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1.0 INTRODUCTION 
 
The set of real number is not adequate to handle some of the numbers we come across in 
mathematics. We needanother set – the complex numbers.  
 
In this course we will do analysis on complex variables and establish those results which 
are analogue to the real number systems. 
 
2.0 OBJECTIVES 
 
At the end of this unit, youshould be able to: 
 explain variables and functions of complex number; and 
 solve problems on functions and transformation or complex variables. 
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3.0 MAIN CONTENT 
 
3.1 Revision of Elementary Vector Algebra 
 
A symbol, such as z , which can stand for any complex number is called a complex 
variable. If to each value a complex variable z  can assume there correspondence one or 
more values of a complex variable w, we say that W is a function of z  and write 

 zfw   or  zgw   etc. The variable z  is sometimes called an independent variable 

while w  is called a dependent variable. The value of a function at z a  is often written 
as  af .  

 

e.g.      ,zzzf  for iz 3 , 9)3()(  ifzf . If one value of w corresponds to each value 

of z, we say that w is a single-valued function of z or that )(zf each value of z, we say w 

is a multiple-valued or many-valued function of z. 
 

Example 1: if 3zw  , then to each value of z there is only one value of w. 3)( zzfw   is 

a single-valued function of z. 
 
3.2 Transformations 
 
If ivuw   (where u and v are real) is a single-valued function of iyuz   (where x and 

y are real), we can write )( iyxfivu  . By equating real and imaginary parts this is 

equivalent to 
).,(),,( yxvvyxuu  ………………………………………..………….(1) 

 
Hence, given a point  yx,  in the z –plane, there corresponds a point  vu,  in the w plane. 

The set of equations (1) [or the equivalent,  zfw  ] is called a transformation. 

 
Example 1 
 
If 2zw  , then 

xyyxiyxzf 2)()( 2222   

Hence, 22),( yxyxu   and xyyxv 2),(   

 
Example 2 
 

Let   
z

zfw
1

 for (.)z  

 
   32

11

yx

iyx

iyxiyx

iyx

iyxz
zf












  
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Hence, 

22
),(

yx

x
yxu


 and 

22
),(

yx

y
yxv




  

 
3.3 The Elementary Functions 
 
1 Polynomial Functions: Polynomial functions )(zP  are defined as 


 azazazazP  


1
1

10 .................)( where naaa ,,.........,0 10   are complex 

constants and   is a positive integer called the degree of the polynomial )(zP . 

 

2. Rational Algebraic Function are defined by 
 z

zP
zF



)(
)(   where )(zP  and  z  

are polynomials. 
 
3 Exponential Functions are defined by 
  
 xiyxzfw   )(  (Cos y - i Sin y) 

where e is the natural base of logarithms. (e=2.71828). complex exponential 
functions have properties similar to those of real exponential functions. 

 
For example 2121221 /, zzzzzzizz     

121 xzz   (Cos y1+ i siny1) 2x (Cos y2+i Sin y2) 
        = 21 xx   ( Cos )11 ySiniy   22 SinyiyCis   

        =    22 1121 ySinyCosyiSinyiCosee xx   

        =  21212212 11 ySinySinyCosSinyySinyCosiyCosyCosne i

x   

        =     21212121
21 yCosySinySinyCosiySinySinyCosyCose

xx



 

        =    2121
21 yySiniyyCose xx   

        = 21 zze   
 
Note that when zew  , the number w can be written as  

 iew   where xe and y  

 
If we think of zew   as a transformation from z to the w plane, we thus find that any non 
zero point  iew   is the z- Log  i  

 
Therefore the range of the exponential function zew  id the entire nonzero point 

ipew  is actually the image of an infinite number of points in the z plane under the 

transformation zew  . For in general,   may have any one of the values 
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 ...2,1,02 



nn  where  denotes the principal value of arg w . It then follows 

that w is the image of all the points. 
 ,....2,1,01log  niiz   

 
Example 3:  find all values of z such that 1ze  
 
Solution 
 

iyxz eee  ,and ie11   so that 
iiyx eee 1  

 
By equality of two complex numbers in exponential form, this means that 
 

 nyande x 21   where nis an integral. 

,01log n  then 

   .....2,1,012  nnz   

 
Example 4:    Find the values of z for which 14 ze  
 
Solution: 
 

ie z 4  
ieee yix .1. 44   

 

So that, by equality, we have 
 

0040  nxee yx and 

2
24


  ny  

8

01

2

01 


n

y for  ,...2,1,0   

 

The solution is then ccin 
8

1

2

1
  
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SELF- ASSESSMENT EXERCISES 
 

1 Show that (i)    xz ee     (ii)    ikze 2  

2 Find the value of z for which 13 ze  
 
4 Trigonometric Functions: are defined in terms of exponential  functions as 
follows: 

2
,

2

1 izizziz ee
zCos

i

ee
zSin

 



  

iziziziz ee

i

zSin
ZCSC

eezCos
zSec

 





21
,

21
 

  zSin

zCos
zCot

eei

ee

zCos

zSin
z

iziz

iziz











,tan  

=
 

iziz

iziz

ee

eei







 

 

Many properties satisfied by real trigonometric functions are also satisfied by complex 
trigonometric function. 
 
e.g. 

.csc1,tan11,1 222222 zzwtzSeczzCoszSin   

      zzzCoszCoszSinzSin tantan   

  212121 zSinzCosCoszzSinzzSin   

  212121 zSinzSinzCoszCoszzCos   

 
21

21
21

tantan1

tantan
tan

zz

zz
zz




 . 

 
Activity 1 
 
Prove that 10

2
0

2  zCoszSin  

 
Proof 

By definition, 
2

,
2

iziziziz ee
zCos

i

ee
zSin

 



  

Then
22

22

22 






 








 


 iziziziz ee

i

ee
zCoszSin  

                                = 






 








  

4

2

4

2 2222 iziziziz eeee
 

= 1. 
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6. Hyperbolic Function: Are defined as follows: 
 

zz

zzzzzz

ee

ee
z

ee
Coshz

ee
hzSin














 tanh,

2
,

2
 

Sinhz

Coshz
Coth

Sinhz
hzCo

Coshz
Sechz  ,

1
sec,

1
 

 
The following properties hold: 
 

zhzCothzhzzSinhzCosh 222222 csc1,sectanh1,1   

       zzzCoshzCoshSinhzzhSin tanhtanh,,   

  212121 hzSinhzCosCoshzSinhzzzSinh    

  212121 zSinhzSinhCoshzzCoshzzCosh   

 
21

21
21

tanhtanh1

tanhtanh
tanh

zz

zz
zz




 . 

 
These properties can easily be proved from the definitions. For example, to show that: 
 

122  zhSinzhCos , we observed that, 
22

22

22 






 








 


 zzzz eeee
zSinhzCosh  

                          =    222

4
1222

4
1 22 eeeeeeee zzzzzz    

      =  zzzz eeee 2222

4
1 22    

      = .14
4   

 
Exercise: 
The proofs of others are left as exercise 
 
Trigonometric and hyperbolic functions are related. For instance: 
 

.tanhtan,, zizizCoshzCosihzSiniizSin   
zizihzCoshizCoszSiniSinhiz tantan,,   

 
SELF- ASSESSMENT EXERCISES 
 
1 If 2zCos , Find 

(a) zCos 2  

(b) zCos 3  
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2 Find  yxU ,  and ),( yxV such that 

 (a) ivzSinh 2  

 (b) ivzCoshz    

 
3 Evaluate the following 

 (a) iSinh )
8

(


 

 (b) 
2

)12
cosh

n
 

 (c) 
2

cosh
i

Tan


 

 

4 Show that 1
4

)1(


 i
Tanh


 

 
5 If ivuz tan  show that 

 
yhCosuCos

yhSin
v

yhCosuCos

uSin

22

2
,

22

2





  

 
6 Logarithmic Functions 
 
The Natural Logarithm Function is the reverse of the Exponential Function and can be 
defined as: 
 

  .2,1,0,2111  kkrnznw   

Where  kQiiQ rerez 2  

z1 is a multiple valued function with the principled value. In ii  where  20  or 

its equivalent. 
For waz  where a is real, ,0log,  awherezw and 1,0a , in this case, aInwez   and so

aIn

nz
w

1
 . 

 
Exercises 
Evaluate 
(1) In (-40 

(2) In  i3  
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Solutions 
 
(i) In (-4) 

 .404,04 27  zriz  

 kz 200tan
4

0
tanarg 11     

 In (-4) = In   )2(
4

 kie In 4+  ik 2    for .......2,1,0 k  

 

(ii) In  i3  

   .213,3
22  zruz  

 





 kkz 2
6

11
2

180

334

180

26

3

1
tanarg 1 


   

 In    i3  In 







 ke 2

6

11
2  In 2 + ik 








 


2

6

11
 

 

SELF- ASSESSMENT EXERCISES 
 
Evaluate 

(1) In 









 i

2

3

2

1
 

(2) In 









 i

2

3

2

1
 

(3) In  i23   

 
7 Inverse Trigonometric Functions 
 
To define the inverse sine function zSin 1 , we write zSinw 1 when wSinz  . That is 

zSinw 1 , when
21

iwiw ee
z


  

Which is equivalent to: 

    012
2

 iwiw eize . 

 
This is quadratic in iww . Solving for iwe  one have 

  2
1

211 zzeiw   

Taking logarithms of both sides and recalling that zSinw 1 , we have 

 21 1 zizInizSin   

Which is a multiple-valued function with infinitely many values at each z . 
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Similarly, 

 21 1 zizInizCos   














z

z
In

i
z

1

1

2
tan 1  

Which are also multiple valued functions. 
 
Exercise 
 
Find the values of 21Sin  
 
Solution 
 

 21 2122  iIniSin  

            =    iIniiIni 32232   

            =    ikejIni 

 2232  

            =    ikjIni 







 


2

2
32  

  


kjIni 2
2

32   

 
SELF- ASSESSMENT EXERCISES 
 
1. Evaluate  
 (a) 21Cos  (b) 2tan 1  

 
8 Inverse Hyperbolic Functions 
 
If Sinhwz   then zSinhw 1  is called the inverse hyperbolic sine of z. Other inverse 

hyperbolic functions are similarly defined. 
 

 121  zzInzhSin  

 121  zzInzhCos  















z

z
Inzh

1

1

2

1
tan 1  

 

In each case, the constant ik2 , k = 0, ...2,1   has been omitted. They are all multiple 

valued functions. 
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 iiIniInihCos 2111   

              = In     inInij








 


2
2

exp2121  

                                   = In   


ni 2
2

21   

 
SELF- ASSESSMENT EXERCISES 
 
1. Find all the values of 

 (a) iSinh 1  

 (b)   11  InhSin  

 

 
4.0 CONCLUSION 
 
In this unit we considered in general, functions of complexvariables and considered 
various functions in these categories. Practice all exercises in this unit to gain mastery of 
the topic. 
 
5.0 SUMMARY 
 
What we have learnt in this unit can be summarised as follows: 
 
(a)  Definition of Complex Variables 
 
(b)  Some Elementary functions of Complex Variables 
 
(c) Transformation of Complex variables. 
 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Show that  21 1 zizInizCos   
 

2. Show that: In  
2

1
12   In   

1
tan1 122


 

x

y
iyu  

 
3. Evaluate the following 

 (a) iSinh )
8

(

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 (b)     
2

)12
cosh

n
 

 (3)
2

cosh
i

Tan


 

 

4. Show that 1
4

)1(


 i
Tanh


 

 
5. If ivuz tan  show that 

 
yhCosuCos

yhSin
v

yhCosuCos

uSin

22

2
,

22

2





  

 
7.0 REFERENCE/FURTHER READING 
 
Francis, B. Hildebrand.(1976).Advanced Calculus for Application.(2nded.). 
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UNIT 2 LIMITS AND CONTINUITY OF FUNCTION OF COMPLEX 
VARIABLES 
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3.0 Main Content 
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3.3 Continuity 

4.0 Conclusion 
5.0 Summary 
6.0 Tutor-Marked Assignment 
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1.0 INTRODUCTION 
 

In this unit, we will learn about limits and continuity in complex variables, 
 
We shall establish some relevant theorems on limits and continuity. 
 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 
 
 explainlimit and continuity of functions of complex variables, 
 state theorems related to limits and continuity of complex variables, and 
 solve all related questions on limits and continuity. 
 

3.0 MAIN CONTENT 
 

3.1 Limits 
 

Definition: Let a function f be defined at all point Z in some neighborhood 0Z , except 

possibly for the point 0Z itself. A complex number L is said to be the limit of  zf  as Z

approaches 0Z  if for each positive number   there is a positive number  such that 

   Lzf  whenever  00 ZZ  

 
We write 
 

  Lzf
zz




lim
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Example: Show that 
 

  iyxzAtliyx
iz




22
2

lim
 

 
Solution 
 
For each positive number . We must find a positive number   such that 

 iiyx 42 2 whenever  iz 20  

 
To do this, we must write 
 

2224242 22  yyxyxiiyx  

 
and thus note that the first of inequalities will be satisfied if 

2
2


x  and 222  yy  

 

The first of these inequalities is, of course, satisfied if 2
x . To establish conditions on 

y such that the second holds, we restrict y so that  2y  and then observe that 

 
  542422  yyy  

 

Hence if  1,min2 10
y , if follows that 25

10
22 











 yy  

 

An appropriate value of  is now easily seen from the conditions that x  be less than 4
  

and that 2y  be less then min  1,10
  

 1,min 10
   

 
Note that the limit of a function  zf  at a point 0z  if it exists is unique. Suppose that 

 

  0

0

lim
Lzf

zz



 and   1

0

lim
Lzf

zz



 

Then for an arbitrary positive number 0 and 1  such that  

   0Lzf  whenever 000 Lz   

and    1Lzf  whenever 110  Lz  
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So if  00 zz  where   denotes the smaller of the two numbers 0 and 1 , then 

          211  LzfLozfLzfLozf  

That is 
 

21  LoL  

But  
 

01 LL  is a constant, and   can be chosen arbitrarily small. Hence, 001 0 LLorLL i   

 
Definition: The statement 
 

  0

lim
Lzf

z



 

means that for each positive number   there is a positive number  such that 

   0Lzf  whenever 


1
z  

That is, the point  zfL   lies in the nbd  0Ll  of 0L  whenever the point z lies in 

the  
1znbd  of the point at infinity. 

 
Example: Observe that 
 

0
1lim

2


 zz
 

 
Since  
 

 0
1

2z
 whenever 



1
z  

 

Hence    
When 0L is the point at infinity and 0z  lies in the finite plane, we write 

  


zf
zz 0

lim
 

If for each   there is a corresponding  such that  


1
zf  whenever  00 zz  
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Example: As expected 


 2

1

0

lim

zz
 

for 


11
2


z

whenever   z0  

 
3.2 Theorems on Limits 
 
Theorem 1: Suppose that 
 

    000,,, iyxzyxVyxUzf   and 000 ivuL   

Then 

  Lozf
zz


 0

lim
…………………………………………………..(1) 

If and only if 

   
  0

00

,
,,

lim
uyxu

yxyx



 and

   
  0

00

,
,,

lim
vyxv

yxyx



…….(2) 

 
Proof 
 
Assume (1) is true, by the definition of limit, there is for each positive number , a 

positive number  such that      00 vviuu  whenever      000 yyinn  

 

Since    000 vviuuuu   and 

   00 vviuu   

   000 vvivvvv  , 

 
It follows that 

 0uu  and  0vv  

whenever  

     00 iyniyn  

which is statement (1), hence the proof 
 
Theorem 2: Suppose that 
 

  0

0

lim
Lzf

zz



 and   0

0

lim
Lzf

zz



 

then 
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     00

0

lim
Llzfzf

zz



 

     00

0

lim
Llzfzf

zz



 

if ,00 L  

 
  0

0

0

lim

L

l

zf

zf

zz



 

 
Proof: (Left as exercise) 
 
SELF- ASSESSMENT EXERCISES 
 
1. Evaluate the following using theorems on limits: 

 (a)  1510
lim

2 


zz
izz

 

 (b) 
  

42

134

2

lim
2 



 zz

zz

izz
 

 (c) 
164

8

2

lim
24

3

3







zz

z

ez
c  

 (d)  iziz
ziz

10
lim

24 


 

 (e) 
1

lim
4

2

4 


zz

z

ez
 

 
Show that 

 i
zz

z

ez 8

3

8

3

1642

lim
24

3

3










 

 
3.3 Continuity  
 
Definition:  A function f  is continuous at a point 0z  if all the following conditions are 

satisfied. 
 

(1)  zf
zz 0

lim


exists  

(2)  0zf exists 

(3)    0

0

lim
zfzf

zz



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Note that statement (3) contains (1) and (2) and it say that for each positive number   
there exist a positive number   such that 
 

     0zfzf  whenever  0zz  

 
a function of complex variable is said to be contours in a region R if it is continuous at 
each point  
 
Example: The function 
 

)2()( 2 yxixyzf   

is everywhere in the complex plane because the component functions are polynomials on 
x  and y  and are therefore continuous at each point  yn,  

 
Example: If  
 

 






















1

2

zu

lzz

zf  

  1
lim




zf
iz

But   0if . Hence,    ifzf
iz




lim
 

Therefore the function is not continuous at 1z  
 
Example: The function 
   32 2nynSiniezf xy   

is continuous for all z because of the continuity of the polynomials on n and y as well as 

the continuity of the exponential and sine functions. 
 
Theorem on Continuity  
1 if  zf  and  zg  are at 0zz  . So also are the functions

               zgzfzgzfzgzfzgzf /,,,  , the last only   00 zg . 

 
2 A function of a continuous function is   zfgw   is its  zf  is its 

 
3 If  zf  is continuous in a region, then the real and imaginary parts of   zf arealso 

in the region. 
 
4 If a function  zf  is in a closed region, it is bounded in the region, i.e. there exists 

a constant M such that   Mzf  for all points z in the region. 
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SELF- ASSESSMENT EXERCISES 
 

1 Let  
iz

z
zf

2

42




  if iz 2 while   iif 432   

 (a) Prove that  zf
iz 

lim
exists and determine its value 

 (b) Is  zf  at iz 2 ? Explain? 

 (c) Is  zf   at point iz 2 ?. Explain 

 
2 Find all possible points of discontinuity of the following function 

 (a)  
22

32
2 




zz

z
zf  

 (b)  
16

43
2

2






z

z
zf  

 (c)   zCotzf   

 
Answers 
 
(a) i1  
(b) i2,2   

(c) .2,,,  vkk  

 
3 For what values of z are each of the following function continuous  

 (a) 
1

)(
2 


z

z
zf  

 (b)  
zSin

zf
1

  

 
4.0    CONCLUSION 
 
In this unit we have studied limits of functions, continuity of functions of complex 
variables in a manner similar to that of real variables. You are required to master them 
properly so that you can be able to apply them when necessary.   

 
5.0 SUMMARY 
 
Recall the following points; 
 

- Continuity in Complex variables can be treated analogously as in the real variables 
- If )(zf  is a continuous complex variable so also its real and imaginary parts. 
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- A complex function )(zf  is bounded if there exist a constant M>0 such that  

Mzf )(  

 
6.0 TUTOR-MARKED ASSIGNMENT 
 
1. Prove that 

 i
z

zzzz

iz
44

1

52823lim 234







 

 Is the function at iz  ? 
 
2. Factorised  
 (i) 83 z  
 (ii) 164 24  zz  
 
 (b) (i) Show that 

   i
zz

z

ez 8

3

8

3

164

8

2

lim
24

3

3







  

  (ii) Discuss the continuity of 

    
164

8
24

3






zz

z
zf at 32 iez   

 
7.0 REFERENCE/FURTHER READING 
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UNIT 3 CONVERGENCE OF SEQUENCE AND SERIES OF 
COMPLEX VARIABLES 

 

CONTENTS 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 

3.1 Definition 
3.2 Taylor Series 
3.3 Laurent Series 

4.0 Conclusion 
5.0 Summary 
6.0 Tutor-Marked Assignment 
7.0 Reference/Further Reading 
 

1.0 INTRODUCTION 
 
In this unit, you will learn about sequences and series of complex variables. You will also 
learn about the convergence of these series and sequences. 
 
All related theorems in real variables will be established for complex variables. We shall 
consider Taylor and Laurent series. 
 
2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 

 define convergence of sequences and series on complex variables; and 
 solve related problems on series and sequence. 
 
3.0 MAIN CONTENT 
 
3.1 Definition 
 
An infinite sequence of complex numbers, ,......,........., 21 nzzz has a limit z if for each 

positive number  there exists a positive integral number such that 

 zzn whenever 0nn  . 

If the limit exists, it is unique. 
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When the limit z exists, the sequence is said to converge to z ; and we write 

zz
n

n 


lim
 

If the sequence has no limit, it diverges. 
 
Theorem: Suppose that  .......,2,1 niyxZ nnn and iyxz  . Then  

zz
n

n 


lim
…………………………………………………….(i) 

 
If and only if 

xx
n

n 


lim
and yy

n
n 



lim
…………………………………..(ii) 

 
Proof: 
 
Assume (i) is true, for each positive number  there exists a positive integer number such 
that 
 

     yyixx nn Whenever 0nn   

But 
   yyixxxx nnn   

And 

   yyixxyy nnn   

 
Consequently, 
 

 xxn and  yyn whenever inn 0 and (3) are satisfied. 

 
Conversely, form (3), for each positive number , there is positive numbers 1n  and 2n

such that 

2


 xxn whenever 1nn   

And 

2


 yyn whenever 2nn   

 
Hence if number is the larger of the two integers 1n and 2n , 

Then 

2


 xxn  and 

2


 yyn whenever 0nn   
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But 
    yyxxyyixx nnnn  , 

And so 

 zzn  whenever 0nn   

 
Which is condition (2) 

Definition: An infinite series of complex numbers ..........21
1





n

n
n zzzz  

Converges to a sum S, called the sum of the series, if the sequence 

n

N

n
nN zzzzS  



............21
1

 ........,2,1N  of partial sums converges to S, we then 

write Sz
n

n 


1

 

 
Note that since a sequence can have at most one limit, a series can have at must one sum, 
when a series does not converge, we say that it diverge, 
 
Theorem: Suppose that ,.....)2,1(  niyxz nnn and .iYXS  then  







1n

n Sz  

If and only if 

 









1 1n n

YYnandXXn  

 
Definition: An infinite sequence of single valued functions of complex variable 

       ,..............,,.........,, 321 zUzUzUzU n  

Denoted by   zU n , has a limit  zU  as n , if given any positive number   we can 

find a number N (depending in general on both  and Z ) such that      zUzU n  for 

all Nn  . 

 

We write    zUzU
n

n 


lim
. In such case, we say that the sequence converges or is 

convergent to  zU . 

 
If a sequence converges for all values of Z (points) in a region R, we call R the region of 
convergence of the sequence. A sequence which is not convergent at some value (point) 
Z is called divergent at Z. 
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Definition: The sum of {  zU n }, denoted by   zSn is symbolised by 

     





1

21
n

n zUzUzU  is called an infinite series 

 

If    zSzSn
n




lim
, the series is said to be convergent and S(z) is its sum, otherwise the 

series is said to be divergent. If a series converges for all values of Z (points) in a region 
R, we call R the region of convergence of the series. 
 

Definition (absolute convergence):A series  zU
n

n


1

 is called absolutely convergent of 

the series of absolute values. 

i.e.  


1n
n zU , converges 

 

If  zU
n

n


1

 converges but  


1n
n zU  does not converge, we say that  zU

n
n



1

 is 

conditionally convergent. 
 
Definition:In the definition, if a number N depends only on   and not in Z, the sequence 

 zU N  is said to be uniformly convergent. 

 
3.2 Taylor Series 
  
Theorem (Taylor’s Theorem): Let f be analytic everywhere inside a circle C with center 

at 0Z  and radius R. Then at each point Z inside C. 

   
 

 
 

 
   

  .........
!

..........
!21

0
02

0
0

"

0
0

1

0 
n

n

zz
n

zf
zz

zf
zz

zf
zfzf  

That is, the power series have converge to  zf  when Rzz  0 . 

 
Proof 
 
Let 0Z  be any point inside C. Construct a circle C, with centre at 0z  and enclosing Z. 

Then by Cauchy’s integral formula 

   
dw

zw

wf

ni
zf

a 



1
 

For any point w on C1 
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We have 

       





































0

0000 1

1111

zw

zzzwzzzwzw
 

 = 
 




































































 nn

zw

zz

zw

zz

zw

zz

zw

zz

zw 0

0

1

0

0

2

0

0

0

0

0

..........1
1

 

Or 
 

   
  zwzw

zz

zw

zz

zw

zz

zw

zz

zwzw

n




































1

........
)(

11

0

0

2

0

1

0

3

2

0

0

0

 

 
Proof 
 
We first prove the theorem when 00 z and then extends to any 0z . 

 

Let z be any fixed point inside the circle C, centred now at the origin. Then let rz  and 

note that Rr  where R is the radius of C. Let S denote points lying on a positively 

oriented circle C1about the origin with radius R1 where ;1 RRr  then 1RS  . Since Z is 

interior to C1, and f is analytic within and on the circle, the Cauchy integral formula 

gives 

   
 


1

1
c zs

dssf

i
zf


……………………………………………………(2) 

 
Now, we can write 

 










 s
zszs 1

111
 and using the first that 

 .........,2,1
1

.....1
1

1 12 





 n
c

c
ccc

c

n
n  where C is any complex number other 

than unity. Hence  

     
 














s
z

n
s

z
n

s
z

s
z

s
z

szs 1
......1

11 12  and consequently 

(1) 

C1 
z .w 

.z0  c0 
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  N

N

N

N

Szs

Z

S

Z
Z

SS

Z

Szs 




1
2

32

1
,........

1111
………………………(2) 

Multiply this equation through by   isf
2

and integrate wrt S, we have 

         

 
 










1

1111

1

3

2

2

1

2

1

c N

n

c n

n

cccc

Szs

dssf

i

z

s

sf

i

z
ds

s

sf

i

z

s

dssf

i

z
ds

s

sf

izs

dssf

i








 

In view of expression (2) and applying this equation 

   
  1

)0(11 )(

11
11 n

f

iS

dssf

iS

dssf

i

n

C NC n



    

 

 
We can write the result as 

           
 

 zfZ
n

f
z

f
z

f
fzf N

n







 


1
1

2

!1

0
........

!

0'

!1

0'
0  

Where 

   
  


1c N

n

szs

dssf

i

z
zf


………………………………………………..(4) 

 

Recalling that rz  and 1R , where 1Rr  , we note that rRzszs  1  

It follows from (4) that when M1 denotes the maximum of  sf  on C1, 

 
  








































N

N

n

n
R

r

rR

RM
R

RrR

Mr
z

11

11
1

11

1 


 


………………………..(5) 

But 1
1










R

r
, and therefore 

  0
lim




z
n

N  

So that 

       
 n

n

z
n

f
z

f
z

f
fzf

!

)0(
.......

!

0'

!1

0'
0

)(
2


…………………(6) 

In the open disk Rz  . 

 
This is a special case, of (1) and it is called the MACLURIN SERIES. 
 
Suppose now that f is as in the statement of the theorem, since  zf is analytic when

Rzz  0 , the composite function  0zzf   is analytic when   Rzzz  00 . But the 
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last inequality is simply ;Rz  and if we write    0zzfzg  , the analyticity of g inside 

the circle Rz  implies the existence of a Maclurin series representation. 

 
    n

n

n

z
n

g
zg 






0 !

0  Rz   

That is 

 
 

n

n

n

z
n

zf
zzf 






0

0
0

!
 

Using z by 0zz  in this equation, we arrive at the desired Taylor series representation for 

 zf  about the point 0z . 

 
   

 n

n

n

zz
n

zf
zf 0

0

0

!
 





 Rzz  0 . 

 
Example:If   zSinzf  , then      .........2,1,0002  nf n  and 

       ..........,2,1,01012  nf
nn  hence 

 
 

 






 z

n

z
zSin

n

n

n
,

12
1

12

0

 

The condition z follows from the fact that the function is entire. 

 
Differentiating each side of the above equation with respect to and interchanging the 
symbols for differentiation and summation on the right-hand side, we have the expression 

   

!

2
1

2

0 

n

n

n z
zCos 





  

Because  izizhSin sin , replacing z by iz in each side of )( and multiply through the 

result by –c, we have 

 









0

12

!12n

n

n

z
zhSin  

Differentiating each side of this equation gives 

 





0

2

!2n

n

n

Z
zhCos  

 
3.3 Laurent Series 
 
Theorem:  Let C0 and C1denote two positively oriented circles centred at a point Z0, 
where C0 is smaller than C1. if a function f is analytic on C0 and C, and throughout the 
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annular domain between them, then at each point Z is the domain  zf  is represented by 

the equation. 

    









1

0
0 n

n

n
in zzCzf  

Where 
 

 
 ,........2,1,0

1

1
1

0




  
n

zz

dzzf

i
a

C nn


 

And 
 

 
...)..........,2,1(

1

0
1

0




 
n

zz

dzzf

i
b

C nn


 

The series here is called a Laurent series 
 
We let 0R and 1R denote the radius of 0C and 1C  respectively. Thus 0R  and 1R and if f is 

analytic at every point inside and on 1C except at the point 0Z  itself, the radius 0R may be 

taken arbitrarily small, expansion (1) then valid when 

100 Rzz   

If f  is analytic at all points inside and on 1C , we need only write the integral in 

expansion (3) as    1

0




n
zzzf to see that it is analytic inside and on 0C . For 01n

when n is a positive integer. So all the coefficient bn are zero, and because 

 
 

   
,......)2,1,0(

!

1

1
1

0




 
n

n

zf

zz

dzzf

i

n

C n
 

 
4.0 CONCLUSION 
 
In this unit we have established condition for convergence of series in complex variables. 
You are required to study this unit properly to be able to understand subsequent units. 
 
5.0 SUMMARY 
 
The following DEFINITIONS is hereby recalled, to stress the importance of convergence 
of series in complex variables 
 
1. An infinite sequence of complex numbers, ,......,........., 21 nzzz has a limit z if for each 

positive number  there exists a positive integral number such that 

 zzn  whenever 0nn  . 

If the limit exists, it is unique. 
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When the limit z exists, the sequence is said to converge to z ; and we write 

zz
n

n 


lim
 

If the sequence has no limit, it diverges. 
 
2.  We have also stated theorems that can help us in proofing convergence of series. 
 
3.  The Taylor and Laurent series have been applied in treating convergence of series.  
 
6.0 TUTOR-MARKED ASSIGNMENT 
 

1.  Expand the following complex variable using Taylor series about z=
2


 

(a) Tanz   (b)  Cosz  
 
2  State the Laurent series for the above. 
 
 
7.0 REFERENCE/FURTHER READING 
 
Francis, B. Hildebrand (1976).Advanced Calculus for Application(2nded.). 
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UNIT   4 SOME IMPORTANT THEOREMS 
 
CONTENTS 
 
1.0  Introduction 
2.0  Objectives 
3.0  Main Content 

3.1 Special Tests for Convergence 
 3.2 Theorem on Power Series 
 3.3 Laurent Theorem 
 3.4 Classification of Singularities  
4.0  Conclusion 
5.0  Summary 
6.0  Tutor-Marked Assignment 
7.0  Reference/Further Reading 
 

1.0  INTRODUCTION 
 
In this unit, we shall consider some related theorems on complex variables.We shall 
consider theorems on test of convergence of complex variables and shall also learn about 
singularities and classifications or singularities. 
 

2.0  OBJECTIVES 
 
At the end of this unit, you should be able to: 
 

 state the important theorems on convergences of sequences and series of complex 
variables; 

 classify singularities on complex variables; and 
 solve problems on complex variables. 
 

3.0 MAIN CONTENT 
 
Theorem 1: The limit of a sequence, if it exists, is unique. 
 
Theorem 2: Let  na be a real sequence with the property that  

(i) nnti aa  or nnt aa 1  

(ii)  1ntn aa   

Then  na converges. 

 
That is, every bounded monotonic (increasing or decreasing) sequence has a limit. 
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Theorem 3: A necessary and sufficient conditions that  nU converges is that given 

,0 we can find a number N such that  qn UU for all ., NqN  This is called 

Cauchy’s convergence criterion. 
 
3.1 Special Tests for Convergence 
 
Theorem 1:  (comparison tests) 

(a) If  nV converges and nn VU  , then  nU converges absolutely 

(b) If  nV diverges and nn VU  , then  nU diverges but  nU may or may not 

converge. 
 
Theorem 2: (Ratio Test) 

(a) If ,
lim

1 L
U

U

n n

nt 


 then  nU converges (absolutely) 

(b) If  1L and diverges if 1L . If L – 1, the test fails. 
 
Theorem 3: (nth Root Test) 

(a) If LU
n

n
n 



lim
, then  nU converges (absolutely) 

(b) If L < 1 and diverges if L > 1. If L = 1, the test fails 
 
Theorem 4: (Integral Test) 

(a) If   0xf for ,ax  then   xf converges or diverges if 
m

lim
 dxxf

M

a  

converge diverges. 
 
Theorem 5: (Raabe’s Test) 
 

(a) If ,1
lim

1 L
U

U
n

n n

nt 















then  nU converges (absolutely) 

(b) If L > 1 and diverges or converges conditionally if L < 1. 
(c) If L = 1, the test fails. 
 
Theorem 6: (Gauss’ Test) 
 

If 
2

1 1
n

C

n

L

U

U n

n

nt  where MCn  for all ,Nn  then  nU converges (absolutely) if L > 

1 and diverges or converges conditionally if L 1. 
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3.2   Theorems on Power Series 
 

Note that a series of the form 

     n

n
n zzazzazzaa 0

0
02010 ...........  





 is called a power series in 0zz   

 
Theorem 1: A power series converges uniformly and absolutely in any region which 
lies entirely inside its circle of convergence. 
 
Theorem 2: (Abel’s Theorem) 

Let  n
n za have radius of convergence and suppose that 0z is a point on the circle of 

convergence such that  n
n za 0 converges.  

Then n
n

n
n zaza

zz
0

0

lim
 


where 0zz  from within the circle of convergence. 

 

Theorem 3: If  n
n za converges to zero for all Z such that Rz  where 0R , then 

0na . Equivalently. If n
n

n
n zbza   for all Z such that ,Rz  then nn ba  . 

 
3.3 Laurent Series 
 
If a functionffails to be analytic at a point 0z , we cannot apply Taylor’s theorem at that 

point. If is often possible, however, to find a series representation for  zf  involving both 

positive and negative powers of 0zz  . 

 
Theorem (Laurent Theorem): Let 0C and 1C  denote two positively oriented circles 

centred at a point 0z , where 0C is smaller than 1C . If a function f is analytic at 0C and 1C , 

and throughout the annular domain between them, then at each point z in that domain 
 zf  is represented by the expansion. 

   
 







 


1 00
0

n
n

n

n

n

n
zz

b
zzazf ……………………………………….(1) 

Where 

 
 

 



1

1

0
2

1
C ntn

zz

dzzf

i
a


 ............,2,1,0n …………………………..(2) 

And 

 
 

  



0

1

0
2

1
C ntn

zz

dzzf

i
b


)..........,2,1( n …………………………..(3) 

 
The series here is called a Laurent series. 
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Since the two integrands  
 

  1

0

nt
zz

zf


and 

 
  1

0

nt
zz

zf



 in expressions (2) and (3) are analytic 

throughout the annular domain 100 RzzR  , and in its boundary, any simple closed 

contour C around the domain in the positive direction can be used as a path of integration 
instead of the circular paths 0C and 1C . Thus the Laurent series (1) can be written as 

   n

n
n zzCzf 0

0

 




 100 RzzR  Where 

 
 



C ntn

zz

dzzf

i
C

1

02

1  ..............,2,1,0 n  

Particular cases, of course, some of the coefficient may be zero. 

 
Example: The expansion 

...........
!4!3!2

111 2

2


zz

zzz

e
z

z

 z0  

 
Follows from the Maclurin series representation 

.........
!4!3!2!1

1
!

432

0

 




zzzz

n

z
e

n

n
z  z  

 
3.4 Classification of Singularities 
 

1 Poles: If  zf has the form 

     
  z

zz

a

zz

a
zzazzaazf

2

00

2

02010

21
.......









 In which the principal 

part has only a finite number of terms given by 

   n

n

zz

a

zz

a

zz

a

0

2

0

2

0

1 .........








 Where 0na , then 0zz  is called a pole of 

order n. 
 
If n = 1, it is called a simple pole. 

If  zf  has a pole at 0zz  , then   


zf
zz 0

lim
. 

 

C1 

C0 

0Z
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2 Removable Singularities: If a single valued function  zf  is not defined at 0zz 

but  zf
zz 0

lim


 exist, then 0zz  is a removable singularities. In such case, we 

define  zf at 0zz  as equal to  zf
zz 0

lim


. 

 

Example: If  
z

zSin
zf  , then 0z is a removable singularities since  0f is not 

defined but 1
0

lim


 z

zSin

z
 

Note that 









!7!5!3

1
!7!5!3

1 642752 zzzzzz
z

zz

zSin
 

 
3 Essential Singularities:  If  zf  is single valued, then any singularity which is not 

a pole or removable singularity is called an essential singularity. If uaz  an 

essential singularity of  zf , the principal part of the Laurent expansion has 

infinitely many terms 
 

 Example: Since 3

2 !3

1

!2

11
1

1

z
zz

e z   

 0z is an essential singularity. 
 
4 Branch Points:  A point 0zz  is called a branch point of the multiple-valued 

function  zf  if the branches of  zf  are interchanged when Z describes a closed 

path about 0z . Since each of the branches of a multiple-valued function is analytic, 

all the theorems for analytic functions, in particular Taylor’s theorem apply. 
 

 Example:The branch of   2
1

zzf  which has the value 1 for 1z , has a Taylor 

series of the form 
 

     ......112
2

210  zaaa With radius of convergence 1R [the distance from 

Z=1 to the nearest singularity, namely the branch point z=0]. 
 
5 Singularities at Infinity: By letting wz 1 in  zf  we obtain the function

   wff w 1 . Then the nature of the singularity at z  [the point at infinity] is 

defined to be the same as that of  wf at 0w . 
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 Example: If   3zzf  has a pole of order 3 at z , since     3
11

wwfwf   has a 

pole of order 3 at 0w . 

Similarly,   zezf  has an essential singularity at z , since     wefwf w

1
1  has 

an essential singularity at 0w . 
 

4.0   CONCLUSION 
 
This unit is a very important unit which must be studied properly and understood before 
proceeding to other units.  
 
5.0   SUMMARY 
 
Recall that in this unit we discussed very important theorems in the solution of complex 
variables. We also discussed singularities, Laurent series and application, we discussed 
branch. These are to aid in tackling any exercises on complex variables. 
 
6.0 TUTOR-MARKED ASSIGNMENT 
 
1.  State all the convergent tests listed in this unit 
 

2. If 
z

Sinz
zf )(  determine the removable singularity and carry out the expansion. 

 

3. Define the essential singularity and determine the essential singularity for  zezf
1

)(   

 

7.0 REFERENCE/FURTHER READING 
 
Francis, B. Hildebrand (1976).Advanced Calculus For Application(2nded.). 
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