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1.0     INTRODUCTION 
  

In this unit, we shall study the theory of ordinary differential equations with a 

discussion on existence and uniqueness theorems which cover various types of 

equations. A differential equation is a functional equation where the unknown 

function or functions are present as derivatives with respect to a single variable in the 

case of an ordinary differential equation. The order of the highest derivative is called 

the order of the equation. Derivatives in a differential equation can occur in various 

ways and we do not admit equations where the unknown is subjected to other 

operations than algebraic and differential equations. 

 

2.0     OBJECTIVES 

 
At the end of this unit, you should be able to:  

 

 classify various types of differential equation; and 

 answer correctly exercises on differential equations. 

 

3.0     MAIN CONTENT 
 

3.1   Definitions and Examples 
 

A differential equation is a functional equation where the unknown function or 

functions are present as derivatives with respect to single variables in the case of an 
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ordinary differential equation. Consider the following six examples of functional 

equations involving derivatives. Some are bona fide equations while some are not: 

 

Example (1):  )()( xfxf   

Example (2):  )1()(  xfxf  

Example (3):  
2

210 )]()[()()()()( xfxaxfxaxaxf   

Example (4): 2)]([6)( xfxxf   

Example (5): dssfxf
x

2/1

0

2})]([1{)(    

Example (6): dsxfsfxf 2/12
1

0

2 })]([)]({[)(     

 

Examples 1 and 3 are ordinary and first order differential equations, while example 2 

is a different differential equation, not a differential equation in the usual sense. 

Example 4 is a second order differential equation. Example 5 is not a differential 

equation as it stands but on differentiating will yield 

  2/12})]([1{)( xfxf   which is a second order differential equation equivalent to 

example 4.  Finally, example 6 is not a differential equation and is not reducible to 

such an equation by elementary means. 

 

The normal form of a first order differential equation is given as 

        ),( yxFy    . . . (1) 

 

In the simplest case, x  and y  are real variables and  ),( yxF  is a function on 
2R   to 1R . We can also allow  x  and y  to be complex variables and F to be a function 

on  2C  to 1C . 

 

We can also let  

  ),.......,,,,( 4321 nyyyyyy    and   F= ),......,,,( 321 nFFFF  …….   (2) 

 

Where y and F are functions on 1nR    to  1R . We then define the derivative of a 

vector as the vector of the derivatives: 

    ),......,,,( 321 nyyyyy                                                ……  (3) 

 

With this notation, equation (1) becomes a condensed convenient way of writing a 

system of first order differential equations: 

     njyyyyxFxy njj ,......,3,2,1),,.....,,,,()( 321                    . . .  (4) 

 

Conversely, every such system can be writing as a first order vector differential 

equation. The generalisation has the advantage of covering nth order equations. To 

convert nth order differential equation in y to a first order vector equation in y, we set 

        ),......,,,( )1(  nyyyyy     ….                                            (5) 
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We can consider differential equations in more general spaces than the Euclidean. 

Here, the interpretation of the derivatives becomes a matter of concern, and 

convergence questions also arise if the space is of infinite dimension. 

 

Differential equations normally have infinite number of solutions. In order to find a 

particular one we have to impose some special conditions on the solution, usually an 

initial condition. The intent of an existence theorem is to show that there exists a 

function which satisfies the equation in some neighborhood of point ( ), 00 yx . A 

uniqueness theorem asserts that there is only one such function. We can, however, 

assert the existence of solution under much more general conditions than those which 

guarantee uniqueness. This is beyond the scope of this course. 

 

4.0 ACTIVITY 1 

 Solve the differential equation   
 

5.0    CONCLUSION  
We have examined differential equations in a general setting in this unit. This unit is 

important to the understanding of other units that would follow subsequently. 

 

6.0    SUMMARY 
In this unit, we have a general introduction to various forms of differential equations. 

This unit must be read carefully before proceeding to the other units. 

 

7.0    TUTOR-MARKED ASSIGNMENT 
 

i.  If  )(xf  satisfies the integral equation 

      
1

0

)](,[)( 0

x

x
dssfsFyxf , 

Find a differential satisfied by ).(xf  What initial condition does  )(xf  satisfy? 

ii.  Transform  
x

dssfxf
0

2)]([)(  into differential equation. Here 0)( xf  is 

obviously a solution. Are there other solutions of the functional equation? 

iii.  The functional equation 
x

dssfxf
0

)(1)(  implies that f  satisfies a 

differential equation. Find the latter and find the common solution. 
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1.0  INTRODUCTION 

 
In this unit, we shall use a topological method based on the contraction fixed point 

theorem. To apply this theorem successfully we have to replace the differential 

equation by an equivalent integral equation that can be used to define a contraction 

operator on a suitably chosen metric space. 

 

2.0   OBJECTIVES 

 
At the end of this unit, you should be able to: 

 

 apply the contraction fixed point theorem; 

 determine the existence of solutions for a given differential equation; and 

 solve correctly the tutor-marked assignment that follows. 

 

3.0  MAIN CONTENT 
 

3.1  The Fixed Point Method 
 

Consider the following differential equation defined by 

 

00 )()],(,[)( yxfxfxFxf                                                   … (1) 

 

Here ),.....,,( 21 nFFFF  is a vector valued function defined and continuous in  

,: 0 axxB     byy  0  

 

We may define the norm on nR  as follows: 

 
2/1

1

0 )( 









n

jj yy    or   0max jj yy   
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We impose two further conditions on :F  

      MyxF ),(                                                                      …  (2) 

 

      2121 ),(),( yyKyxFyxF                                            …  (3) 

 

Conditions (2) and (3) are called boundedness and Lipschitz conditions respectively. 

 

We now replace the vector differential equation by a vector integral equation defined 

as: 

 


x

x
dssfsFyxf

0

)](,[)( 0                                                        … (4) 

 

We again impose the following property which follows from the definitions of 

integrals by Riemann as: 

 

xxdsFFds
x

x

x

x
  0,

00

                                                      …  (5) 

 

Theorem (1): Under the stated assumptions on F, the equation (1) has a unique 

solution defined in the interval ( ), 00 rxrx   where  

1
min , ,

b
r a

M K

 
  

 
 

 

Proof:  We consider the space N of all functions )(xg  on  toR1  nR   continuous in x  

),( 00 rxrx   such that 00 )( yxg   and byg
N
 0  where 

 

.)(sup 00 yxgyg xN
 . For such, a ( )g x  the function  )](,[ xgxF  exists and is 

continuous. Furthermore, its N-norm does not exceed M. We now define the 

transformation: 

 

 
x

x
dssgsFyxgT

0

,)](,[)(: 0    rxxr  0                      … (6) 

 

Here,  )]([ xgT  is continuous, 00 )]([ yxgT    and 

 

bMryxgT  0)]([                                                          . . . (7) 

 

(by the choice of r ). It follows that  NgT ][  . We next observe that 

 

 
x

x

x

x

dssgsgKdssgsFsgsFxgTxgT
0

0

)()()]}(,[)](,[{)]([)]([ 212121  
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This shows that  

 

NNN
ggkggKrgTgT 212121 ][][   

 

Where  1 kKr  by choice of  .r   Hence T is a contraction. This implies that there 

exist one and only one function  Nxf )(  such that  

000 )(,)](,[)(
0

yxfdssfsFyxf
x

x
    is the unique solution of the differential equation 

(1) with the stated initial condition. 

 

4.0   CONCLUSION 
 

We have shown that we can apply the fixed point theorem to establish the existence of 

solution to the differential equation stated in (1). You are supposed to master the 

concept developed in this unit before proceeding to the next unit. 

 

5.0   SUMMARY 
 

The contraction fixed point theorem applied in this unit enables us to develop a unique 

solution to the differential equation stated in (1). It is one of the most powerful 

theorems in mathematical analysis. It can be extended to spaces of infinitely in many 

dimensions. However,  this is beyond the scope of this unit. 

 

6.0    TUTOR-MARKED ASSIGNMENT 
 

Determine an interval ),( 00 rxrx   where the existence of solution to the following 

differential equations is guaranteed: 

i. 1)0(,  yyy   

ii.  2)0(,3  yyy  

iii.  0)0(,2  yyxyy  

iv.  1)0(,1)0(, 21211  yyyyy  
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1.0     INTRODUCTION 
 

The method of successive approximations is a refinement of the old device of trial and 

error. What has been added is control of the limiting process. We know how often the 

process must be repeated to bring the result with the desired limit of tolerance. The 

method of trial and error can be traced back to Isaac Newton who was the first to be 

concerned with approximate solution of algebraic equation. An infinite iteration 

process for the positive solution of the transcendental equation defined as: 

            

,arctan xx     1    ……..                                             (A) 

 

was given by Joseph Fourier in his Theorie Analytique de la Chaleur (1822). Fourier’s 

argument is geometrical and highly intuitive. It is not difficult to give a strict analytic 

convergence proof. 

 

The method of successive approximation was given by Emile Picard for differential 

equation in 1891. This method soon became the standard method for proving 

existence and uniqueness theorems for all sorts of functional equations. 

 

2.0 OBJECTIVES 
 

At end of this unit, you should be able to: 
 

 apply the method of successive approximation to determine existence and 

uniqueness of solution to differential equation. 

 

3.0  MAIN CONTENT 
 

3.1    The Method of Successive Approximations 
  

Let us consider a vector differential equation defined by 

 

00 )(),,( yxyyxFy  .                                                                     (1) 
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),( yxF  is defined and continuous in:  

 axxB  0:   byy  0 ,  MyxF ),(                                        (2) 

 

2121 ),(),( yyKyxFyxF                                                        (3) 

 

We shall state the following theorem: 

 

Theorem (1): There exists a unique function nRtoRonxf ,,),( 1   defined for 

rxx  0  , where  

min ,
b

r a
M

 
  

 
        (4)          

 

Proof: We replace the differential equation with the initial by the equivalent integral 

equation: 

 


x

x
dssfsFyxf

0

)](,[)( 0                                                        (5) 

 

00 )( yxf   

 

Now define  

 

,....3,2,1,)](,[)(
0

10    mdssfsFyxf
x

x
mm                                  (6) 

 

For these functions to be well defined, we restrict x  to the interval 

),( 00 rxrx  . Suppose it is known that for some value of ,m  the function  

)(1 xfm  is well defined in this interval. It is obvious that  ,)( 01 yxfm   but the 

induction hypothesis must also include that  )(1 xfm  is continuous and 

.)( 01 bysfm   We then see that  )](,[ 1 sfsF m  is well defined and continuous. 

Furthermore:  

 

MsfsF m  )](,[ 1 , 

Hence  

 

x

x
m dssfsF

0

)](,[ 1 , exist as a continuous function of x  and its norm does not exceed   

bMrxxM  0   by the choice of .r   

This implies that )(xfm  is also continuous and satisfies  byxfyxf mm  000 )(,)(  

 

It follows that the approximation are well defined for all .m  To prove the existence of  

),(lim xfm  we resort to the Lipschitz condition. We have 
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  
x

x
mmm

x

x
mmm dssfsfKdssfsFsfsFxfxf

00

)()()]}(,[)](,[{)()( 21211  

 

We know that for some m  we have the estimate 

 

rxsxsM
m

K
sfsf

m
m

mm 







 0

1

0

2

21 ,
)!1(

)()(                                   (7) 

 

This estimate is certainly very true for .2m  We then get 

 

m
m

x

x

m
m

mm xxM
m

K
dsxsM

m

K
xfxf 0

1
1

0

1

1
!)!1(

)()(
0










  . Therefore the estimate is 

true for all m  

 

Hence the series 

)]()([)( 1

1

0 xfxfxf n

n

n 





                                                                 (8) 

Whose partial sum is ),(xfm  converges in norm for rxx  0  uniformly in .x  Hence, 

the sum, ( ),f x  is a continuous function on   nRR 1 . 

 

The strong uniform convergence of the vector series (8) obviously implies the 

absolute and uniform convergence of the n component series to continuous functions 

on nRtoR ,,1 . The estimate (7) obviously implies that 

m
m

m xxxxKM
m

K
xfxf 00 )exp(

!
)()(  ……                                  (9) 

 

It is an easy matter to observe that if  0xx   is not large, )(xfm  converges rapidly to 

its limit )(xf . Therefore, from the uniform convergence of )(xfm to )(xf  it follows 

that  )](,[ 1 sfsF m  converges uniformly to )](,[ sfsF  and 

           

 

x

x

x

x
m dssfsFdssfsF

0 0

)](,[)](,[ 1  uniformly in .x  From (6) it follows that 

)(xf satisfies (5) and consequently, the differential equation and the initial condition. 

That this is the only solution also follows from the Lipschitz condition. So to prove 

uniqueness we may suppose that )(xg  is a solution defined in some interval 

).,( 1010 rxrx   Then 

 


x

x
dssgsFyxg

0

)](,[)( 0 , and if  ),min( 10 rrxx   we have 

 

 
x

x

x

x
dssgsfKdssgsFsfsFxgxf

00

)()()]}(,[)](,[{)()(  

 



MTH 382                                                                                                                                                 MODULE 1 

83 

 

Set )()()( xgxhxh  , then  )(xh  is a continuous non-negative function  that 

satisfies, 
x

x
dsshKxh

0

)()(0 . Hence  )(xh  is identically 0. Therefore, )(xf  is the 

only solution of (1) with 00 )( yxf    

 

4.0     CONCLUSION 
 

Various questions arise when we want to use theorem (1) above. The first of these 

concerns the effective determination of a, b and M and the verification of the 

Lipschitz condition. We leave this for future considerations. We have justified the 

existence of solution to functional differential equations. We have also proved the 

uniqueness of this solution. You are required to read carefully before proceeding to 

the next unit. 

 

5.0     SUMMARY 
 

We have proved the existence of functional differential equations by successive 

approximation methods. Successive approximation method is essentially an iterative 

method that needs to be carefully designed to give a solution to the differential 

equation under consideration. Once the equivalent integral equation of the given 

differential equation is known, then it is just an easy matter to design the appropriate 

iterative scheme for the equation, which will eventually converge to the solution of the 

equation.  

 

6.0   TUTOR-MARKED ASSIGNMENT 
 

i.  Solve ,)0(, Cyxyy   by method of successive approximation 

ii.  If  )(xy  is a solution of  

    0201

2 )0(,)0(,0 yyyyyxy  , 

Show that  

     .)()()(
0

2

0201 dssyssxxyyxy
x

   

Use the method of successive approximations to find )(sy  in the special case 

,0,1 0201  yy  Take 1)( xf  

iii.  The Thomas-Fermi equation defined by 

           2/32/1 yyx        

arises in nuclear physics. Show that it has a solution of the form Cx . Show 

also that it can be transformed into a system to which method of successive 

approximation can be applied so that its solution in some interval [0, ]r   

satisfies an initial condition of the form byay  )0(,0)0( . 
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