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1.0 INTRODUCTION

This unit considers examples on Taylor and Laurent series of complex variables.

The aim is to expose the students to more workable examples on complex variables.

2.0 OBJECTIVE

At the end of this unit, you should be able to:

o solve problems successfully on complex variables using Taylor’s Series and

Laurent Series.

3.0 MAIN CONTENT

3.1 Examples on Taylor and Laurent Series

Example:  Expand f(z)= Cos zin Taylor series about z :% and determine its region

of convergence
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Solution:

By Taylor series.
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This shows that the singularity of Cos z nearest to% is at infinity. Hence, the series

converges for all values of zi.e. |z| <o

Example: Expand f(z)= Lis a Laurent series valid for

(@)  |q<3
® >3
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Solution:
For |2/ <3
1 1 1

(z-3) —3+z -3(1-%) -3

1{22223}122223
=——1+§+ +— === —

3 9 27 3 9 27 8l
For |z|>3
1 1 (. 3" 1. 3 9 27
— - 1—— = — 1 —+—2+—3+ .......
z-3 ( 3) z z z z z z
zl 1——
z
1 3 9 27
__+—2+—3+_4 ........
z z z z

Example: Expand  f(z)= in Laurent series valid for |z|<]

(z-1)z-2)

Solution:

z 1 2

(z—l)(Z—Z) Z—1+2—Z

, ﬁzﬁz—[l+z+zz+z3 +z4+....]

2 3 4
=—1l-z-z"-2z"-z" -

For |z<

and

2 2 0
- =1(1-
2-z 2(1-%) (1-7)
=1+ 4+ + 2K+ St e

Adding, we have
oz 1 _iz_}/s_g/ i
(Z_l)(z_z)_ 2Z 4Z 82 16Z ...........
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1

z+2
Also state that type of singularity and the region of convergence for the series.

Example: Find the Laurent series for the function f(z)=(z-3) Sin aboutz =-2.

Solution:
o1
(z—3)Szn ;z=-2.Letz+2=uorz=u-2.
z+2
Then
1 1 1 1
z—3) Sin =wu-5)Sin—=Ww—-5k—-— + +orenens
( ) z+2 ( ) u ( ){u 3’ S’ }

5 1 5 1

T3 3w s
5 1 5 1
N 7t 7t 4
z+2 6(z+12)°  6(z+12) 120(z+2)

=1-

z = =21s an essential singularity. The series converges for all values of z+-2.

4.0 CONCLUSION

In this unit, we discussed Laurent series and Taylor series. We applied them to solve
some problems .You are to learn this unit very well.
You may wish to attempt the Tutor- Marked Assignment.

5.0 SUMMARY

Recall in this unit that while Taylor series can be useful to analyse functions, Laurent
Series gives clearer and simple ways of handling functions of complex variables. These
were clearly demonstrated in the examples considered in this unit. Answer the Tutor-
Marked Assignment at the end of this unit, for more understanding of the concept.

6.0 TUTOR-MARKED ASSIGNMENT

1. Expand the function in each of the following series:
(a) a Taylor series of powers of z for |z[<1

(b) a Laurent series of powers of z for |2/>1

(c) a Taylor series of power of z+1 for |z/<1

7.0 REFERENCE/FURTHER READING
Hildebrand, Francis B. (2014). Advanced Calculus for Application. 6™ Edition.
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1.0 INTRODUCTION

In this unit, we shall study the analytic functions of complex variables. We shall establish
the condition for functions to be analytic.

All related theorems on analytic function will be considered.
2.0 OBJECTIVES

At the end of this unit, you should have learnt about:

o derivatives of complex variables;

o Cauchy — Riemann equations;

o polar form of complex variables; and
o harmonic functions.

3.0 MAIN CONTENT

3.1 Derivatives
Definition: Let F be a .....whose domain of definition contains a nbd of a point Z,. The

derivative of f at Z,, written as f"'(Z,), is defined as
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£1(ey)=tim_SE)-/lz) JG.11)

z—>z, zZ-2z,

Provided this limit exists. The function fis said to be differentiable at z, when its
derivative at z, exists.

Note that (3.1.1) is equivalent to
1 lim f(Zo+AZ)_f(ZO)
- ...(3.12
S (Zo) Az — 0 Az ( )
Where Az=z-z,

Which is also the same as

dw_ lm Aw

dz Az—>0Az

Where fl(z):c;—w, Aw = f(z, +Az)~ f(z,) write z -z,
zZ

Example: Suppose that

fle)=2
At any point z
li li 22 li
moAw o lim (z4Az) -2 lim (2z+Az)=2z
Az—>0Az Az—>0 Az Az —>0
dw |
Hence, — =2z or f'(z)=2z
dz
Example: For the function f(z)=z|"
Aw _ |Z-|-AZ|2 —|Z|2 B (z+Az ;+A;)—Z;
Az Az Az
= +Az+ zE
Az
: - lim ..
When z =0, this reduces to Aw Az . Hence w _ = 0. at the origin #/, =0
Az dz Az—>0

If the limit of 4y exists whenz =0, this limit may be found by letting the variable
Az = Ax + 1Ay approach 0 in any manner. In particular, when Az approaches Othrough the

real values Az = Az +i0, we may writeAZ = AZ . Hence if the limit of &%/ exists, its value

mustbez+z.
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However, when AZ approaches 0 through the pure imaginary

Value, so thatAZ = —AZ , the limit if found to be Z — Z . Since a limit is unique,

it follows thatZ+Z=2Z-2, orZ=0, if dy - exists. But Z #0,and we may conclude
from this contradiction that dw/ dz exists only at the origin.

From example above, it follows that:

(1) A function can be differentiable at a certain point but nowhere else in any nbd of
that point.

(2)  Since the real and imaging parts of f(z)=|2|" are w(n,y)=n>+)?
andv(n,y)=0.
Respectively, it also shows that the real and imaginary components of a function

of a complex variable can have continuous partial derivatives of all orders at a
point and yet the function many not even be differentiable there.

(3) The function f (z):|z|2is its at each point in the plane since its components

functions are continuous at each point. So the continuity of a function at a point
does not imply the existence of a derivative there.
It is, however, true that the existence of the derivative of a function at a point implies the
continuity of the function at that point.

3.2 Differentiation Formulae

Definition: Let F be a .....whose domain of definition contains a nbd of a point Z,. The

derivative of f at Z,, written as f'(Z,), is defined as

Fil)=tim S@)-Sa) G.1.1)

z—>z, zZ-z,

Provided this limit exists. The function fis said to be differentiable at z, when its
derivative at z, exists.

Note that (3.1.1) is( equiva)lent (to )
| lim flz, +Az)- flz,
f(ZO)_Az—>0 F U U R R UL (3.1.2)
Where Az =z -z,
Which is also the same as
dw  lim Aw
dz Az —>0Az
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Where fl(z):c;—w, Aw = f(z, +Az)~ f(z,) write z -z,
Z

Example: Suppose that

Slz)=z
At any point z,
fim A tm (zracf ozt WMoy

A2>0Az Az—>0 Az Az 0 -

dw |
Hence, — =2z or f'(z)=2z

dz
Example: For the function f(z)=|z[’
Aw [z+A | (z+A2)z+Az)-2z
Az Az B AZ

=Z+AZ+7Z %
When z=0, this reduces to Aw AZ . Hence aw _ fm - _ 0. at the origin ¢, =0
Az dz Az—>0

If the limit of 4y, exists whenz = 0, this limit may be found by letting the variable
Az = Ax + 1Ay approach 0 in any manner. In particular, when AZ approaches 0 through the

real values AZ = An+i0, we may write AZ = AZ . Hence if the limit of v . exists, its value
mustbeZ + Z .

However, when AZ approaches 0 through the pure imaginary value AZ =0+iAy, so that

AZ =-AZ, the limit if found to be Z-Z. Since a limit is unique, it follows
thatZ+Z=72-7, or Z=0, if 4y, exists. But Z #0,and we may conclude from this
contradiction that dw/dz exists only at the origin.

From example above, it follows that:

(1) A function can be differentiable at a certain point but nowhere else in any nbd of
that point.

(2)  Since the real and imaging parts of f(z)=||" are u(x,y)=x* +
and v(x,y)=0.
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Respectively, it also shows that the real and imaginary components of a function
of a complex variable can have continuous partial derivatives of all orders at a
point and yet the function many not even be differentiable there.

(3) The function f (z)=|z|2is its at each point in the plane since its components

functions are continuous at each point. So the continuity of a function at a point
does not imply the existence of a derivative there.

It is, however, true that the existence of the derivative of a function at a point implies the
continuity of the function at that point.

3.3 Cauchy-Riemann Equations

Suppose that
f(z)=u(x.y)+iv(x,y) and that f'(z,) exists at a point z, = x, +iy,. Then the first order

partial derivatives of u and v wrt n and y must exist at (u,, y, ), and they must satisfy.

U, (x30) = V(%05 7,) and Uy(x,,y,) ==V, (x,,¥,) at that point. ... (1)
Also f'(z,) is given in terms of the partial derivatives by either
[1(20)= U (xgs v0 )+ iv(x02,)

or f(zy)=V¥(xe,30)=Uplxs53,)

Equation (1)... is referred to as Cauchy Riemann equation.
Example: the derivative of the function f(z)= z”exists everywhere.

To verify that the Cauchy-Riemann equations are satisfied everywhere, we note that
f(z)=2z* =x* = y* +i2xy so that

U(x,y)=x*—y* and V,(xiy)=2x

U,(x.y)=2x, V,(xiv)=2y

Uy(x,y)=2y Vy(x, y)=2x

So that

U, (n,y)=Vy(n,y)=2x

Uyl )=V, (x,y)= -2y

Also

f(2)=U(xy,y,)+iV(x,y)=2x+i2y =2z
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3.4 Sufficient Conditions

Satisfaction of the Cauchy — Riemann equations at a point z, = (x,,,) is not sufficient to
ensure the existence of the derivative of a function f(z) at that point. The following
theorem gives sufficient conditions.

Theorem: (Sufficiency Theorem):
Let the function f(z)=u(x,y)+iv(x,y) be defined throughout some &- nbd of a point

z, = x, — iy, suppose that the first-order partial derivatives of the functions U and V with
respect to n and y exist everywhere in that nbd they are continuous at(x,,y,). Then, if
these partial derivatives satisfy the Cauchy-Riemann equations.

U,=V,,and,U, =-Vx
At(x,,v,), the derivative f'(z,) exists.

Proof: We shall leave the proof as exercise.

Example: suppose that
f(z)=e* 9Cos y +i Siny)

Where y is to be taken in radius when Cos y and Sin y are evaluated then
U(x,y)=e"Cosy and V(x,y)=e"Siny

Since U, =V, and Uy=-FVx everywhere and since those derivatives are everywhere

continuous, the conditions in the theorem are satisfied at all points in the complex plane.
Thus, f'(z) exists everywhere and

f(z2)=U_(x,y) =iV (x,y) =e"(cosx +isin y)
Note that f'(z)= £(z)

Example: for the function

flz)= |Z|2 =U(x,y)=x"+y* and V(x,y)=0 So that U (x,y)=2x and V,(x,y) =0while
U, (x,y)=xy andV, (x,y)=0. Since U, (x,y)# V,(x,y) unless x =y =0Cauchy-Riemann
equations are not satisfied unless x = y = 0the derivative f'(z) cannot exist if z # 0and

besides, the existence of f’(0) is not guaranteed unless conditions of theorem (3-4-1) are
satisfied.
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If follows from the theorem (3.4.1) that the further f(z)= |z|2 =(x*+y*)+10 has
derivative at z=0; in fact, /'(0)=0+0=0.

3.5 Polar Form

Cauchy-Riemann equations can be written in polar form. For
z=n+iy or z=r(Cos@+iSind), we have

n=rcosf, y=rsin@, r=+n*>+y’. @=tan"'

Then,
or 06 X -y j
Ur=Ur—+Uf0—=Ur| —— |+ U¥d
or Ox { [x2 +y2} (x2+y2
So that
Uy=Ur Sin6’+lU6’ COS G oo (2)
r
Vx = Vr@thHﬁ =Vr CosH—lVﬁ Sin@
X rx r
So that
Vn="Vr COSH:lVH SO oo, 3)
r
y= Vrg+V6’% =Vr Sinz?’l Ve Cos 0
oy oy r
So that
Vy =Vr Sz'nH+l VO COSO ..o i (4)
r

From the Cauchy-Riemann equation, Un = Vy, equating (1) and (4), we have
(Ur—lng CosH—(Vr—i—lUngin&’:O ................................. &)

r r
From the Cauchy-Riemann equation, Uy = —Vn, equating (2) and (3), we have

(Ur—lng Sinl9+(Vr+lUgj Cos =0 eiiiiiiii i (6)
r r

Multiplying (5) by cos 4, (6) by Sin# and adding given
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Equations (7) and (8) are the Cauchy-Riemann equations in polar form.

Theorem: Let the function

f(z) = U(r, 0)+ i v(r, (9)

Be defined throughout some ¢ neighborhood of a no zero point
f(z)=r,(Cos 6, +iSin8,).

Suppose that the first order partial derivatives of the functions U and V wrt r and 6 exist

everywhere on that neighborhood and that they are continuous at(r,,6,). Then if those
partial derivatives satisfy polar forms (7) and (8) of the Cauchy-Riemann equations

at(r,,6,), the derivatives f'(z,) exists.
The derivative f'(z,) is given as

fl(Zo):eiw[U’"(ro’go)"'iV”(Zo’eo)]

Example: Consider the function

1 1
f(Z) = )
re
U(r,0)= Cos0 and V(r,0)= = Sin6 and the condition of the theorem are satisfied at any
r r

nonzero point z = re'’in the plane. Hence the derivative of f exists there: and according
to (9)

@=Ll

2 2 (reig )2 72

3.6 Analytic Functions

Definition: A function f of the complex variables zis analytic at a point z,if its
derivative exists not only at z, but also at each point zin some neighborhood ofz,. A
function £ is said to be analytic in a region R if it is analytic at each point inR . The term
halomorphic is also used in literature to denote analyticity.

If f(z)=z*, then fis analytic everywhere. But the function f(z)= |z| is not analytic at
any point since its derivative exists why at z =0 and not throughout any nbd.

An entire function is a function that is analytic at each point in the entire plane. E.g.
polynomial functions.
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If a function f fails to be analytic at a point z,, buy is analytic at some point in every nbd
ofz,, then z,is called a singular point or singularity of f. For example, the
function f(z)= %, where derivative is f(z)=-Y.is analytic at every point except
z = 0hence it is not even defined. Therefore the point z = 01is a singular point.

If two functions are analytic in domain D, their sum and their product are both analytic in
D. similarly, their quotient is analytic in D provided the function in the denominator does
not vanish at any point in D.

3.7 Harmonic Functions

A real-valued function 4 of two real variables xand y is said to be harmonic in a given
domain in the xy plane if throughout that domain it has continuous partial derivatives of
first and second order and satisfies the partial differential equation.

h (x,y)+ hyy(x,y)zo ................................................... (3.7.1)

Known as LAPLACE’S EQUATION

If a function
F@)=u(r, p)+iv (0, 1) e, (3.7.2)

Is analytic in a domain D, then its component functions U and V are harmonic in D. to
show this,

Since f'is analytic in D, the first order partial derivatives of its component functions

satisfy the Cauchy-Riemann equations throughout D.
O R U i (3.7.3)

Differentiating both sides of these equating with respect to x, we have
Uxy =Tyy  Upy == xY e (3.7.4)

The continuity of the partial derivatives ensures that Uyx =Uxy and Vyx="Vxy. It then
follows from (3.7.4) and (3.7.5) that Uxx(n, )+ Uyy(x,y)=0 and Vxx(x, y)+Vyy(x,y)=0.

Thus, if a function f(z)=U(x,y)+i¥(x,y) is analytic in a domain D, its component
functions U and V are harmonic in D.
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3.8 Solved Problems

Example 1: Verify that the real and imaginary parts of the function
f(z)=z* +5iz+3 =i satisfy Cauchy-Riemann equation and deduce the analyticity
of the function.

Solution:
flz)=z*+5iz+3-1

= (x+iy)2+5i(x+iy)+3:1

= x* -y’ —5y+3+i(2xy+5x—1)
So that
U(x,y)zxz—y2—5y+3, V(x,y)=2xy+5x—l
Ux(x,y) =2x, Uy(x,y) =-2y-5= —(Zy + 5)
Vx(x,y) =2y+5 Vy(x,y) =2x
And since Ux(x,y) = Vy(x,y) =2x
And Uy(x,y)z—Vx:—(2y+5)

The function satisfies Cauchy Riemann equation. Also, since the partial derivatives are
polynomial functions which are continuous, then the function is analytic.

Example 2: (a)  Prove that the function U = 2x(1 - y) is harmonic
(b)  Find a function 7 such that f(z)=u+ivand express f(z) in terms

ofz.
Solution:

(a) U=2x(1-y).
The function is harmonic if Uxx+Uyy =0
Ux=2(1-y), Uxx=0
Uy =-2x Uy =0
Uxx +Uyy =0+0=0. Hence the function is harmonic

(b) By Cauchy-Riemann equation

Example 3: show that the function U(x,y)= y* —3x’y is harmonic and find its harmonic
conjugate.
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Solution:

U(x,y)=y> =35y

Ux =—-6xy, Uxx=—-6y
Uy=3y>-3x> Uyy=6y
And since

Uxx+Uyy =—6y+6y =0

The function
U(x,y)=y*3x%y is harmonic

To find the harmonic conjugate,

From
Ux(x, y) = —6xy, since Ux=Vy,
Vy(x, )= —6xy

Find x, and integrate both sides with respect to y,
V(x,y)=-3x" +¢(x)

And since Uy = —Vx must hold, it follows from (x)and (x)that
3y =3x* =3y’ + ¢l (x)

So that

¢'(x)=3x*and ¢(x)=6x+C

V(x,y)=-3x* +6x+C.

Is the harmonic conjugate of x/x, y)

The corresponding analytic function u
f(z) = (y3 - 3x2y)+i(x3 -3xp% + C)
Which is equivalent to

f(z) = i(z3 + 1)

SELF -ASSESSMENT EXERCISES

COMPLEX ANALYSIS II

1. Verify that the real and imaginary parts of the following functions satisfy the
Cauchy-Riemann equations and thus deduce the analyticity of each function

(a) flz)=2* +5iz+3=1
®)  fle)=ze
(©) f(z)= Sin2z

2. (a)  Prove that the function U = 2x(1 - y) is harmonic
(b)  Find a function v s.7 f(z)=u +ivis analytic
(c)  Express f(z) in terms of z
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3. Verify that C — R equation are satisfied for the functions
@ e
(b) Cos2z
(©) Sinh4z

4. Determine which of the following functions are harmonic and find their
conjugates.

(a) 37y +2x° =y =2y
(b)  2xy+3xy* -2y’

() xe*cosy—ye'Siny
(d)  e?Sin (xz - yz)

2

5. (a) Prove that w=1In [(x -1’ )+ (y -2j° )] is harmonic in every region which
does not include the point (1, 2)
(b) Find a function ¢ s. ¢t w+iw.1analytic
(c)  Express y xiy as a function of Z

6. If U and V are harmonic in a region R, prove that
(Uy —vx)+i (Ux+7y) is analytic in R.

4.0 CONCLUSION

This unit had been devoted to treatment of special class of function usually dealt with
both in real and complex functions. You are required to master these functions so that
you can be able to solve problems associated with them.

5.0 SUMMARY

Recall that in this unit we considered derivatives in complex variables, we derived the
Cauchy Riemann equations for determining analytic functions in complex variables, we
also studied harmonic functions etc. Examples were given to illustrate each of these
functions.

6.0 TUTOR-MARKED ASSIGNMENT

1.  (a)  Prove that the function U = 2x(1 - y) is harmonic
(b)  Find a function v s.7 f(z)=u+ivis analytic
(c)  Express f(z) in terms of z
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2.

7.0

Verify that C — R equation are satisfied for the functions

@ e
(b) Cos2z
(©) Sinh4z

Determine which of the following functions are harmonic and find their
conjugates.

(a) 37y +2x° =y =2y
(b)  2xy+3xy* -2y’

() xe*cosy—ye'Siny
(d)  e?Sin (xz - yz)

2

(a)  Prove that w=1In [(x—l Jj 2)+(y—2 Jj 2)] is harmonic in every  region which
does not include the point (1, 2)

(b) Find a function ¢ s. ¢t w+iw.1analytic

(c)  Express y xiy as a function of Z

If U and V are harmonic in a region R, prove that
(Uy —x)+i (Ux+Vy) is analytic in R

REFERENCE/FURTHER READING

Hildebrand, Francis B. (2014). Advanced Calculus for Applications. 6" Edition.
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1.0 INTRODUCTION

We shall examine in this unit principle of analytic continuation and establish conditions
under which functions of complex variables will be analytic in some regions.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

° define residues and residues theorem:;
° do calculations of residues; and
o answer questions on residues.

3.0 MAIN CONTENT

Suppose that inside some circle of convergence C, with centre at a, f(z) is represented
by a Taylor series expansion defined by:

f(2)=a,+a(z—a)+a,(z—a)’ +..... Q)]

If the value of f(z) is not known, choosing a point b inside C,, we can find the value of
f(z) and its derivatives at b. from (1) and thus arrive at a new series

by +b(z=b)+b,(z=b) +.......... Foeeeeeeeeeeeeeeeeeeenne e (2)
Having circle of convergenceC,. If C, extends beyondC,, then the values of and its
durations can be obtained in this extended portion.
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In this case, we say that f(z) has been extended analytically beyond C, and the process

is called analytic continuation or analytic extension. This process can be repeated
indefinitely.

Definition: Let F,(z) be a function of z which is analytic in a region R,. Suppose that we
can find a function F,(z) which is analytic in a region R, and which is such that
F,(z)=F,(z) in the region common to R; and R,. Then we say that F,(z) is an analytic
continuation of 7 (z).

3.1 Residues and Residues Theorems

Recall that a point z, is called a singular point of the function f if f fails to be analytic
at z, but is analytic at some point in every neighborhood of z,. A singular point z, is
said to be isolated if in addition, there is some nbd of z,throughout which f is analytic
except at the point itself.

When z, is an isolated singular point of a function ', there is a positive number R, such
that f is analytic at each point z for which 0< |Z_ZO| < R, consequently the function is

represented by a series.

bl b2 b’7

= -z, ) + + F ot F o
;an(z ZO) z—z, (2—20)2 (z—z)r'

0<|Z—ZO|<R1

Where the coefficients arand b7 have certain integral representations. In particular

”_m;zjz i)dz (=1, 2. (2

When C is any positively oriented simple closed contour around Z, and lying in the
domain 0 < ‘z—zn‘ <R

When 7 =1, this expression for b, can be written

If(z)dz S21ED; 3)

The complex number b, which is the coefficient of in expansion (1) called the

1
(Z_Zo)

residue of f at the isolated singular point z,

Equation (3) provides a powerful method for conducting certain integral around simple
closed ......
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Example

Consider the integral

Le—dz

(z-1)

Is analytic within and on C except at the isolated singular point z =1. Thus, according to
equation (3), the value of integral (4) is ...... times the .....of fatz= 1. To determine this

residue, we recall the maclaurin series expansion.

z - ZU
e =) — (]z|<oo)
n=0n1

From which it follows that

Il

(Z - 1)2 (Z - 1)2 n—0 77 ie

el
e <lz—1) <)

In this Laurent series expansion, which can be written in the form (1), the coefficient of
is -/ that is, the residue of f atz=11s-% . Hence j € dz -l

(z—l) e

z—1

3.2 Calculation of Residues

If z=z,1s a pole of order K, there is a formula for 5, given as
lim 1 d"™
b, = —z) ()] 5
T ) ) 5)
If n =1 (simple pole), the result is given as

b=z = 2)f(2)

zZ—>z,

zZ >z,

Which is a special case — /' (5) with 7 =1 if one defines0!=1.

Example
For each of the following functions, determine the poles and the residues at the poles.

@ 2w (2

z'—z=2 z—1
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Solution:

(a) 222 o2l the function has two poles at z=-1 and z =2 both of
z°—z-2 (Z+1)(Z—2)
under 1.

Residue at z=-1,
lim lim (z+1)2z+1)
1 =
z—)—l(z+ )f(z) z—> -1 (z+l)(z—2)
lim 2z+1 1

z—>-12z-2 3

Residue at z = 2,

lim (z-2)2z+1)  lim 2z+1 5

z=2 (z+1)fz-2) z—>2 z+1 3

(b) z=1isapole of order 2.
Residue atz=11s

lim l{(2_1)2(z+1)2 /(2—1)2}

z—>1dz
SLUNCAF) L TP
z—>1dz z—1

3.3 Residue Theorem

Theorem: Let C be a positively oriented simple closed contour within and on which a
function f is analytic except for a finite number of singular points z,, z,,..., z, interior to
C. If By, B,,..., B, denote the residues of f at these points respectively, then

Lf(z)dz =27 (B, + B, +......... F B, ) e (1)

Proof

Let the singular points zj (j =1,2,...n) be centers of positively oriented circles Cj which
are interior to C and are so small that no two of the circles have points in common.
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O
Ci Ocn
C 3

The circles Cj together the simple closed contour C form the boundary of a closed
region throughout which f'is analytic and whose interior is a multiply connected domain.
Hence, according to the extension of the Cauchy-Goursat theorem to such regions.

J;f(z)dZZLf(Z)dZ - J;zf(z)dz— .......... - J-C"f(z)dZ:O
This reduces to equation (1) because

[ f2)dz =27iBi  (1,2,......... n)

And the proof is complete.

Example: Let us use the theorem to evaluate
J- 5z-2 s

’z(z—l)
Where Cis the circle|z] =2, described counter clockwise. The integrated has the two

singularities z=0 and z =1, both of which are interior to C. We can find the residues B,
at z=0 and B, at z =1 with the aid of the maclurin series.

We first write the Laurent expansion
52—2=(5Z—1j(—ljz(s_%j(_l_z_zz .......... )
Z(Z—l) z -z z

Of the integrand and conclude that B, = 2. Next, we observe that

ZS(ZZ__?) B [5(2 _zl)ﬂ L +(i _1)}
=(5+ 3 j(l—(z—l))—i—(z—l)z ........

z—1

57



MTH 305 COMPLEX ANALYSIS II

When 0 < |z—1| <1. The coefficient of ), ;) in the Laurent expansion which is valid for

0< |z - 1| <1 is therefore 3

Thus B, =3, and
Iﬂdz—Zm(B +B)=107.

ZZ—

An alternative and simple way of solving the problem is to write the integrand as the sum
of its partial fractions. Then

Iﬂdz = I—dz + —dz =4ri+6rmi=10x1i

ZZ 1 cz—1
4.0 CONCLUSION

The residue method learnt in this unit allows us to handle integration with ease. You are
required to master this method very well.

5.0 SUMMARY

Recall that we started this unit by defining the residue theorem which is now recalled for
your understanding:

Let C be a positively oriented simple closed contour within and on which a function f is

analytic except for a finite number of singular points z,, z,,..., z, interior to C. If By,
B.,,...,B, denote the residues of f at these points respectively, then

J'f )iz = 27i (B, + B, +......... +B,).

This theorem form the basis for solves complex integration. You may wish to answer the
following tutor-marked assignment question.

6.0 TUTOR-MARKED ASSIGNMENT

1. Evaluate the integral
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2. Evaluate
z+2
[ *
z"=5z+6

5z-2
3-Izz(z—1)dz

c

7.0 REFERENCE/FURTHER READING

Hildebrand, Francis B. (2014). Advanced Calculus for Application. 6™ Edition.
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UNIT 4 COMPLEX INTEGRATION
CONTENTS

1.0  Introduction
2.0 Objectives
3.0 Main Content
3.1  Curves
3.2 Simply and Multiply Connected Regions
3.3  Complex Line Integral
3.4  Cauchy- Goursat Theorem
4.0  Conclusion
5.0  Summary
6.0  Tutor-Marked Assignment
7.0  Reference/Further Reading

1.0 INTRODUCTION

This unit will examine complex integration. The theorem on line integral, such as green’s
theorem will also be examined.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

. define integration on complex variables;

define the complex form of green’s Theorem;
describe Cauchy-Goursat theorem,;

describe Cauchy integral; and

solve related problems on complex integrations.

3.0 MAIN CONTENT
3.1 Curves

If ¢(z) and w(¢) are real functions of the real variable ¢ assumed continuous in ¢, <¢<t,,
the parametric equations

Z=x+iy=g(t)+ip(t)=2() ¢t <t

IA

5

Define a continuous curve or arc in the Z-plane joining points a = Z(t,) and b= Z(t,) as
shown below
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Ya b

—>
X

O

If ¢, ut, while Z(¢t,)= Z(t,), i.e. a =b, the end point is coincide and the curve is said to be

closed. A close curve which does not intersect itself anywhere is called a simple closed
curve.

If #(¢) and w(¢) have its derivations in ¢, <t <t,, the curve is often called a smooth curve

or arc. A curve which is composed of a finite number of smooth arcs is called a piecewise
or sectionally smooth curve or sometimes a contour. For example, the boundary of a
square of a piecewise smooth curve or contour.

3.2 Simply and Multiply Connected Regions

A region R is called simply connected if any simple closed curve which lies in R can be
shrunk to a point without leaving R. A region R which is not simply connected is called
multiply-connected e.g. |2/ <2. |<||z| <2.

3.3 Complex Line Integrals
Suppose that the equation

z=z(t) (@<TEB) i, 4.1.1)

Represents a contourC, extending from a point z, =z(a) to a pointz, = z(b). Let the
function f(z)=pu(x,y)+iv(x,y)be piecewise continuous onC. If z(t)=u(t)+iy(z) the
function

Flz(t)] = wx(e), y(¢)]+iv[x(). y(z)] is piecewise continuous on the interval a<t<b. We
define the line integral or contour integral, of f along C as follows:
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[£@Hz = [0 2"t oo (4.1.2)

Note that since Cis a contour, z(¢) is also piecewise continuous on the integrala <t<b,
and so the existence of integral (4.1.2) is ensured.

The integral on the right-hand side in equation (4.1.2) is the product of the complex-
valued functions.

plx(@). y(@)] + i v [n(e).y (), n'(0)+ ' ().

Of the real variable ¢. Thus
flz)z = ’ w' =y Jt + i " (vn! Fuy Mt (4.1.3)
J a a

In terms of line integrals of real-valued functions of two real variables, then
J.’f(z)dz = I,udx—vdy +1i Jvdu FUAY oo 4.1.4)

Example: Find the value of the integral

I, = Lzzdz

Where C, is the line segment from z=0 to z=2+i

Proof

Points of C, lie on the line y =3 or x =2y . If the coordinate yis used as the parameter,
a parametric equation for C, u

z=2y+1y (Oéyél)

Also, in C, the integral z*> becomes

z? =(2y-|-iy)2 = 3y2 -i-l‘4y2

Therefore,
I, =J.;(3y2 +i4y2) (2+i) dy

= (3+4i) (2 +0) [ yidy=2+4 i
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Example: Let C, denote the contour 048 shown below

y B2+1
C
0 A H
Evaluate
I, = J-'szz
Solution:

I, = Lzzdz = IOAZZdZ +L§dz

The parametric equation for path 0A is z=n+i0(1< x<2) and for the path AB one can
write Z =2+iy(0 < y <1).

Hence
I, :J.Ozxzdx+ .[01(2+iy)2idy.
= j:xzdx+2[£(4—y2 )dy+4ijlydy}

2 11 .
= —4— |
3 3

Green’s Theorem in the Plane

Let P(x,y) and O(x,y) be its and have its partial derivatives in a region R and on its
bounding C. Green’s theorem states that

£de+ Ody = J.R j (Qx -P, )dndy
The theorem is valid for both simple and multiple connected regions.
3.4 Complex Form of Green’s Theorem

Let F(Z,E) be its and have its derivations in a region R and on its bounding C, where
z=x+iy, z=x—iy are complex conjugate coordinates. The Green’s theorem can be
written in the complex form as
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§F(z,2)z’z =2i ”Z—}j dA where dArepresents the element of area dndy
¢ z
Proof

Let F(z,z)= P(x)+iQ(x, y). Then using Green’s theorem, we have

£F(zlg)z’z = i(P+ iQ)(x,y)dz = £Pdn—, Qdy+i£an+de

- _fleQ,or ff| o2 _ 09
ﬁ:(aR +adendy+lﬁ(ax ] dxdy

Oy

Example: Evaluate the integral

I = I;dz

Where

(1) The path of integration C is the upper half of the circle |z| =1from z=-1to z=1.
(i1)  Same points but along the lower semi circle C .

Solution:

(1) The parametric representation z = ¢ (0 <g<1i) and since d (e ? )/ d g=ie”

I = J;Edz = —.A[e_"eie"gdo =-ri
0

y

N
N

(i1) I:.[Zdz:'[fAe_IQi e dg=ri

Example: Evaluate JEdz from z=0to z =4+ 2ialong the curve Cgivenby (a) z=¢"+it

(b) the line from z =0and z = 2i and then the line from z=2i to z=4+2i
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Solution:

(a)  The given integral equal,
J-(n - iy)(dn + idy) = J.'ndk +ydy +i J..ndy — ydn

The parametric equations of Care n=¢>,y =tfrom t=0to ¢ =2
Then the line integral equal

[ erdr)+ (eXar)+i [ (¢ Ya)— e Xt — )
= j02(2l'3 +t)1t+z‘j ( )Jz - 1()__

(b) j(x —iyNdx +idy) = jxdx + ydy +iJ. ndy — ydx
The line from Z =0 0 Z = 2iis the same as (0,0) to (0,2) for which x=0, dn =0
and the line integral equals.

I (QXO)Wdyﬂf O}y —»(0 =L2:0ydy=2.

The line from z=2i to z=4+2i is the same as the line from (0,2) to (4,2) for

which y=2,dy=0 and the line integral equals
J-4xdx+200+ij-4 n00—2dn=.[4xdx+zj 2xdx_8 8i
0 x=0 0 o 8

Then the requires value = 2+ (8 —8i)=10.

3.4 Cauchy-Goursat Theorem

Suppose that two real-valued function P(n,y) and Q(n,y) together with their partial
derivatives of the first order, are continuous throughout a closed region R consisting of
points interior to and on a simple closed contour C in the ny plane. By Green’s theorem,
for line integrals,

LPdn +Qdy = '[ IR ((zﬁx -P, }z’ndy.

Consider a function

f@)=ulx,y)+iv(xy)

Which is analytic throughout such a region Rin the ny, or Z, plane, the line integral of
falong C can be written

J-Cf(z)dz='|;ndn—vdy+iJ.Cvdx+udy ....................................... (1)

Since fis its in R, the functions u and v are also its theorem i and if the derivative f' of
fisitsin R, so are the first order partial derivatives of u and v. By Green’s theorem, (1)

could be written as
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Lf(z)dz = ”R (— v, —u, )dndy +1i HR (ux -V, ﬁndy ......................... (2)

But in view of the Cauchy-Goursat equations
U,=v, U, =V

P

The integrals of these two double integral are zero throughout R . So

Theorem: If 7 is analytic in Rand f' is continuous then, J. flz@z=0.

This is known as Cauchy theorem.

Goursat proved that the condition of continuity of f'in the above Cauchy theorem can be
omitted.

Theorem: (Cauchy-Goursat theorem)
If a function f'is analytic at all points interior to and in a simple closed contour C, then

J;f(z)dz=0.

Cauchy-Goursat theorem can also be modified for the ...... Bof a multiply connected
domain.

Theorem: Let Cbe a simple closed contour and let Cj (;j =1,2,....n) be a finite number of
simple closed contours inside C such that the regions interior to each C; have no points

in common. Let R be the closed region consisting of all points within and on C except for
points interior to each Cj. Let B and all the contours oriented boundary of R consisting of

C and all the contours Cj, described in a direction such that the interior points of R lie to
the left of B. Then, if f is analytic throughout R, .

J-Bf(z)dz =0

YA

y
D,

».
X

As a consequence of Cauchy’s theorem, we have the following
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Theorem: If f(z) is analytic in a simply-connected region R,then J.b flz)z is

independent of the path in R joining any two points a and b in R.
Proof

Consider the figure below

y
Ci B
A D b
a
G
>
By Cauchy’s theorem
.[ flzdz=0
ADBCA
Or J.f(z)dz+ jf(z)dz =0
ADB BEA
Hence
[1(ehz == [ f(ehz = [ ()=
ADB BEA AEB
Thus

[ feHz =] fepz=[ ()

This yields the required result.

Example: If Cis the curve y=x’-3x” +4x—1joining the points (1, 1) and (2, 3), show
that
J‘(12z2 - 4iz)dz is independent of the path joining (1, 1) and (2, 3)

Solution:
A(l,1) > B(2,1) > C(2,3)

Along A (1,1)to B(2,1),y=1,dy=0. So that z = x4i anddz=dx. Then
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j{lz(w‘)2 —4i(x + i)}lx =20 + 30i

x—1
Along B (2, 1)to C (2, 3), x=2,dx=0 so that z=2+iy anddz =idy . Then

3
[{202+ i) - 42+ iy)fidy =176 +8i
y=1

y=1
So that
J.’(1222 —41z)dz = 20+30i —176+8i = —156 + 38

The given integral equals
[ 0227 - diz)az = (42 2022 )| =-156+38i

+i
Morera’s Theorem

Let f(z) be continuous in a simply connected region R and suppose that

£f1(z)dz=0

Around every simple closed curve C in R. Then f(z) is analyticin R.

This theorem is called the converse of Cauchy’s theorem and it can be extended to
multiply-connected regions.

Indefinite Integrals (Anti-derivatives)

Let f(z) be a function which is continuous throughout a domainD, and suppose that
there is an analytic function F such that F'(z)= f(z) at each point inD. The function
F is said to be an anti derivative of f in the domainD.

Cauchy Integral Formula

Theorem: Let f be analytic everywhere within and in a simple closed contour C taken in
the positive sense. If Z, is any point interior to C, then

: _L f(z)dz
/(z)= 2;iL—Z_ZO
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This formula is called the Cauchy integral formula. It says that that if a function fis to
be analytic within and on a simple closed contour C, then the values of f interior to C are
completely determined by the values of f'in C.
When the Cauchy integral formula is written as

'f cZ— Z0
It can be used to evaluate certain integrals along.

Simple closed contours

Example: Let C be the positively oriented circle |z| = since the function f(z)=2 /(9 - zz)

is analytic within and in C and the point Z, = —iis interior to C, then by Cauchy Integral
formula

(o2 =(50)-

Proof

Since f'is its at Z,, there corresponds to any positive number & , however small, a
positive number & such that

1f(z)- f(z,) <& whenever [z—z|=p....ccoooiiiiiii (1)

Observe that the function f(z)/(z,zo) is analytic at all points within and in C except at the
point z,. Hence, by Cauchy-Goursat theorem for multiply connected domain, it’s integral
around the oriented boundary of the region between C and C, has value zero.

J- jfz)dz
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That is
ke | Ll

This allows us to write

A dz flz _on
L; ); 1)), - - (z)—zf Mo )
lzog =2

And so equation (Z) becomes

LJZF Z);Z (ZO)ZICO%Z .................................. 3)

By (1) and noting that the length of C, is 2Ap, by properties of integrals

j f(z)_f(zo)dz

g p—
<—2mp =2re
Z-Z, P

P

In view of (3) then

jcgz)gz 27 f(z ){<2;g.

Since the left hand side of this inequality is a non negative constant which is less than an
arbitrary small positive number, it must be equal to zero. Hence, equation for it valid and
the theorem is proved.

Cauchy’s integral formula can also be extended to a multiply connected region. With the

()

understanding that /"’ denotes f(z) and that 0! = 1, we can use mathematical induction
z

to verify that

(n)Z _ n! f(Z)dZ ( —y
f (o) 27—U.J-C(Z_Zo)n+1\n 9192-)

When n = 0, this is just the Cauchy integral formula stated earlier.
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Sin®z

Example: Find the value of §C43dz

(z-%)

Where Cis a circle |z| =1

Solution:

[

Sin®z g = 27zif2(Sin6 %)

Z_%)S 21

_ 6x27i
2
=21 4

[5 Sin* 7, Cos* %, — Sin® %]

Other Important Theorems

l.

Cauchy’s inequality
If f(z) is analytic inside and on a circle Cof radius r and centre at z # a, then
!
) X2 20,1, 2
r
Where M is a constant such that | f (z)| <M on C, ie. M is an upper bound of

|f(z) on C.

Lowville’s Theorem
Suppose that for all Z in the entire complex plane, (i) f(z) is analytic and (ii) f(z)

is bounded, i.e. |/ (z)| < M for some constant M, then f(z) must be a constant

Fundamental Theorem of Algebra
Every polynomial P(z)=a, +a,z+a,z> + a,Z" =0with degree 7 >1, and a, #0
has at least one root.

Maximum Modulus Theorem
If f(z) is analytic inside and on a simple closed curve Cand is not identically

equal to a constant, then the maximum values of | f (z)| occurs on C.

SELF - ASSESSMENT EXERCISES

l.

Evaluate J-((()Z;S))(3x + ykx + (xy —x)dy along

(a) thecurve y=x"+1

(b) the straight line joining (0, 1) and (2, 5)

(c) the straight line from (0, 1) to (0, 5) and then (0, 5) to (2, 5)
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2. Evaluate L (x2 —iyz)iz

(a)  along the parabola...... y =4n* from (1,4) to (2, 16)
(b)  straight line from (1, 1) to (1, 8) and then from (1, 8) to
(2, 8).

3. Evaluate f;, (3xy +iy’ )iz

(a) alongthe curve x=2t-2i-y=1+t-¢"
(b)  along the straight line joining x=-2+i and z=2—i

4. Evaluate

. 2 2
(a) {) SinzZ” +Cosnz” . , where Cis the circle |Z| =3.
c (z-1)\z-2)
2z
(b) e—4dz where Cis the circle |Z|=3
<(z+1)

5. Evaluate %z if Cis the circle |Z| =5
CZ+

4.0 CONCLUSION

The materials in this unit must be learnt properly because they will keep on re occurring
as progress in the study of mathematics at higher level.

5.0 SUMMARY

We recap what we have learnt in this unit as follows:

You learnt about Cauchy-Goursat equations, Moreras Theorem and applied it to
indefinite integrals. We also consider Cauchy integral formula

We considered some solved examples to illustrate the theory we have learnt in this unit.
You may which to answer the following tutor-marked assignment.

6.0 TUTOR-MARKED ASSIGNMENT

1. Evaluate J._z;l (3xy +iy’ }z’z

(a)  along the curve
(b)  along the straight line joining x=-2+i and z=2—i
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2. Evaluate
. 2 2
(a) §;C Sm(ﬂz J( COS;)ZZ dz , where Cis the circle|z| =
z zZ—
2z
(b) ifc(e—l)“dz where Cis the circle |z]|=3
z+

m 3z

Cz4+7

3. Evaluate ﬁ#; z if Cis the circle |2| =5

7.0 REFERENCE/FURTHER READING

Hildebrand, Francis B. (2014). Advanced Calculus for Application. 6™ Edition.
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