
MTH 305                                                                                                                                   COMPLEX ANALYSIS II 

35 
 

MODULE 2 TAYLOR AND LAURENT SERIES, ANALYTIC 
FUNCTIONS AND COMPLEX INTEGRATION 

 
Unit 1  Some Examples on Taylor and Laurent Series 
Unit 2  Analytic Functions 
Unit 3  Principles of Analytic Continuation 
Unit 4  Complex Integration  
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1.0 INTRODUCTION 
 
This unit considers examples on Taylor and Laurent series of complex variables. 
 
The aim is to expose the students to more workable examples on complex variables. 
 
2.0 OBJECTIVE 
 
 At the end of this unit, you should be able to: 
 solve problems successfully on complex variables using Taylor’s Series and 

Laurent Series. 
 
3.0 MAIN CONTENT 
 
3.1 Examples on Taylor and Laurent Series 
 

Example: Expand   zCoszf  in Taylor series about 
4


z  and determine its region 

of convergence 
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Solution: 
 
By Taylor series. 
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For the region of convergence, using ratio test 
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This shows that the singularity of zCos nearest to
4


 is at infinity. Hence, the series 

converges for all values of z i.e. z  

 

Example:  Expand  
3

1




z
zf is a Laurent series valid for 

  

(a) 3a  

(b) 3z  
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Solution: 
For 3z  
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Example: Expand   
  21 


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zf  in Laurent series valid for z  
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Adding, we have  
 

  
...........

16
15

8
7

4

3

2

1

21
432 


zzzz

zz

z
 

 



MTH 305                                                                                                                                   COMPLEX ANALYSIS II 

39 
 

Example: Find the Laurent series for the function    
2

1
3




z
Sinzzf  about 2z . 

Also state that type of singularity and the region of convergence for the series. 
 

Solution: 
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2z is an essential singularity. The series converges for all values of 2z . 

 
4.0 CONCLUSION 
 

 In this unit, we discussed Laurent series and Taylor series. We applied them to solve 
some problems .You are to learn this unit very well. 
You may wish to attempt the Tutor- Marked Assignment.  
 
5.0 SUMMARY 
         
Recall in this unit that while Taylor series can be useful to analyse functions, Laurent 
Series gives   clearer and simple ways of handling functions of complex variables. These 
were clearly demonstrated in the examples considered in this unit. Answer the Tutor- 
Marked Assignment at the end of this unit, for more understanding of the concept. 
 
6.0 TUTOR-MARKED ASSIGNMENT    
 

1. Expand the function   in each of the following series: 

(a)  a Taylor series of powers of  z  for  1z  

(b)  a Laurent series of  powers of   z  for  1z  

(c)  a Taylor series of power of 1z  for  1z  

 
7.0 REFERENCE/FURTHER READING 
 

Hildebrand, Francis B. (2014). Advanced Calculus for Application. 6th Edition.  
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UNIT 2 ANALYTIC FUNCTIONS 
 
CONTENTS 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 

3.1 Derivatives 
 3.2 Differentiation Formulae 
 3.3 Cauchy-Riemann Equations 
 3.4 Sufficient Conditions 
 3.5 Polar Form 
 3.6 Summarising Analytic Functions 
 3.7 Harmonic Functions 
 3.8 Solved Problems  
4.0 Conclusion 
5.0 Summary 
6.0 Tutor-Marked Assignment 
7.0 Reference/Further Reading 
 
 
1.0 INTRODUCTION 
 
In this unit, we shall study the analytic functions of complex variables. We shall establish 
the condition for functions to be analytic. 
 
All related theorems on analytic function will be considered. 
 
2.0 OBJECTIVES 
 
At the end of this unit, you should have learnt about: 
 

 derivatives of complex variables; 
 Cauchy – Riemann equations; 
 polar form of complex variables; and 
 harmonic functions. 
 
3.0 MAIN CONTENT 
 
3.1 Derivatives  
Definition: Let F be a …..whose domain of definition contains a nbd of a point 0Z . The 

derivative of f  at 0Z , written as  0
1 Zf , is defined as 
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Provided this limit exists. The function f is said to be differentiable at 0z  when its 
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Example: Suppose that 
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If the limit of z

w


 exists when 0z , this limit may be found by letting the variable 

yxz  1 approach 0 in any manner. In particular, when z approaches 0through the 

real values 0izz  , we may write ZZ  . Hence if the limit of z
w


  exists, its value 

must be zz  . 
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However, when Z approaches 0 through the pure imaginary 

Value, so that ZZ  , the limit if found to be ZZ  . Since a limit is unique, 

 it follows that ZZZZ  , or 0Z , if dz
dw  exists. But ,0Z and we may conclude 

from this contradiction that dzdw / exists only at the origin. 
 
From example above, it follows that: 
 
(1) A function can be differentiable at a certain point but nowhere else in any nbd of 

that point. 
 

(2) Since the real and imaging parts of   2
zzf   are   22, ynyn    

and   0, ynv . 

Respectively, it also shows that the real and imaginary components of a function 
of a complex variable can have continuous partial derivatives of all orders at a 
point and yet the function many not even be differentiable there. 

 

(3) The function   2
zzf  is its at each point in the plane since its components 

functions are continuous at each point. So the continuity of a function at a point 
does not imply the existence of a derivative there. 

It is, however, true that the existence of the derivative of a function at a point implies the 
continuity of the function at that point. 
 
3.2 Differentiation Formulae 
 
Definition: Let F be a …..whose domain of definition contains a nbd of a point 0Z . The 

derivative of f  at 0Z , written as  0
1 Zf , is defined as 
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Where      00
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dz

dw
zf   write 0zz   

 
Example: Suppose that 
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If the limit of z

w


 exists when 0z , this limit may be found by letting the variable 

yxz  1 approach 0 in any manner. In particular, when Z approaches 0 through the 

real values 0inZ  , we may write ZZ  . Hence if the limit of z
w


  exists, its value 

must be ZZ  . 
 
However, when Z approaches 0 through the pure imaginary value yiZ  0 , so that 

ZZ  , the limit if found to be ZZ  . Since a limit is unique, it follows 

that ZZZZ  , or 0Z , if dz
dw  exists. But ,0Z and we may conclude from this 

contradiction that dzdw / exists only at the origin. 
 
From example above, it follows that: 
 
(1) A function can be differentiable at a certain point but nowhere else in any nbd of 

that point. 
 

(2) Since the real and imaging parts of   2
zzf   are   22, yxyxu    

and   0, yxv . 
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Respectively, it also shows that the real and imaginary components of a function 
of a complex variable can have continuous partial derivatives of all orders at a 
point and yet the function many not even be differentiable there. 

 

(3) The function   2
zzf  is its at each point in the plane since its components 

functions are continuous at each point. So the continuity of a function at a point 
does not imply the existence of a derivative there. 

 
It is, however, true that the existence of the derivative of a function at a point implies the 
continuity of the function at that point. 
    

3.3 Cauchy-Riemann Equations 
 
Suppose that 
     yxivyxuzf ,.   and that  0

1 zf  exists at a point 000 iyxz  . Then the first order 

partial derivatives of u and v wrt n and y must exist at ( 00 , yu ), and they must satisfy. 

 
   0000 , yxVyyxU x   and    0000 ,, yxVyxUy x  at that point. … (1) 

Also  0zf i  is given in terms of the partial derivatives by either 

     00000
1 , yxivyxUzf x   

or      00000
1 ,, yxUyyxVyzf   

 
Equation (1)… is referred to as Cauchy Riemann equation. 
 
Example: the derivative of the function   2zzf  exists everywhere. 

 
 To verify that the Cauchy-Riemann equations are satisfied everywhere, we note that 
  xyiyxzzf 2222   so that 

  22, yxyxU   and   xxiyVx 2  

  xyxU x 2,  ,     yxiyVx 2  

  yyxUy 2,                  xyxVy 2,   

So that 
    xynVyynU n 2,,   

    yyxVyxUy n 2,,   

Also 
      zyixyxiVyxUzf 222,, 00

1   

 
 
 



MTH 305                                                                                                                                   COMPLEX ANALYSIS II 

45 
 

3.4 Sufficient Conditions 
 
Satisfaction of the Cauchy – Riemann equations at a point  000 , yxz   is not sufficient to 

ensure the existence of the derivative of a function  zf  at that point. The following 

theorem gives sufficient conditions. 
 
Theorem: (Sufficiency Theorem):  
Let the function      yxivyxuzf ,,   be defined throughout some  - nbd of a point 

000 iyxz  suppose that the first-order partial derivatives of the functions U and V with 

respect to n and y exist everywhere in that nbd they are continuous at  00 , yx . Then, if 

these partial derivatives satisfy the Cauchy-Riemann equations. 
 

VxUandVU yyx  ,,  

At ),( 00 yx , the derivative  0
1 zf  exists. 

 
Proof: We shall leave the proof as exercise. 
 
Example: suppose that 
  xezf   9Cos y + i Sin y) 

 
Where y is to be taken in radius when Cos y and Sin y are evaluated then 
 
 CosyeyxU x),(   and   SinyeyxV x),(  

 
Since yx VU  and VxUy   everywhere and since those derivatives are everywhere 

continuous, the conditions in the theorem are satisfied at all points in the complex plane. 
Thus,  zf 1  exists everywhere and  

 
)sin(cos),(),()( yixeyxiVyxUzf x

xx   

 
Note that    zfzf 1  

 
Example: for the function 

  2
zzf  = 22),( yxyxU   and 0),( yxV  So that xyxU x 2),(   and 0),( yxVy while 

  xyyxU y ,  and 0),( yxVx . Since ),(),( yxVyxU yx   unless 0 yx Cauchy-Riemann 

equations are not satisfied unless 0 yx the derivative )(zf   cannot exist if 0z and 

besides, the existence of )0(f   is not guaranteed unless conditions of theorem (3-4-1) are 

satisfied. 
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If follows from the theorem (3.4.1) that the further 10)()( 222
 yxzzf  has 

derivative at 0z ; in fact,   0000' f . 

 

3.5 Polar Form 
 
Cauchy-Riemann equations can be written in polar form. For 

rzoriynz  (Cos  Sini ), we have 

n
yynrryrn 122 tan.,sin,cos    

Then, 










































2222 yx

y
U

yx

x
Ur

x
U

r

r
UrUr 


  

So that 

 CosU
r

SinUrUy
1

 ……………………………………………(2) 




 SinV
r

CosVr
rx

r
V

x

r
VrVx

1





  

So that  

 SinV
r

CosVrVn
1

 ……………………………………………(3) 




 CosV
r

SinVr
y

V
y

r
Vry

1










  

So that 

 CosV
r

SinVrVy
1

 …………………………………………….(4) 

 
From the Cauchy-Riemann equation, VyUn  , equating (1) and (4), we have 

0
11


















   SinU

r
VrCosV

r
Ur ……………………………(5) 

From the Cauchy-Riemann equation, VnUy  , equating (2) and (3), we have 

0
11


















 CosU

r
VrSinV

r
Ur   ……………………………….(6) 

 
Multiplying (5) by cos  , (6) by Sin  and adding given  

)
1

( U
r

Ur  ………………………………………………………(7) 

 
Also, multiplying (5) by sin , (6) by Cos  and adding given 

U
r

Vr
1

 …………………………………………………………..(8) 
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Equations (7) and (8) are the Cauchy-Riemann equations in polar form. 
 
Theorem: Let the function 
      ,, rvirUzf   

 
Be defined throughout some   neighborhood of a no zero point 
   000  SiniCosrzf  . 

 
Suppose that the first order partial derivatives of the functions U and V wrt r and   exist 
everywhere on that neighborhood and that they are continuous at  00 ,r . Then if those 

partial derivatives satisfy polar forms (7) and (8) of the Cauchy-Riemann equations 

at  00 ,r , the derivatives  0
1 zf  exists. 

 
The derivative  0

1 zf  is given as 

 
      0000

1
0

1 ,,  zVrirUrezf    

 
Example: Consider the function 

 
rer

zf
11

 , 

 
r

Cos
rU


 , and  

r

Sin
rV





,  and the condition of the theorem are satisfied at any 

nonzero point 
irez  in the plane. Hence the derivative of f exists there: and according 

to (9) 

 
  2222

11 11

zrer

Sin
i

r

Cos
ezf

i









 



 
 

 
3.6 Analytic Functions 
 
Definition: A function f of the complex variables z is analytic at a point 0z if its 

derivative exists not only at 0z  but also at each point z in some neighborhood of 0z . A 

function f is said to be analytic in a region R if it is analytic at each point in . The term 

halomorphic is also used in literature to denote analyticity. 
 

If   2zzf  , then f is analytic everywhere. But the function   zzf   is not analytic at 

any point since its derivative exists why at 0z  and not throughout any nbd. 
 
An entire function is a function that is analytic at each point in the entire plane. E.g. 
polynomial functions. 
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If a function f  fails to be analytic at a point 0z , buy is analytic at some point in every nbd 

of 0z , then 0z is called a singular point or singularity of f . For example, the 

function   zzf 1 , where derivative is   2
1

z
zf  is analytic at every point except 

0z hence it is not even defined. Therefore the point 0z is a singular point. 
 
If two functions are analytic in domain D, their sum and their product are both analytic in 
D. similarly, their quotient is analytic in D provided the function in the denominator does 
not vanish at any point in D. 
 
3.7 Harmonic Functions 
 
A real-valued function h of two real variables x and y is said to be harmonic in a given 

domain in the xy  plane if throughout that domain it has continuous partial derivatives of 

first and second order and satisfies the partial differential equation. 
 

    0,,  yxhyxh yyxx ……………………………………………(3.7.1) 

 
Known as LAPLACE’S EQUATION 
 
If a function 
     yxviyxuzf ,,  …………………………………………...(3.7.2) 

 
Is analytic in a domain D, then its component functions U and V are harmonic in D. to 
show this, 
 
Since f is analytic in D, the first order partial derivatives of its component functions 

satisfy the Cauchy-Riemann equations throughout D. 
VxUyVyUx  , …………………………………………….…..(3.7.3) 

 
Differentiating both sides of these equating with respect to x , we have 

VxyUyyVyyUxy  …………………………………………… (3.7.4) 

 
The continuity of the partial derivatives ensures that UxyUyx   and VxyVyx  . It then 

follows from (3.7.4) and (3.7.5) that     0,,  yxUyyynUxx  and     0,,  yxVyyyxVxx . 

 
Thus, if a function      yxViyxUzf ,,   is analytic in a domain D, its component 

functions U and V are harmonic in D. 
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3.8 Solved Problems 
 
Example 1: Verify that the real and imaginary parts of the function 

  izizzf  352  satisfy Cauchy-Riemann equation and deduce the analyticity 

of the function. 
 
Solution: 
   1352  zizzf  

                   =     135
2

 iyxiiyx  

                   =   1523522  xxyiyyx  

So that 
    152,,35, 22  xxyyxVyyxyxU  

     5252,,2,  yyyxUyxyxUx  

    xyxVyyyxVx 2,52,   

And since     xyxVyyxUx 2,,   

And    52,  yVxyxUy  

 
The function satisfies Cauchy Riemann equation. Also, since the partial derivatives are 
polynomial functions which are continuous, then the function is analytic. 
 
Example 2: (a) Prove that the function  yxU  12  is harmonic 

(b) Find a function V such that   viuzf  and express  zf  in terms 

of z . 
Solution: 
 
(a)  yxU  12 . 

 The function is harmonic if 0UyyUxx  

   0,12  UxxyUx  
 02  UyyxUy  

 000 UyyUxx . Hence the function is harmonic 

 
(b) By Cauchy-Riemann equation 
 

Example 3: show that the function   yxyyxU 23 3,   is harmonic and find its harmonic 

conjugate. 
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Solution: 
 
  yxyyxU 23 3,   

yUxxxyUx 6,6   

yUyyxyUy 633 22   

And since 
066  yyUyyUxx  

 
The function 
  yxyyxU 23 3,   is harmonic 

 
To find the harmonic conjugate, 
From 

  ,6, xyyxUx   since  VyUx  , 

  xyyxVy 6,   

Find x, and integrate both sides with respect to y, 
   xxyyxV  23,  

And since VxUy   must hold, it follows from  x and  xr that 

 xyxy
1222 333   

So that 
  21 3xx  and   Cxx  6  

  CxxyyxV  63, 2 . 

Is the harmonic conjugate of ),/ yxx  
 

The corresponding analytic function u 
     Cxyxiyxyzf  2323 33  

Which is equivalent to 
   13  zizf  

 
SELF -ASSESSMENT EXERCISES 
 

1. Verify that the real and imaginary parts of the following functions satisfy the 
Cauchy-Riemann equations and thus deduce the analyticity of each function  

 (a)   1352  izzzf  

 (b)   zzezf   

(c)   zSinzf 2  

 
2. (a) Prove that the function  yxU  12  is harmonic 

 (b) Find a function tsv .   ivuzf  is analytic 

 (c) Express  zf  in terms of z 
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3. Verify that C – R equation are satisfied for the functions 

 (a) 
2ze  

 (b) zCos 2  

 (c) zSinh 4  

 
4. Determine which of the following functions are harmonic and find their 

conjugates. 

 (a) 2322 223 yyxyx   

 (b) 32 232 yxyxy   

 (c) ySinyeyxe xx cos  

 (d)  222 yxSine xy   

 
5. (a) Prove that  =     22 21 jyjxIn   is harmonic in every region which 

does not include the point (1, 2) 
 (b) Find a function 1..  its  analytic 

 (c) Express  ix as a function of Z 

 
6. If U and V are harmonic in a region R, prove that 
    VyUxiVxUy   is analytic in R. 

 
4.0 CONCLUSION 
 
This unit had been devoted to treatment of special class of function usually dealt with 
both in real and complex functions. You are required to master these functions so that 
you can be able to solve problems associated with them.            
 
5.0 SUMMARY 
 
Recall that in this unit we considered derivatives in complex variables, we derived the 
Cauchy Riemann equations for determining analytic functions in complex variables, we 
also studied harmonic functions etc. Examples were given to illustrate each of these 
functions.  
 

6.0 TUTOR-MARKED ASSIGNMENT   
 
1. (a) Prove that the function  yxU  12  is harmonic 

 (b) Find a function tsv .   ivuzf  is analytic 

 (c) Express  zf  in terms of z 
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2. Verify that C – R equation are satisfied for the functions 

 (a) 
2ze  

 (b) zCos 2  

 (c) zSinh 4  

 
3. Determine which of the following functions are harmonic and find their 

conjugates. 

 (a) 2322 223 yyxyx   

 (b) 32 232 yxyxy   

 (c) ySinyeyxe xx cos  

 (d)  222 yxSine xy   

 
4. (a) Prove that  =     22 21 jyjxIn   is harmonic in every    region which 

does not include the point (1, 2) 
 (b) Find a function 1..  its  analytic 

 (c) Express  ix as a function of Z 

 
5. If U and V are harmonic in a region R, prove that 
    VyUxiVxUy   is analytic in R 

 
7.0 REFERENCE/FURTHER READING 
 
Hildebrand, Francis B. (2014). Advanced Calculus for Applications. 6th Edition. 
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UNIT 3 PRINCIPLES OF ANALYTIC CONTINUATION 
 

CONTENTS 
 
1.0 Introduction 
2.0 Objectives 
3.0 Main Content 

3.1 Residues and Residues Theorem 
3.2 Calculation of Residues 
3.3 Residues Theorem  

4.0 Conclusion 
5.0 Summary 
6.0 Tutor-Marked Assignment 
7.0 Reference/Further Reading 
 
1.0 INTRODUCTION 
 
We shall examine in this unit principle of analytic continuation and establish conditions 
under which functions of complex variables will be analytic in some regions. 
 

2.0 OBJECTIVES 
 
At the end of this unit, you should be able to: 
 

 define  residues and residues theorem; 
 do  calculations of residues; and 
 answer questions on residues. 
 
3.0 MAIN CONTENT 
 
Suppose that inside some circle of convergence 1C  with centre at a,  zf  is represented 

by a Taylor series expansion defined by: 
 

)1.......()()()( 2
210  azaazaazf  

 
If the value of  zf  is not known, choosing a point b inside 1C , we can find the value of 

 zf  and its derivatives at b. from (1) and thus arrive at a new series 

    ..........................................
2

210  bzbbzbb ………………    (2) 

Having circle of convergence 2C . If 2C  extends beyond 1C , then the values of and its 

durations can be obtained in this extended portion.  
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In this case, we say that  zf  has been extended analytically beyond 1C  and the process 

is called analytic continuation or analytic extension. This process can be repeated 
indefinitely. 
 
Definition: Let  zF1  be a function of z which is analytic in a region 1R . Suppose that we 

can find a function  zF2  which is analytic in a region R2 and which is such that 

   zFzF 21   in the region common to R1 and R2. Then we say that  zF2  is an analytic 

continuation of  zF1 . 

 
3.1 Residues and Residues Theorems 
 
Recall that a point 0z  is called a singular point of the function f  if  f  fails to be analytic 

at 0z  but is analytic at some point in every neighborhood of 0z . A singular point 0z  is 

said to be isolated if in addition, there is some nbd  of 0z throughout which f is analytic 

except at the point itself. 
When 0z  is an isolated singular point of a function f , there is a positive number R, such 

that f  is analytic at each point z for which 100 Rzz   consequently the function is 

represented by a series. 

   
   













0

2

0

2

0

1
0 ..............

n zz

b

zz

b

zz

b
zzanzf



  

      100 Rzz   

Where the coefficients a and b  have certain integral representations. In particular  

 
 

 
 ..........2,1

1
1

0




  


 

c zz

dzzf

i
b                                                 ….(2) 

 
When C is any positively oriented simple closed contour around Z0 and lying in the 

domain Rzz  0  

When ,1  this expression for b  can be written  

  
c

bidzzf 12        ……………………………………………           (3) 

The complex number 1b  which is the coefficient of 
 0

1

zz 
 in expansion (1) called the 

residue of f at the isolated singular point 0z  

Equation (3) provides a powerful method for conducting certain integral around simple 
closed …… 
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Example 
 
Consider the integral 
 

 
dz

z

e
c

z






2
1

 

 
Is analytic within and on C except at the isolated singular point z =1. Thus, according to 
equation (3), the value of integral (4) is ……times the …..of f at z = 1. To determine this 

residue, we recall the maclaurin series expansion. 
 

  




z
n

z
e

on

z

1



 

 
From which it follows that 

 

 

 
     















10
11

11 0

2

2

11

2
z

ei

z

z

ee

z

e

n

nzz





 

 
In this Laurent series expansion, which can be written in the form (1), the coefficient of 

1

1

z
 is e

1  that is, the residue of f  at z = 1 is e
1 . Hence 

  e

n
dz

z

e
c

zi ()

1
2







 

 
3.2 Calculation of Residues 
  

If 0zz  is a pole of order K, there is a formula for nb  given as 

 
    zfzz

dz

d

nzz
b

n

n

iii

n 01
0 !1

1lim









………………..(5) 

If 1  (simple pole), the result is given as 

   zfzz
zz

b 0

0

1

lim



  

0zz   

Which is a special case f (5) with 1  if one defines 1!0  . 

 
Example 
For each of the following functions, determine the poles and the residues at the poles. 

(a)    
2

12
2 



zz

z
       (b)    

2

1

1













z

z
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Solution: 
 

(a)  
  21

12

2

12
2 








zz

z

zz

z
……the function has two poles at 1z  and 2z  both of 

under 1. 
  

Residue at 1z , 

      
  21

121

1

lim
1

1

lim








 zz

zz

z
zfz

z
 

                             = 
3

1

2

12

1

lim






 z

z

z
 

 
Residue at z = 2, 
 

  
   3

5

1

12

2

lim

21

122

2

lim













 z

z

zzz

zz

z
 

 
(b) z = 1 is a pole of order 2. 
 Residue at z = 1 is 

       222
1/11

1

lim



zzz

dz

y

z
 

     .412
1

lim
1

1

lim 2






z

z
z

dz

d

z
 

 
3.3 Residue Theorem 
 
Theorem: Let C be a positively oriented simple closed contour within and on which a 
function f is analytic except for a finite number of singular points z1, z2,…, zn interior to 
C. If B1, B2,…, Bn denote the residues of f at these points respectively, then 

    
c

nBBBidzzf .........2 21 ………………………………….(1) 

 
Proof 
 
Let the singular points  njzj ,....2,1  be centers of positively oriented circles Cj  which 

are interior to C and are so small that no two of the circles have points in common. 
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The circles Cj  together the simple closed contour C  form the boundary of a closed 

region throughout which f is analytic and whose interior is a multiply connected domain. 

Hence, according to the extension of the Cauchy-Goursat theorem to such regions. 
 

        0..........
21

   dzzfdzzfdzzfdzzf
c ccc n

 

This reduces to equation (1) because 

   niBjdzzf
c

..........,2,12
1
    

And the proof is complete. 
 
Example: Let us use the theorem to evaluate 

 
dz

zz

z
c 



1

25
 

Where C is the circle 2z , described counter clockwise. The integrated has the two 

singularities 0z  and 1z , both of which are interior to C . We can find the residues 1B  

at 0z  and 2B  at 1z  with the aid of the maclurin series. 

 

 1.............1
1

1
1
2 


zzz

z
 

 
We first write the Laurent expansion 
 

 
 ..........1

2
5

1

115

1

25 2zz
zzz

z

zz

z





























 





 

                                            =  10...............................33
2

 zz
z

 

Of the integrand and conclude that 21 B . Next, we observe that 

 
 

 












 






11

1315

1

25

zz

z

zz

z
 

               =      ........111
1

3
5

2











 zz

z
 

 

cn 

c1 

c2 c3 
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When 110  z . The coefficient of  1
1

Z  in the Laurent expansion which is valid for 

110  z  is therefore 3 

 
Thus 32 B , and 

 
  iBBidz

zz

z
c

 012
1

25
21 




 . 

 
An alternative and simple way of solving the problem is to write the integrand as the sum 
of its partial fractions. Then 

 
iiidz

z
dz

z
dz

zz

z
ccc

 1064
1

32

1

25








   

 
4.0 CONCLUSION 
 
The residue method learnt in this unit allows us to handle integration with ease. You are 
required to master this method very well. 
 
5.0 SUMMARY 
 
Recall that we started this unit by defining the residue theorem which is now recalled for 
your understanding: 
 
Let C be a positively oriented simple closed contour within and on which a function f is 
analytic except for a finite number of singular points z1, z2,…, zn interior to C. If B1, 
B2,…,Bn denote the residues of f at these points respectively, then 

    
c

nBBBidzzf .........2 21 .  

 
This theorem form the basis for solves complex integration. You may wish to answer the 
following tutor-marked assignment question. 
 
 

6.0 TUTOR-MARKED ASSIGNMENT 
 
1. Evaluate the integral   
 

dz
z

z
c 



1

57
 

 
 
 



MTH 305                                                                                                                                   COMPLEX ANALYSIS II 

59 
 

2.  Evaluate 

dz
zz

z
 



65

2
2

 

 

3. dz
zz

z

c
 



)1(

25
2  

7.0 REFERENCE/FURTHER READING 
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UNIT   4 COMPLEX INTEGRATION 
 
CONTENTS 
 
1.0   Introduction 
2.0   Objectives 
3.0   Main Content 

3.1 Curves 
3.2 Simply and Multiply Connected Regions 
3.3 Complex Line Integral 
3.4 Cauchy- Goursat Theorem  

4.0  Conclusion 
5.0   Summary 
6.0   Tutor-Marked Assignment 
7.0   Reference/Further Reading 
 

1.0   INTRODUCTION 
 
This unit will examine complex integration. The theorem on line integral, such as green’s 
theorem will also be examined. 
 
2.0   OBJECTIVES 
 
At the end of this unit, you should be able to: 
 define integration on complex variables; 
 define the complex form of green’s Theorem; 
 describe Cauchy-Goursat theorem;  
 describe Cauchy integral; and 
 solve related problems on complex integrations. 
 
3.0 MAIN CONTENT 
 

3.1 Curves 
 
If   t  and  t  are real functions of the real variable t  assumed continuous in 21 ttt  , 

the parametric equations 
      21 ttttZtitiyxZ     

 
Define a continuous curve or arc in the Z-plane joining points  1tZa   and  2tZb   as 

shown below 
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If 21 tt   while    21 tZtZ  , i.e. ba  , the end point is coincide and the curve is said to be 

closed. A close curve which does not intersect itself anywhere is called a simple closed 
curve. 
 
If  t  and  t  have its derivations in 21 ttt  , the curve is often called a smooth curve 

or arc. A curve which is composed of a finite number of smooth arcs is called a piecewise 
or sectionally smooth curve or sometimes a contour. For example, the boundary of a 
square of a piecewise smooth curve or contour. 
 
3.2   Simply and Multiply Connected Regions 
 

A region R is called simply connected if any simple closed curve which lies in R can be 
shrunk to a point without leaving R. A region R which is not simply connected is called 

multiply-connected e.g. 2z . .2 z  

 

3.3 Complex Line Integrals 
 
Suppose that the equation 
 

 tzz             bia  ………………………………………….. (4.1.1) 

 
Represents a contourC , extending from a point  azz 1  to a point  bzz 2 . Let the 

function      yxivyxzf ,,  be piecewise continuous onC . If      tiyttz   the 

function 
 

            tytxvitytxtzf ,,    is piecewise continuous on the interval .bta   We 

define the line integral or contour integral, of f along C as follows: 

 

y        b 
               
 
     
      
      
 
      
                  
 a 
 
O               x 
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      dttztzdzzf
b

ac

1

  ……………………………………….. (4.1.2) 

 
Note that since C is a contour,  tz  is also piecewise continuous on the integral bta  , 

and so the existence of integral (4.1.2) is ensured. 
 
The integral on the right-hand side in equation (4.1.2) is the product of the complex-
valued functions. 
 

             tytntytnvitytx 11,,,  . 

Of the real variable t . Thus  

     dtuyvnidtvyxdzzf
b

a

b

ac   1111 ………………………. (4.1.3) 

 
In terms of line integrals of real-valued functions of two real variables, then 
 

    
cc

udyvduivdydxdzzf  ………………………… (4.1.4) 

 
Example: Find the value of the integral 
 

dzzI
c

1

2
1  

Where 1C  is the line segment from 0z  to  iz  2  

 
Proof 
Points of 1C  lie on the line 2

xy   or yx 2 . If the coordinate y is used as the parameter, 

a parametric equation for 1C  

 102  yyiyz  

 

Also, in 1C  the integral 2z  becomes 

  2222 432 yiyiyyz   

 
Therefore, 

    dyiyiyI   243
1

0

22
1  

     =     idyyii 3
11

1

0 3
22243    
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Example: Let 2C  denote the contour AB0  shown below 

 

 
Evaluate 

dzzI
c

2

2
2  

 
Solution: 

dzzdzzdzzI
ABAc   2

0

22
2

2

 

 
The parametric equation for path 0A is  210  xinz  and for the path AB one can 

write  102  yiyZ . 

 
Hence 

  .2
1

0

22

0

2
2 idyiydxxI    

     =     



 

2

0

1

0

1
22 442

o
ydyidyydxx  

     = i
3

11

3

2
  

 
Green’s Theorem in the Plane 
 
Let  yxP ,  and  yxQ ,  be its and have its partial derivatives in a region R  and on its 

bounding C . Green’s theorem states that 

 dndyPQQdyPdx
c R

yx     

 
The theorem is valid for both simple and multiple connected regions. 
 
3.4 Complex Form of Green’s Theorem 
 

Let  zzF ,  be its and have its derivations in a region R and on its bounding C , where 

iyxz  , iyxz   are complex conjugate coordinates. The Green’s theorem can be 

written in the complex form as 

B2+1 y 

0 A   

C 
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  dA
z

F
idzzzF

c 



 2,  where dA represents the element of area dndy  

Proof 
 
Let      yxQixPzzF ,,  . Then using Green’s theorem, we have 

 

    dzyxiQPdzzzF
cc

),(1                     =   
c c

dyPQdniQdyPdn ,  

                  =  dxdy
y

Q

x

P
idndy

y

PQ

RR

R  


































  

                  =  dydx
x

Q

y

P
i

y

Q

x

P
i

R
 











































 

                  = dndy
Z

F
i

R





2  

 
Example: Evaluate the integral 
 

dzzI   

Where 

(i) The path of integration C is the upper half of the circle 1z from 1z  to  1z . 

(ii) Same points but along the lower semi circleC . 
 
Solution: 
 

(i) The parametric representation )0( iez xi    and since    iieded
iQ

/  

 ideiedzzI ii

c
 




 0
0

 

            
 

(ii) ideiedzzI iQ   







2

1  

 

Example: Evaluate dzz from 0z to iz 24  along the curve C given by (a)  ittz  2  

(b) the line from 0z and iz 2 and then the line from iz 2  to iz 24   

y 

-1 
1c 
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Solution: 
 
(a) The given integral equal, 

      
c cc

ydnndyiydyndkidydniyn  

 

The parametric equations of C are tytn  ,2 from 0t to 2t  

Then the line integral equal 

           dtdttdttidtttdtt
tt

  

2

0

2
2

0

2 2  

=    
3

8
102

2

0

2
2

0

3 i
dttidtti    

 

(b)     
ccc

ydxndyiydyxdxidydxiyx  

The line from iZtoZ 20  is the same as  0,0  to  2,0  for which 0,0  dnx  

and the line integral equals. 

        


2

0

2

0

4

0
2000

yyy
ydyydyiydyQ . 

The line from iz 2  to iz 24   is the same as the line from  2,0  to  2,4  for 

which 0,2  dyy  and the line integral equals 

i
i

xdx
ixdxdnnixdx

x
88

8

2
2002

4

0

4

0

4

0

4

0



   

 

Then the requires value =   10882  i . 

 
3.4 Cauchy-Goursat Theorem  
 
Suppose that two real-valued function  ynP ,  and  ynQ ,  together with their partial 

derivatives of the first order, are continuous throughout a closed region R consisting of 
points interior to and on a simple closed contour C  in the ny plane. By Green’s theorem, 

for line integrals, 

  .dndyPQdyPdn
c R

yx     

 
Consider a function 
     yxviyxuzf ,,   

Which is analytic throughout such a region R in the ny , or Z , plane, the line integral of 

f along C can be written  

    
c cc

udyvdxivdyndndzzf …………………………………(1) 

Since f is its in R , the functions u and v  are also its theorem i  and if the derivative 1f  of 

f is its in R , so are the first order partial derivatives of u  and v . By Green’s theorem, (1) 

could be written as 
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     dndyvuidndyuvdzzf
R

yx
R

yx
c   …………………….(2) 

 
But in view of the Cauchy-Goursat equations 

xyyx VUVU  ,  

The integrals of these two double integral are zero throughout R . So  
 

Theorem: If f is analytic in R and 1f  is continuous then,   0 dzzf
c

. 

This is known as Cauchy theorem. 
 
Goursat proved that the condition of continuity of 1f in the above Cauchy theorem can be 

omitted. 
 
Theorem: (Cauchy-Goursat theorem) 
If a function f is analytic at all points interior to and in a simple closed contour C , then 

  0 dzzf
c

. 

 
Cauchy-Goursat theorem can also be modified for the …… B of a multiply connected 
domain. 
 
Theorem: Let C be a simple closed contour and let Cj  ),....2,1( nj  be a finite number of 

simple closed contours inside C such that the regions interior to each Cj  have no points 

in common. Let R be the closed region consisting of all points within and on C except for 
points interior to each Cj . Let B and all the contours oriented boundary of R consisting of 

C  and all the contoursCj , described in a direction such that the interior points of R lie to 

the left of B . Then, if f is analytic throughout 1R . 

 

  0 dzzf
B

 

 
 
As a consequence of Cauchy’s theorem, we have the following 
 

C2 

C1 

C 
y 

x 
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Theorem: If  zf  is analytic in a simply-connected region ,R then  dzzf
b

a  is 

independent of the path in R joining any two points a  and b in R. 
 
Proof 
 
Consider the figure below 
 

 
By Cauchy’s theorem 

  0 dzzf
ADBCA

 

Or     0  dzzfdzzf
BEAADB

 

 
Hence  
 

     dzzfdzzfdzzf
AEBBEAADB
   

 
Thus 
 

      
b

aCC
dzzfdzzfdzzf

21

 

This yields the required result. 
 

Example: If C is the curve y = 143 23  xxx joining the points (1, 1) and (2, 3), show 

that 

 dzizz
c  412 2  is independent of the path joining (1, 1) and (2, 3) 

 
Solution: 
 
A (1, 1)    B (2, 1)   C (2, 3) 
 
Along A (1, 1) to  B (2, 1), y = 1, dy = 0. So that ixz 4  and dxdz  . Then  

y 

A 
a 

C1 
D 

E 

x 

C2 

B 
b 
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     idxixiix
x

30204412
2

1

2




 

 
Along B (2, 1) to C (2, 3), 0,2  dxx  so that iyz  2  and idydz  . Then  

     iidyiyiiy
y

817624212
3

1

2




 

1y  

  
So that 

iiidzzz
c

3815681763020)4112( 2   

 
The given integral equals 

    iizzdzizz
i

i

i

i
3815624412

32

1

32

1

232  







 

 
Morera’s Theorem  
 
Let  zf  be continuous in a simply connected region R and suppose that 

  01  dzzf
c

 

Around every simple closed curve C  in R . Then  zf  is analytic in R . 

 
This theorem is called the converse of Cauchy’s theorem and it can be extended to 
multiply-connected regions. 
 
Indefinite Integrals (Anti-derivatives) 
 
Let  zf  be a function which is continuous throughout a domain D , and suppose that 

there is an analytic function F such that    zfzF 1  at each point in D . The function 

F is said to be an anti derivative of f  in the domain D . 

 
Cauchy Integral Formula 
 
Theorem: Let f be analytic everywhere within and in a simple closed contour C taken in 

the positive sense. If 0Z  is any point interior to C , then 

   
 


c zZ

dzzf

i
zf

0

0
2

1


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This formula is called the Cauchy integral formula. It says that that if a function f is to 

be analytic within and on a simple closed contourC , then the values of f interior to C are 

completely determined by the values of f in C . 

When the Cauchy integral formula is written as 
   0

0

2 zfi
zZ

dzaf
c


 ……………………………………………..(4) 

It can be used to evaluate certain integrals along. 
 
Simple closed contours 
 

Example: Let C  be the positively oriented circle z  since the function    22 9/ zzf   

is analytic within and in C and the point iZ 0 is interior to C , then by Cauchy Integral 

formula 
 

  
 
  


 







 







  10
2

9/

9

2

2

i
c

iz

zz

izz

zdz
cc

 

 
Proof 
 
Since f is its at 0Z , there corresponds to any positive number   , however small, a 

positive number   such that  
 

     0zfzf  whenever  0zz …………………………………(1) 

 
Observe that the function  

 0zz
zf

  is analytic at all points within and in C except at the 

point 0z . Hence, by Cauchy-Goursat theorem for multiply connected domain, it’s integral 

around the oriented boundary of the region between C and 0C  has value zero. 

 
   

0
0

00





  Cc zZ

dzzf

zZ

dzzf
 

      
 
 
 

y 

1 

  

0z

p
 

  

c 
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That is 
   

 


 0
00

Cc ZZ

dzzf

ZZ

dzzf
 

 
This allows us to write 
 

       
dz

ZZ

zfzf

ZZ

dz
zf

ZZ

dzzf
CCC  







 00
0

0

0

0

0

………………………(2) 

 

i
ZZ

dz
C

2
0

0


  

And so equation (Z) becomes 
 

       
dz

ZZ

zfzf
zfi

ZZ

dzzf
CC  




 0
0

0
0

0

2 …………………………….(3) 

 

By (1) and noting that the length of 0C  is 2 , by properties of integrals 

   





22

0
0

0 



C dz

ZZ

zfzf
 

 
In view of (3) then 

     22 0

0


C zfi

ZZ

dzzf
. 

 
Since the left hand side of this inequality is a non negative constant which is less than an 
arbitrary small positive number, it must be equal to zero. Hence, equation for it valid and 
the theorem is proved. 
 
Cauchy’s integral formula can also be extended to a multiply connected region. With the 

understanding that 
 
z

v
f  denotes  zf  and that 0! = 1, we can use mathematical induction 

to verify that 

     
 

 .2,1,
2

!
1

0

0 vn
ZZ

dzzf

i

n
zf

C n

n 


  
 

When n = 0, this is just the Cauchy integral formula stated earlier. 
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Example: Find the value of 
 

dz
Z

ZSin
C 

3

6

6

 

Where C is a circle 1z  

 
Solution: 
 

 
 

1

6
62

3
6

6

2

2 



 Sinfi
dz

Z

zSin
C




  

                      =  6
6

6
2

6
45

2

26



SinCosSin

ix
  

                      = 1612 i  

Other Important Theorems 
 
1. Cauchy’s inequality  

If  zf  is analytic inside and on a circle C of radius r  and centre at ,az  then 

    ..,.........2,1,0
!




 n
r

n
af

n

n  

Where M is a constant such that   Mzf   on C , i.e. M is an upper bound of 

 zf  on C . 

 
2. Lowville’s Theorem 

Suppose that for all Z in the entire complex plane, (i)  zf  is analytic and (ii)  zf  

is bounded, i.e.   Mzf  for some constant M, then  zf  must be a constant 

 
3. Fundamental Theorem of Algebra 

Every polynomial   02
210  n

n ZazazaazP with degree ,1  and 0na  

has at least one root. 
 
4. Maximum Modulus Theorem 

If  zf  is analytic inside and on a simple closed curve C and is not identically 

equal to a constant, then the maximum values of  zf  occurs on C . 

 
SELF - ASSESSMENT EXERCISES 
 

1. Evaluate  
 

 
 dyxxydxyx 

5,2

1,0
3  along  

(a)  the curve 12  xy  

(b) the straight line joining (0, 1) and (2, 5) 
(c)    the straight line from (0, 1) to (0, 5) and then (0, 5) to (2, 5) 
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2. Evaluate  dziyx
C  22   

 (a) along the parabola…… 24ny   from (1,4) to (2, 16) 

 (b) straight line from (1, 1) to (1, 8) and then from (1, 8) to  
(2, 8). 

 

3. Evaluate  dziyxy
i

i





2

2

23  

 (a) along the curve 2122 ttyitx   

 (b) along the straight line joining ix  2  and iz  2  
 
4. Evaluate  

 (a) 
  

dz
ZZ

ZCosZSin
C 



21

22 
, where C is the circle 3Z . 

 (b) 
 

dz
Z

e
C

z




4

2

1
 where C is the circle Z =3 

 

5. Evaluate dz
Z

zSin
C  2

3


 if C is the circle 5Z  

 
4.0   CONCLUSION 
 
The materials in this unit must be learnt properly because they will keep on re occurring 
as progress in the study of mathematics at higher level. 
 
5.0   SUMMARY 
 
We recap what we have learnt in this unit as follows:  
 

You learnt about Cauchy-Goursat equations, Moreras Theorem and applied it to 
indefinite integrals. We also consider Cauchy integral formula  
 
We considered some solved examples to illustrate the theory we have learnt in this unit. 
You may which to answer the following tutor-marked assignment. 
 
 
6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Evaluate  dziyxy
i

i





2

2

23  

 (a) along the curve  
 (b) along the straight line joining ix  2  and iz  2  
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2. Evaluate  

 (a) 
  

dz
zz

zCoszSin
C 



21

22 
, where C is the circle 3z . 

 (b) 
 

dz
z

e
C

z




4

2

1
 where C is the circle z =3 

 

3. Evaluate dz
z

zSin
C  2

3


 if C is the circle 5z  

 
 

7.0 REFERENCE/FURTHER READING 
 
Hildebrand, Francis B. (2014). Advanced Calculus for Application. 6th  Edition. 
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