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1.0 INTRODUCTION

A large class of ordinary differential equations possesses solution expressible over a
certain interval, in terms of power series. In this unit, we are going to investigate the
methods of obtaining such solutions.

2.0 OBJECTIVES
At the end of this unit, you should be able to:

o determine the radius of convergence of series;
o apply series solution method to solving differential equation; and
o determine ordinary points, and singular points of the differential equation.
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3.0 MAIN CONTENT

3.1. Series Solution of Ordinary Differential Equation

An expression of the form

A+ A=) 4K + 4 (x-x)" =3 A, (x—x,)" (1)

n=0
is called the power series.

To determine for what values of x the series (1) converges we use ratio test

An+1('x_x0)n+1 :1'
A,G—x) |

7:1+|

T

n

P =lim =L|x—x0|

n—

n+1

A

n

Where L=]im

n—>0

2)

The series is convergent when p <1, divergent when p >1. The test fails if p=1.

1. .
p= 7 is called the radius of convergence

The series converges when
1 .
x —x,| < T" R (radius of convergence)
diverges when
1
|x - x0| > 7 =R

(1) If L is zero, the series converges for all Values of x
(1) If L is infinite, the series converges only at the point x = x,

(iii)) If L is finite, then the series converges, when

x = x| < % = R (radius of convergence) and diverges if
|x = x| > 1
L

If Ya,(-x) and b (x-x)"
n=0

n=0

Converge to f(x) and g(x) respectively, for |x—x0| < p, (radius of convergence)
p, >0, then the following are true for |x—x,| < p,.

(1)Two series can be added and subtracted term wise, and
[ Eg(x)=) (a,+b)x~x,)"

n=0
(11)  The series can be multiplied and

f(x)gx)= ian(x—xo)"ib”(x—xo)” = icn(x—xo)”

2
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Where C, =ab, +ab, ,+ab, ,+...+ab,
If g(x,) # 0, the series

JACINR Ly
D ISR

although formula for d, is complicated if f(x)=ian(x—xo)” sthen f(x) is
n=0
continuoushas derivates of all orders for |x—x0|< p. and f', /", f" ... can be
computed by differentiating the series. Thus
a :%orf(x)zz%(x—xo)” ....................... (3)
. n=0 .

n

(3)  is called the Taylor series for function f at x = x,
A function f that has Taylor series expansion about x = x,

f(x)=i%(x—xo)"

With a radius of convergence p >0 is said to be analytic at x = x,.

The polynomial is analytic at every point, thus sums, differences, products, quotients
(except at the zeroes of the denominator) of polynomials are analytic at every point.

(1) Determine the radius of convergence of the power series

& . = Qx+1) LN
) Y 2 i) =3 E Gy polim =1 ()
n=0 n=0 n n—o0 2 2

Cola o2l o 1 1Y 1
= n = — Vv = _ = —1—|—— = —
petimigt <y o=l timp e -

3.2 Determining the Radius of Convergence

If we obtain the Taylor series of a function f(x) about a point x,, then the radius of

convergence of the series 1s equal to the distance of the point x, from the nearest
singularity.

Remark about a change in the index of summation

0

0 o
n __ n+2 __ k+2
(a) z a,x _Z a2 X _Z ApiaX
=2

n n=0 k=0

®) D nn-Dax"? =) (n+2)(n+a,,x"
n=2 n=0

( C) Z anxn+2 = Z an—an
n=0 n=2
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0
n+p _ n+p+k
(d) Z n+m Z an+k+m'x

n=k n=0
3.3 Ordinary Points and Singular Points of the Differential Equations

We consider the differential equation

P(X) +Q(X) +R(X)y 0 4

(we assume that P(x), O(x)and R(x) are polynomials)

(a) if P(x,) #0 , then x, is an ordinary point of the equation (1), or
0w, RW

R(x) P(x)
vy, P, Q are analytic at the point x = x,, then x, is the ordinary point of
the equation.
(b)  If the functions P(x), O(x)and R(x) are polynomials having no common

factors, the singular points of equation (1) are the points for which

P(x)=0 ®))
(c) If 1{1}}? (x—x,) %gg is finite
and |imG-x)' == 0(x) is finite

Py P(x)
Then the point x = x, is called the REGULAR SINGULAR POINT of equation (3).

(d)  Any singular point of equation (3) that is not regular singular point is called an
irregular_singular point.

3.3.1 Solution Near an Ordinary Point

Let us consider the equation

P(x)y"+0(x)y + R(x)y =0 (6)
Where P(x), Q(x)and R(x) are polynomials. x,is the ordinary point of the equation
(6).

Assuming that y = ¢(x) is a solution of (6) and ¢(x) has a Taylor Series
y = ¢(x) = Zan(x_xo)n (7)

n=0
Now we know that
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a, = ®)
m!
We can write (1)
Y+ P(x)y' +q(x)y=0
where P = oW , q= R(x)
R(x) P(x)
LYy ==Py' —qy )
or
y'==py' =Py -qy-q (10)

(It is natural to assume that y = y(x), y'=)'(x) at x=x, and y(0)=g¢,, y'(0)=a,,
we can easily calculate the coefficient «, a, provided that we could compute infinitely
many derivatives of p and ¢ existing at x,. Thus p and ¢ must have some
condition for line calculation of a, It has been proved that

»_ OO G

= , are analytic at x,_then the general solution of (6) is
R(x) P(x) ’

y= ian(x_xo)” =a,y,(x)+a,y,(x)

n=0
Where a,and q, are arbitrary y,and y, are linearly independent series solutions which

are analytic at x,.

We shall illustrate the method by examples:

Example 1: Solve the equation
V'+4y=0

near the ordinary point x =0
Solution: we assume the solution as

y=2 ax' (1)
n=0

y'= Z n(n—1ya,x""> (2)

n=0
Substituting these values in the equation yield

n(n-Da,x"?+4Y ax"=0 (3)
n=0

n=0

orY n(n-Dax">+4> a,,x"?=0 4)
n=0 n=2

ori [ n(n—1)a, +4i a,, k=0 (5)

Because the first two terms of the first sum in (4) are zero.

We now use the fact that for a power series to vanish identically over any interval,
each coefficient in the series must be zero

Recurrence relation:
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—4
n(n—l)a,+4a, , =00ra, =—2 >3
n(n—1)
Now we calculate in coefficients
—4a, —4aq, —4a, —4a,
a, = > a; = s Ay = > ds =
2.1 32 43 54
_ T4 _ A
ay, = > Arpp =
2k(2k 1) 2k +1)(2k)
From above we have
a.a, Ay = Z—k!aoﬂzmasz
(1) 4* _(=D'4
ay, =

Ay 5 Ay = a;
2k! 12k +1)!
Hence we can write in solution

2k+1
y= Z ax —a0+z CIka +a1x+z Ay X

n=0

IR I G Vi Y S (=D
_a0+z . ayx +a1x+z (2k+1)‘a1x

0 __1 k -
=aq,[ 1+; %m) 1 a1 kz (2k 1)'

2k+1 ]
1.

=a,Cos2x+—a,Sin2x
2

Example 2: Solve the equation
(1-x7)y" —6x)'—4y =0

near the ordinary point x =0
Solution: we assume the solution

y=2 ax" (1)
n=0

The only singular points of the equation in the finite plane are x=1land x=-1.
Hence we show that the solution is valid in |x<1 with 4, and q arbitrary

coefficients

0 ] 0

> n(n-Da,x"? —i n(n—Da,x" =Y 6na i 4a,x" =

n=0 =0 n=0

=

OI'Z n(n—1)a, x"

(n2 +5n+4)a,x" =0

M 1D

orz n(n—1)a,x"> - (n+D(n+4)a,x" =0
n=0

Il
(=]

n

Let us shift the index of the second series.

0 00

D n(n-Dax"? =Y (n=D)(n+2)a, ,x"> =0 (2)

n=0 n=2
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In equation (2), the coefficient of each power of x must be zero.

n+2
a,= a,, , for n>2 (3)
n
(3) is called recurrence relation. A recurrence relation is a special kind of
difference equation.

n=246,.andn=3,57,..

a, = iao’ as; = Eal
2

a zéa a zza

4 245 =5

a :Ma a :M(l

2% ok Lok Gk T

k>1

a,, = (k+1)a,
Similarly, &£ >1

2k+3
YN Tal

00
Hence the solution y =) a,x"
n=0
2k+1

o0 o0
_ 2k
y—a0+z a, . X +a1x+z Ayp X
k=1 k=1

= ay[ 1"‘?, (k+1)x* J+aq] x+i _2k3+3x2k+1 ]
k=1 =

_a a,(3x—x’)
C(1-xY)  3(1-x%)

Activity I

Solve the equation
Y+ (x=1*y —4(x-1)y=0
about the ordinary point x =1

4.0 CONCLUSION

In this unit, we have attempted the series solution method to ordinary differential
equations. In the subsequent unit, we are going to discuss more about this method in
greater details. You are supposed to master this unit properly to be well-equipped for
the next unit.
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5.0

SUMMARY

Recall that in this unit we discussed power series and radius of convergence for the
series. We also applied the series to solve differential equations. We derived the
singular and ordinary points for each of the series solutions. Study this unit properly
before going to the next unit.

6.0

il

7.0

TUTOR-MARKED ASSIGNMENT

Determine a lower bound for the radius of convergence of series solution about
each given point x, for each of the following differential equations.

@ (*-2x-3)y"+x'+4y=0 , x,=4,x,=—4 and x,=0

b))  ((+x)y"+4x)'+y=0 , x,=0,and x,=2

Determine whether each of the points -1,0 and 1 is an ordinary point, or
regular singular point or irregular singular point for the following differential
equation,

(a) 2x*(1=x*)y"+2x) +3x*y =0

(b)  (x+3)y"-2x) +(1-x")y=0
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1.0 INTRODUCTION

In this unit, we shall deal with a class of differential equation normally referred to as
Euler Equation. This type of equation usually possesses solutions that are classified as
regular singular points of the differential equations. Series solution of this class of
equation must be attempted with different approach. We shall see this in our treatment
of this system of equation in this unit.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

o differentiate Euler equations from others;

o use series solution approach to solve these categories of equations; and
o solve problems relating to Euler equation.

3.0 MAIN CONTENT

3.1  Euler Equation

L(y)=x

d’y dy
o tax— By (1)

is known as Euler equation.
It is easy to see that x = 0 is a regular singular point of (1)
In any interval not including the origin, (1) has a general solution of the form.

y=cyn(x)+cy,(x)

yand y,

are linear, independent solution.

Here we assume that (1) has a solution of the form

9
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y=x

LX) =x"(x")"+ax(x") + px" =x"F(r)
Where

F@)y=r(r-D+ar+ L2)

If » is a root of the equation

_Ha=Dty@-1)’-4p 3)

1

2
L _a-D-a-1)~4p @
2

2

LF() = (=R —1)

Case I (a—1)>—4p8>0, then the roots are real and unequal and W (x",x™) is non-
vanishing for 7 #r,) and x > 0. Thus the general solution is

y=cx"+c,x? x>0

case Il (@—1)>—48=0 ,then 7 =r, :_(052—1)

and we have only one solution

7@ =x"

of the differential equation. We can obtain the second solution by the method of

reduction. We consider a different approach to obtain the solution.
L(x")=x"F(r)

If r=p, then

L(x")=x"F(r)=0

Now F(r)=(r—r)* , if we differentiate

F(r)le.. F'(r)=2(r—r) and then set r =r, if given F'(r) = 0,it suggest that
o 4.

EL(X )= E[X F(r)]

L(x"logx)=x"logxF(r)+2(r—mn)x"

We set r =1, thus

L(x"logx)=0

Sy, =x"logx x>0

is the second solution of (1)

Thus the general solution is

v, =(c, +c, logx)x", x>0

Case Il (¢ —1)* -4 <0, in this case, the root are complex, say

n=A+iu, n=A-iu

Thus the general solution is

YV, = (cpc“”‘ + cle”‘” )x

= x e +ex ]

iplog x _iylogx]

=x"[c,e +c,e
= x"[c, cos(ulog x) +c, sin(ulog x)]

10



MTH 302 MODULE 1

It is always possible to obtain a real valued solution of Euler equation (1) in the
interval, by making the following changes

d_pd &

dx dé’dx*  déE?
in the equation, we have

d*u du
& d§2+§2d_§+ﬁu:0’ &2 >0

It is obtained as above. Since

||_ x forx>0
B —x=&  forx<0

It follows that we read one, to replace forx by |x| in the above solution to obtain real

valued solution valid in any interval not containing the origin
1. To solve the Euler equation (1)

X2y +xay' + Py =0

in any interval not containing the origin substitute y =x" and compute the root 7 and
r, of the equation

Fry=r*+(a-)r+p£=0
If the roots are real and unequal

n

S
y=01| X |' +cz| X

If the roots are real and equal
y=(c, +¢, log|x|)|x["

If the roots are complex

y= |x|i (c, cos(u log|x|) +c, sin(ylog|x|))

For an Euler equation of the form
(x=xg)*»" +a(x—x))y" + By =0

Change the independent variable by

t=(x-x,)"

or suppose the solution

y=(x-x)

Note: The situation for a general second order differential equation with a regular
singular point is similar to that for an Euler equation.

11
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2. Another method of obtaining the solution of Euler Equation
2._.n

xy'+axy'+ fy=0
Solution: We make the change of variable x =e® or z=1logxand x >0.
& _dyds_1dy
dx  dzdx  xdz
d_zy 1d’ydz 1 dy 1 d’y 1 dy

dx* x dz dx x*dz x*dz* x'dz
Substituting their value in the equation
d’y
dz*

+(a—1)d—y+,[)’y=0
dz

This is an equation with constant coefficients
The auxiliary equation is
PP H(a-)r+pr=0
(1) If 7 and 7, arereal and unequal. y =c,e”" +c,e™ =c,x" +c,x"”
(i)  Ifthe roots are equal i.e .. y = (¢, +¢,z)e™ .
=(c, + ¢, logx)x"
(11)  If the roots are complex
y =e*(c cos uz +c, sin uz)

= x" (¢, cos(ulog x) + c, sin(ulog x))

3.2  Series Solution Near a Regular Singular Point

Consider the equation
P(x)y"+Q0(x)y"+ R(x)y =0 (1)

Assume that x=01is a regular singular point of (1) means that xp(x)=%();) and
X
) x> R(x) T . .
x q(x)= Whave finite limits as x — Oand are analytics at x = x,, for some interval
X

about the origin

(1) can be written
2.n

x2y"+ x[xp(x)]y' +[x*q(x)]y =0
But xp(x) = i P x"

n=0
xq(x)=), q,x"
n=0

XV M p, + px e p X+ ]V G F Gt e FGX" o 1y=0(2)
If all the coefficients use zeros, except Pand g¢,, then (2) reduces to Euler

equation, which was discussed previously.
12
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If some of the P, and ¢,. n>1will not be zero. However, the essential character of

the solution remains the same. It is natural to seek the solution of the form of
“Euler Solution” the power series.

y=x'y 3

n=0
As part of our problem we have to determine

(1)  The values of » for which equation (1) has a solution of the form (3)
(2)  The recurrence relation for the a,

(3)  The radius of convergence of the series Z a,x"
n=0

We shall illustrate the method by example

Example I: Find the series solution of the equation
2xy"+(1+x)y' =2y =0 (1)

Solution: x = 01is the regular singular point of the equation.

We assume line solution

y= ax" @)
n=0

Direct substitution of y in (2) given

Z 2(n+r)(n+r—-1ax""" + Z (n+r)ax""" + Z (n+ryax"= — 22 ax"" =0
n=0 n=0

n=0 n=0

Now we shift the index of the second series in (3). We get

0

Z (n+7r)2n+2r—a,x""" + Z (n+r-2)a,x"" =0 3)

n=0 n=0

Once more we reason that the total coefficient of each power of x in the left member
of (4) must vanish.

The second summation does start the contribution, until »=1. Hence the equation
determinants ¢ and »n are given by

n=0r2r-1)a,=0 ,but a, #0 (5)
SrQr-1)=0 (6)

(6) is called the indicial equation.

.'.rl:%,rzzO nx1

(n+r)2n+2r-a,+(n+r-3)a, =0

13
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Recurrence relation
n+r-3

=- 7
(n+r)Q2n+2r-1) o ™
. 1
Take r =—
(1) ake r 5
_ (=3)a,
bo23
_ (=Da,
P45
_ (=Da,
P67
a =— (27’1 B 5)an—l
" 2n(2n+1
4 - EDIEDEDD)...(2n = S)lay
" 24.6....20)][3.5.7...2n +1)]
Omitting theconstant «a,, we may write the particular solution as
1
1 = 1V 3y 2
O ®)

= 2"nl(2n-3)2n-1)2n+1)
Next task is to find the solution corresponding to the root » =0.

The recurrence relation becomesn >1.

n(2n-1b, +(n—-3)b, , =0
Or bn — _(n—_3) =
n(2n-1)
_ _(_2)b0
1.1
_(_l)bl
2.3
_(_ l)bo
3
bn — (O)bn—l
n(2n—1)
b, =0if, ="
n(2n-1)
b, =01fn>3
1 1
bl = 2b0 5 o b2 = gbl = gbo
The solution 1s

V) =b0[1+2x+§x2]

14
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The general solution is
y =4y, + By,
Note: The roots of indicial equation are unequal and do not differ by integer

3.3 Indicial Equation with Equal Roots

Example 2: Solve the equation

x*y"+3x)" +(1-2x)y=0 (1)
Solution: x = 0is regular singular point of (1)

We assume the solution

y= Z a,x"" (2)
n=0

Substituting this value in (2), we have

0 0

z (n+r)(n+r-1)ax"" + 32 a,(n+r)x"" + Z ax"" — 22 ax""" =0
n=0

n=0 n=0 n=0

Shifting the index

Z [(n+7r) +2(n+r)+1]a,x"" —22 a, x"" =0 3)
n=0 n=1

The indicial equation
PP 4+2r+1=0

Sr=-—1
The recurrence relation is
a,= L 4)
(n+r+1)°
n2>1,
In which
nx1,a, = 24y 5 (%)
[(r+2)(r+3)........ (r+n+1)]
Sy r)=x"+ z a,(r)x"", (6)
n=l1
in which
nx1,a,(r)= 2 (7)

[(F+2)(F +3)eerne(F + 1+ DT
Let us write
L(y)=x>y"+3xy'+(1-2x)y

The y of equation (6) has been so determined that for that y the Eight member of (8)

reduced to a single term then n=0.
Thus

L(y)=x>y"+3xy"+(1-2x)y (8)

A solution of the original differential equation is a function y for which L(y)=0.
Now taking r=-1 makes L[y(x,—1)]=0

15
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Now differentiate each member of (9) with respect to

) 0 L

E[J/(X,V)]—E[(FH) x']

I[diy(x, ] =2(r+Dx" +(r+1)°x"logx (10)
r

From (9) and 10, it can be seen early that the two solution of the equation L(y)=0 are
v =[y(x,r)] y=[y(x-1) (11

and y, = [63 e (12)
A

y(x,r)=x"+ Z a,(r)x""

n=l1

diy(x, r)]=x"logx+ Z a (r)x"" + Z a,(r)x"" logx
r

n=l1 n=1

= y(x,r)logx+ Z a (ryx""

n=1

s=y logx+ Z al (-x""

n=1

L=px +Z a (-Hx""
n=1

2n
a,(r)= >
[((r+2)(r+3)...(r +n+1)]
loga,(r)=1og2" + 2[log(r +2) +.....log(r + n+1)]

a (ry=2a,(r)[ ! +L+LL + !
r+2 r+3 r+n+l
r =—1, we obtain
a,(-1)=—=—
(n!)
La(-)=-2 2 2[1+l+l+ ....... —]
(n!) 2 3 n
We write
H, =[1+......~]
n
The solutions are
© 2nxn—1
-1
=x + -
yl nz; (n! 2
0 2n+1H xn—l
=x"logx - s
o= log=0, =

The general solution, valid for all finite x #01is y = Ay, + By, .

16
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3.4 Indicial Equation with Difference of Roots, a Positive Integer, and
Non-LogarithmicCase

Solve line equation
xp"'—(4+x)y'+2y=0 (1)

Solution: We assume the solution

0

y= Z a,x"" Q)
n=0
S L(y)= Z (n+r)(n+r-5a,x""" - Z (n+r-3)a, x""" (3)
n=0 n=1
The Indicial equation is
r(r=5)=0
S 1”2 = 0 s ]/i = 5
Ss5=5-0=5

We reason that we hope for two power series solutions, one starting with anx’ term,
and one with an x” term.

If we use the longer rootr, =5, then the x° term would never enter. Thus, we use the
smaller roots r, =0, then the trial solution of the form.

y= Z a"x" 4)
n=0

has a chance of picking up both solutions because the n =5 n = sterm does contain x’

0

S L(y)= n(n—->5)a,x"" - i (n=3)a, x""'L(y)=0

n=0

L(y)=0
n(n - S)an = (n - 3)an—1 (5)
n=1 —4a, +2a,=0 -'-01:%%
n=2 —6a,+a, =0 a —La
2 1 2 122 o

n=3 —6a, +0a, =0 a, =
n=4 —4a, +a,=0 a, =
n=>5 0.a5+2a,=0 a,=0
nz6

3a;
a —
° 6.1

4
a7:&

7.2

17
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_(n-3)a,,)
n(n->5)
4= 3.4.5...(n=3)a
" [6.7.8.....n](n=5)!
3.4.5a;
(n=2)(n-Dn(n->5)!
Therefore, with @, and «’ arbitrary, the general solution may be written

ELEMENTARY DIFFERENTIAL EQUATION I1

n

=

00 n

Z ]

= (n— 5)'n(n H(n-2)

n+5
—a(1+1x+x Yta[x +Z 00x
2 prs n'(n+5)(n+4)(n+3)

=a,(l+=x+—x")ta]x
y=ay(l+Sx+ox7) [’

Example 2  Solve the equation
xy"+(4+3x)y"+3y=0 (1)
Solution x =0is the regular singular point of (1).
We assume the solution
y=2, ax" )

n=0

~L(y)= Z(n +r)(n+r—Dax""" + 42(71 +r)ax"" " + 32(11 +r)ax"" + SZa X" =0

n=0

L(y)= Z a,(n+ry(n+r+ 3"+ Z 3a,(n+r+1)x"" =0
n=0 n=0

n =0, we get the indicial equation

r(r+3)=0

r=0,-3

L(y)= Z a,(n+r)(n+r+3)x"" "+ Z 3a, (n+r)x"""

n=0 n=1

)

Using the smaller root r, = -3

L(y)= i a,(n-3)nx""*

+ 32 a, (n=3)x"" =

n=0

Recurrence relation is
a,(n=3)n=-3(n-3)a,_,

n=1
n=2
n=3
n>4

a,(=2)(1) = (=3)(-2)a,
a,(=1)(2) = (=3)(=Da,
a;(0)(3) = (=3)(0)a,

-3
an = an—l
n
-3
a —a
4 3
4

18
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_ 32
=(a,x"ax " +a,x

y=a,(x” =3x" + x )+6a3z( 3)

MODULE 1
-3
as 2?614
-3
an :_anfl
n
_3 n-3
n:( ) 6a,
n!

Ty i anx"_3)

n=3

n-3 n3

This is the requlred solution

4.0 CONCLUSION

We have looked at the various problems involving Euler equations in this unit.We also
examined their various forms of indicial equations. In the next unit, we shall consider
indicial equation of positive integer and logarithmic case.

5.0 SUMMARY

You will recall that in this unit, a general form of Euler equation was given. We also
considered the various form of Euler equations. You are required to master this unit
very well before proceeding to other units.

6.0 TUTOR-MARKED ASSIGNMENT

1. Solve the equation
2. .n

xy"+3xp'+(1-2x)y=0

1l. Solve the equation

"' —(4+x)y'+2y=0

7.0
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UNIT3 INDICIAL EQUATION WITH DIFFERENCE OF ROOTS,
POSITIVEINTEGER AND LOGARITHMIC CASE

CONTENTS
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1.0 INTRODUCTION

In Unit 2, we studied indicial equations where logarithm case was not considered. In
this Unit, we shall consider the positive and logarithm cases.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

o solve a differential equation whose indicial equation has a positive integer; and
o solvea differential equation whose indicial equation has roots with logarithmic
case.

3.0 MAIN CONTENT

3.1 Indicial Equation with Difference of Roots,Positive Integer
andLogarithmicCase

We illustrate this method by an example:
Solve the equation

¥y +x(1-x)y —(1+3x)y=0
Solution: We assume the solution

®
_ n+r
y_z anx
n=0

L(y) = Z (l’l +7r+ l)(n +7r— l)anxrﬁr _Z (n +r+ 2)61”71)(”“ -0

n=0 n=1

The indicial equation is
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r+Dh(r-1)=0 (Putting n =0) (1)
r=1,-1
n > 1, the recurrence relation
- (r+n+2a, 2)
(r+2)[r(r+1...(r+n-1)]

L (r+n+2)ax""
S Y= agx +Z; (r+2[r(r+1)....2+n-1)]

It follows that

S L(y)=(r+1D)(r-Da,x"
Forr =1, only one solution can be obtained.
Note: forr =-1, since there is no power series with skillingx™, we suspect the
presence r =-—1.
Choosea, =r+1, we have

n+r

P (r+h)(r+n+2)x
yeer) =+ +Zl r+ 20+ 1) 4+ 1—1)]
We can obtain two solutions with respect to
For which

Ly, )] =+ (r=1)x"

We use the same argument as that of equal roots

Putting

= y(x,-1)
0

v =12 (0],
or

(r+ D +3)x™ N (r+4) o
r(r+2) (r+2)r
(r+n+2)x""

2 D D]

y=y(x,r)=r+D)x"+

Differentiate with respect to r.

r+l
i[y(x,}")]:xr logx+xr +(7’+1)(7’+3)x
o r(r+2)
r+2
{ 1+1_1_l}+(r+4)x { 1
r+l r+3 r+2 2 r(r+2) riu 42
e e L e
+ 2+n+2 r+2 r r+2 r+3 -1
"= (r+2)[(r +2)(7 +3).ceee (2 4+ 1~ 1)
Puttingr = -1, get
N (n+1)x""

MO0 =3k )

21
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. (n+1)x”1{nl+1—1+1—(1+;+ ..... +12}
=y, logx+x" —2x° 3x{f—1+1}+n23“ CDI2.(1-2)]
> (n+1)x
L e

) 1__ 1 H n—l
yzzyllogx+x‘1—2—x—z U=+ DA,, x

o (n=2)]
Problem: Find line general series solution of the D.E
d V., dy 0
dx dx

and show that it can be expressed in line form

(n+1)x""

y, =0x+0x° —3x+z D2 =2)]

Solution: x = 01is a regular singular point of D.E.

Substituting in the D.E

0
n+r
=2 ax
n=0

Changing the index

0

Z 2(n+7r)2n+2r+1)a x""" + Z a, x"""=0.
n=0 n=1
The indicial equation is
2r(2r+1)=0, r=0, %
The recurrence relation is
= ), a, nx1
2(n +7r)(2n+2r+1)
(1) r=0, then
an = ___g::lz_____CIn—l
2n(2n+1)
n=1, a, = D 1)
(2)(3)
oo D,
(4)(5)
Thus
a, = = a4
(2n—1)!
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Hence the solution is

=da —_—
. "20: Qn+1)!

(ii)

_a, w (_l)n(x%)znn :& .
Z i \E&mg

r:—l,then
2

NG R
" 2n-1)(2n) “n-
(-Da,
(D(2)
_ (-Da,

(3)4)

a, =

a,

_ (_1)"‘10

a
! 2n!

s Z(Df&"acwf

X n=0 n‘ \/7

Hence the general solution is

y = L(Acos\/} + BSinv/x)

Jx

3.2 Fourier Series

1.

33

Orthogonality: A set of function is{f,(x),f(x),....f, (x),.....} said to be an

orthogonal set with respect to the weight function w(x)over the interval
a<x<bif

[ W) f (00, (e =0 form

#0 form=n
Orthogonality is a property widely encountered in certain branches of

mathematics. Much use is made of the representation of functions in series of
the form

0

D e, f, ()

n=0

In which the ¢, are numerical coefficients and {f, (x)} is an orthogonal set.

Orthogonality of a Set of Series and Cosines

We shall consider the set of function

23
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. X
Sin(——),n=1,2,3,K
c

Cos(") n=0,1,2,3,K
C

or
Sm(—) Sn(zﬂ) Sn(ﬂ) K Sm(@)K

1, Cos(—) Cos(zﬂ) Cos(C7E ) K ,Co (@) K
is orthogonal w1th respect to the welght function w(x)=1 over the interval
—-c<x<c
1e.
ko
f Sin 7% Cos M2 gy = 0,wherek #n.
C C
Before we prove the result, we give some definition to shorten the proof.

(a) Even function: A function y = g(x) is said to be even y
g(=x) = g(x)
For all x.

(b) Odd function: A function y = A(x) is odd if y = h(x) = —h(-x)
For all x.

Example:  Sinxis an odd function

Cosx s an even function
(c) Most function are neither even or odd, example f(x) = x—1. (is one function )
(d) If g(x)is an even function then as well )

j g(x)dx =2 jo g(x)dx
Consider the integral

I, = J.Sin@Cosk—mdx 0 forall £ and n.
. c c

It follows at once from the fact that the integrand is an odd function of x. It does not
depend upon one fact that & and » are integers.

I, —J.Sm—Smk—ﬂxdx k#n

C
Take

p="dv="ap
C VA

—j Cos(n— k) — Cos(n+k)Bldp :—j Sin(nB)Sin(kB)d B
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L[ Sin(n—k) , Sin(n+k)p ]

27 n—k n+k
Since n-kand n+kare +ve integers.
=0
Finally, we consider the integral
Wheren =0, 1,........... n#0,
_ [ Sin(n—k)p _ Sin(n+k)p ]

2 n—k n+k

¢ .2 .2

1, = L Sin de = L Sin 7dx

let /(x) the continuous and differentiable at every point in an interval —c<x<c
except for a most finite number of points and at more points, let f(x)and f'(x)have
right and left-hand limits.

Note

The notation f(c+0)is used to denote line right-hand limit of x — cas f(x) from the
right, i.e.

Se+0)=]im/ ()

And Similarly
Se=0)=]im/ ()

n—c”

Denotes, the limit of f(x) as approaches c from the left.

Since Fourier series for f(x)may not converge to the value f(x)everywhere, it is

customary to replace the equals sign in equation (8) by the symbol ~which may be
read “has for its Fourier Series” we write

f(x)~—a0+2(ancos—+b )
c

n=1

Where a,and b, are given by (a) and (10)

Example: Construct the Fourier series, over the interval —2 < x <0, for the function
defined by

2, —2<x<0
f(X)={

b
X, O<x<2

Solution: Now f(x) ~5a0 + z (a, cos T +b, sin —)

n=l1

In which
1 ¢2 nmx
a, = 5.[-2 f(x)cosde, n=0,1,...2

b, =lj2 f(x)sin%dx; n=l,...2

:—I cos dx+ j xcosanx (a)
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If n#0 , then
2 . nmx 1 2 . n7r nﬁx
JS.a =—|SIn—— +— —
n P [ 2 ] 2 7Z' ( ) 2 ]0

_ —2(1—cosnrm)

n’r’

For n=0, from (a), we get
a, =3

~b, = 1 (I-cosnr)
2nw

Thus we write

3 = - (=1)" nm 1 . nmx
X)~——2 cos +—sin—|].
S(x) 5 Z::, [ ey 5 ]

2 nr

Example 2: Obtain the Fourier series over the interval — 7 to 7 for the function x?

Solution: We know

1 .

x? NE%“LZ [a, cos™ +b, sin nx] for — 7 < x <z, where
n=1

J

a, = —I X~ cos nxdx; n=12,...
-

1 7 2 . .

b, = —L[ x° sin nxdx; n=12,...

x*is an even function,sinnx is an odd function, thus x”sinzx is an odd function
Hence
b, =0. for every n.

2 .
a :zj X s1nnx+2xc<2)sx_2sn§nx]gf0rnio
n n n
From which
_2 [27zcosn7z] 4(—21)n ’ n=1 2
n
forn=0
2 7, 21’ r’
a,=—[| xdi=——=2—
0 7[[.[0 7 3 3

Therefore in the interval; —7<x<7x
+4Z (- l)” cosnx
Indeed because of condltlon of line function involved, we write

+4z (Dﬂfor—ﬂSxSﬂ.
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2. Fourier Sine Series: Sometimes it is desirable to expand the function f(x) in
a series involving Sine function only.

In order to get a Sine series for f(x)we introduced a function g(x)defined as follows

g(x)=f(x) O<x<c

=—f(—x) —-c<x<0

Thus, g(x) is an odd function over the interval —¢ < x <0.
Hence

1 00
g(x)~ an + z (a,cos

n=1

nwx . N7TX
——+b,sin—), n=01,....
c c

It follows that
an:l J.C g(x)cos@dxzo n=0,1
c v c

(Note: Integrand is an odd function) and that

b,,:lj“ g(x)sin = dx
c ¢ C

=3j“ F(x)sin 222 ax
cY ¢ C
Thus

f(x)~z bnsinm o<x<c
n=1 c
£(x) Where b, =2 [ resin™ax RS
c ¢ C

Example: Expand f(x)=x"in a Fourier Sine Series over the interval 0< x <1
Solution: At once we write, for 0 < x <1
x? ~ z b, sinnmx

n=l1

In which

C
b, :I x” sin nocdx

—C

_ o[ 2 cosnm 2xsinnmx  2cosnmx
= _[0 x + —+ 3
nr (nr) (nm)

o cosnzw  2coSmx 2COSHITX

niw 1’1372'3 n37r3

Hence the Fourier Sine Series, over 0 < x <1 foris x*
_o- cosnz 2(-D" 2 ]

nrw 1’137T3 11372'3
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3. Fourier Cosine Series: In order to expand the function f(x)in a series involving
cosine function only, such series is called Fourier Cosine Series. We define

h(x) = f(x) O<x<c

= f(-x) —c<x<0

It follows that A(x)is an even function ofx.

h(x) ~ %ao + Z (a,cos

n=l1

a, :lj“ h(x)cosmdx:grf(x)cosmdx
cv-e c cv0 c

nwx . NTX
——+b, sin—)
c c

O<x<c

But b, =1j‘ h(x)sin 222 gx = 0
ce ¢ C

Thus we have

f(x)~%a0 +Zan cos 2% gy
c

n=l1

in which
@ =2 [ raycos ™ dx
c ¢ C

Example:
Solution: At once we have

1 - . .
f(x)~ S > a, cos % in which
n=l1 c

in which

an=3j‘f(x)cos@dx
c?0 c

2 ¢ . nmx c nwx .
= =[—xsin——+(—)’ cos ——
c nx c nx c
2. ¢, nrwx.,
= 2[5 cosnr -,
c nrw c

-2
=——(1-cosnz), n#0
n°rw

The coefficient g, is readily obtained

¢’ ¢
Thus, the Fourier Cosine Series over the interval 0 < x < cthe function f(x)=x 1is
00 1_ _1 n
uc -1 cos X

1
X)~—Cc——
S 2 e n’ c
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4.0

CONCLUSION

In this unit, you have learnt about indicial equations, where the roots are positive and
logarithmic. You have also learnt about FourierSeries and odd functions.

5.0

SUMMARY

In this unit, you have learnt about positive and logarithm cases. You also studied how
to solve a differential equation whose indicial equation has a positive integer as well
as solve a differential equation whose indicial equation has roots with logarithmic
case. You are required to study this unit very well before proceeding to the next unit.

6.0

1i.

7.0

TUTOR-MARKED ASSIGNMENT

Find the general series solution of the D.E
2

w9V 6D g

dx* dx
Construct the Fourier series, over the interval —2 < x <0, for the function
defined by
f(x)=2, -2<x<0,
x=2 , O<x<2
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UNIT 4 BOUNDARY VALUE PROBLEMS
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1.0 INTRODUCTION
In this unit, we will discuss some of the properties of boundary value problems for
linear second order equation. This class of differential equations is very useful for

practical applications.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

o classify second order differential equations into homogeneous and non-
homogeneous;

o differentiate between Eigen values and Eigen functions; and

o solve related Eigen value problems.

3.0 MAIN CONTENT
3.1 Boundary Value Problems

The linear differential equation
P(x)y"+0(x)y"+ R(x)y = g(x) (1
was classified homogeneous if, g(x) = 0, and non-homogeneous otherwise.

Similarly, a linear boundary condition
a,y(0)+a,y"(0)=c 2)

A boundary value problem is homogeneous if both its differential equation and linear-
boundary conditions are homogeneous. If not, then it is non-homogeneous.

A typical linear homogeneous second order boundary value problem is of the form.

P(x)y"+0(x)y" + R(x)y =0 A3)
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O<x<l,
a,y(0)+a,y"(0)=0 4)
by(I)+b,y"(0)=0 (%)

Most of the problems, we will discuss are of the form given by (3) to (5).
3.2 Eigen Values and Eigen Functions

Consider the differential equation

y'+p(x, )y +4q(x,A)y =0 0<x<l1 (1)

The boundary conditions

a,y(0)+a,y'(0)=0 (2)
byy(I) +b,y'(0) =0 3)

Where A is arbitrary parameter.

Clearly, the solution of (1) depends on x and 4 and can be written as

y=ey(x,A)+c,p,(x,4), 4)
Where y, and yp, are a fundamental solution of (1). Substituting for y, in the
boundary condition (2) and (3), yield.

alay,(0,4)+a,y/(0, D]+ c,[a,y,(0,4) + @,y (0,4)] =0 5
alby (1, A)+b,y' (L, )]+ ¢, [y, (1, A) + b,y, (1, A)]] =0 (6)

A set of two linear homogeneous algebraic equations for the constant, such a set has
solutions (other than ¢, =¢, =0if and only if the determinant of coefficients D(2)
vanishes 1.e.

D(A) = c1[a1y1(oaﬂ)+a2y1,(oaﬂ)] alyz(o,/i)+a2y§(0,/1) —0
by (LA +b,y(LA)] by, (LA +byy (1, A)]

Values satisfying this determinant equation are the Figen values of the boundary-
value problems (1), (2) and (3)

Corresponding toeach Eigen value is at least one non-trivial solution, i.e. an Eigen
function

Note: We will consider problems namely:only real Eigen value

Example I: Consider the equation
V'+Ay=0 (1)
¥(0), yH=0 2)
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Solution: "+ Ay =0, the solution is

y =c cosJAx+¢ sinyAx, (3)
By the boundary conditions
¢, =0
c, sin Ji=0

¢, #0, otherwise y =0 is the solution
sin /1:0:>\/z:n7r,n=1,2, ................
or A=nx’Anrx’ 4)

(4) gives the Eigen values of (1). If we consider A=1

Sy =c cosx+c,sinx
0=c by (2)
Ly=csinl=0=c¢, =0
0= €1
-.y=0 Henced=1 is the Eigen -function

The Eigen function is
Ly, =csinnme e, (5)

Example 2: Find the real Eigen values and Eigen-function of the boundary value
problem

y'+Ay=0

y(0)=0 y'()=0

The solution is

y'+Ay=0

Ly =c cos/Ax (1)

y(0)=0, given

¢, =0. Also

V' =czﬂcosm

But y'=(1)=0, yields
czx/zcos\/f =0=

c, cos+/Al=0

ﬁ:% : B=1 2

(2) givesEigen value

W] ; B=1 2o, @

(3) givesEigen functions

y, =sin[
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Activity IV
Find the real Eigen-values and Eigen-function of the boundary value problem

y'+Ay=0
y=(0)=0 y=@=0

Example3
y'+ly=0

y=0, y)+y'(0)=0

Solution
y=c cosyA sin\/Zx+c2 +~/2 cos/Ax
c, =0,

JZ = cot\/z

The Eigen values are given by equation (3). The Eigen function is
y, =~ ,x Where the root of is A, is the root of the equation

\/chot\/z
\/sz, y =cotx
Vi, =(m-Drx n>23 .

A,=(n-1)*z*for large n
Example 4

Consider the problem

y'+Ay=0

»(0)=0, »'(0)=0

Show that if ¢, ,and ¢, are Eigen function corresponding to the Eigen value A4, and
4, Respectively, then

[} 4,008, (0dx=0

Provided that 4, # 4 .

Solution:

¢ +4,4,=0

¢ud, +2,9,8,=0 (D
¢r:,¢m + ﬂ‘n¢m¢n = 0 (2)
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[} 4,008 0)dx+2, [ 4 ddx=0 (3)

[} #.dx+2,] 49,dx=0 )

[ #@a0-[ #.8,@dc+,[ ¢,4,d=0

b, (DG (D)~ 4,014, (0) = ¢ [, W ()~ [ 4, (@] + 4, [ ¢, () ()dxor

By boundary value conditions

[ g0 ax+2,[ 4,08, ()dx =0 )
Subtract (4) from (5), we have

/
(A =4, 8,(0),(x)dx =0
If 1, #4,,then

[[ 4.0 0)dx=0

Examples

Hyperbolic function

coshx:e' re , sinhx:ev —¢
2 2

d .

— (cosh) = sinh(x)

dx

d , .

—(sin x) = cosh A(x)

dx

(a) Solution of the problem is

rt—1=0, Take A= u*
r4 _ u4 — O
The solution is

Y =¢, €08 Ux+c ,sin ux+ ¢, cosh ux +c , sinh pux (1)

The boundary condition

¢ +c; =0
c—c;=0

= ¢, =0andc, =0

Sy=c,sinpu+c,sinh yl =0—c, sin pul +c,sinh ul =0
ny=c,sinu+c,sinpul =0—c,sin pl+c,sinh yl =0
Sy=csinu+c,sinpyl =0—c,sin pl +c,sinh gl =0
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Sy=c,sinu+c,sinpl =0—c,sin pl +c,sinh gl =0

sosin gl =0sinh g =0 n=12..
ssinpl =nw
LY, = sin%x n=12,......

is the Eigen-function

4.0 CONCLUSION

We have been able to study some Eigen-value problems in this unit. This unit must be
mastered properly before moving to the next unit.

5.0 SUMMARY

Recall that the linear differential equation
P(x)y"+Q0(x)y"+ R(x)y = g(x) (1
was classified homogeneous if, g(x) = 0, and non-homogeneous otherwise.

Similarly, a linear boundary condition
a,y(0)+a,y"(0)=c 2)

A boundary value problem is homogeneous if both its differential equation and in-
boundary conditions are homogeneous. If not, then it is non-homogeneous. We also
classified some equations into Eigen value problem depending on whether the
determinant of the Eigen value of the problem is zero or not. Read carefully and re-
work all exercises and problems in this unit for better understanding.

6.0 TUTOR-MARKED ASSIGNMENT

1. Consider the problem
Y'+Ay=0
y(0)=0, y'(0)=0

Show that if ¢, and ¢, are Eigen function corresponding to the eigen value A,
and A, Respectively, then

i
[, 4,4, (x)dx=0
Provided that 4, # 4, .

11. Find the real Eigen-values and Eigen-function of the boundary value problem
y'+Ay=0
y(0)=0 y'(H=0
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1.0 INTRODUCTION

We solved some partial differential equations by the method of separation of
variables. In the last step, we expanded a certain function in a Fourier Series, i.e. as
the sum of an infinite series of Sine and Cosine functions. It is of fundamental
importance that the Eigen functions of a more general class of boundary values
problems be used as a basis for series expansions, which have properties similar to
Fourier Series.

Such Eigen-functions series are useful in extending the method of separation of values
to a larger class of problems in partial differential equation.The class of boundary
value problem we will discuss in this unit is associated with the names of Sturm and
Liouville.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

o solve partial differential equation using Sturm and Liouville methods; and
o solve correctly the associated Tutor-Marked Assignment.

3.0 MAIN CONTENT
3.1 Sturm and Liouville Problem

We introduce the operator

Lly]=—px)y1+q(x)y (1)
LIyl = Ar(x)y )
[P(x)y'] = q(x)y + Ar(x)y =0 (3)

on the interval 0<x </, together with the boundary condition
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a,y(0)+a,y'(0)=0 4)
by(I)+b,y'(1)=0 (%)

We shall assume that p,qgand rare continuous functions in the interval [0,1].
P(x)>0,r(x)>0forall xin 0<x</.

(1) Lagrange’s identity: let u andv be functions having continuous second
derivatives on the interval 0<x </. Then

jo' (VL[] - uL[V])dx
=—p(x)[u' (xX)u(x) —u(x)u'(x)]; (6)

Solution 1:
[ vEluldy =] v pCou'(x) — g(u(x)

=[—v(x) p(x)u'(x) + up(x)V' (x)], + L: u(x) —(p(x)V'(x)) +q(x)v(x)tdx
jo’ (L[u]—uL[v])dx = — p(X)[u' (x)v(x) —u(x )V (x)],

This 1s known as Lagrange’s identity if u and vsatisfy (5) and (4)

RH.S= —p(O[u' (D)~ u(@) (D] + p(O)[u' (0)v(0) — (O (0)]
- p(l)[—’b’—1u<l>v(l>+Z—lu(1>v(l>]+ PO 2-u(0)v(0) + “Lu(0)v(0)] =0

p) ) a, 2
Thus we have

[ L[]~ uL[v]dx =0

(1)  Show that all the Eigen value of the Sturm-Liouville problem

L(y) = Ar(x)y A
With boundary conditions

a,y(0)+a,y'(0)= 0}
by()+b,y'(1)=0
are real.

Proof:Let us suppose there exists a complex Eigen value A= u+iv will v#0 and
corresponding to this value is the Eigen function Q(x)=U(x)+iV (x)where at least one
of them is not identically zero.

Now Q satisfies the differential equation, where A’ and Q, are conjugate of A and Q

respectively.
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L[Q) = ArQ
L[Q]] = l'rQ1
or

u=Qandv=0,
[ 10L(©) - 0L dx = [ (2= 2)r(x)Q(x)Q, (x)dx =0
or(A-A)[, U@+ @Mdx=0 (1)

Since r(x) >0 forallxin 0<x</(1) =v=0
This contradicts the original hypothesis. Hence the Eigen value of Sturm-Liouville
problem is real.

(111) If Q,and Q,are Eigenvalues of the Sturm-Liouville problem (A) and (B),
corresponding to Eigen valves 4, and 4,, respectively , and 4, # 4,, then

jol ()0, (x)0, (x) dx=0

[r(x)is called the weight function and it is an orthogonal property of
Eigenfunction]

Proof: L[O]=ArQ,
1[0,1= 40,
Ifwelet=u=0, and v=0,then
[ oLl uL ey = (3, - 23)[ r(00, (10, (x)dy =0

Hence the result

(iv) Let us now consider a more general boundary value problem for the
differential equation
Liyl=AM][y], O<x<l1

Where L and M are linear homogeneous differential operations of orders n and n
respectively.

Lly]= p, (x)y(n) +p (x)y(n_l) to +p, ()Y +p,(x)y

M[y]1=r,(x)»" + R (x)y" D + e+ 2, ()Y + 7, (X)y
Where n>m.

In addition to the differential equation, a set of n linear homogeneous boundary
conditions at x =0, x =1is also prescribed. If the relations

jo’[vL[u] —uL[v]Jdx =0
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jo' [vM 1] - uM[v]]dx = 0

are line for every pair of functions u and u, which are n-lines continuously
differentiable on [0,/]and which satisfy ngiven boundary conditions, then the

given boundary value problem is said to be self adjoint.

Examplel :show that theSturm-Liouville problems
L(y)=-[P(x)y'T+q(x)y
M(y)=Ar(x)y

(i) [ ML) - uM]v]x

IOI [vAr(x)u —udr(x)vidx

=0
For every pair of u,v

jo’ [VL[u] - uL[v]kdx = 0
as shown previously. Hence it is self-adjoint

Example 2:
(a) Y'+y'+2y=0 y=0, y()=0

Solution L(y)=y"+y' +2y

(1) I;[v(u"+u'+2u)—u(v"+v'+2v)]dx

! : : : .
= —2]0 u'vdx, are true for every pair of functionu and v, which are n-times

continuously differentiable on [o0,/] which satisfy n given boundary value problem
is said to be self-adjoint.

() A+x*)y"+2xp'+y=0 ' (0)=0, y()+2y'())=0

L(y)=1+x)HU"+2xy"+y=0, y'(0)=0 y()+2y'(1)=0,

L(y)=(1+x*)y"+2xy" +y
M(y)=0

IOI [u[(1+ )’ (u" +u' +2u)]dx =0

It is Sturm-Liouville problem.

©) Y+y=, y(0)=y'(0)-y'())=0
Y"(0)=¥"(0)=y'(1)=0
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Solution

L(y)=(1+x*)y"+2xy" +y
M(y)=y

(1)

[ @M ()= pM (u)dx

IOI (up' — pu")dx =0

i) [ [0~ ()l

— J.(j (ﬂu”—ﬂ””)dx

= pu' —up
=[u() ' () — (D' ()]
~u()u(0) = u(Hu(0)]
=[u(Du(0) —u(l)u(0)]

The right side is not zero. Hence it is not self-adjoint.

Example 3:consider the differential equation
V'+Ay+2y=0
With boundary conditions
y(0)=y()=0, y'(0)-y'()=0
(a) Show that the problem is self-adjoint even though it is not a Sturm-Liouville
problem.
(b) Find all Eigenvalues and Eigenfunctions of the given problem

Solution: L(y) = y"
M(y)=-
() j [UM (1) — u(—u)dx] =

j [U(=u) — u(-u)]dx =0

(i1) I [u(uu" —uu"”
=(uu')— IO (u'v'dx —u'u + jol u'u'dx
=[(Du' () —u'(Du)]
—{u(0)u'(0) —u'(0)u(0)]
~{u(0)u'(0) —u'(0)u(0)]
—{u(0)u'(0) —u'(0)u(0)] =

Hence it is self-adjoint

The solution of the equation is
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y=c cosvx +c, sin/Ax
Applying the boundary conditions, we have

clx/Zsin\/Z+c2 sin+/A(1-cos\/2) =0
CI(COS\/Z—I)-FCZ sin/2 =0

Thus

Jasinda  JAa(l-cosv/2) o
cos\/z—l sin\/z

Or

ﬁ(l—cosﬁ)zO:

A=0 or /12(271—7[)2, n=12,........

A =0¢,(x)=1

A, =Q2n-r)’

50, (x)=cos2nmx, .. Q,(x) =sin2nx,

» =cos2nm, y, =sin2nmx,

», = cos2nx, y, = 2nmxcos2nx,
cos2nrx sin 2nx

W,»,)=

=2nwsinnrx 2nmwcos2nrx

2nmecos’ 2nmx + 2nsin® nax
2nw =0 0«x

Between 0<x </
Thus the Eigen functions are linearly independent.
Activity V

Consider the Sturm-Liouville problems

—[p()y'1+q(x)y = Ar(x)y

a,y(0)+a,y'(0) = 0,b, y(1) + b,y'(1) = 0

Where p, q and r continuous function in the interval 0 < x</.

(a)  show thatif A is an Eigen-value and ¢ a corresponding Eigen function, then

2, 1Ok =[] (p#™ 4 g s+ p D) - 2L p0)F 0
2 a,
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Provided that a, #0 and b, #0 How this result be modified ifa, =0 or
b,=0

(b)  Show that if ¢(x)>0and if 2—‘ and — %2 are non-negative, then the Eigen-
2 a,

value Ais non negative
(c)  Show that the Eigen-value A is strictly 0<x</ under ¢(x)=0 for each xin

[0,7].
4.0 CONCLUSION

We have studied the Sturm-Liouville problem in this unit. You are to master this unit
properly so that you will be able to solve the problems that follow.

5.0 SUMMARY

Recall that Sturm-Liouville problems are usually problems associated with Eigen
valuesproblems of partial differential equations. In our subsequent course in
mathematics in this programme, we will have cause to deal with it again, particularly
when will shall study Partial Differential Equation.

6.0 TUTOR-MARKED ASSIGNMENT

Consider the problem
V' =2y"+(1+Au=0
Y(0)=0,y(1)=0

1. Show that this problem is not self-adjoint

il. Show that all Eigenvalues are real

iii.  Show that the Eigenfunctions are not orthogonal(with respect to the weight
function arising from the coefficients of ........ in the differential equation).
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ANSWERS TO ACTIVITIES
Activity 1

Solution: we assume the solution

0

y=2 a,(x=1) (1
n=0
We first translate the axes, putting
x—1=u, ﬂd_u = d_y
du dx dx
dy dy .
—.1=-—= The equation becomes
du dx
2
ay +u’ Y_ 4uy =0

du? du

Then we assume the solution

0

o0 o0
-2 1 1
Z n(n—-1)a,u" +Z na,u" —Z 4au" =0
n=0 n=0

Collecting the terms

0

> n(n-Dau"?+> (n—4au"" =0
n=0

n=0
Shifting the index from # to n—3in the second series

00

Z n(n-a,u"> + Z (n="7)a, u">=0

n=0 n=3
Therefore a, and a,are arbitrary and for remainder, we have

2a,=0
n=3
n—7
an:—an—S
n(n—1)
a,arbitrary @, arbitrary a,=0
a—_—4a a—_—3aa—_—2a 0
P32 Y430 547
-1 0
616 53 7_%614— agz()a5=0
-2 -3
g ﬁas 10 10'907_0611_0
3k-17
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D AHED.2..Bk-T) ]
a3 = a
[ 3.69..3k) ][ 2.5.8...3k-1) ]
~ = (=D ((=D).2..6k=T) ]
y=al 2 [3.69...3k) ][ 2.5.8..G3k 1) ]
Now substitute u = x—1

o (_1)"[ -H(-D..2..3k-=T7) ] 3k

k>1:

u™t +a1(u+%u4)

y:a0[1+ u +a1(u+lu4)
~ [3.69...3k) ][ 2.5.8..3k-1) ] 4
Activity IV
Solution: The solution is
y=c COS\/ZX+C2 sin~/Ax (1)
y' =—¢,NAsinJAx +c,N 2 cos+/Ax )
¢ +e,u=0
1 M
cos i cos i

Thus the Eigen value are given by the equation

L=tan . 3)
Y =—Cyf+ [,C,8in ux
If u, is the root of (3), then eigen function is
Y, =Sinu, — i, €08 u,x 4)
If 2 =0 , then the solution is
y=-CtCy
y'=¢
se+e, =0

Hence the solution is

y=c((x-1
thus 4 =0 is also an Eigen value

\/Zztan\/;
Ji ~ 449, [7, ~ G

2
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Activity V

Solution

Ar(x)Q’ = ~[p(x)Q'TQ +q(r)Q’

Thus

! 2 ! 2 '
Af r0Qdx = (90 - p(x)0)Qdx
Integrating by parts, we have

! 2 ' ! 2
[, aQdx—=QIp(@)+], pO*)dx
From boundary condition, we obtain the result

' b
o'(H=—00)

b2
0'(0)=-210'(0)
a,

Putting these values on the right side we obtain the result
ifor a, =0 or b, =0, then the first boundary condition reduces to

y=0
=o()=0or= Q(0) =0

The result reduces to
! 2. (! 2 "y b 2
Al rQdx=[ (40" + pQldx = 5 PO
or
A rQdx=[ (40 + pQdx =0 (0)Q* (1)
0 0 a2
(b) In a Sturm Liouville problem, we always assume that p(x) > 0, r(x) > 0,

By given condition »(x) >0forall xin 0<x<1Q* >0forall 0<x<1.

Now we impose condition, so that right side of the equation in (a) is+ve. The second

. b —-a .
and third term are +ve y b—l and — are non-negatives

) a,
Now

1 . .
_[0 qQ’dx is+ ve in order that

(c) If g(x)=0 forall x 0<x</then Ais strictly.
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