SOLUTION TO ACTIVITIES

Module 1, Unit 1, Activity 1

Let y, the solution be defined by

 $y = c_0 + c_1 x + c_2 x^2 + \cdots = \sum_{m} c_m x^m$ ∞ $\bf{0}$ With y' and y'' given by $y' = c_1 + 2c_1 + 2c_1x + 3c_3x^2 + \dots = \sum_{1}^{\infty} m(m-1)c_mx^{m-1}$; $y'' = 2c_1 + 3.2c_3x + 4.3c_4x^2 + \cdots = \sum m(m-1)c_mx^m$ ∞ 2 Then substitute for y, y' and y'' in $y'' - 3y' + 2y = 0$ you obtain $\sum m(m-1) c_m x^{m-2} + 2 \sum c_m x^m = 0$ sum of coefficients of x_s is the same as B_s as $B_{i=}0$, $i=0,1,2,...$ B_0 : 2.1 c_2 – 3 c_1 + 2 c_0 = 0 up to B_s which is c_{s+1} + 2 c_s = 0, s = 0,1,2, ... taking c_0 and c_1 as arbitrary constants then the B_0 to B_s becomes $c_2 = \frac{3}{5}$ $\frac{3}{2}c_1-c_0, c_3=\frac{7}{3}$

 $\frac{1}{3+2}c_1-c_0$ etc.

Module 2, Unit 1, Activity 1

$$
\beta(p,q) = 2 \int_0^{\frac{\pi}{2}} \sin^{2p-1} \theta \cos^{2q-1} \theta \, d\theta
$$

Let $2p - 1 = \alpha$ then $p = \frac{\alpha+1}{2}$;
 $2q - 1 = 0$ then $q = \frac{1}{2}$
 $\therefore \beta \left(\frac{\alpha+1}{2}, \frac{1}{2}\right) = 2 \int_0^{\frac{\pi}{2}} \sin \alpha \theta \, d\theta$

That is \int_0^2 s π $\frac{\pi}{2}$ sin $\alpha \theta d\theta = \frac{1}{2}$ $\frac{1}{2}\beta\left(\frac{\alpha}{2}\right)$ $\frac{+1}{2}, \frac{1}{2}$ $\frac{1}{2}$

Module 2, Unit 2, Activity 2

General Solution for $8x(1-x)y'' + (4-14x)y' - y = 0$ is $A(1-x)^{-\frac{1}{4}} + B\sqrt{x} F(1, \frac{3}{4})$ $\frac{3}{4}$, $\frac{3}{2}$ $\frac{3}{2}$; x)

Module 2, Unit 3, Activity 2

The prove of $\int_{0}^{\frac{\pi}{2}} J$ $\frac{\pi}{2}J_0(z\cos\theta)\cos\theta d\theta = \frac{\pi}{2}$ $\frac{hz}{z}$ has been solved inside the manual, so check it up!

Module 3, Unit 2, Activity 2

From $L(f(\mu t)) = \frac{1}{n}$ $\frac{1}{\mu}F(s/\mu)$ and $L(\sin t) = \frac{1}{s^2 + 1}$ s^2

$$
L(\sin \mu t) = \frac{1}{\mu} \left(\frac{1}{(s/\mu)^2 + 1} \right) = \frac{1}{\mu} \frac{z}{s^2 + \mu^2} = \frac{\mu}{s^2 + \mu^2}
$$