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1.0     INTRODUCTION 
 

In this unit, we shall consider another class of special functions which has wide 

application in physical problems. This class of functions has orthogonality properties. 

The functions are legendry functions. 

 

2.0    OBJECTIVES 
 

At the end this unit, you should able to: 

 

 identify legendry functions and legendry polynomial; 

 solve problems relating to legendry functions; and 

 determine the properties of legendry functions and  

 legendry polynomial. 

 

3.0  MAIN CONTENT 
 

3.1  Legendry Functions 
 

The Legend differential equation of order n is given by: 
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The solution of this equation is known as Legendry function 
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Example 1: show that: 
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and subtracting, we have 
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Integrate from 1  to 1 we have 
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Example 2: show that: 
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Integrating from -1 to 1 
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Equating the coefficients, we have the result 

 

Example 3: show that: 
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Solution:  Differentiating with respect to t  both sides of the identity 
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Equating the coefficient problem:  Show that 
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The power of Pz  can only occur in the term going from the pth  term pzxz )2( 2  
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3.1.1   Legendry Polynomial 
 

The equation 0)1(2)1(
2
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is called Legendry equation. 

 

(i) 1x  are the regular singular points of the equation.  We solve the equation 

with the singular point 1x , we put 1x u  and obtain the transformed 

equation. 
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The roots of the indicial equations are 0,0c 0.  Hence one solution is logarithmic.  

We are only interested here in the non-logarithmic solution. 
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We assume 0a  is non-zero arbitrary constant, and 
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Solving the recurrence solution, we have 
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Then the legendry Polynomials of degree n is given by 
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We may now extend the range of this sum by taking k range from 0 to n. This 

extension will not affect the result, since the added terms are a polynomial of degree 

less than n  and the  nth  derivative will vanish. 
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and by binomial theories, we have 
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This is known as Rodrigues formula 
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4.0    CONCLUSION 
 

You have learnt about legendry polynomial and legendry functions in this unit. Read 

this unit properly before going to the next unit. 

 

5.0    SUMMARY 
 

You will recall that the legendry polynomial is defined as: 
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This polynomial has Orthogonality property which we have mentioned in this unit.  

 

6.0  TUTOR-MARKED ASSIGNMENT 
 

i.  Show that the substitution xt 1 transform Legendre’s equation to the form: 

0)1()1(2)2(
2

2

 ypp
dt

dy
t

dt

yd
tt  

ii.  Problem:  Show that  

a. ).()()12()( 11
xPxPnxP nnn 

 ,........2,1n  

b. 1( ) ( ) ( 1) ( ).n n nP x xP x n P x
         

 

7.0   REFERENCES/FURTHER READING 
 

Earl, A. Coddington (1989). An Introduction to Ordinary Differential Equations. 

India: Prentice-Hall. 

 

Einar, Hille (1980). Lectures on Ordinary Differential Equations. London: Addison-

Wesley Publishing Company. 

 

Francis, B. Hildebrand (2014). Advanced Calculus for Applications.  New Jersey: 

Prentice-Hall.   

 

Olayi, G. A (2001). Mathematical Methods. Bachudo Publishers Calabar. 



MTH 382                                                                                                              MATHEMATICAL METHODS IV 

118 

 

UNIT 2 SOME EXAMPLES OF PARTIAL DIFFERENTIAL 

EQUATIONS 

CONTENTS 

 

1.0  Introduction 

2.0  Objectives 

3.0  Main Content 

     3.1  Some Examples of Partial Differential Equations 

4.0 Activity II 

5.0  Conclusion 

6.0  Summary 

7.0  Tutor-Marked Assignment 

8.0  References/Further Reading 

 

1.0     INTRODUCTION 
 

A partial differential equation is an equation that contains one or more partial 

derivatives. Such equations occur frequently in application of mathematics.  We shall 

only discuss certain partial differential equations which are used frequently in applied 

mathematics.  In fact, we are going to discuss a kind of boundary value problems 

which enters modern applied mathematics at every turn. 

 

2.0 OBJECTIVES 
 

At the end of this unit, you should be able to: 

 

 recognise partial differential equations by type and character; 

 explain the methods of solving partial differential equations; and 

 apply the knowledge in some other related field. 

 

3.0  MAIN CONTENT 
 

3.1  Some Examples of Partial Differential Equations in Applied 

Mathematics 
 

Many linear problems in applied mathematics involve the solution of an equation 

obtained by specialising the form. 

 

dt

d

dt

d
f





 

2

2
2     (1) 

Where f is a specified function of position and   and   are certain specified physical 

constant. Here, 2  is the Laplacian operator in one, two or dimension under 

consideration and is of the form. 
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In rectangular co-coordinator of three space, the unknown function   is the function 

of the position co-ordinates (x, y, z) and the tine t. 

 

(i) Laplace Equation 

 

02          (3) 

 

It is satisfied by the velocity potential in an ideal incompressible fluid without vertical 

or continuously distributed sources; and by gravitational potential in free space; 

electrostatic potential in the steady flow of electric currents in solid conductors, and 

by the steady-state temperature distribution in solids. 

 

(ii)   Poisson’s Equation 
 

02  f       (4) 

 

is satisfied, for example, by the velocity potential of an incompressible,  irrotational, 

ideal fluid with continuously distributed sources or by steady temperature distribution 

due to distributed heat sources, and by a ‘sheds function’ involved in the elastic 

torsion of prismatic bars, with a suitably prescribed function .f    

      

(iii)    Wave Equation 
  

2

2
2 1

tc 


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
      (5)    

 

This arises in the study of propagation of waves with velocity c, independent of the 

wave length.  In particular, it is satisfied by the components of the electric or magnetic 

vector in electromagnetic theory, by suitably chosen component of displacement, in 

the theory of elastic vibrations, and by the velocity potential in the theory of sound 

(acoustics) for a perfect gas. 

 

(iv)  The Equation of Heat Conduction 

             

 
t


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
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2

2 1
     (6)   

                                                                                             

This is satisfied, for example, by the temperature at a point of a homogeneous body 

and by the concentration of a diffused substance in the theory of diffusion, with a 

suitably prescribed constant .  
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(v)          The Telegraphic Equation 
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This is one dimensional specialisation of (1), and is satisfied by the potential in a 

telegraph cable, where Lc  and ,Rc if the Leakage is neglected (L is inductance, 

c capacity and R resistance per unit length). 

 

(vi) Differential equation of higher order, involving the operator ,2  are rather 

frequently encountered, in particular, the bi-Laplacian equation in two 

dimensions. 

 

02
22

2
224 
















uu

u

yyxx


  (8) 

is involved in many two dimensional problem of the theory of elasticity. 
 

The solution of a given problem must satisfy the proper differential equation, together 

with similarly prescribed boundary condition or initial conditions (2 f time is 

involved). 
 

The above equation can be changed to cylindrical co-ordinates ,zr related to x, y and 

z by the equations 

 
zzrSinyrCosx  ,,   

0
1

2

1

2

1
2

2

2

2

22

2
2 


























zrrrr






              (9) 

 

In spherical co-ordinates  ,,P  related to zyx ,, by the equations 

 PCoszPSinyCosPSinx  ,, .  Laplace’ equation is  
 

2 2 2 2

2 2 2 2 2

2 cot
0.

v v v v Cos v

dp p p p

 

   

    
    

   
       (10) 

 

In what now follows we shall solution methods of partial differential equations: 
 

Method of separation of variables 

Consider the equation 
 

dt

u

dx

v 



2

2
2 , 0,0  tlx                                         (a) 
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This is called the heat conduction equation 
 

                      Straight bar 

0 xs 

 

 

 
x = 0            x= p 

 

 

This is a straight bar of uniform cross section and homogenous material.  The 

temperature v can be considered constant on any given cross section. 

 
).,( txUv   

 
2  is a constant known as ).,( txUv    In addition, we shall assume that the ends 

).,( txUv  of the bar are held at temperature zero:  thus 0v when and 0.x    

 

,0),(  tou    ,0),( tlu        ,0t                      (1)    

            

Finally, the initial distribution of temperature in the bar is assumed to be given thus  

)(),( xhoxU     lx 0        (2)     

(1) and (2) are called boundary conditions  

We assume that 

)()(),( tgxftxu                 (3) 

        

Substituting equation (3) for ),( txu in (a) yields 

 

)()()()(2 tgxftgxf            (4)  

or 

)(

)('

)(

)(2

tg

tg

xf

xf



            (5)   

      

Now equation (5) is said to have its variable separated; that is, the left member of 

equation (5) is a function of x alone and the right member of equation (5) is a function 

of x  alone. 

 

Since x  and t  are independent variables, the only way in which a function of x  alone 

can equal to function of t  alone is for each function to be constant. 
( )

( )

f x
b

f x


                                         (6) 

 

b
xg

xg




)(

)(2                (7) 



MTH 382                                                                                                              MATHEMATICAL METHODS IV 

122 

 

In which b is arbitrary 
 

The partial differential equation (a) has now been replaced by two ordinary 

differential equations.  This is the essence of the method of separation of variables. 

 

Boundary Conditions 
 

0)()(),(  tgoftoxv         (8) 

 

by (1), if )(tg = 0 then ( , )u x t will be identically zero. It is not acceptable because it 

does not satisfy the equation (2).  Thus it must satisfy the condition 

 

0)( of                   (9) 

 

Similarly, the boundary condition at )(lx  0),( tlU requires    

0)( lf               (10) 

 

There are two possible values of the constant k  i.e. 0k or .0k  

Values of the constant k : 

 

(i) 0k , then the general solution of equation (6) is  

 

              1 2( )f x c x c         (11) 

 

(9) Must satisfy the boundary value conditions (9) and (10). In order to satisfy (9) 

                     1 2 2( ) 0 0 0f o c c c          (12) 

 

It is also satisfies the equation (10) 

 1 1( ) 0 0f l c l c      Since .ol   

01 c        (13) 

 

Hence, )(xf is identically zero, and therefore ( , )U x t  is also identical zero 

(ii) 0k , we take 2k ,  where   is a new parameter.  Thus, the equation (6)  

becomes 

 0)()( 2  xfxf                            (14) 

 

and its general solution is  

1 2( ) i x i xf x b e b e          (15) 

 

Applying the boundary condition (9) and (10), we have 

 

021  bb         (16) 

 

1 2 0i l i lb e b e    
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The system (16) has a trivial solution 1 0b   and 2 0b  always, but it is not acceptable 

),( txu is identically zero.  Non-trivial solution exists if and only the determinant. 

 

1 1
0

i l i le e 
         (17) 

                                           

If we write, iv  then 

0il vl i l vle e e e     or 

(cos sin ) (cos sin ) 0vl vle l i l e l i l        

 cos ( ) 0vl vll e e      

 sin ( ) 0vl vll e e           (18) 

 

Now cos ( ) 0ve vel e e    forv and l, thus sin 0l   0v   (19) must be so chosen that 

 

 
n

l


  ,         (20) 

 

where n is a non-zero integer. From (16) 1 2b b    (21)    

From (15), we have  

1
1( ) ( )

2 2

i l i l
i l i l b e e

f x b e e
 

 


  
    

 
       

Thus, )(xf is proportional to      sin lx         (23) 

2

22
2

l

n
k


          (24) 

Where n is an integer 

 

From (7), we have                            (25)   

   

Hence the function 

l

xn

l

tn
ctxu nn


sin]exp[),(

2

222

           (26) 

 

,.......3,2,1n where nc  is an arbitrary constant, satisfies the boundary conditions 

10,9,2 as well as the differential equation (a).  The functions nu  are sometimes called 

fundamental solution of the heat conduction problem (a) (1) and (2). 

 

By the boundary condition (2) we get from (26). 

 

l

xn
coxu nn


sin),(         (27) 

 

For ..,.........2,1n  
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Each solution given by (27) satisfies the differential equation and the boundary 

condition.  Since partial differential equation involved is linear and homogeneous in u  

and its derivatives,   a sum of solution are also a solution.  From the known solutions, 

.,..................2,1 nuuu we may thus construct others with sufficiently strong convergence 

condition. It is true that even the infinite series 

 

n

n

uu 





1

or 

2 2 2

2
1

( , ) exp[ ]sinn

n

n t n x
u x t c

l l

  



      (28) 

is a solution of the differential equation.  In order to satisfy the initial condition (2) we 

must have 

 

1

( , ) sin ( )n

n

n x
u x o c h x

l





        (29) 

 

Now let us suppose that it is possible to express )(xh  by means of an infinite series 

forms 

 

l

xn
bxh n

n


sin)(

1






         (30) 

 

 

We know how to compute nb  i.e 

 

We can satisfy the equation (29) by choosing nn bc   for each n .  With the coefficient 

selected in this manner, equation (28) gives the solution of the boundary value 

problem (a) (1) and (2) 

 

Thus, we have solved the problem consisting of the heat condition equation. 

 

t

u

x

u









2

2
2 , lx 0 , ot         (1) 

 

The boundary condition 

,0),( tou   ,0),( tlu  ot       (2)   

 

and the initial condition 

),(),( xhoxu    lx 0                (3) 
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we found the solution to be 

 

l

xn

l

tn
ctxu n

n


sin]exp[),(

2

22

1






       (4) 

 

With the coefficients nb are the same as in the series 

 

l

xn
bxh n

n


sin)(

1






                   (5) 

 

Where  

dx
l

xn
xh

l
b

l

n



0

sin)(
2

       (6) 

 

The series in equation (5) is just the Fourier 

 

Example 2:  If we consider the problem of the heat conduction equation 

of boundary conditions and the initial condition, the boundary conditions are known 

as non-homogeneous boundary condition. 

 

Solution:  If we shall reduce the present problem to one having homogeneous 

boundary condition, we use the physical argument.  After a long time, i.e. 

……………, we anticipate a steady state temperature distribution ……………….. 

will be reached, and   must satisfy difficulties (1), then (which is independent of time t 

and initial condition). 

        …………. (4) 

and it satisfied the boundary condition 

 

        …………. (5) 

Which apply even as ……………..  The solution (4) with condition (5)  

 

        ………….. (6) 

 

Hence the steady state temperature is a linear function of x. 

 

We shall express ),( txU as the sum of the steady state temperature and another 

distribution w(x, t). 

 

 ( , ) ( ) ( , )U x t U x w x t        (7) 

(7) satisfies (1), we have 

 

 2( ) ( )xx tu w u w          (8) 
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It follows that 

 

 txx WW 2                 (9) 

 

Now boundary condition 

 

0)(),(),( 11  TToutoutow               (10) 

 

0)(),(),( 22  TTlutlutlw                            (11) 

 

The initial condition 

)()()(),((),( xuxfxuoxuoxw      (12) 

 

Where u(x) is given by (6) 

The problem now becomes precisely the previous one and we have the solution 

 
l

xn
Sin

l

tn
btxW n

n

 222

1

exp),( 




    (13) 

Where 

dx
l

xn
SinxW

l
b

l

n


)0,(

2

0               (14) 

Where 

 
l

xn
Sin

l

tn
bT

l

x
TTtxU n

n

 222

1

112 exp)(),(  




             (15)  

 

 

Where 

  dx
l

xn
SinT

l

x
TTxf

l
b

l

n


112

0
)()(

2
     (16) 

 

Example 3: Now we consider the problem of the heat conduction equation with the 

boundary condition 
2

xx tU U                                                              (1) 

 

(0, ) 0xU t   ,   ( , ) 0xU l t  ,       0t            (2) 

and the initial condition 

 

( ,0) ( )U x f x                                                          (3) 

 

Solution: We solve the equation by the method of separation of variables.  [When the 

ends of the bar are insulated so that there is no passage of heat through them]. 

 

( , ) ( ) ( )U x t h x g t        (4) 
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(4) satisfies (1), we have 

2

( ) 1 '( )

( ) ( )

h x g t

h x g t





         (5) 

 

We assume that  is real, we consider three cases   = 0 and –ve. 

(i) If   = 0 then equation (5) given 

1 2( , )U x t K x K         (6) 

 

Applying boundary condition (2), we get 

.01 K   Hence corresponding 

( ) 0h x   

1 2( )h x C x C   

BCtgtg  )(0)(       (7) 

 

Solution is 0 

      

(ii) If 2  where  is real and +ve 
2( ) ( ) 0h x h x          (8) 

 
2 2( ) ( ) 0g t g t           (9) 

 

From (8) and (9), we have 
2 2

1 2( , ) ( ).tU x t e k Sinh x k Cosh x         (10) 

 

Now we apply the boundary condition (2) 

 
2 2

1 2( , ) ( )t

xU x t e k Cosh x K Sinh x        

0),( toU x   and 0),( tlUx  

 

1 10 0, 0K K l      

2 20 0, 0K Sin l K l       

01  K  and 02 K  

 

This is not acceptable, because it does not satisfy the initial condition of   some 

examples of partial differential equation, hence , can not be positive. 

 

(iii)   2  , where  is +ve and real.  From (8) and (9), we obtain 

 
2 2

1 2( , ) ( )t

xU x t e k Cos x K Sin x                   (11) 
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Now we apply boundary condition, we get 1( 0)K   01 K and x l   
n

l


  for 

n=1,2,……   ( 0, )Sin n     
2 2

2
( )
n

l


   , where n is +ve integer                                 (12) 

Combining the solution, we have  

2

1
),( txUo Co       (13)   

         

 
2 2 2

2
( , ) exp , 1,2,.....n n

n t n x
U x t C Cos n

l l

  
     (14) 

 

These solution functions satisfy the differential equation (1) and bounding conditions 

(2) for any value of the constant .nC Both differential equation and boundary values 

are linear and homogeneous, any finite sum of the fundamental solutions will also 

satisfy them.  We will assume that this is also line for convergent infinite sums of 

fundamental solution as well. 

 

Thus  

 
2 2

2
1

1
( , ) exp

2
n

n

n t n x
U x t Co c Cos

l l

  



     (15) 

 

Where nC are determined by the initial requirement that 

 

1

1
( , ) ( )

2
n

n

n x
U x o Co c Cos f x

l





       (16) 

 

Thus, the unknown coefficients in equation (15) must be coefficients in the Fourier 

Cosine series of period 2l  for f.  Hence 

2
( ) , 0,1,2,

l

n

o

n x
c f x Cos dx n

l l


      

 

With this choice of the coefficients, (15) provides the solution of the equation. 

 

Example:  Elastic string with non-zero initial displacement 

 

First, suppose that string is displaced from its equilibrium position, and then released 

with zero velocity at time t = 0 to vibrate freely.  Then in vertical displacement U(x,t) 

must satisfy the wave equation. 

 
2 , 0 , 0xx ttU U x l t                                                     (1) 

 

The boundary conditions are 

,0),( toU  ,0),( tlU  0t           (2) 
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and the initial conditions 

,0)0,(),(),(  xUxfoxU t  lx 0          (3) 

Where f is given function describing the configuration of the string at 0t  . 

 

Solution:  We use the equation (1) by the method of separation of variables. 

 

Assuming that  

)(),( xXtxU      T (t)           (4) 

 

Substituting u in (1), we get 

2

1X T

X T




 
              (4) 

 

We assume that  is real (we shall prove it somewhere else. We consider these cases 

  = 0, -ve  and  +ve. 

 

(i)     = 0, then ,0X   and 21)( KxKxX      (5) 

(ii)   If ,0  then 02  xX    and xCoshKxSinhKxX  21)(    (6) 

 

Where    

 

Consider the solution given by (5) 

 

)()(),( 21 tTKxKtxU   

 

By boundary conditions 0),( toU  

 

,0)()0(),( 2  tTKtoU  )(tT can not be zero, because U(x,t) will be identically 

zero.  Thus, .02 K  Next consider the second boundary condition 0),( tlU  then 

00)()(),( 11  KtTlKtlU  

 

Thus X(x) = 0, it is not acceptable. 

 

(iii) Similarly, we can show that for (6) under boundary condition .0 21 KK   

 

Thus, 0 and ve real number are not acceptable.  We now consider the last 

cast  

 

(ii)   2 0            (7) 

        2 0X X          (8) 

        022  TT           

        1 2( )X x K Sin x K Cos x          (9) 

       3 4( )T t K Sin t K Cos t                  (10) 
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Thus  

 

1 2 3 4( , ) ( )( )U x t K Sin x K Cos x K Sin t K Cos t                  (11) 

 

Satisfies (1) for all values of 4321 ,,, KKKK  and for  .0  

 

Now we impose the boundary conditions 

 

,0),( toU    Thus 

 

2 3 4 2( , ) ( ) 0 0U o t K K Sin t K Cos t K                   (12) 

 

Secondly, boundary condition ,0),( tlU  

 

1 3 4( , ) ( )( ) 0U l t K Sin l K Sin t K Cos t        (13) 

If ,01 K  then ( , )U x t U is zero identically, thus for non-trivial solution. 

 

........2,1,0  n
l

n
lSin


      (14) 

 

Hence the functions which satisfy the equation (1) and boundary condition (2) are of 

the form. 

 

)(),(
l

tn
CosK

l

tn
SinC

l

xn
SintxU nnn


    (15) 

 

Where n=1,2,…….. nC  and nK are arbitrary constants.  Now we apply the principle of 

super position of solution and assume that 

),(),(
1

trUtxU n

n

n 




 = )(
1 l

tn
CosK

l

tn
SinC

l

xn
Sin nn

n








 (16) 

 

Further, we assume that (16) can be differentiated term by term with respect to t 

0),( oxUt  yields 

1

( , ) 0n n

n

n t n x
U x o C Cos Sin

l l

 



      (17) 

 

0 nC   for all values of n  

   The other condition )(),( xfoxU   

 

Given  

1

( , ) ( )n n

n

n x
U x o K Sin f x

l





        (18) 
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Consequently, nK must be line coefficients in the Fourier Series of period 2l  for f and 

are given by 

 

0

2
( ) , 1,2,....

l

n

n x
K f x Sin dx n

l l


         (19) 

 

Thus, the formal solution of the problem (1) with condition (2) and (3) is 

1

( , )n n

n

n x n t
U x t K Sin Cos

l l

 



        (20) 

 

Where the coefficients nK are given by (19). 

 

For a fixed value of n  the function  

 
n x n t

Sin Cos
l l

 
 is periodic in time t with the period 

n

l2
; it therefore represents a 

vibratory motion of the string having this period or having the frequency .
n t

l


 The 

quantities 
l

an
a


  for n=1, 2,…… are the natural frequencies of the string.  The 

factor n

n x
K Sin

l


represents the displacement pattern occurring in the string, when it is 

executing vibrations of the given frequency. 

 

In the case of heat conduction problem, it is attempting to try to show this by directly 

substituting equation (20) for ( , )U x t  in (1), (2) and (3), we compute. 

 

l

atn
Cos

l

xn
Sin

l

n
KtxU n

n

xx

 2

1

)(),( 




      (21) 

 

Due to the presence of the factor 2n in the numerator, this series may not converge.  It 

is not possible to justify directly with respect to either variable in (0, )l   and 0t  , 

provided h  is twice continuously differentials on ( , ).   This require f   and f  are 

continuous on [0, ]l  .  Furthermore, since h  , we must have 

 

 

Example: General problem for inelastic string. 

 

Consider the equation 

,02  ttxx UU  0 , 0x l t   ;                              (1) 

 

The boundary condition 

 (0, ) 0, ( , ) 0U t U l t                       (2) 

( ) ( ) 0f o f l  
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and the initial conditions 

( , ) ( ), ( , ) ( ),0tU x o f x U x o g x x l             (3) 

 

Solution:  As we have done in the previous case,  we obtain the solution 

1 1

( , ) ( , )n n n

n n

n x n t n t
U x t U x t Sin C Sin K Cos

l l l

   

 

 
   

 
     (4) 

 

Applying the initial condition ( ,0) ( )U x f x   yields 

)(),(
1

xf
l

xn
SinKoxU n

n

 





     (5) 

 

Where the coefficients nK are given in the Fourier Sine Series of period 2l for f and 

are given 

0

2
( ) , 1,2,....

l

n

n a
K f x Sin dx n

l l


       (6) 

 

Differentiate (4) with respect to t  and putting substitution.  We establish the validity 

in a different way.  We show 

 

 )()(
2

1
),( txhtxhtxU        (7)  

 

Where h  is function obtained by extending the initial data ( )f x   into ( ,0)l  as an odd 

function, and other values of x  as a periodic function on period 2l . 

 

That is 

)()2( xhlxh  . 

 

Now  

l

xn
SinKxh n

n








1

)(  

 

Then  

1

( ) ( )n

n

n x n t n x n t
h x t K Sin Cos Cos Sin

l l l l

   






    

1

( ) ( )n

n

n x n t n x n t
h x t K Sin Cos Cos Sin

l l l l

   






    

1 1

( , ) ( , )n n

n n

n x n t
U x t U x t K Sin Cos

l l

  

 

    

 

Equation h  is the function (20) follows on adding the two equations. 
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Note:  [If )(xf has a Fourier series, then it must be periodic and continuous]. 

 

1. If ),( txU is continuous for lx 0 and 0t provided that h is requires that f is 

continuous on line interval ( ).,   This requires that f is continuous on the 

interval ( , )o l   and, since h is odd periodic extension of f , that f  be zero at 

0x   and x p . 

2. U  is twice continuously differentiable 0t  , we get 

1

( ,0) ( )t n

n

n n x
U x C Sin g x

l l

 



      (7) 

 

Hence the coefficients ( ) n

n a
C

l


are the coefficients in the Fourier Sine series of period 

2l for g: Thus 

0

2
( ) ( ) ,

l

n

n a n x
C g x Sin dx

l l l

 
     1,2,n                                    (8) 

 

Thus, the equation (4) with the equation (6) and (8) constitutes the formal solution of 

the equation (1). 

 

Example: Laplace equation:  One of the most important of all the partial 

differential equations occurring in applied mathematics is associated with the name of 

Laplace. Here is Laplace equation in two dimensions. 

 

0 yyxx UU           (a) 

 

and in 3 dimension 

0xx yy zzU U U           (b) 

 

Now solve (1) under the boundary condition.  The problem of finding a solution of 

Laplace equation which takes on given boundary values is known as Dirichilet 

problem. 

 

Problem I:  Solve the Laplace equation 

0 yyxx UU          (1) 

 

In the rectangle 0 ,x a   ,0 by   and which satisfies the boundary condition 

 

,0)0,( xU   ,0),( bxU          ,0 ax          (2) 

,0),( yoU   ( , ) ( ),xxU a y f y      by 0         

Where f  is given function on by 0  
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Solution: 

 

)()(),( yYxXyxU          (3) 

 

Substituting ),( yxU in (1), we get 

K
Y

Y

X

X






                    (4) 

 

We assume that k is real. 

 

(i)  If K=0 then 0X  and 0Y  , and 1 2 1 2( , ) ( )( )U x y K x K C y C     (5) 

 

The homogeneous boundary conditions 0y   and y b  can be satisfied by 

),,(021 yxUCC  is identically zero.  Hence 0k   is not acceptable. 

 

(ii)  ,0,2  K then 

       2 0X X   

       2 0Y Y   

 

and thus 

))((),( 2121 yCosCySinCxCosKxSinhKyxU      (6) 

 

In order to satisfy the boundary conditions 0x and 22 00 CKy   

The condition at y b  becomes 

011 bxSinSinCK                    (7) 

0 bSin   

 

It follows that 

, 1,2,3,b n n                                                               (8) 

 

Thus, the solution of the differential equation must be of the forms. 

( , ) , 1,2,3,n n

n x n y
U x y C Sinh Sin n

b b

 
  ,                 (9)                 

 

There functions are the fundamental solution of the present problems.  We assume 
2 2

2
1 1

( , ) ( , )xx n n

n n

n n x n y
U x y U x y C Sinh Sin

b b b

   

 

            (10) 

 

Now the last boundary conditions 

 
2 2

2
1

( , ) ( )xx n

n

n n a n y
U a y f y C Sinh Sin

b b b

  



           (11) 
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Thus, the coefficients 
b

an
SinhCn


 must be the coefficients in the Fourier Sine series of 

period 2b  for ( )f y  and are given by 

 

2
( )

b

n

o

n a n y
C Sinh f y Sin dy

b b b

 
             (12) 

 

Thus, (10) is the solution of the equation (1) satisfying the boundary condition (2) and 

coefficients n

n a
C Sinh

b


are computed from (12). 

 

(iv) If 2K   then 

          02  XX   

          2 0Y Y   

and  

1 2 1 2( , ) ( )( )U x y K Sin x K Cos x C Sinh y C Cosh y        (13) 

Again, the boundary condition at 0y   and y b  lead to 021  CC , so again ( , )U x y  

is zero, everywhere.  Hence 2K   is not acceptable. 
 

Problem:  Dirichilet problem for a circle 

 

Consider the Laplace equation in polar co-ordinates 

2

1 1
0rr rU U U

r r
         (1) 

 

With boundary condition 

(0, ) ( )U f                     (2) 

 f is a given function on 0 2 .    
 

Moreover, in order that ( , )U r   the single valued, it is necessary that, as a function of 

 , U must be periodic with period .2  

 

Solution:  Let ( , ) ( ) ( )U r R r          (3) 

We substitute (3) in (1) 

2

1 1
0R R R

r r
        

Or 

2 R R
r r K

R R





  
           (4) 

 

Again, we assume that the separation constant must be real. 

(i)      Suppose K=0 

 02  RrRr  

 0  

 1 2( )U r K K Log r    
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  21)( CC   

 

 1 2 1 2( , ) ( )( )U r K K Log r C C         (5) 

Since equation is periodic in , thus .02 C  

Further 0r the term log r is unbounded. This behaviour is unacceptable.  Thus, we 

impose the condition that ( , )U r  remains finite at all points of the circle and hence we 

must take 02 K  

0( , )U r  Constant = 0
2

1
c  say               (6) 

 

(ii)    If 2K   then 

         02           (7) 

 

        1 2( ) C e C e             (8) 

 

       The function ( , )U r  is periodic thus 1 2 0.C C    

       This makes ( , )U r   identically zero.  This is not acceptable. 

 

(iii) Finally, ,0,2  K yields 

          022  RRrRr                  (9) 

And 

         02                              (10) 

 
  rKrKrR 21)(  

 

 CosCSinC 21)(                             (11) 

 

In order that for   to be periodic with period 2 , it is necessary that  be a positive 

integer. 

 

Moreover, the solution r of (10) be discarded, since it becomes unbounded as .or    

Consequently, .02 K   Hence the solutions (1) are 

( , ) ( ( ) ( )), 1,2,n

n n nU r r C Cos n K Sin n n     , 

 

These functions, together with that of equations (6), serve as fundamental solutions of 

the present problem. Thus 

1

1
( , ) ( ( ) ( ))

2

n

n n

n

U r Co r C Cos n K Sin n  




                (13) 

 

The boundary condition (2) then requires that  

1

1
( ) ( , ) ( ( ) ( ))

2

n

n n

n

f U a Co a C Cos n K Sin n   




                (14) 
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for .20    

 

The function )(f may be extended outside the interval. So also it is periodic of period 

,2 and has a Fourier series of the function (14). 

2

0

1
( ) ( )

2

n

na C f Cos n d


         (15) 

 
2

0

1
( ) ( )n

na K f Sin n d


  


       (16) 

 

With this choice of coefficients (13) represents the solutions of the boundary value 

problem of equations (1) and (2). 

 

(i) The heat conduction equation in two space dimension may be expressed in 

terms of polar co-ordinates as 

            2

2

1 1
( )rr r tU U U U

r r
     

Assuming that 

 

).()()(),,( tTrRtrU    Find ordinary equation satisfied by ( ), ( ),R r   and ( )T t . 

 

1 0
C

C

n x k x
I Cos Sin dx

C C

 


   for all k  and n . 

The integrand is an even function. 

 

2
0

2
(1 )

C n x
I Cos dx

C


   

 

 
0

2
. 1,2,

2

cC n x
x Sin C n

n C




     

Similarly, we can obtain 

2

3

C

c

n x
I Cos dx C

c




    for  1,2,3,n   

         C2  for 0.n   
 

Similarly, we can show that 

4

C

c

n x k x
I Sin Sin dx C

c c

 


   if nk   

Cdx
c

xk
Cos

c

xn
CosI

C

c
 


5  if nk   

 

Periodic Function:  A function f is said to be periodic with period T  if the domain of 

f contains Tx  whenever it contains x, and y. 
 

  )()( xfTxf   for every value of x . 
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)()( xfTxf   

With fundamental period 2 /T l m , every such function has the period   2l . 

The function 
m x

Sin
l


 and ,

m x
Cos

l


 for 1,2,..........n  are periodic. 

3.   Fourier Series 

We assume that there exists a series expansion of the type 

0

1

1
( ) [ ]

2
n n

n

n x n x
f x a a Cos b Sin

C C

 



        (1) 

Valid in the interval CxC   

2

1

( 1)
( ) ( ) ( )

2 !( )! 2

m
p m

p

m

z z
j z

m m p









  

(1) is called the Fourier series corresponding to ( ), nf x a and nb . 

Multiply (1) by   ,dx
C

xK
Sin


where k  is a +ve integer, and then integrate each term 

from –c to c, thus arriving at 

0

1

1

1
( )

2

C c c

n
c c c

n

c

n
c

n

k x k x n x k x
f x Sin dx a Sin dx a Cos Sin dx

c C C C

n x k x
b Sin Sin dx

C C

   

 



  







 



  

 

   (2) 

As seen earlier 

           0 dx
C

xk
Sin

C

xn
Cos

C

c


 for all k  and n . 

And  

0 dx
C

xk
Sin

c

xn
Sin

C

c


 if nk   

  =c    if k n  

Using (2), we have 

( ) ,
C

k
c

k x
f x Sin dx cb

C




  1,2,3,k   

or 
1

( ) ,
c

n
c

n x
b f x Sin dx

c C




   1,2,3,n   
 

Let us now evaluate the coefficients .na using the multiplies dx
C

xk
Cos


throughout 

equation (1) and then integrating term by term for –c to c, we get 

1

1

1
( )

2

C c c

o n
c c c

n

c

n
c

n

k x k x n x k x
f x Cos dx a Cos dx a Cos Cos dx

C C C C

n x k x
b Sin Cos dx

c c

   

 



  







 



  

 

  (4) 

Now we know that 

0 dx
C

xk
Cos

C

xn
Cos

C

c

   for kn   

                             =c   for n k  
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If ,0k  (4) reduces to  

( )
C

k
c

k x
f x Cos dx ca

C




  

or 
1

( )
c

n
c

n x
a f x Cos dx

c c




        (5) 

 

Next we determine the coefficient 
0a .  Suppose 0K in (4) 

1

1
( ) [ ]

2

C c c c

o n n
c c c c

n

n x n x
f x dx a dx a Cos dx b Sin dx

C c

 

   


         (6) 

 

Thus we have 

)2(
2

1
)( 0 cadxxf

C

c


 

or  
0

1
( )

C

c
a f x dx

c 
            (7) 

 

Thus we write the formal expansion as follows 

1

1
( ) [ ]

2
o n n

n

n x n x
f x a a Cos b Sin dx

C c

 



          (8) 

 

With 
1

( ) , 0,1,2
c

n
c

n x
a f x Cos dx n

c C




  ,                                     (9) 

1
( ) , 1,2,

c

n
c

n x
b f x Sin dx n

c C




  , …….                                        (10) 

Note that the formulae (9) and (10) depend only upon the values of ( )f x  in the interval 

.cxc   Since each of the terms in the Fourier series (8) is periodic with period 2c , 

the series converges for all x  whenever it converges in .cxc  , and its sum is also a 

periodic function with period 2c.  Hence ( )f x  is determined for all x  by its values in 

the interval .cxc  . 

 

4.0 ACTIVITY II 

Find the Laplace transform of  given  

 

5.0  CONCLUSION 
 

You have been introduced to partial differential equation in this unit. The attempts 

here are just introductory. You are required to study this unit properly because you 

will refer to it in your subsequent courses in mathematics. 
 

 

6.0  SUMMARY 
 

In this unit, various forms and types of partial differential equations were studied. 

These include (1) Wave equation (2) Laplace equation and (3) Heat equation. We also 
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proposed various methods of solving these equations which include method of 

separation of variables and Fourier series applications. You are required to study this 

unit properly and attempt all the exercises at the end of the unit. 

  

7.0  TUTOR-MARKED ASSIGNMENT 
 

i.   Show that the boundary-value problem 

0)()0(,02

2

2

 lyyyk
dx

yd
 cannot have a nontrivial solution for real values of 

k  

ii.   Determine those values of  k  for which the partial differential equation 

0
2

2

2

2











y

T

x

T
possesses nontrivial solutions of the form kyxfyxT sinh)(),(   

which vanish when lxwhenandx  ,,,0  

iii.   By considering the characteristic functions of the problem 

,02)1(
2

2
2  y

dx

dy
x

dx

yd
x 

 

Show that  0)()(
1

1
 dxxPxP sr  
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