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1.0 INTRODUCTION

The set of real number is not adequate to handle some of the numbers we come across in
mathematics. We needanother set — the complex numbers.

In this course we will do analysis on complex variables and establish those results which
are analogue to the real number systems.

2.0 OBJECTIVES

At the end of this unit, youshould be able to:
o explain variables and functions of complex number; and
o solve problems on functions and transformation or complex variables.
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3.0 MAIN CONTENT

3.1 Revision of Elementary Vector Algebra

A symbol, such as z, which can stand for any complex number is called a complex
variable. If to each value a complex variable z can assume there correspondence one or
more values of a complex variable w, we say that W is a function of z and write
w= f(z) or w=g(z) etc. The variable z is sometimes called an independent variable

while w is called a dependent variable. The value of a function at z = a is often written

as f(a).

e.g. f(z)=z",forz=3i, f(z)= f(3i) =-9. If one value of w corresponds to each value
of z, we say that w is a single-valued function of z or that f(z)each value of z, we say w
is a multiple-valued or many-valued function of z.

Example 1: ifw = z°, then to each value of z there is only one value of w. w= f(z) =z’ is
a single-valued function of z.

3.2 Transformations

Ifw=u+iv (where u and v are real) is a single-valued function of z =u =iy (where x and
y are real), we can writeu +iv = f(x+iy). By equating real and imaginary parts this is
equivalent to

U= U(X, 1)y V= V(0 P ettt et e e (1)

Hence, given a point (x,y) in the z —plane, there corresponds a point (1,v) in the w plane.
The set of equations (1) [or the equivalent, w= f(z)] is called a transformation.

Example 1

Ifw=z", then
f(2)=(x+iy)> =x"—y* +2xy
Hence, u(x, y) = x> — y* and v(x, y) = 2xy

Example 2

Let w:f(z):lfor z ()

—l: 1 _ xX—iy _ X-ly
f(Z)_Z xX+1iy (x+iy)(x—iy) xP+y°
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Hence,

X -y

u(x,y) = and v(x,y) =
( )’) x2+y2 ( y) 2 2

3.3

- e

X" +y
The Elementary Functions

Polynomial Functions: Polynomial functions P(z) are defined as
P(z)=ayz" +a,z"" + . +a, z+a,where a, #0, a,.... ,a, are complex

constants and 7 is a positive integer called the degree of the polynomial P(z).

P(z)
9(z)

Rational Algebraic Function are defined by F(z)= where P(z) and 9(z)

are polynomials.

Exponential Functions are defined by

w=f(z) =" =1" (Cosy-iSiny)
where e is the natural base of logarithms. (e=2.71828). complex exponential
functions have properties similar to those of real exponential functions.

FOI’ example 7\’21 ° 7\422 — 7\121‘4—22’7\121 /7\/22 — kzl—zZ
A" e =" (Cos y+ 1 siny;) e A (Cos y,+i Sin y,)

=) + 12 (Cos y, +iSiny,) (Cisy, +iSiny,)
= " —e®(Cos yi+1 Sin yi) (Cos y, +1 Sin y, )

e’ +n, [Cos v, Cos y, +1i Cos y, Sin y, +1Siny, Cosy, —Sin y, Sinyz]

= ¢"" [(Cos y, Cos y, = Siny, Siny,)+i(Cosy, Siny, +Siny, Cosy,)]
= e"'”ZCOS(y1 +y2)+ [ Sin()’l +y2)

Zl+22

Note that when w=¢”, the number w can be written as
w=pe” where p=e*and ¢p=y

If we think of w=e¢" as a transformation from z to the w plane, we thus find that any non
zero point w = pe” is the z- Log p+i¢

Therefore the range of the exponential function w=e*id the entire nonzero point
w= peis actually the image of an infinite number of points in the z plane under the

transformationw=e¢”. For in general, ¢ may have any one of the values

3
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$=®+2n—(n=0,+1,22..) where @ denotes the principal value of argw. It then follows

that w is the image of all the points.
z=log p+id®+ir (1 n=0,pul, i2,....)

Example 3: find all values of z such that ¢* = -1
Solution

e’ =e'e” ,and—1=1e"" so that

exeiy — leizz
By equality of two complex numbers in exponential form, this means that

e’ —1 and y = 7+ 2nz where nis an integral.
n=1logl=0, then
z:(2n+1)7z (n:O,il,i2 ..... )

Example 4: Find the values of z for which e* =1
Solution:

4 .
e’ =i

e et =eli

So that, by equality, we have

e =e¢' = 4x=0=n=0and

— T
4y =2nr +—
y =207+
y:120+%for(nzo,il,iz,...)

The solution is then %nﬂ'iciéﬂc



MTH 304COMPLEX ANALYSIS IT

SELF- ASSESSMENT EXERCISES

z z+2km

e

X

| Showthat(i) le?|=e" (ii) e
2 Find the value of z for which ¢* =1

4 Trigonometric Functions: are defined in terms of exponential functions as
follows:
iz -1z iz —iz
, e —e e +e
SanZT, Cosz=———
i
1 2 1 2i
SeCZ = = iz —iz ° CSCZ = . = iz —iz
Cosz e" +e Sinz e" —e
_ Sinz e —e" Cotz Cos z
tanZ—C = ( o 712), otz =—
osz ile” +e Sinz

_ i!eiz +e " ’

eiz _ e*l‘Z

Many properties satisfied by real trigonometric functions are also satisfied by complex
trigonometric function.

e.g.
Sin’z+ Cos*z =1, 1+1tan’ z=Sec’z, 1+ wt’z =csc’ z.
Sin(—z)=-Sinz Cos(—z)=Cosz tan(-z)=—tanz
Sin(z, * z, ) =Sinz, Cosz, + Cosz, Sinz,
Cos(z1 + 22): Cos z, Cosz,* Sinz, Sinz,
tanz, ftanz
tan(zlizz): ! =
l-tanz, tanz,
Activity 1

Prove that Sin’z, + Cos’z, =1

Proof
By definition, Sinz 2%, Cosz=57¢_
i
iz —iz 2 iz —iz 2
Then Sin’z + Cos’z =| =% | 4| £ *¢€
2i 2
_ eZiz _2+e—2iz . eZiz +2+e—2iz
4 4
=1.
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6. Hyperbolic Function: Are defined as follows:

Sinhz = —¢ , Coshz =€ re , tanhz =< —¢
2 e’ +e’”
Sechz = , Cosechz = , Coth = Coshz
Coshz Sinhz Sinhz

The following properties hold:

Cosh?*z — Sinh*z =1, 1— tanh? z = sech’z, Coth’z—1=csch’z
Sinh(- z)=—Sinhz, Cosh(z)= Coshz, tanh(- z)= —tanh(z)
Sinh(z, + z, ) = Sinhz, Coshz, + Coshz, Sinhz,

Cosh(z, + z,)= Coshz, Coshz, +Sinhz, Sinhz,

tanh z, *tanhz,

l1+tanhz, tanhz,

tanh(z, + z, )=

These properties can easily be proved from the definitions. For example, to show that:

Cosh’z— Sinh*z =1, we observed that,

2\?2 z _ -z 2
Cosh®z—Sinh?z=| &3¢ | | £ =€
2 2

— _ _ 2
e +2e’e +e 22)—%(622 —2e‘e’”’ +ez)

e’ +2+e7 —e” +2—e_22)

F N N N

—

—

Il
—_

Exercise:
The proofs of others are left as exercise

Trigonometric and hyperbolic functions are related. For instance:

Siniz =iSinhz, Cosiz =Cosh z, taniz =itanh z.
Sinhiz =i Sinz, Coshiz=Cos z, tanhiz=itanz

SELF- ASSESSMENT EXERCISES

1 IfCosz=2, Find
(a) Cos2z
(b) Cos3:z
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2 Find U(x, y) and ¥ (x,y) such that
(a) Sinh2z = +iv
(b) zCoshz =u+iv

3 Evaluate the following
(a) Sinh(%)i
2n+1)

T

(b) cosh

(©) Tan cosh %

4 Show that |Tanh Z0FD 4
5 If tan z = u + iv show that
Sin2u Sinh2y

= , V=
# Cos2u+Cosh2y Cos2u+Cosh2y

6 Logarithmic Functions

The Natural Logarithm Function is the reverse of the Exponential Function and can be
defined as:

w=1lnz=lnr+1(p+2kx), k=0, £1, +2.
Where z = re® = rei0:27)
1 # zis a multiple valued function with the principled value. In i +i¢ where 0 < ¢ <27 or

its equivalent.
For z=a"where ais real, w=log, z where a > 0,anda = 0,1, in this case, z=¢

wlina

and so
1nz

w=——.
Ina

Exercises
Evaluate

(1) In(-40
2) In(3-i)
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Solutions

(i) In(-4)
z=—4+0i, r=lz=v-4"+0> =14.

1

argz =tan"~ %z tan” 0=0=7=7+2k

In(-4)=1In l4ei(”+2k”) Jz In 4+ (; + 2k;>‘ for k=0,+1, £2.......

Gi) In(V3-i)
z:\/§+—u, r:|z|: \/3_2+(—l)2:2.

=1 26 334rx 11z

argz=tan —=———nx=——+27k*—+2knx
8 51807 180 6

In (\/g—i): In (2e%+2k7zj: In2 +(%+2k7zji

SELF- ASSESSMENT EXERCISES

Evaluate

7 Inverse Trigonometric Functions

To define the inverse sine function Sin 'z, we write w = Sin~'z when z = Sin w. That is

7 w

e" —e
21
Which is equivalent to:

(e”" )2 - 21'2(6””)—1 =0.

w=38in""z, whenz =

iw

This is quadratic inw™ . Solving fore™ one have
e” =1z+ (1 — 22)%
Taking logarithms of both sides and recalling thatw = Sin -/, we have
Sin~'z=—i In [iz—«/l—z2 J
Which is a multiple-valued function with infinitely many values at each z .
8
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Similarly,

Cos™'z=—i In|_z+i\/l—22J

tan”' z = iIn I+z
2 1-z

Which are also multiple valued functions.

Exercise
Find the values of Sin™'2

Solution

Sin2 =i Infpi+~1-27)
= —i In2i+3i)=-2 I [2+3):

= —j In(2 +j3)e(%+2k;)i

= 1n(2+j3)+(%+2kﬂ'ji

—iIn (2+j3)+%+2k7r

SELF- ASSESSMENT EXERCISES

1. Evaluate
(a) Cos™'2 (b)y tan'2
8 Inverse Hyperbolic Functions

If z=Sinhw then w= Sinh'z is called the inverse hyperbolic sine of z. Other inverse
hyperbolic functions are similarly defined.

Sinh™z=In t+«/z_2+1}

Cosh™'z=1In +\/z_2—1}
tanh 'z = l In(l+zj
2 1-z

In each case, the constant2kai, k = 0, +1,%2... has been omitted. They are all multiple
valued functions.
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SELF- ASSESSMENT EXERCISES

1. Find all the values of
(a)  Sinhi
(b)  Sinh™ [In (-1)]

4.0 CONCLUSION
In this unit we considered in general, functions of complexvariables and considered

various functions in these categories. Practice all exercises in this unit to gain mastery of
the topic.

5.0 SUMMARY

What we have learnt in this unit can be summarised as follows:
(a) Definition of Complex Variables

(b) Some Elementary functions of Complex Variables

(¢) Transformation of Complex variables.

6.0 TUTOR-MARKED ASSIGNMENT

1. Show thatCos™z = —i In lz-i—i\/l—zzj

2. Show that: In (2—1):% In {(u —1) + yz}+itan’1

x—1

3. Evaluate the following
(a) Sinh(%)i

10
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(b) codlzn_kl)ﬂ
(3)TancoshZz
2
4. Show that |Tanh dGDI 1
5. If tan z = u + iv show that
Sin2u Sinh2y

= , v =
“ Cos2u+Cosh2y Cos2u+Cosh2y

7.0 REFERENCE/FURTHER READING

Francis, B. Hildebrand.(1976).4Advanced Calculus for Application.(aned.).

11
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1.0 INTRODUCTION

In this unit, we will learn about limits and continuity in complex variables,

We shall establish some relevant theorems on limits and continuity.

2.0 OBJECTIVES
At the end of this unit, you should be able to:

. explainlimit and continuity of functions of complex variables,
o state theorems related to limits and continuity of complex variables, and
o solve all related questions on limits and continuity.

3.0 MAIN CONTENT
3.1 Limits

Definition: Let a function f be defined at all point Zin some neighborhood Z,, except
possibly for the point Z,itself. A complex number L is said to be the limit of f(z) as Z
approaches Z, if for each positive number ¢ there is a positive number 6 such that
|f(z)-L| < & whenever 0<|Z-2Z,|<&

We write

M) =1

zZ—>Zz

12
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Example: Show that

lim
) (2x+iy2):Atl Z=X+Iiy
z—>2i

Solution

For each positive number . We must find a positive number ¢ such that
‘Zx +iy? — 4i‘ <& whenever0 < |z -2 <&

To do this, we must write
‘2x+ iy2 —4i‘ £2|x| +‘y2 —4‘ = 2|x| + |y — 2| |y + 2|
and thus note that the first of inequalities will be satisfied if

2|x|<§ and [y-2| [y+2| <%

The first of these inequalities is, of course, satisfied if|x| <# . To establish conditions on

v such that the second holds, we restrict y so that |y —2|< ¢ and then observe that

y+2/=|v-2)+4 <|y-2/+4<5
Hence if |y—2| < min {%,.1}, if follows that|y —2| |y +2] <(%)5:%

An appropriate value of ¢ is now easily seen from the conditions that |x| be less than ¢,
and that | y- 2| be less then min {7,.1}
& = min {%,,1}

Note that the limit of a function f(z) at a point z, if it exists is unique. Suppose that

lim f(z): L, and lim

z >z, z—>z,

f(Z): L

Then for an arbitrary positive number J,and o, such that
|f(z)-L,| < & whenever 0<|z—L,| 3,

and |f(z)-L,| < & whenever 0 <|z—L,| <,

13
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Soif 0< |z —zo| < 0 where 6 denotes the smaller of the two numbers §,and ¢, then

(/) L0)- ()~ L) <1/(2)Lo| + 1)1, < 26
That is

L, —Lo|<2¢
But

L, - L,is a constant, and & can be chosen arbitrarily small. Hence, L, —L, =0 or L, =L,

Definition: The statement
lim
f (Z ) = Lo

means that for each positive number ¢ there is a positive number & such that

Z —» ©

|f(Z)_Lo| < & whenever |z| <%

That is, the point L = f(z) lies in the & nbd |l —L0| < ¢ of L, whenever the point z lies in
the nbd |z| > % of the point at infinity.

Example: Observe that

lim 1

— =0

Z—>X0z
Since

%—0 < & whenever |z < €

z Je
Hence & = e
When L, is the point at infinity and z, lies in the finite plane, we write

lim
f(z)=e0
zZ—z,

If for each ¢ there is a corresponding & such that | f (z)| > 1 whenever 0 < |z - zo| <d
&

14
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Example: As expected

Iim 1 3
250z

for Lz > lwhenevelr 0<|z—¢| < Je
z £

3.2 Theorems on Limits

Theorem 1: Suppose that

+V(x, ), zy = x, +iy, and L, = u, +iv,

flz)=U

X,y

Then

I

m F(Z)= Lo, (1)
zZ—>z,
If and only if

lim lim
= d =V ennnn. 2
(5.9) > (1) )70 80 ) () )7

Proof

Assume (1) is true, by the definition of limit, there is for each positive numbere, a
positive number & such that |(u—u,)+i(v—v,) < & whenever 0<|(n—n,)+i(y-y,) <

Since |u—u0| < |(u—u0)+i(v—vox and
(u—u0)+ [ (v—vo)

|v—v0| < |(v—v0)+ I (v—v()],

It follows that

|u—u0| < ¢ and |v—v0| <0

whenever

0 <|(n +iy)—(n = iyox <o

which is statement (1), hence the proof

Theorem 2: Suppose that

fE&)=1,and ™ f()=1L,

zZ =z, zZ—>2z,
then

lim

15
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lim

2557, [f(Z)-l—f(Z)]:lO +L,
lim

257, [f(Z)f(Z)]z lyL,

if L, +0,
lim M l

o
z>z, f (z) L,
Proof: (Left as exercise)

SELF- ASSESSMENT EXERCISES

1. Evaluate the following using theorems on limits:
i
(a) m .(Z2+IOZ—15)
Z>>z+I
li -
b) im '(422 +3)z-1)
z—>z20 z°-2z+4
lim - 2> +8
(c) T s
z—>2e " z'+4z7+16
i
() (it 22 —104)
z—>zi
lim 22
e Y
© z>e’ 22+l
Show that
lim 245 3 43

———

252 2 +422+16 8 8

3.3 Continuity

Definition: A function f is continuous at a point z, if all the following conditions are

satisfied.
(1) fim f(z)exists
zZ—>2z,
(2)  f(z,)exists
lim
6 L, 6=/

16
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Note that statement (3) contains (1) and (2) and it say that for each positive number &
there exist a positive number ¢ such that

1f(z)- f(z,) <& whenever |z—z,| <&

a function of complex variable is said to be contours in a region R if it is continuous at
each point

Example: The function

f@)=xy" +i2x-y)
is everywhere in the complex plane because the component functions are polynomials on
x and y and are therefore continuous at each point (n, y)

Example: If

z2 z#1
f(z)=

uz-—1
lim

f(z)=-1But f£(i)=0. Hence, fim Sf2)= 1)

zZ—>1 zZ—>1
Therefore the function is not continuous at z =1

Example: The function

f(z) =e" +i Sin (n2 — 2ny3)

is continuous for all z because of the continuity of the polynomials on nand y as well as
the continuity of the exponential and sine functions.

Theorem on Continuity
1 if f(z) and g(z) are at z-z,. So also are the functions

S(2)*g(2). f(2)-g(2) f(2) glz). f(2)/glz), the last only g(z, )+ 0.
2 A function of a continuous function is w= g[f(z)] is its f(z) is its

3 If f(z) is continuous in a region, then the real and imaginary parts of f(z)arealso
in the region.

4 If a function f(z) is in a closed region, it is bounded in the region, i.e. there exists
a constant M such that | f (z)| < M for all points z in the region.

17
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SELF- ASSESSMENT EXERCISES

2
1 Let f(z)== +; if z+2iwhile f(2i)=3+4i
zZ—zl
li . .
(a)  Prove that m _f(z)exists and determine its value
zZ—>1

(b) Is f(z) at z=2i? Explain?

(¢) Is f(z) atpoint z#2i?. Explain
2 Find all possible points of discontinuity of the following function

2z-3
a =
@ f(Z) 22 +2z+42
3z° +4

b =

®  sE)=5

() f(z)= Cot z
Answers
(a) -1+
(b £2,+2i
() krx, k#v, £ +2.
3 For what values of z are each of the following function continuous

z
z2+1
1

Sinz

@) f(z)=
b f(z)=

4.0 CONCLUSION

In this unit we have studied limits of functions, continuity of functions of complex
variables in a manner similar to that of real variables. You are required to master them
properly so that you can be able to apply them when necessary.

5.0 SUMMARY

Recall the following points;

Continuity in Complex variables can be treated analogously as in the real variables
If f(z) is a continuous complex variable so also its real and imaginary parts.

18
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- A complex function f(z) is bounded if there exist a constant M>0 such that

1f(2) <M

6.0 TUTOR-MARKED ASSIGNMENT

1. Prove that
hm 4_ 3 2_
3z7 -2z" +8z 2Z+5=4+4i
zZ—>1 z—1

Is the function at z—i?

2. Factorised
(1) z3+8
(i)  z'+4z+16

(o) I 6)) Show that
lim 2+8 3 43 ;
z—>2e” z* +4z> +16 8 8
(i1))  Discuss the continuity of
3
f(z)— z—+8at z=2e¥

2t 4422 416
7.0 REFERENCE/FURTHER READING

Francis, B. Hildebrand (1976).4Advanced Calculus for Application.(aned.).
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1.0 INTRODUCTION

In this unit, you will learn about sequences and series of complex variables. You will also
learn about the convergence of these series and sequences.

All related theorems in real variables will be established for complex variables. We shall
consider Taylor and Laurent series.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

o define convergence of sequences and series on complex variables; and
o solve related problems on series and sequence.

3.0 MAIN CONTENT

3.1 Definition

An infinite sequence of complex numbers, z,z,,......... Z e has a limit zif for each
positive number ¢ there exists a positive integral number such that

z, —z| < e whenevern > n, .

If the limit exists, it is unique.

20
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When the limit z exists, the sequence is said to converge to z; and we write

lim
zZz =Z
n— o

If the sequence has no limit, it diverges.

1 .
o 2 T et e (1)
n—> oo
If and only if
li li .
m x, =xand i P Y e (11)
n— © n—» o
Proof:

Assume (i) is true, for each positive number ¢ there exists a positive integer number such
that

(x, —x)+i(y, — ¥) <¢ Whenever n > n,
But

x, = <[(x, =x)+i(y, - y)

And

vy =y <0, = x)+i(y, - y)

Consequently,

x —x|<egand —y| <¢ whenever n > n, and (3) are satisfied.
n yn y 0i

Conversely, form (3), for each positive number ¢, there is positive numbers », and n,
such that

£
x, = < Ewhenever n>n,

And

g
v, =< Ewhenever n>n,

Hence if number is the larger of the two integers »,and n,,
Then

P
x —x| <~ and
! 2

® wh
Y, =Y < whenever n > n,

21
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But

(r, =x)+ iy, -y} <
And so

z, —z| < & whenever n > n,

Yn =V

b

x, = x|+

Which is condition (2)

Definition: An infinite series of complex numbers » z, =z +z, +....+z, +...

n=1

Converges to a sum S, called the sum of the series, if the sequence

Sy =22, =2+ 2 + o +z, (N=1,2,...... ) of partial sums converges to S, we then

write izn =S

n=1

Note that since a sequence can have at most one limit, a series can have at must one sum,
when a series does not converge, we say that it diverge,

Theorem: Suppose that z, =x, +iy, (n=1,2,....)and § = X +iY.then

izn =S

n=l1

If and only if

an:X and iYn:Y

n=l1 n=1

Definition: An infinite sequence of single valued functions of complex variable
Ul(z),Uz(z), U3(Z), .............. ,Un(z), .........

Denoted by {U,(z)}, has a limit U(z) as n — oo, if given any positive number ¢ we can
find a number N (depending in general on both £and Z) such that |U (z)-U (zj < ¢ for
all n> N.

.. lim .
We write U,(z)=U(z). In such case, we say that the sequence converges or is
n—> o

convergent to U(z).

If a sequence converges for all values of Z (points) in a region R, we call R the region of
convergence of the sequence. A sequence which is not convergent at some value (point)
Z is called divergent at Z.
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Definition: The sum of {U,(z)}, denoted by {S,(z)}is symbolised by

U@()+U,(z)+ = iUﬂ (z) is called an infinite series
n=1

1 N . .
If " Sn(z)=S(z), the series is said to be convergent and S(z) s its sum, otherwise the
n—> o

series is said to be divergent. If a series converges for all values of Z (points) in a region
R, we call R the region of convergence of the series.

Definition (absolute convergence):A series » U, (z) is called absolutely convergent of

n=1

the series of absolute values.

ie. i|Un (z), converges
n=1

U,(z) does not converge, we say thatiUn(z) is

n=1

If iUn(z) converges but i
n=1 n=1

conditionally convergent.

Definition:In the definition, if a number N depends only on ¢ and not in Z, the sequence
U, (z) is said to be uniformly convergent.

3.2 Taylor Series

Theorem (Taylor’s Theorem): Let f be analytic everywhere inside a circle C with center
at Z, and radius R. Then at each point Z inside C.

f(z):f(zo)jt@(z %!Zo)(z_zo)z+ F(z,)

_Zo)+
n!

That is, the power series have converge to f(z) when |z B zo| <R.

Proof

Let Z, be any point inside C. Construct a circle C, with centre at z, and enclosing Z.

Then by Cauchy’s integral formula
16)= 1L,

i dew —z
For any point w on C,
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()

o

We have
1 _ 1 ) 1 1
T e o e I T N
w—2z,
2 . n
_ 1 {1+(ZZOJ+(ZZOJ+ .......... +£@J +(ﬂ]}
w—2z, w—2z, w—2z, — o
’ n—1
Or L1 L 275 +(Z—Z)3+ ........ +(Z—ZO)2+ ioz, 1
w—z w-z, (w-z) (w-2) (w=—z,) wez, Jw=z
Proof

We first prove the theorem when z, = 0and then extends to any z,.

Let zbe any fixed point inside the circle C, centred now at the origin. Then let |z| =rand

note that » < R where R is the radius of C. Let S denote points lying on a positively
oriented circle C;about the origin with radius R; where » < R, <R; then|S| =R,. Since Z is

interior to C;, and fis analytic within and on the circle, the Cauchy integral formula
gives

; _L f(s)ds
£( )_ﬁl_il—s_z ............................................................ 2)

Now, we can write

LI | S and using the first that
s—z s|1-(%)

1 ! .
s ltct bt (=1, 2y ) where C is any complex number other

f—

= —[l + A+ () o+ (Z) T+ and consequently
s 1-(%)
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+
sY (s - Z) N
Multiply this equation through by ! (% —iand integrate wrt S, we have

fls)ds _ /( )ds 2 ¢ f(s) /(s)
J.‘S— EL s Mz‘[l 7»721"[’1 s’ ds+ T -[1 s"

S (s)ds

7\7_2'1' CI(S—Z)SN

In view of expression (2) and applying this equation

S(s)ds fls)ds £ (0)

i -[C S EJ‘CI (s —i)* nl

We can write the result as

/'(0)

f(z)=r(0)+ o +WZN1+f(z)
Where

oy 2 Sfls)s 4
7(2) e I e (4)

Recalling that |z| =r and|5| =R,, wherer < R, we note that |s — z| > |s| — |z| =R -7

It follows from (4) that when M, denotes the maximum of | f (s)| on Cy,

P M, — MR(r)
P, (ZX < E[((Rl _r)RlN MRI Rl _ (RTIJ JJ ............................. (5)

But [RLJ< 1, and therefore
1

i
" inoopN(Z)=0
So that
1 (n)
f(z)zf(0)+f1('0)z+f750) 2, +f—'(0) LT (6)
! n!

In the open disk|z| < R.

This is a special case, of (1) and it is called the MACLURIN SERIES.

Suppose now that fis as in the statement of the theorem, since f(z)is analytic when
|z—z,| <R, the composite function f(z+z,) is analytic when|(z+z,)-z,|<R. But the
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last inequality is simply |z| < R;and if we write g(z) = f(z + z, ), the analyticity of g inside

the circle |z| = R implies the existence of a Maclurin series representation.
ZRNOIN
g(z)= ZgT'()Z" QZ| < R)
n=0 .
That is
o £(n)
flz+2,)= ;—f o
Using z by z —z,1in this equation, we arrive at the desired Taylor series representation for
f(z) about the point z, .
x ()
1)=3 L 2y ooz <)
n=0 .

n

Example:If 1(z)= Sinz, then £20)=0 (n=0,1,2.........) and
Fe0)=(-1)" (n=0,1,2,.......... ) hence
0 22n+1
Sinz=S"(—1)-~*___
inz ;( ) T ([z| <oo)
The condition |z| < oo follows from the fact that the function is entire.

Differentiating each side of the above equation with respect to and interchanging the
symbols for differentiation and summation on the right-hand side, we have the expression

© 2n
Cos z= Z(—l)” (Zz—;)
n=0

!
Because Sinh z = —isin(iz), replacing z by izin each side of («0) and multiply through the
result by —c, we have

o0 2n+l

. _ z
Sinhz = 2 o)

n=0
Differentiating each side of this equation gives
o0 ZZn
Coshz=) —
; (2n)

3.3 Laurent Series

Theorem: Let Cy and C,denote two positively oriented circles centred at a point Z,,
where C, is smaller than C,. if a function f is analytic on C, and C, and throughout the
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annular domain between them, then at each point Z is the domain f(z) is represented by
the equation.

UCEDICHCEENED)

n=l

Where
1 flz)dz
a”:EJ.CI# (I’lZO, 1, 2, ........ )
0
And
1 f(z2)d= _
”EJ.COW (n—l,Z, ............. )

The series here is called a Laurent series

We let R and R, denote the radius of C,and C, respectively. Thus R, and R,and if fis
analytic at every point inside and on C,except at the point Z, itself, the radius R,may be
taken arbitrarily small, expansion (1) then valid when

0< |Z -z, |< R,

If f is analytic at all points inside and on C,, we need only write the integral in
expansion (3) as f(z)(z—z,)""to see that it is analytic inside and on C,. For n—1>0
when nis a positive integer. So all the coefficient bn are zero, and because

A S M)
x%ijcl( = (n=0,1,2,......)

7 ZO )n+l I’l'

4.0 CONCLUSION

In this unit we have established condition for convergence of series in complex variables.
You are required to study this unit properly to be able to understand subsequent units.

5.0 SUMMARY

The following DEFINITIONS is hereby recalled, to stress the importance of convergence
of series in complex variables

1. An infinite sequence of complex numbers, z,,z,,......... Z e has a limit zif for each
positive number ¢ there exists a positive integral number such that

z, —z| < & whenevern > n, .

If the limit exists, it is unique.
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When the limit z exists, the sequence is said to converge to z; and we write
lim
z, =z

n— o
If the sequence has no limit, it diverges.

2. We have also stated theorems that can help us in proofing convergence of series.
3. The Taylor and Laurent series have been applied in treating convergence of series.

6.0 TUTOR-MARKED ASSIGNMENT

1. Expand the following complex variable using Taylor series about z=§

(a) Tanz (b) Cosz

2 State the Laurent series for the above.

7.0 REFERENCE/FURTHER READING

Francis, B. Hildebrand (1976).4dvanced Calculus for Application(2"%d.).
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UNIT 4 SOME IMPORTANT THEOREMS
CONTENTS

1.0  Introduction
2.0 Objectives
3.0  Main Content
3.1  Special Tests for Convergence
3.2 Theorem on Power Series
3.3  Laurent Theorem
3.4  Classification of Singularities
4.0  Conclusion
5.0  Summary
6.0  Tutor-Marked Assignment
7.0  Reference/Further Reading

1.0 INTRODUCTION
In this unit, we shall consider some related theorems on complex variables.We shall
consider theorems on test of convergence of complex variables and shall also learn about

singularities and classifications or singularities.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

o state the important theorems on convergences of sequences and series of complex
variables;

o classify singularities on complex variables; and

o solve problems on complex variables.

3.0 MAIN CONTENT
Theorem 1: The limit of a sequence, if it exists, is unique.

Theorem 2: Let {a, }be a real sequence with the property that
(1) a,=a,ora,<a,

(ii) <M(a,,)

Then {a, }converges.

a}'l

That is, every bounded monotonic (increasing or decreasing) sequence has a limit.
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Theorem 3: A necessary and sufficient conditions that {U, jconverges is that given

&>0,we can find a number N such that |U, —Uq‘ <¢forall p> N, qg> N.This is called

Cauchy’s convergence criterion.

3.1 Special Tests for Convergence

Theorem 1: (comparison tests)
(@) If ) |V,|converges and |U,|<|V,

(b) If Z|Vn|diverges and |Un|2|Vn

converge.

, then ) U, converges absolutely
, then Z|Un|diverges but ZU ,may or may not

Theorem 2: (Ratio Test)
% =L, then ) U, converges (absolutely)

(b) If L<1landdivergesif L>1.IfL — 1, the test fails.

§
@ 1f
n — 0

Theorem 3: (nth Root Test)
i
@ If
n—» o

(b) IfL <1 anddivergesif L > 1. If L = 1, the test fails

U n| =L, then ZU , converges (absolutely)

Theorem 4: (Integral Test)
y
(@) If f(x)>0for x>a,then Z f(x)converges or diverges if m _[ " £ )x

m —» oo va
converge diverges.

Theorem 5: (Raabe’s Test)

Untl

n— ©

n

y
(a) If i n[l - J = L,then ZU , converges (absolutely)

(b) IfL>1 and diverges or converges conditionally if L < 1.
(c) IfL =1, the test fails.

Theorem 6: (Gauss’ Test)

U

ntl

L

C
=1-—+—3 where
n n

If

Cl’l

< M for all n> N,then ZU , converges (absolutely) if L >

n

1 and diverges or converges conditionally if L <1.
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3.2 Theorems on Power Series

Note that a series of the form

a, +a,(z—z,)+ay(z—zy)+ oo = ian (z-z,)" is called a power series in z -z,
n=0

Theorem 1: A power series converges uniformly and absolutely in any region which
lies entirely inside its circle of convergence.

Theorem 2: (Abel’s Theorem)
Let Zanz" have radius of convergence Rand suppose that z,is a point on the circle of
convergence such that Zanzg converges.
lim .y .
Then Z a,z" = Zanzg where z — z, from within the circle of convergence.
z—2z,

Theorem 3: If ) a,z" converges to zero for all Z such that |z|< R where R >0, then
a, =0. Equivalently. If Zanz” = anz” for all Z such that |z| <R,then a, =b,.

3.3 Laurent Series

If a functionffails to be analytic at a point z,, we cannot apply Taylor’s theorem at that
point. If is often possible, however, to find a series representation for f(z) involving both
positive and negative powers of z —z,.

Theorem (Laurent Theorem): Let C,and C, denote two positively oriented circles
centred at a pointz,, where C,is smaller thanC,. If a function f is analytic at C,andC,,

and throughout the annular domain between them, then at each point zin that domain
f(z) is represented by the expansion.

f(z):i;an(z—zo)"+ib—” .............................................. (1)

n
n=1 Z_ZO

Where
_ L fle)dz
a, = qu AT (10,12, ) e e(2)
And
_ b f(z)dz B
b= I, Gy (= 1,2 i) et 3)

The series here is called a Laurent series.
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fE) g 1)
oz M o)™

throughout the annular domain R0|z—zo| <R,, and in its boundary, any simple closed

Since the two integrands

in expressions (2) and (3) are analytic

contour C around the domain in the positive direction can be used as a path of integration
instead of the circular paths C,and C,. Thus the Laurent series (1) can be written as

£(2)=>C (z-2z) (R, <|z—z,| < R ) Where

C, = l_j f(z)dzﬂ (n=0,%1,+2, . )
N (z—z,)

Particular cases, of course, some of the coefficient may be zero.

e 1 1 1 z Zz?

Follows from the Maclurin series representation

0 n

2 3 4
ezzzz =1+%+%+%+%+ ......... (jz|<oo)

n=0 n!

3.4 Classification of Singularities

1 Poles: If f(z)has the form

a-1 L_a- 2
z-2y (z-z)
part has only a finite number of terms given by

a a a_ .
2t +—="—Wherea_, #0, then z=_zgis called a pole of
27 % (Z_Zo)

(Z —Zy )
order n.

f2)=ay+a,(z—z))+ay(z—z,) +.oeeet —In which the principal

Ifn=1, it is called a simple pole.

If f(z) has a pole at z = z,, then flz)=o.
z >z,
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2

Removable Singularities: If a single valued function f(z) is not defined at z = z,

lim

but f(z) exist, then z=z,is a removable singularities. In such case, we
zZ—>2z,
lim
define f(z)at z = z,as equal to 7(2).
zZ—>2z,
Sinz . . i . )
Example: If f(z)= , then z=0is a removable singularities since f(0)is not
li j

defined but Sinz _ 1

z—>0 z

. 2 5 7 2 4 6
Note that Sinz _1 - E G E Lo 2 E 2

z z st 357

Essential Singularities: If f(z) is single valued, then any singularity which is not
a pole or removable singularity is called an essential singularity. If z=qa uan
essential singularity of f(z), the principal part of the Laurent expansion has
infinitely many terms
E . . % 1 1 3

xample: Since e =1+—+—+—z

z 2z° 3l

z =0is an essential singularity.

Branch Points: A point z=zis called a branch point of the multiple-valued
function f(z) if the branches of f(z) are interchanged when Z describes a closed
path about z,,. Since each of the branches of a multiple-valued function is analytic,
all the theorems for analytic functions, in particular Taylor’s theorem apply.

Example:The branch of f(z)=z”which has the value 1 forz =1, has a Taylor
series of the form

ay +a,(2—1)+a,(z—1)° +.....With radius of convergence R =1[the distance from
Z=1 to the nearest singularity, namely the branch point z=0].

Singularities at Infinity: By letting z= ) in f(z) we obtain the function
()= f(w). Then the nature of the singularity at z=oo [the point at infinity] is
defined to be the same as that of f(w)atw=0.
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Example: If f(z)=zhas a pole of order 3 atz =0, since f(w)= /(%)= V. hasa
pole of order 3 atw=0.

Similarly, f(z)=e” has an essential singularity atz =, since f(w)= f(})= e’ has
an essential singularity atw=0.

4.0 CONCLUSION

This unit is a very important unit which must be studied properly and understood before
proceeding to other units.

5.0 SUMMARY

Recall that in this unit we discussed very important theorems in the solution of complex
variables. We also discussed singularities, Laurent series and application, we discussed
branch. These are to aid in tackling any exercises on complex variables.

6.0 TUTOR-MARKED ASSIGNMENT

1. State all the convergent tests listed in this unit

Sinz

2.1f f(2)=

determine the removable singularity and carry out the expansion.

1
3. Define the essential singularity and determine the essential singularity for f(z)=e-

7.0 REFERENCE/FURTHER READING

Francis, B. Hildebrand (1976).Advanced Calculus For Application(2nded.).
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