     cxo   

)(xf Where 
2

( )sin
c

n c

n x
b f x dx

c c




    ........,.........2,1n  

 
Example:  Expand 2( )f x x in a Fourier Sine Series over the interval 10  x  

Solution:  At once we write, for 10  x  

xnbx n
n

sin~
1

2 




 

In which 

xdxnxb
c

c
n sin2

  

32

2
1

0 )(

cos2

)(

sin2cos
2













n

xn

n

xnx

n

xn
x    

3 3 3 3

cos 2cos 2cos
2[

n x n x

n n n

  

  
     

 
Hence the Fourier Sine Series, over 10  x  for is 2x  

]
2)1(2cos

[2
3333 



nnn

n n
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3. Fourier Cosine Series:  In order to expand the function )(xf in a series involving 

cosine function only, such series is called Fourier Cosine Series.  We define 
)()( xfxh    cx 0  

)( xf    0 xc  

 
It follows that )(xh is an even function of x . 

0
1

1
( ) ~ ( cos sin )

2
n n

n

n x n x
h x a a b

c c

 



   

0

1 2
( )cos ( )cos

c c

n c

n x n x
a h x dx f x dx

c c c c

 


    

cx 0  

But 
1

( )sin 0
c

n c

n x
b h x dx

c c




   

Thus we have  

0
1

1
( ) ~ cos

2
n

n

n x
f x a a dx

c





  

 
in which  

dx
c

xn
xf

c
a

c

c
n


cos)(

2
  

Example:   
Solution:  At once we have 

c

xn
aaxf n

n


cos

2

1
~)(

1
0 





 in which 

in which 

0

2
( )cos

c

n

n x
a f x dx

c c


   

2
0

2 .
[ sin ( ) cos ]cc n x c n x

x
c n c n c

 

 
   

2
0

2
[( ) cos ]cc n x

n
c n c





   

)cos1(
2

22



n

n



 , 0n  

The coefficient 0a  is readily obtained 

c
c

c
xdx

c
a

c

c
n  2

22 2

 

Thus, the Fourier Cosine Series over the interval cx 0 the function xxf )(    is 

2 2
1

1 1 ( 1)
( ) ~ cos

2

n

k

uc n x
f x c

n c
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4.0  CONCLUSION 
 
In this unit, you have learnt about indicial equations, where the roots are positive and 
logarithmic. You have also learnt about FourierSeries and odd functions. 
 
5.0 SUMMARY 
 
In this unit, you have learnt about positive and logarithm cases. You also studied how 
to solve a differential equation whose indicial equation has a positive integer as well 
as solve a differential equation whose indicial equation has roots with logarithmic 
case. You are required to study this unit very well before proceeding to the next unit. 
 
6.0  TUTOR-MARKED ASSIGNMENT 
 
i. Find the general series solution of the D.E 

064
2

2

 y
dx

dy

dx

yd
x  

ii. Construct the Fourier series, over the interval ,02  x for the function 

defined by 
2)( xf ,   ,02  x  

2x  ,   20  x  
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UNIT 4 BOUNDARY VALUE PROBLEMS 
 
CONTENTS 
 
1.0 Introduction 
2.0  Objectives 
3.0  Main Content 
 3.1 Boundary Value Problems 
 3.2  Eigen Values and Eigen Functions 
4.0  Conclusion 
5.0  Summary 
6.0  Tutor-Marked Assignment 
7.0 References/Further Reading 
 
1.0 INTRODUCTION 
 
In this unit, we will discuss some of the properties of boundary value problems for 
linear second order equation. This class of differential equations is very useful for 
practical applications. 

 
2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 
 classify second order differential equations into homogeneous and non-

homogeneous; 
 differentiate between Eigen values and Eigen functions; and 
 solve related Eigen value problems. 
 
3.0  MAIN CONTENT 
 
3.1 Boundary Value Problems 
 
The linear differential equation 
 )()()()( xgyxRyxQyxP       (1)  

was classified homogeneous if, 0)( xg , and non-homogeneous otherwise. 

 
Similarly, a linear boundary condition 

cyaya  )0()0( 21      (2) 

 
A boundary value problem is homogeneous if both its differential equation and linear-
boundary conditions are homogeneous. If not, then it is non-homogeneous. 

 
A typical linear homogeneous second order boundary value problem is of the form. 

0)()()(  yxRyxQyxP       (3) 
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10  x , 
0)0()0( 21  yaya        (4) 

0)0()( 21  ybIyb        (5) 

 
Most of the problems, we will discuss are of the form given by (3) to (5). 
 
3.2  Eigen Values and Eigen Functions 
 
Consider the differential equation   

0),(),(  yxqyxpy    10  x  (1)  

The boundary conditions 
0)0()0( 21  yaya        (2) 

0)0()( 21  ybIyb        (3) 

 
Where    is arbitrary parameter. 
 
Clearly, the solution of (1) depends on x  and   and can be written as  
 

1 1 2 2( , ) ( , )y c y x c y x   ,                (4) 

Where 1y  and 2y  are a fundamental solution of (1).  Substituting for 1y  in the 

boundary condition (2) and (3), yield. 
 

1 1 1 2 1 2 1 2 2 2[ ( , ) ( , )] [ ( , ) ( , )] 0c a y o a y o c a y o a y o           (5) 

1 1 1 2 2 1 2 2 2[ ( , ) ( , )] [ ( , ) ( , )]] 0c b y l b y l c b y l b y l           (6) 

 
A set of two linear homogeneous algebraic equations for the constant, such a set has 
solutions (other than 021  cc if and only if the determinant of coefficients )(D

vanishes i.e. 

1 1 1 2 1 1 2 2 2

1 1 2 1 1 2 2 2

[ ( , ) ( , )] ( , ) ( , )
( ) 0

[ ( , ) ( , )] ( , ) ( , )]

c a y o a y o a y o a y o
D

b y l b y l b y l b y l

   


   

  
 

  
 

 
Values satisfying this determinant equation are the Eigen values of the boundary-
value problems (1), (2) and (3) 
 
Corresponding toeach Eigen value is at least one non-trivial solution, i.e. an Eigen 
function 
 
Note: We will consider problems namely:only real Eigen value 
 
Example I: Consider the equation 

  0 yy       (1) 

  ),0(y   0)1( y    (2) 
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Solution:  0 yy  , the solution is  

 1 1cos siny c x c x   ,   (3)     

      
By the boundary conditions 

01 c  

0sin2 c  

02 c , otherwise 0y  is the solution 

 n 0sin , .......,.........2,1n  

or 22 4,  nn     (4) 

 
(4) gives the Eigen values of (1).  If we consider    1  
 

xcxcy sincos 21   

10 c       by (2) 

2 2sin 0 0y c l c      

0 = c1  
0 y    Hence 1  is the Eigen -function 

 
The Eigen function is  

xncyn sin2     …………….   (5) 

2.,.........2,1 cn  ………. c1   is an arbitrary constant 

 
Example 2:  Find the real Eigen values and Eigen-function of the boundary value 
problem 

0 yy   
0)0( y    0)(  ly  

The solution is  
0 yy   

xcy cos1       (1) 

0)0( y , given 

01 c . Also 

2 cosy c x    

But 0)(  ly , yields 

2 cos 0c l     

2 cos 0c l   

(2 1)

2

n

l





  ,  ........,.........2,1n  

(2) givesEigen value 
(2 1)

sin[ ]
2

n

n x
y

l


 ,  ........,.........2,1n     (2) 

(3) givesEigen functions 
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Activity IV 
 
Find the real Eigen-values and Eigen-function of the boundary value problem 
 

0 yy   
(0) 0y    ( ) 0y l    

 
Example3 

0 yy    

0y ,  0)0()1(  yy  

 
Solution 

xcxcy  cossincos 21   

02 c , 

 cot  
 

The Eigen values are given by equation (3).  The Eigen function is 

xy nn  Where the root of is     n  is the root of the equation 

 cot  

x ,  xy cot  

 

 )1(  nn     ..,.........3,2n  
22)1(   nn for large n 

 
Example 4 
 
Consider the problem 
 

0 yy   

(0) 0y  ,  0)0( y  

Show that if m ,and n  are Eigen function corresponding to the Eigen value  m and 

n  Respectively, then 

0
( ) ( ) 0

l

m nx x dx    

 
Provided that nm   . 
 

Solution: 
0 mmm   

0n n n     

  
0

nmmnm          (1) 

0n m n m n               (2) 
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0 0
( ) ( ) 0

l l

m n m m nx x dx dx              (3) 

0 0
0

l l

n m n n mdx dx               (4) 

0)()()()(
000

  dxdxxxxx nm

l

mnm

l

nm

l

  

dxxxdxxxxxoll nm

l

o
mnm

l

nmnmnm )()(])()()()([)0()()()(
0

   or 

By boundary value conditions 

0)()()()(
00

  dxxxdxxx nm

l

mnm

l

      (5) 

Subtract (4) from (5), we have 

0
( ) ( ) ( ) 0

l

n m m nx x dx      

If mn   , then 

0)()(
0

 dxxx nm

l

  

 

Example5 
 

Hyperbolic function 

cosh
2

x xe e
x


 , sinh

2

x xe e
x


  

)sinh((cosh) x
dx

d
  

)(cosh)(sin xhx
dx

d
  

 

(a) Solution of the problem is 

04  r ,   Take 4   

044  r  
 

The solution is 

1 2 3 4cos sin cosh sinhy c x c x c x c x           (1) 
 

The boundary condition 
 

031  cc  

031  cc  

01  c and 03 c  

 

2 4 2 4sin sinh 0 sin sinh 0y c c l c l c l           
 

0sinhsin0sinsin 4242  lclclccy   
 

0sinhsin0sinsin 4242  lclclccy   
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0sinhsin0sinsin 4242  lclclccy   
0sinh0sin  ll    ....,.........2,1n  

 nl sin  

x
l

n
yn


sin    ....,.........2,1n  

 
is the Eigen-function 

 
4.0 CONCLUSION 
 
We have been able to study some Eigen-value problems in this unit. This unit must be 
mastered properly before moving to the next unit. 
 
5.0  SUMMARY 
 
Recall that the linear differential equation 
 )()()()( xgyxRyxQyxP      (1)  

was classified homogeneous if, 0)( xg , and non-homogeneous otherwise. 

 
Similarly, a linear boundary condition 

cyaya  )0()0( 21     (2) 

 
A boundary value problem is homogeneous if both its differential equation and in- 
boundary conditions are homogeneous.  If not, then it is non-homogeneous. We also 
classified some equations into Eigen value problem depending on whether the 
determinant of the Eigen value of the problem is zero or not. Read carefully and re-
work all exercises and problems in this unit for better understanding. 
 
 

6.0  TUTOR-MARKED ASSIGNMENT 
 
i.   Consider the problem 

0 yy   

(0) 0y  ,  0)0( y  

Show that if m and n  are Eigen function corresponding to the eigen value  m

and n  Respectively, then 

0
( ) ( ) 0

l

m nx x dx    

Provided that nm   . 

 
ii.  Find the real Eigen-values and Eigen-function of the boundary value problem 

0 yy   
0)0( y    0)(  ly  
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UNIT 5  STURM AND LIOUVILLE PROBLEM 
 
CONTENTS 
 
1.0  Introduction 
2.0  Objectives 
3.0 Main Content 
 3.1  Sturm and Liouville Problems 
4.0  Conclusion 
5.0  Summary 
6.0  Tutor-Marked Assignment 
7.0 References/Further Reading 
 
1.0  INTRODUCTION 
 
We solved some partial differential equations by the method of separation of 
variables.  In the last step, we expanded a certain function in a Fourier Series, i.e. as 
the sum of an infinite series of Sine and Cosine functions. It is of fundamental 
importance that the Eigen functions of a more general class of boundary values 
problems be used as a basis for series expansions, which have properties similar to 
Fourier Series. 
 
Such Eigen-functions series are useful in extending the method of separation of values 
to a larger class of problems in partial differential equation.The class of boundary 
value problem we will discuss in this unit is associated with the names of Sturm and 
Liouville. 
 
2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 
 solve partial differential equation using Sturm and Liouville methods; and 
 solve correctly the associated Tutor-Marked Assignment. 
 
3.0  MAIN CONTENT 
 
3.1 Sturm and Liouville Problem 
 
We introduce the operator 

yxqyxpyL )(])([][        (1) 

 
yxryL )(][         (2) 

 
0)()(])([  yxryxqyxP       (3) 

on the interval 0 x l  , together with the boundary condition 
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0)0()0( 21  yaya        (4) 

0)1()( 21  ybIyb        (5) 

 
We shall assume that qp, and r are continuous functions in the interval ].1,0[  

0)(,0)(  xrxP for all x in 0 x l  . 

 
(i) Lagrange’s identity: let u  and v  be functions having continuous second 

derivatives on the interval 0 x l  .  Then    
 

0
( [ ] [ ])

l

vL u uL v dx  

1
0( )[ ( ) ( ) ( ) ( )]p x u x u x u x u x         (6) 

 
Solution 1: 

0 0
[ ] { [ ( ) ( ) ( ) ( )}

l l

vL u dx v p x u x q x u x dx     

0
0

[ ( ) ( ) ( ) ( ) ( )] ( ){ ( ( ) ( )) ( ) ( )}
l

lv x p x u x up x v x u x p x v x q x v x dx          

0
0

( [ ] [ ]) ( )[ ( ) ( ) ( ) ( )]
l

lvL u uL v dx p x u x v x u x v x       

 
This is known as Lagrange’s identity if u and v satisfy (5) and (4) 
 
R.H.S =  ( )[ ( ) ( ) ( ) ( )] (0)[ (0) (0) (0) (0)]p l u l v l u l v l p u v u v        

 1 1 1 1

2 2 2 2

( )[ ( ) ( ) ( ) ( )] (0)[ (0) (0) (0) (0)]
b b a a

p l u l v l u l v l p u v u v
b b a a

      0  

Thus we have 

0
{ [ ] [ ] 0

l

vL u uL v dx   

 
(ii) Show that all the Eigen value of the Sturm-Liouville problem 
 

yxryL )()(      A     

With  boundary conditions 
 

1 2

1 2

(0) (0) 0

( ) ( ) 0

a y a y

b y l b y l

  


  
   B     

are real. 
 
Proof:Let us suppose there exists a complex Eigen value iv   will 0v  and 

corresponding to this value is the Eigen function ( ) ( ) ( )Q x U x iV x  where at least one 

of them is not identically zero. 
 
Now Q  satisfies the differential equation, where  and 1Q are conjugate of  and Q

respectively. 
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 rQQL )[  

 1 1[ ]L Q rQ  

or 
Qu  and 1v Q  

1 1 1
0 0
{ ( ) ( )] ( ) ( ) ( ) ( ) 0

l l

Q L Q QL Q dx r x Q x Q x dx       

or 2 2

0
( ) ( )[ ( ) ( )] 0

l

r x U x V x dx       ………. (1) 

 
Since 0)( xr  for all x in 0 x l  (1) 0 v  

This contradicts the original hypothesis.  Hence the Eigen value of Sturm-Liouville 
problem is real. 
 
(iii) If  1Q and 2Q are Eigenvalues of the Sturm-Liouville problem (A) and (B), 

corresponding to Eigen valves 1  and 2 , respectively , and 1 2  , then 

  1 2
0

( ) ( ) 0
l

r x Q x Q x dx   

 
)([ xr is called the weight function and it is an orthogonal property of 

Eigenfunction] 
 
Proof:  1 1 1[ ]L Q rQ  

  2 2 2[ ]L Q rQ  

If we let = 1u Q  and   2v Q then  

1 2 1 2
0 0
{ [ ] [ ]} ( ) ( ) ( ) ( ) 0

l l

vL u uL v dx r x Q x Q x dx       

Hence the result 
 
(iv)   Let us now consider a more general boundary value problem for the 

differential equation 
][][ yMyL  ,    10  x     

Where L and M are linear homogeneous differential operations of orders n and n 
respectively. 
 

yxpyxpyxpyxpyL nn
nn )()(........)()(][ 1

)1(
1

)(
0  

  

yxryxyxryxryM mm
mm )()(2........)()(][ 1

)1(
1

)(
0  

  

Where mn  . 
 
In addition to the differential equation, a set of n linear homogeneous boundary 
conditions at 0x , 1x is also prescribed.  If the relations 
 

0
[ [ ] [ ]] 0

l

vL u uL v dx   
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0
[ [ ] [ ]] 0

l

vM u uM v dx   

are line for every pair of functions u  and u , which are n lines continuously 
differentiable on [0, ]l and which satisfy n given boundary conditions, then the 

given boundary value problem is said to be self adjoint. 
 
Example1 :show that theSturm-Liouville problems 

( ) [ ( ) ] ( )L y P x y q x y    
yxryM )()(   

 

(i) 
0
[ [ ] [ ]]

l

vM u uM v dx  

 
0
[ ( ) ( ) ]

l

v r x u u r x v dx   

 0  

For every pair of ,u v  

 

0
[ [ ] [ ]] 0

l

vL u uL v dx   

 
as shown previously.  Hence it is self-adjoint  
 

Example 2: 
(a) 02  yyy   0y ,  ( ) 0y l   

 
Solution  yyyyL 2)(   

 

(i) 
0
[ ( 2 ) ( 2 )]

l

v u u u u v v v dx         

 
0

2 ,
l

u vdx   are true for every pair of function u   and v , which are n -times 

continuously differentiable on ],[ lo  which satisfy n  given boundary value problem 

is said to be self-adjoint. 
 
(b) 2(1 ) 2 0x y xy y      (0) 0y  ,  ( ) 2 ( ) 0y l y l   

 
02)1()( 2  yyxUxyL ,  (0) 0y  ( ) 2 ( ) 0y l y l  ,   

yyxyxyL  2)1()( 2  
0)( yM  

2

0
[ [(1 ) ( 2 )] 0

l

u x u u u u dx       

It is Sturm-Liouville problem. 
 
 
(c) ,yyy    (0) (0) ( ) 0y y y l     
    (0) (0) ( ) 0y y y l      
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Solution 
 

yyxyxyL  2)1()( 2  
yyM )(  

(i)  

0
( ( ) ( )

l

uM M u dx   

0
( ) 0

l

u u dx     

(ii) 
0

[( ) ( )]
l

u u dx    

0
( )

l

u u dx     

u u     
[ ( ) ( ) ( ) ( )]u l l l u l     
[ ( ) (0) ( ) (0)]u l l u    
[ ( ) (0) ( ) (0)]l u u l    

 
The right side is not zero. Hence it is not self-adjoint.   
 
Example 3:consider the differential equation 

02  yyy     

With boundary conditions 
 (0) ( ) 0y y l  ,  (0) ( ) 0y y l    

(a) Show that the problem is self-adjoint even though it is not a Sturm-Liouville 
problem. 

(b) Find all Eigenvalues and Eigenfunctions of the given problem 

 
Solution: yyL )(  
  yyM )(  

(i) 0])()([
1

0
 dxuuuUM  

 0)]()([
1

0
 dxuuuU  

 

(ii) dxuuuuu ]([
1

0
  

 dxuuuudxuuuu  
1

0

1

0
()(  

 [( ) ( ) ( ) ( )]l u l u l u l    
 [ (0) (0) (0) (0)]u u u u    
 [ (0) (0) (0) (0)]u u u u    
 [ (0) (0) (0) (0)] 0u u u u     

Hence it is self-adjoint 
 
The solution of the equation is  



MTH 302 ELEMENTARY DIFFERENTIAL EQUATION II 

42 
 

xcxcy sincos 21   

Applying the boundary conditions, we have 
 

1 2sin sin (1 cos ) 0c c       

1 2(cos 1) sin 0c c     

 
Thus 
 

sin (1 cos )
0

cos 1 sin

   

 





     

 
Or 

 
 

 
0  or 2)2(   n ,  ..,.........2,1n  

00  1)(0 x  
2)2(   nn  

,2cos)( xnxQn  ,2sin)( xnxQn   

,2cos1 xny    ,2sin2 xny   

,2cos1 xny    ,2cos22 xnxny   

 

1 2

cos 2 sin 2
( , )

2 sin 2 cos 2

n x n x
W y y

n n x n n x

 

   



    

 
xnnxnxn  22 sin22cos2   

02 n    x0  
 
Between 0 x l   
 
Thus the Eigen functions are linearly independent. 
 
Activity V 
 
Consider the Sturm-Liouville problems 

yxryxqyxp )()(])([   

1 2 2(0) (0) 0, , ( ) ( ) 0a y a y b y l b y l      

Where   p, q and r continuous function in the interval 0 x l  . 
(a) show that if   is an Eigen-value and   a corresponding Eigen function, then 

 2 2 2 2 21 1

0 0
2 2

( ) (1) (1) (0) (0)
l l b a

LQ dx p q dx p p
b a

          

(1 cos ) 0   
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 Provided that 02 a  and 02 b   How this result be modified   if 02 a  or 

02 b  

(b) Show that if 0)( xq and if 
2

1

b

b
. and 

1

2

a

a
 are non-negative, then the Eigen-

value  is non negative 
(c) Show that the Eigen-value   is strictly  0 x l   under ( ) 0q x   for each x in 

[0, ]l . 
 

4.0       CONCLUSION 
 
We have studied the Sturm-Liouville problem in this unit. You are to master this unit 
properly so that you will be able to solve the problems that follow. 
 
5.0       SUMMARY 
 
Recall that Sturm-Liouville problems are usually problems associated with Eigen 
valuesproblems of partial differential equations. In our subsequent course in 
mathematics in this programme, we will have cause to deal with it again, particularly 
when will shall study Partial Differential Equation. 
 
6.0   TUTOR-MARKED ASSIGNMENT 

 
 Consider the problem 

0)1(2  uyy   
0)1(,0)0(  yY  

i. Show that this problem is not self-adjoint 
ii. Show that all Eigenvalues are real 
iii. Show that the Eigenfunctions are not orthogonal(with respect to the weight 

function arising from the coefficients of …….. in the differential equation). 
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ANSWERS TO ACTIVITIES 
 
Activity 1 
 
Solution:  we assume the solution 

n
n

n

xay )1(
0

 




   (1) 

We first translate the axes, putting 

ux 1  ,  
dx

dy

dx

du

du

dy
.  

dx

dy

du

dy
1.       The equation becomes 

042

2

2

 uy
du

dy
u

du

yd
 

 
Then we assume the solution 

n
n

n

uay 





0

 

04)1( 1

0

1

0

2

0

 













 n

n
n

n
n

n

n
n

n

uaunauann  

Collecting the terms 

0)4()1( 1

0

2

0

 








 n

n
n

n
n

n

uanuann  

Shifting the index from n  to 3n in the second series 

2 2
3

0 3

( 1) ( 7) 0n n
n n

n n

n n a u n a u
 

 


 

      

Therefore 0a  and 1a are arbitrary and for remainder, we have 

02 2 a  

3n  

3
)1(

7





 nn a

nn

n
a  

0a arbitrary 1a  arbitrary                             2 0a   

03
2.3

4
aa


  14

3.4

3
aa


 0

4.5

2
25 


 aa  

36
5.6

1
aa


   0

)6(7

0
47  aa  0() 58  aa  

69
8.9

2
aa


 0

9.10

3
710 


 aa 01 a  

-                              -                                              - 
-                             -                                              -  

333
)13(3

73





 kk a

kk

k
a  013 ka , 2k   022 ka , 1k  
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1k  :    
 

  3 0

( 1) ( 4)( 1)...2...(3 7)

3.6.9....(3 ) 2.5..8...(3 1)

k

k

k
a a

k k

   



 

  
  

)
4

1
(

)13...(8..5.2)3....(9.6.3

)73...(2)...1)(4()1(
1 4

1
3

1
0 uuau

kk

k
ay k

k

k





 





 

Now substitute 1 xu  

  
  

)
4

1
(

)13...(8..5.2)3....(9.6.3

)73...(2)...1)(4()1(
1 4

1
3

1
0 uuau

kk

k
ay k

k

k





 





 

 
Activity IV 
 
Solution:  The solution is  

 1 2cos siny c x c x        (1) 

 

 1 2sin cosy c x c x           (2) 

 021  cc  

 

 
cos

1
  





cos
=0 

 
 
Thus the Eigen value are given by the equation 
 
  tan .        (3) 

xccy n  sin22   

If  n  is the root of (3), then eigen function is 

xy nnnn  cossin         (4) 

 
If 0  , then the solution is  

22 ccy  y 

1cy   

021  cc  

 
Hence the solution is  
   

)1(1  xcy  

thus 0  is also an Eigen value 

 tan  

,49.4~1
2

)12(
~




n
N  
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Activity V 
 
Solution 

22 )(])([)( QrqQQxpQxr   
 
Thus  

2 2

0 0
( ) ( ( ) )

l l

r x Q dx qQ p x Q Qdx     

Integrating by parts, we have 
2 2

0 0
[ ( )] )

l l

qQ dx Q p Q pQ dx     

 
From boundary condition, we obtain the result 

1

2

( ) ( )
b

Q l Q l
b

   

)0()0(
2

1 Q
a

a
Q   

Putting these values on the right side we obtain the result 
if or 02 a   or 02 b , then the first boundary condition reduces to  
 

0y  

( ) 0Q l  or 0)(  oQ  
 
The result reduces to  
 

2 2 21

0 0
2

( ( ) ( )
l l b

rQ dx qQ pQ dx p l Q l
b

      

or 

2 2 2 2 21

0 0
2

( (0) ( )
l l a

rQ dx qQ pQ dx Q Q l
a

      

(b)  In a Sturm Liouville problem, we always assume that ,0)( xp ,0)( xr  

 
By given condition 0)( xr for all x in 10  x 02 Q for all 10  x . 

 
Now we impose condition, so that right side of the equation in (a) is ve .   The second 

and third term are ve y
2

1

b

b
 and 

2

1

a

a
 are non-negatives 

Now 
 

2

0

l

qQ dx is ve  in order that   

 
(c) If 0)( xq  for all x 0 x l  then  is strictly. 


