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1.0 INTRODUCTION

In this unit, we shall examine some special functions such as Beta function, Gamma
function and Factorial function. These functions are of very useful mathematical
importance in solving differential equations and other applied mathematics problems.
2.0 OBJECTIVES

At the end of this unit, you should be able to:

. define beta function, gamma function, and factorial notations; and
. apply these functions to solve mathematical problems.

3.0 MAINCONTENT

3.1 Some Special Functions

Below are some of the special functions worthy of note.
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3.1.1 Gamma Functions

One of the most important functions is the gamma function, written and defined by the
integral

D re=[ et 0

(More generally, if we consider also complex values, for those ot whose real part is
positive). By integration by parts, we find

Ma+1)= j: e 'tedt = —e 't °g+ajo°° et/ ldt = ol (@)
Thus we obtain the important functional relation of the gamma function

2 INa+) =al(x)
Let us suppose that the « +ve integer, say, n. Then repeated application of (2) yields

'(n+1) =nI(n)
=n(n-)rn-1

=n(N—=1)..ccccrnun. 3.21°(QY
Now r@)=[" e'dt=—e" [, =1

(3 r(+y=n! ..

Hence gamma function can be regarded as a generalisation of the eliminating
fractional function.

By repeated application of (2)

MNa+1) T(a+2) I'a+k+1)

(@) (o) a+1) (@)(a +1)....(a + k)
Thus we obtain the relation

I'a)=

IN'a+k+1)
() +]D)....(a + k).
Gauss defined Gamma function as follows

(a#0,-1—-2......... )

(4) r(a)=lim

6 i nin
6) () Lﬂa(au) ........ (a+n)

Where
Problem | >0 and nisa +ve integer, then
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@)= limf) (o= 5) e et

Proof: Now consider the integral

J.On(l—%)nt“’ldt.

Substitute t=nxin the integral, we obtain

Ion (1— %)nt”“ldt =n* .[01 (1—x)"x*"dx

By integrating by parts gives the formula

n n,a-1 _ﬂ 1 _ n-1,a
jo @—x)"x dx_ajO (I—x)""x“dx

Repeating integration by parts, we get

n(n—-1(n-2)......1

Jy @=xnx ik ala+1)..(@+n-1)

J': Xa+n—ldx

Thus
J.n ( 1_1 )nt“’ldt: n'n“ o 1
0 n a(a+)..(a+n=D) a+n
“lim {1 %)nt“’ldt —lim ntn® ~T()

o g(a+D)(a + 2)....(a +n)

Lemmal. If 0<a<1, 1+a< exp(a) <(1-a)*, compare the three series.

0 N
l+a)'=1+a, exp(a):1+a+z 0‘7|
N2 N

0

(+a) ™ =l+a+) o

N=2

Lemma2. If 0<a<1,, (1-a)">1-<", for a position integer
Proof: For n=1, 1-a=1-«, asderived.

Assume that

(1-a)’ 21- fa,
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Multiply each member by 1- ¢, to obtain
(1-a)’" > (1-a)1- fa) =1-(B+Da+ pa’
So that

(l-a)* 21-(B+Da =1-(B+D)a+ pa’
Lemma 2. Follows by induction

Lemma 3. If o0<t<n, n apositive integer

t .t
O<e'—(1-— ) <
€ ( n ) n!

Proof: In Lemma l, puty = ', we get
n

t -1
(l+t)£e” g(l—tj
n n

From which

(a) (l+ ;jn <e'< [1—3_“

Or

So that
e —(1—tjn >0
n
set —(1—tjn <e” [l—[l—tzzj }
n n
But by (a)
e’ > (1—t)n
n
et —(1—tjn <e™ [l—(l—tzzj }
n n

In Lemma 2, we have shown that

l-a)">1-ne.
2

- 1—;7 )'>1-na

n ~t4.2
et— 1—L <& t
n n
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Example 1: Show that the two definitions of gamma function are equivalent.

n—oo

Proof: By using Gauss’s definition, we proved that (z) = Iim}(l—tjnt21dt
n
0

Now

= li ot tY z-1 © L —tyz-l
_Lmj‘o{e —(1—nj} dt+_|‘O et dt
From the convergence of the integral

j: e 't dt =T(2)

It follows

N H n -t _¢z-1 _

=lim jo e —t“dt =0

Hence

® —tyz-1 H n —t t z-1
jo e 't dt—F(z)+LT;J'O [ e'—( 1—H )t dt
Now

j: e'tz'dt Converges, so IO” et gt 1S bounded.

Thus
limf, [ ¢-(1-

L )t dt =0
nN—o0 n

j: e 't dt =I'(2)

Example 2: Show that

r()ra-z)=—> (z£0.#£L#2,.......
Sinzz

Proof: using Gauss definition of gamma function
. nin’ 1= AN

r(z):|n|m 2Z+D(Z+2) e (z+n):znnl(1+nj ¢

(k)

—L()r(-z) s s’

_ Sinnz

- T

This implies that
r(ri-z)=

Where
-2 ()r(-2)=r()ra-z)
Note if we put z = 1/2 , we get
1 1

[rw2)F =

Sinzz

or
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I( % )=+r.
Example 3: Show that

2" r oy z+% ) (22=0-1-2.... )

Ir2z)= 7

Proof:
27T () (z + %)
I'(22)

( 222 nIn*nin@>? ]

T 2(z+D)..(z+n)(z+X)(z2+%)...(z+n+ )
_Ilm n!nZZ

N 22(2z2+1)(22+2)...(2z+n)

B (n!)222n+1

- IHP[ (2n)!\/ﬁ}

The last quantity is independent of z and must be finite since the left side exists.

2T (2)I (2 +%)
T

Putz =%
We have

A=2Jr

rp -2 TN )

N

3.1.2 Beta-Function

We define Beta-function B(p,q)by
(1) B(p.g) =], t**@a-t)"dx,R(c) > O,R(c) >0

Another useful form of this function can be obtained by putting t =sin?¢,thus arriving
at

(2) B(p,q) =2 If Sin?P'9Cos?**gd g, R(p) > 0,R(q) >0
Next we establish the relation between gamma and beta-functions

Example 1: If R(p)>0,R(g)>0.Then

_I(p)I(q)
PP = I(p+q)
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Proof:  r(p)r)=["e't""dt[" e u*du

Substituting t=x?and u = y2it gives

r(p)r(q):4j: e’XZXZp’ldxj: eV y2ldy

T(p)T(a) =4[ [ exp(—x* —y*)x***y* dxdy
Next, turn to polar co-ordinate for the iterated integration over the first quadrant in xy-
plan.

F(p)F(q):4I: J? exp(—22)r2P*292Cos?P*4Sin** ' grdrd 6
2_[: exp(—rz)rZp*zq’ldrzj’oE Cos*P0Sin**ad o
Take r?=t and gzéﬁ_g,we obtain

F(D)F(Q):I: e"t“*q*ldtzjoE Sin***6Cos*ad o

=r(p+a)B(p,q)
I(p)I'(q)
S B(p,g)=——"—--
(p.a) F(pra)

3.1.3 Factorial Notations
D) @, =I(a+k-1)
(@), =La#0
The function («), is called the factorial notation

Example 2: Show that
(a)Zn :22n( % )n( T n )n
Proof:- (@),, = (@) (a+D)(a+2)(a+3).....(a+2n-1)

=[ @) (a+2).....a+2n=2) [ (a+D)(@+3)......(a+2n-1) ]
—om[( & a+2 a+4 a+2n-2
22| ( > X X ) I— ( ) ]

2 2 2
[(0‘?+1 “7” Voo 2 ino1) ]
(9,0,

Similarly, we can show that

(@ =K"( L), “T” | ga Y
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Example 3: show that

_ I'(a+n)

@0 =

Proof:

T(a+n)=(a+n-D(x+n-2)......... ol («)
=(a)(a+D......... (a+n-DTI'(xx)
(a+n)=(a),I'(a)
) _T'(a+n)
), = @)

4.0 ACTIVITY I

Express ,I"E sina #d# in terms of Beta function.

5.0 CONCLUSION

In this unit, we have studied Gamma function, Beta function and Factorial notations.
You are required to study these functions because you would be required to apply
them in future.

6.0 SUMMARY

The study of special functions in mathematics is of significant importance. Study this
area properly before moving to the next unit.

7.0 TUTOR-MARKED ASSIGNMENT

I. The Beta function of p,and,q is defined by the integral

B(p.q) = [ t"*@-1)"*dt,(p,q>0)
By writing t =sin® @ obtain the equivalent form
B(p,q) = ZjomsinZF"l @cos* ™t adé,(p,q > 0)

ii. Show that
'(p)I'(q)

B(p,q) =
(p,q) F(p+q)

iii.  Bywriting t = x/(x+a) in the definition of Beta function, show that
= xPdx
)

ey a'B(p,q)
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1.0 INTRODUCTION
In this unit, we shall consider a class of function usually referred to as hyper-
geometric functions. The series solution of the associated differential equation usually

takes the form of a geometric series. Most often, hyper-geometric equation has
x=0,x=1and x=o0 as regular points and ordinary point elsewhere.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

o determine the differential equations that can give rise to hyper-geometric
functions;

. explain the properties of this functions; and

o apply this function where necessary.

3.0 MAIN CONTENT

3.1 Hyper-Geometric Function

The solutions of the differential equation  x(1- x)%+[c—(a+b+l)x]%—aby: 0 (1)
X X

are generally called Hyper-geometric functions.

Note that a, b, and care fixed parameters.

We solve this equation (1) about the regular singular point x=0
Shifting the index

> n(n+c-Dex" =D (n+a-1)(n+b-1)e, x"* =0
n=0

n=1
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For n>1
_ (n+a—1)(n+b—1)e
" n(n+c—1) i
_a(@a+(a+2)...(a+n-1).bb+1)(b+2)..(b+n-1pe,
" nle(c+1)(c+2)(c+2)....(c+n-1)

Using factorial notation, we have
_ (@), (b),

" nl(), °

Let us choose e, =1
_1.y (@),(0),

y1_1+n§‘ i),
:i (@),(0); 1

n=0 (C)n n!

We have the symbol
2F,(a,b,c, x) to represent solution

boS @0,

& @
2F.(a,b,c,x) = i a), (b),

The solution is valid in 0<|x|<1. The other root of the indicial equation is
(1-c). We may put y- Z f "y

For the moment, let ¢ be not an integer for (1), the indicial equation has root zero and
I-c. Let y:i enxn”
z e X"’ (n+b-1)x i e,(n+b)(n+b-1)x ”*b+cz e,(n+b)(n+b- 1)x””’+cz e (n+b)x™**

n=1 n=0 n=0

~(a+h+1)) e x"" =0
n=0

n+b-1

4 2

e, (n+b)(n+b—-1+c)x

n

> e,[ ab+D)(a+b+1)(n+b)(n+b)(n+b-1) x"" =0

'I:he indicial equation is
e, (b)(b-1+c)=0

(Note c is not an integer).

8 1
o

Corresponding tob=0,
3 n(n+c-1e, :i (n+a)(n+b)e,x" =0

n=1 n=0
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Example 1: If r(c—a-b)>0and if c is neither zero nor a negative integer,
2F.(a,b,c,1) :M
I'(c—-a)'(c—b)

Proof

2F,(a,b,c)

_ T(9)

- I(b)[(c—h)

B I'(c) I'(b)['(c-a-b) TI'(c)f(c—-a-b)
" I(I(c—b) TI(c-a)  I(c—a)(c—b)

Example 2: Show that

(a) 2F (avﬂlﬂ’ X):(l_x)_a
(b) x2F (1,1;2;— x) = Log(1+X)
Solution:
(@ 2F (. . 3. %)
o (@), on
2
:1+ax+a(a+1) 2 a(a+)(a+1) 3 (1—x)
TR LR
(b) x2F (L1,2;—x) = Log(1+Xx)
1.1 1212, ., 123123,
d! 1+E(_X)+1.2.2.3(_X) 123234 =x)

y, =xX"°2F (a+1-c,b+1-c;2—c;X)

Example 3: If z<t<1, and ifR(c) > R(b) >0,

e o) I'(c) Loibdpq  gveblr  ina
2Fl(a,b,c,z)—r(b)r(c_b) fot A-1)°"(1—tz)dt

Proof

Beta-function now
1—‘(b + n)r(c B b) - J.l tb—l (1_t)c—b—l dt
T'(c+n) 0

Also
(b), = T(c) (b+n)(T(c-b)
(c), T(b)L(c-b) T(c+n)
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Thus

I'(c)
T(b)[(c—Db)
i (a)nzn _[01 tb+n—1(l_t)c—b—1dt

n!

2F (a;b;c;z) =

_& 1 b eyebdN M
el AT

_& Loblgn  eveb-lpg  iva
“TOrC D) jot A-t)**H(1—zt)?dt
Where

(1-2)° :i (—a)(—a—l)---(—rf:—n+1)(—1) y

2, a(a+d)..(a+n-1)y"
:Z:;‘ n!

2, a(a+d)..(a+n-1)y"
:ng; n!

— z (a)nly

n=0 n:
40 ACTIVITY I

Find a general solution in
8x(1—x)y"+(4—14x)yv' ' —y =0

5.0 CONCLUSION

MODULE 2

terms of hyper geometric functions

You have learnt in this unit some properties of hyper-geometric functions. You are
requested to study this unit properly before going to the next unit.

6.0 SUMMARY

Recall that you learnt about the class of differential equation, which usually give rise
to hyper-geometric functions. You also learnt about the relations of this function to
Gamma and Beta functions. Study this unit properly before going to the next unit.

7.0 TUTOR-MARKED ASSIGNMENT

I. If R(c —a—Db) >0 and if c is neither zero nor a negative integer show that

Ir'(c)r'(c—a-h)

AR = L ayr(eb)

i, Show that
@  2R@ALN=A-x)"
(b)  X*F,@@L2-x) = log(1+X)
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1.0 INTRODUCTION

In solving differential equation, we often come across some problems which exhibit
some characteristic which needed to be studied further. Such equations are Legendry
equation and Bessel equations. We shall study in detail in this unit the Bessel equation
which gives rise to Bessel functions. This is because of the wide applicability of this
function in physics and applied mathematics.

2.0 OBJECTIVES

At the end of this unit, you should be able to:
. identify Bessel functions correctly; and
. solve problems related to Bessel functions.

3.0 MAIN CONTENT
3.1 Bessel Function

The equation
2
xzt(j)(%xgiﬁt(xz—vz)y:o (1)
is called Bessel’s equation of index v.

0] x = 0 is the regular Singular point of the equation (1) in the finite plane
(i) Assume that v. is not integer.

y — z mem+r
n=0

Substituting this expression and its first and second derivatives into Bessel equation,
we obtain
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0

= (Mm+2)(M+z-1)c, x™ + > (m+r)c, x™ +> ¢ x™ " -v?Y ¢ x™ =0

(a)i r(r—1)c, +rc, —v’c, :;) (r;1=0) 7
()  (r+)(r)c, +(r+1c, -v?c, =0 (m=1)
()  (m+r)(m+r-1c, +c, ,—Vvc, =0 (m=23,....

Now ¢, =0, thus the indicial equation from (a) (r+v)(r-v)=0

The roots are r=v,r=-v
L-r=2v
v=0,
v = integer
2vis integral multiply of v, i.e. v is zero or +ve integer

Now we obtain the solution corresponding to the value r =v.

From (b) we obtain ¢, =0 (c) can be written
(m+r—-v)(m+r+v)c, +c, , =0

Sincec, =0, it follows that ¢, =c, =c, =......0. Thus we can replace m by 2m.
@m+r—-v)@2m+r+v)c, +C,, , =0

NOW r=v
(2m+2v)(2m)c,,, +C,p, =0

:_22(52% (but v is not an integer) (m=12,...)

“Com

Assume
1

CO = PV —
2'T(v+1)
C, -1
G =2 = vz
22(v+1) 2"AIN(v+2)
c, 1
C4 = 2 = v
22°(v+2) 2210 (v+3)
="

2n = QI P (v + m+-)

Thus, the solution is
0 _1m 2m
V=3 S X

A= 2™ mIT(V+m+1)

We denote this solution by the notation
Jv(x)zxvi D" (2)

= 2™ T(m+v+D)m!
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J,(x) is called the Bessel Function of the first kind of order v.

MODULE 2

By Ratio test we know that the series converges for all values of x

Replacing v by-v, we have

1m=xy o CINE

= 22" I(m-v+D)m!
(2) and (3) are the independent solutions.

Thus y=c,J,(x)+c,J_,(X)

(3)

(i) If v=0,then the solution J, (x)and J_ (x) are identical. One can verify from (2)

and (3)

(i) If v is +ve integer, then the second solution J_ (x)is not independent of J (x)

Say v=nthen the factor

1 __ 1 in@)iszero
I'(m-n+1) (m-n)!
When m<n hence (3) is equivalent to
J_n (X) — X—n i (_1)m X "

L= 22" (m—n)Im!
Replace m by m+nin (5), we get change the index

B} (—1)m+n( g )2m+n

J*n (X) = Z

= m!(m+n)!
From (2), when v =ninteger, thus
NG
_ 2
Jn(x)_mZ:O mi(m+n)!

From (6) and (7), we get
I () =(-D"J,(x

)2m+n

Further properties of Bessel functions of first kind
From (2)

v B © (_1)mX2m+2v
X3, () _mZ:O 2" (m+v+1)m!
Now we use the formula
(o) =T(a+1)
i v B © 2(_1)m X2m+2v—l
o X'3,(01=2

= 2*™'T(m+v)m!

0 (_1)m X2m+2v—1
=2

= 2™ I mIT(m+v)
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Thus we obtain
d

S LX00 19,409 ©)
Similarly, we can show that
S1X13,00 1= DX 19,400 (10)

(9) can also use written
v (X) + X', (x) =x"J,,(X) (11)

(10) Can also be written
—vx I, () + X7 (X) =%, (%) (12)

Multiplying (12) by x* and subtracting from (11), we have
1, 00+3,.09 =20 3,9 (13)

Multiplying (12) by x* and adding with (11), we get
I, (0 =3,.(X)=23,(x) (14)

(1) we know that

NOW (2k +1)!=T"(2k +2) = (2),,
(2),, =2% (ONCAN
=22k )( 3

2 )

224K ( k+1+% )

2
22Har ( kelet )
S (2k D)1= 2
NS
JRST (15)

= 22Tk +1+ Y)

If we take v :%, then from (2), we have
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_ply D (16)
J,(X) = .
1(0=x 2; 2% KT (k + %)

From (15) and (16), we have

J%(x) :gsin X

In similar manner, by considering the expansion

0 2n -
cosz = &, we obtain
n=0 (Zn)l

The formula
Jf%(x): £ COSX
Examples: Show that:

() 1,0=-13,0
(i) J::%(Jm—zanunﬂ)

(i) 3,00 =309~ 3,0

W) 3,00=0--13,00-23,(%
X X

(v) Imen(x)dx:meM(x)—(m—n—l)j. x™1J L dx(X)

n+l
Solution
j x™J_(x)dx = X" "Hx"1I_(x)]dx

J. Xm—n—l %[Xnﬂ\] (X)]dX

n+l

Integrating by parts, we have
=X"J, ()= (M=n-D)[ x"*3_,(x)dx

This proves the result
Prove that:

(vi) I J (X)dx=—x"-J,_, +(m+n —1)j X", (X)dx

i) [ 3,a09dx =] 3,,()dx—23, (%)

It immediately follows from the identity 2J3)(x)=J,,(x)—J,.,(X)
(viii) j J, (X)dx=—x"J,,(X)+C

(ix) I xJ, (X)dx = —xYJ,,(X) +¢
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(X) j x*J, (X)dx = —x3J, (X) —2*xJ, (X) +C

Problem: Defining the Bessel function J (x) by means of the generating function

Example (a) exp{— X(t—t™)}= Zt J.(X)
We have LHS 7

x1

e2 e2t Z( Z( 1)()

0 1 m+k
Z( )“(3)

o mlk!

1) ( )2k+n
& (n+k)Ik!

Il
Ms

=)
I
8

Il
[Ms
Ms

=}
I
|

8

Ms

J (0" =RHS

>

show that,

If n isan integer

(b)  I,00=(-D"J,(x)

© 3 +3,a00=203,(
(d) J n—l(X) + ‘J n+l (X) = 2‘] r’1 (X)
Solution

(b) Replace thy —% in the definition

X X(E-D) =3 (-1t73,(9

(1) ", ()

MS T MS

"3, ()

=}
1l
8

Thus we get

I, () =(D"3, ()
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Example (b): Prove that

J,(2)= %J.OZ” cos(zcos#H)da
Proof: We know that

Z _ * .
expl (t -t N=>" g2t

N—00

Put
t =€, take real parts of both sides and integrate between O and 2 ...........

exp[% (e” —e™")]=e""’ =cos(zsin @) +isin(zsin@) =Y j,(z)(cosnd +isinnd)

Cos(zsin 6) +isin(zsing) = j,(z)+ . j,(z)cosnd+i» J, (z)sin(zsinng)
n=1 n=0

2z . 2z L. 2z

IO Cos(zsme)déizj0 JO(Z)d0+nZ_l:J”(Z)Io cosnedé

IOZHCos(zsinH)dez27rJ0(z)+0

Hence

] (z)—ir” cos(zcosd)da
° 2770

Example (c): Prove that

LE Jo(zcose)cosédezw
z

Solution

@=@ry Y2y

~ ml(im+p)! 2
Put p=0
b=y EX Zyr

= mim! 2

Replace z by zcos@multiply both sides of integrate between 0 to%

LE j, (zcos @) cos @

T

) _1 ZZm . n
= rr(1Im)l22m IOZ jo(zcos@)*"d@
m=0 =
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% _22m(m!)2 _ ( 1)m 2m
Now Jo (cos0)do= (2m+1)! _; (2m+1)1

Now we know that
e o

SINO=0——+—....cceune
3! 5!

3.1.1 Bessel Functions of the First Kind
In the definition of Bessel function j (z)putz =iy, then (p integer)

o) =€ 2 i(y)

o) = d : (y) Zml(m+ p)'(g)zm

2 Bessel function of the second kind
Solution

joz tJ, (at)J, (bt)dt

z{aJ, (bZ)Jn' (az)-bJ, (az)Jd, (bz)}
b® —a’

Solution

2
zzu+zﬂ+(

dz*>  dz 2=y =0

yl = Jn(at)! y2 = ‘]n(bt)

2t2

() 'y +ty +(@%1°-n")y, =

(i) t?y; +ty! +(b*t* —n?)y, =0

Multiply (i) by y, and (ii) by vy,, and subtracts, we find
(YY) = WaY2 )+ (oY — YY) = (0° —a’)yy,
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Or

d ' ' 2 .2

a[t(yzy1 —Y1¥2)]=(b" -a)ty,y,

Integrating with respect to t from o to z yield
(0°—a*)[“t(yy,)dt =t(y,, — y1y3)

4.0 ACTIVITY HI

sinz

jzfu (zcosB)cosHdl =
prove that /o

5.0 CONCLUSION

We have considered Bessel function in its general setting in this unit. You are required
to read this unit carefully before going to the next unit.

6.0 SUMMARY

Recall that Bessel functions are usually associated with a class of equations called
Bessel equations. They are usually denoted by the notation:

) _1m 2m
W=xy
m=0 227 r(m+v+1)ml

We gave some examples to enable you understand the contents of this unit. We also
examined another type of Bessel function usually referred to as Bessel Function of the
First Kind. However, you are to master this unit properly before going into the next
unit.

7.0 TUTOR-MARKED ASSIGNMENT

. Given that
1(,—,&) ©
ez " =>r"J (x)

Deduce that (n+1)J.,(x) = g[J () +3., (0]

il Obtain the general solution of each of the following equations in terms of
Bessel functions, or if possible in terms of elementary functions.
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2 2 2
(a)x%—3%+xy=0 (b) x%—%+4x3y=0 (c) x“%jtazyzo
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