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1.0 INTRODUCTION

In your study of metric spaces, you defined a number of key ideas like, limit point, closure
of a set, etc. In each case, the definition rests on the notion of a neighbourhood, or, what
amounts to the same thing, the notion of an open set. You in turn defined the notions
(neighborhood and open set) by using the metric (or distance) in the given space. However,
instead of introducing a metric in a given set X, you can go about things differently, by
specifying a system of open sets in X with suitable properties. This approach leads to the
introduction of the notion of a topological space. Metric spaces are topological spaces of a
rather special (although very important) kind.

20 OBJECTIVES
At the end of this unit, you shall be:

o able to define a topological space; and
o conversant with some important topological notions.

3.0 Basic Concepts.
3.1  Definitions and Examples
Definition 3.1 Let X be a set. A topology (t) on X is a collection of subsets of X, satisfying

the following properties:

1. The given set X itself and the empty set ¢ are members of 1
2. Any union of members of T is a member of T
3. The intersection of two members of T is a member of ©

The symbolic form of the three axioms are:



1. Xert,ger
2. gyetforeveryuem=> U {ty|]uem}et
3. T, meT=>T11NTeT

Definition 3.2

By a topological space is meant a pair (X, 1), consisting of a set X and a topology 1
defined on X. Just as a metric space is a pair consisting of a set X and a metric defined on
X, so a topological space is a pair consisting of a set X and a topology defined on X. Thus
to specify a topological space, you must specify both a set X and a topology on X. You
can equip one and the same set with various different topologies, thereby defining various
different topological spaces. In the sequel, you shall omit t and call only X a topological
space provided no confusion arise.

Definition 3.3
The elements of the topology T on X are called open sets.

Example 3.1 (Sierpinski topology) Let X= {a,b,c} you can define many topologies on X.
For example, you can define

[S = { ¢’ X’ {b}’ {a’ b}1 {b! C}}

Then 1 is a topology on X called the sierpinski topology.

Example 3.2 (The Discrete topology). If X is a set, take t4 to be all possible subsets of X.
14 IS clearly a topology on X, it is called the discrete topology. In the discrete topology, all
subsets of X are open. It is the largest topology on X

Example 3.3 (The Indiscrete topology). Let X be a set, and let 1, = {@ , X} . Then 1;is
clearly a topology on X called the indiscrete or trivial topology. It is the smallest topology
on X and (X, ¢ ) is called the topological space of coalesced points. This is mainly of
academic interest.

Example 3.4 (Finite complement topology). Let X be a set, and let t¢+ be the collection
of all subsets U of X such that X r U is either finite or X, i.e., ¢ is the collection of the
form

.= {U c X:either X\ Uisfiniteor X\ U=X1}.

Then ¢ is a topology of X called the finite complement topology.

Example 3.5 Let X be a set, and let 1 be the collection of subsets U of X such that X r U
is either countable or is X, i.e., 1. is a collection of the form

.= {U < X : either X r U is at most countableor Xr U=X}

Then 1. is a topology on X.

Definition 3.4



Let 11 and 12 be two topologies on X. Then t; is said to be finer than 1, (i.e., T2 IS coarser
than 11 ) if 11 D 10.

According to definition (3.4) you can observe that if T is any topology on X, then
Tt C T C 19 Where 14 and t; are as defined in examples (3.4) and (3.3).

Theorem 3.1. The intersection T = N 1,, where each 1, is a topology (where A is some
indexing set).

Proof. You are required to verify the three (3) axioms of topology of X for T =N 1,, given
that {1,}a € A is a family of topologies on X
So proceed as follows:

1. since 1, is a topology on X for each a € A, the ¢ and X are in each T, S0 that
d, XeNTt,

3.2 Basis for Topology

1. Let {Ui}i <1 be a collection of elements of T, where I is some indexing set.

Let U = Uj¢,. You have to show that U e 1.

But you already have that for each i € | U, € 1, for fixed a € A. Since 1, iS a topology on

X, U =Uj 1, for a € A. Therefore, by taking intersection over a € A, you have U = UU;
where U e 1.

2. To verify axiom (3), it is enough to do it for two sets U; and U, in t. The result follows by
induction on N

Therefore, take two sets U; and U, in T and let

U=uU; NU,

You have to show that U € t. But Uj, U; € 1, for each o € A
Thus U=U; NU; € 1, since each 1, a € A is a topology on X. Hence,

U=U; NU3 € 14

For each example in the proceeding section, you were able to specify the topology by
describing the entire collection t of open sets. This is usually difficult in general. In most
cases, you will need to specify instead a smaller collection of subsets of X and then define
the topology in terms of this collection.

Definition 3.5
(Basis) Let X be a set. A basis B for a topology on X is a collection ¥ of subsets of X
(called basis elements) such that
1. For each x € X, there exists B € B such that x € B, or equivalently X = Ug . 3.
2. If xeX, By, B,e B suchthat x e B; N By, There exists B; € B such that
XeBs;cB; N B,

Definition 3.6



(Topology generated by a Basis). If W satisfies the above two conditions, then we define
the topology t generated by ¥ as follows:

A subset U of X is in 1 (i.e., U is open) if for each x € U, there exists a basis element B ¢ ¥
suchthat x e B — U.

That is to say that 1 is a collection of the form

1 ={UeX:U= gorif xeU,there exists B e B such that x e B c U}

You can easily verify that T is a topology on X. Note that each basis element is open.

Example 3.6 Let B={(a, b): a, b € R, a < b}. Then B is a basis for a topology on R called
the standard or euclidean topology on R.

Example 3.7 Let B = {(a, b) : a, b ¢ R, a < b}. Then B'is a basis for a topology on R called
the lower limit topology on R.

Example 3.8 Let B= {{x} : x € X}. Then B is a basis for the discrete topology on X.
Proposition 3.1 Let X be a set, and let B be a basis for a topology T on X. Then 1 equals the
collection of all unions of elements of B.

Proof. Let (Bi)i € | be a collection of elements of B. Then for each i € I, Bi € T (because
each Bi is open). Since 7 is a topology. Bi € t.

Conversely, let U € 1, and let x € U. B is a basis for t implies there exist Bx € B such that

x € Bx c U, this implies that U = ¢, {x} cxy Bxc U

Thus U = c,, Bx, so that U is a union of elements of B
Example 3.9 Let X ={a, b, c,d, e, f}

and

1={X, ¢, {a}, {c, d}, {a c, d}, {b,c,d, e, f}. .
Then B = {{a}, {c, d}, {b, c, d, e, T} is a basis for T as B € t and every element of t can be
expressed as a union of elements of B.

Note the 7 itself is also a basis for t°

So far, you have seen that when you are given a basis, you can define a topology. But
the following example tells you that you have to be very careful when you have an
arbitrary collection of subsets of a set X.

Example 3.10 Let X = {a, b, c} and B = {{a}, {c}, {a, b}, {b, c}}. Then B is not a basis for
any topology on X. To see this, suppose that B is a basis for some topology t. Then t
consists of all unions of sets in B; that is,

={X, ¢, {a}, {c}, {a c}, {a b}, {b, c}}.

However, 7 is not a topology since {a, b} N {b, c} = {b} € . So t does not have property
(3) of Definition 3.1. This is a contradiction, and so your supposition is false. Thus % is not
a basis for any topology on X.

In view of the above example, the question of interest now is; under what conditions is of

a collection & of subsets of X a basis for a topology on X? The answer to this question is

provided by the next proposition.

Proposition 3.2 Let X be a topological space. Suppose that & is a collection of open
4



subsets of X such that for each open set U of X and each x ee:: U, there exists C ceu:&
such that

xeCcU.
Then & is a basis for a topology of X.

When topologies are given by basis, it is useful to have a criterion in terms of the bases for
determining whether one topology is finer than the other. One such criterion is the following:

Proposition 3.3 Let ¥ and ¥ be basis for the topologies t and 1° , respectively, on X. Then
the following are equivalent:

1. «* is finer that <.

2. For each x ¢ X and each basis elementB ¢ B containing x, there exists a basis element
B'c B'suchthatx ¢ B'c B,

Proof. (1) = (2). Letx e X andB ¢ B suchthatx ¢ B. You know that B ¢ t by definition
and thatt © t' by condition (1); therefore, B = 1'. Since t' is generated by B', then there exists
an element B' = B' suchthatx« B'c B.

(2) = (1). Given an element U« 1. Your goal is to show that U« ' Soletx « U. Since
B generate 7, there is an element B ¢« B suchthat x « B ¢ U By condition (2) there exists
B'« B'suchthatx« B'c B. Thenx« B'c U,soUe ', by definition. [

3.2.1 The Metric Topology

Ome of the most important and frequently used ways of imposing a topology on a set is to define
the toplogy in terms of a metric on a set. Topologies given in this way lie at the heart of modem
analysis, for example. In this section, you shall be introduce with the metric topology and some
of its examples.

Definition 3.7 A metric onaset X is a fimetiond : X » X - R having the following
properties:

1. d(x,y) >0 forall x, y € X; equality holds ifand only if x = y

2. dix,y)=0<=>x=y

3. d(x,y) =d(y, x) forall x,y e X

4. d(x,z)<d(x,y)+d(y, z) for all x, y, z € X (Triangle inequality)

Given a metric d on X, (X, d) is a metric space and the number d(x, y) is called the
distance between x and y in the metric d.

Definition 3.8 Let (X, d) be a metrtic space. Let x ¢ X and r > 0. The set
Ba (X, 1) ={yeX:d(x,y) <r}

Of all point y € X whose distance from X is less than r is called the open ball centred at x
with radius r, otherwise called open-ball centered at x.

Lemma 3.1 Let d be a metric on the set X. Then the collection of all open-balls B4 (x), for x
e X and r >0 is a basis for a topology on X, called the metric topology induced by d.

5



Proof  The first condition of a basis is trivial since X ¢ B(x, ) forany = 0. Before you
check the second condition for a basis, first of all prove the fact that if ye¢ B(x, ) for some
xe Xand = 0, there exists 3 = 0 such that B(y, 8) € B(x, ). Defined = - d(x.y),
then by triangle inequality, if z ¢ B(y, §) then d(x, z) = d(x,y) + d(y.z) < . Now to
check the socondconditionforbasis,letpl and B; be two basis elements and let y ¢ B,
n B;. Choose 8; and &; such that B(y, §;) ¢ B; and B(y. 8;) € B;. Let § = min(3,, §,). you
have B(y, 8) € By n B;. |

Using what you have just proved, you can rephrase the definition of the metric topology as
follows:

Definition 3.9 A set U is open in the metric topology induced by d if and only if foreachx ¢ U
there exist > 0 such that
Bi(x, )c U.

Example 3.11 Given a set X, define

lif x=y

dey) = {Oif X=Yy

3.2.2 Product Topology

Here, you shall be introduced to the product topology, but a detailed study of this kind of
topology will be done in subsequent units.

Let X and Y be topological spaces. There is a standard way of defining a topology on the
cartesian product X x Y. We consider this topology now and study some of its properties.

Lemma 3.2. Let X and Y be two topological spaces. Let % be the collection of all sets of
the form U x V, where U is an open subset of X and V is an open subset of Y. i.e.,
B:={UxV:UisopeninXandV isopenin Y}

Then B is basis for a topology on X x Y.
Proof The first condition is trivial, since X xY 15 itself a basis element. The second condition
is almost easy, since the intersection of any two basis element Uy x Vy and U, * Vy is another
basis element. For

Uy xVp)n Uy x Vy) = Uy 0 Uy)x (V) xVy),

and the later set is abasis element because U;n U, and Vin V, areopenin X and Y, respectively.



Definition 3.10 Let X and Y be topological spaces. The Product topology on X = Y is the
topology having the collection B as basis.

It 15 easy to check that B is not a topology itself on X * Y. You may now ask, what if the
topologies on X and Y are given by basis? The answer to this question 15 1n what follows.

Theorem 3.2 IfB 1s a basis for the topology on X and C 15 the basis for the topologyon Y,
then the collection

D={BxC:BcBandC¢ C}
15 a basis for the topologyon X =Y.

Proof You canuse proposition 3.2. Given an open set W of X xY and a point (x, v) ¢ X=Y of
W. by defimtion of the product topology. there exists a basis element U x V such that (x.
y)e UxV © W Since B and C are bases for X and Y, respectively, you can choose an
element B ¢ Bsuchthatx ¢ B € Uand an element C ¢ C suchthatye C © V. So(x,
y)e BxCc UxV ¢ W. Thus the collection D meets the criterion of proposition 3.2. so D
isabasisof X =Y. n

Example 3.13. You have the standard topology of R. The product topology of this
topology with itself is called the Product topology on R™ R = R, It has as basis the
collection of all products of open sets of R, but the theorem you just proved tells you that
the much smaller collection of all products (a, b) ™ (c, d) of open intervals in R will also
serve as a basis for the topology of R?. Each such set can be pictured as the interior of a
rectangle in R% It is sometimes useful to express the product topology in terms of sub-
basis. To do this, we just define certain functions called projections.

Definition 3.11 Letmy : X xY = Y andletny : X xY - Y defined by
m(x.y)=xandm(x.y)=y.

Themaps m; andm, arecalled projectionof X xY onto its first and second factors, respectively.

The word onto is used because they are surjective (unless one of the spaces X or Y happens
to be empty. in which case X xY 15 empty and your whole discussion 1s empty as well).

If U is an open subset of X. then 71} '(U) is precisely the set UxY, which is open in X xY,
Similarly. if V is openin Y, then 715 (V) = X xV. which is also open in X XY. The intersection
of these two sets in the set U x V. This fact leads to the following theorem.



Theorem 3.3. The collection
S={n '(U):UlisopeninX}u {n" '(V):V isopeninY}

1s a subbasis for the product topologyon X x Y.

Proof.  Let T denote the product topology on X x Y, let 1’ be the topology generated by
S. Since S € 7 then arbitrary unions of finite intersections of elements of S stay i t. Thus
t! ¢ 1. On the other hand. every basis element U x V for the topology T is a finite intersection
of elements of S, since

UxV =r7'(U)n n3' (V).

Therefore U x V belongs to t’. sot € ' aswell. [ |

3.2.3 The Subspace Topology

Definition 3.12 Let X be a topological space with topology 1. If Y is a subset of X. the
collection

w={YnU:Ue 1t}
is a topology on Y, called the subspace topology. With this topology. Y is called a subspace of
X its open sets consists of all intersection of open sets of X with Y.

Lemma 3.3 IfB is a basis for the topology on X. the collection

By ={BnY:B B

is a basis for the subspace topologyin Y.

Proof. Let U be an opensetof X and y ¢ Un Y, By definition of basis. there exists B ¢ B
suchthatye BC U Thenye Bn Y ¢ Un Y. It follows from proposition 3.2 that By isa
basis for the subspace topology on Y. |

When dealing with a space X and a subspace Y of X, you need to be careful when you use
the term open set. The question is do you mean an element of the topology of Y or an
element of the topology on X? The following definition is useful. If Y is a subspace of X,
the set U is open in Y (or open relative to Y) if it belongs to the topology of Y: this implies
in particular it is a subspace of Y. There is a special situation in which every open setin Y is
also open in X.

Lemma 3.4. Let Y be a subspace of X. If U isopenin Y and Y is open in X then U is open
in X.

Proof: Since UisopeninY, U=V nY forsome V openin X. Since Y and V are both
openin X,soisVnY.

Proposition 3.4 Let A be a subspace of X and B a subspace of Y. Then the product
topology on A x B is the same as the topology A x B inherits as a subspace of X x Y.



3.3 Closed Sets and Limit Points
Now that you have a few examples at hand, you can proceed to see some of the basic

concepts associated with topological space. In this section, you shall be introduced to the
notion of closed set, interior, closure and limit point of a set.

3.3.1 Closed Sets

Definition 3.13. A subset A of a topological set X is said to be closed if X \ A, the
complement of A in X is open.

Example 3.14 The subset [a, b] of R is closed because its complement ||R\[a, b]
1s open. Similarly [a. +e= ) 15 closed.

Example 3.15 Consider the following subset of the real line: Y = [01]u (2. 3). in the subspace
topology. In this space. the set [0. 1] 1s open. since 1t 15 the intersection of the open set = 31.%
of R with Y. Sinularly. (2. 3) 15 open as subset of Y. Since [0, 1] and (2. 3) are complement in

Y of each other. you can conclude that both are closed as subset of Y.

The collection of closed subsets of a space X has properties similar to those satisfied by the
collection of open subsets of X.

Theorem 3.4. Let X be a topological space. Then the following conditions hold:

1. @ and X are closed.
2. Avrbitrary intersection of closed sets is closed.
3. Finite unions of closed sets are closed.

Proof: Apply the De Mogan’s Laws:
1. (AUB)= A"NB°
2. (ANB)=A"UB*

When dealing with subspaces, you need to be very careful in using the term open set. The
following theorem is very important.

Theorem 3.5 LetY be a subspace of X. Then a set A is closed in Y if and only if it equals
the intersection of a closed set of X with Y.

Proof: Assume that A = C nY, where C is closed in X, then X r C is open in X, so that
(Xr C)nY isopenin, by definition of the subspace topology. But (XrC)nY =Y r A.
Hence Y r Aisopenin, sothat A is closed in Y. Conversely, assume that A is closed in
Y. Theset X r Uisclosed in X,and A=Y n (X r U), so that A equals the intersection of
a closed set of X and Y, as desired.

Note that a set that is closed in the subspace Y may not be closed in X. So the question now
is, when is a closed set in a subspace Y closed in the space X ? The next theorem provides
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an answer to this question.

Theorem 3.6 Let Y be a subspace of X. If Ais closed in Y, and Y is closed in X, then A
is closed in X.

3.3.2 Closure and Interior of a Set

Definition 3.14 Let A be a subset of a topological space X. The interior of A denoted

by Intor A’ js defined as the union of all open sets contained in A. The closure of A
denoted by cl (A) or A° is defined as the intersection of closed sets containing A.

Clearly, the interior of A is an open set and the closure of A is a closed set; furthermore,
If A is OPEN, Then A= int (A); on the other hand, if A is closed, then A = A

Proposition 3.5 LetY be a subspace of X: Let A be a subset of Y. Let A denote the clusure of
Ain X. Then the closure of AinY is An Y.

Anotheruseful way of describing the closure of a set is given in the following theorem.
Theorem 3.7 Let A be a subset of th topological space X.

1. Thex € A ifand only if every open set U containing x intersects A.

2. Supposing the topology of X is given by a basis, then x € A if and only if every basis
element B containing x intersects A.

Proof. Consider the statement (a). It is a statement of the form P < Q. Transforming each
statement to is contrapositive. gives you the logical equivalence (not P) < (not Q). Explicitly.

x € A if and only if there exists an open set U containing x that does not intersect A.

In terms of this assertion, the theorem is easy to prove. If x is not in A, the set X 1~ A 1s open
and contains x and does not intersect A as desired. Conversely. If there exists an open set U
contamning x which does not intersect A, then X 1~ A 1s a closed set containing A. By definition
of the closure A, the set X 1~ U must contain A: therefore x e A.

Part (b) follows from the definiton of basis.

Definition 3.15 Let X be a topological space. Let x ¢ X and V be a subset of X containing
X. V is said to be a neighbourhood of x if there exist and open set U of X such that
xe Uc V.

The collection of all neighbourhoods of x 15 denoted by M (x).

Proposition 3.6 Let X be a topological space and x © X. Then

1. N (x) 15 nonempty;

[

LIV e M and V © A them A ¢ M (x);

[F¥]

. A finite intersection of neighbourhoods of x 15 a neighbourhood of x.

10



Proposition 3.7 Let X be a topological space. Let U be a subset of X. Then U is open if and
onlyin Ue MN(x) for everyx e U.

Lemma 3.5 If A 15 a subset of a topological space X, then x ¢ A if and only if every neigh-
bourhood of x mtersects A. Le.,

x ¢ Aifand onlyifforall Ve N, Vn A=

Proof (=)Lletxec A andletV ¢ MN(x). Since V ¢ M (x), there exist U open such tha
x ¢ U=c V. It is enough for you to show that Un A = & . Suppose Un A = &, 1t imphes
that A © U® And U® is closed since U is open, thus, A © U*®. Which mmplies that x ¢ U*®,
which is a contradiction. Hence, Un A= 0.
(c)ﬂsmlﬁatf&rﬂ'ﬂ}'nﬁghbmuﬁmd}* ofx, Vn A=. You have to show
that
xc A Supposex ¢ A this implies thatx ¢ A which is open (because A is closed) and sB
A" ¢ N(x), and by hypothesis, A" n A =@ . This is a contradiction, hencex ¢ A_

Example 3.16 Let X be thereal line B. IfA = (0,1], then A = [0,1,B = {I/n -n =
1y _ _

thenB =B u {03} IfC = {0}u (1.2)thenC = {0}u [L2. =R

Q

Example 3.17 Consider the subspace Y = (0, 1] of the real line B The set A = (0, 1) 15 a
subset of Y. IlscluﬂurinRistheset[ﬂ',l:]andits closuwre mY 15 the set A = [D,%]n Y =0, l}.

3.3.3 Limit Points—

Definition 3.16 Let A be subset of a topological set X and let x € X. x is said to be a
limitpoint (or cluster point or point of accumulation) of A if every neighbourhood of x
intersects A in some point other than that x itself.

x € X is alimitpointof AifforallVe N(x). Vn(Ax{x})=0.

Or x is a limit point of A if x belongs to the closure of A 2= {x}. The point x may lie in A

o1 not.

40 CONCLUSION

Theorem 3.8 Let A be a subset of the topological space X. Let A be the set of all limit

points of A, Then A= Au A,

Proof.  Clearly. Au A' ¢ A To prove the reverse inclusion. let x € A. If X happens to be
in A. it is trivial that x e AU A’ Suppose that x 6 A. Since x ¢ A'. this implies that every
neighbourhood U of X intersects A. Because X 6 A. the set U intersects A in a point different
fromx. Thenx ¢ A’ sothatxe AU A’as desired. ]

Corollary 3.1 A subset of a topological space is closed if and only if it contains all its limit
points.

Proof. The set A is closed if and only if A = A. and the later holds if and onlyifA'c A, m

11



In this unit, you have been introduced to the meaning and examples of topological spaces
and some basic concepts of topological spaces such as basis for a topology, closed set,
open sets, interior of a set, closure of a set, neighbourhood of a set and limit point of a set.
You have seen some examples and proved some results.

5.0 SUMMARY
Having gone through this unit, you now know that;
M a topology defined on a set X is a collection t of subsets of X satisfying

(@) X and @ are in T,
(b) arbitrary unions of elements of t are in 1,

(©) finite intersections of elements of 7 are in .
(i)  a topological space is a pair (X, T ) consisting of a set X and a topology t
defined on it.

(iii)  the elements of a topology on X are called open sets.
(iv)  if 1y and 1, are topologies defined on X, then t; is said to be finer that t; if
T, C 11. In other words you say that 1, is coarser than t;.
(V) an arbitrary intersection of topologies is also a topology.
(vi)  a basis for a topology t on X is a collection B of subsets of X (i.e., basis
elements) such that
@ for each X, there exist B € B such that x ¢ B, or equivalently, X =Ug.s
(b) if x e X and By, B, € B such that x n By n By, there exists Bz e B such that x € B3
c B; n Bs.

(viii) the topology generated by a basis B is given by
={UeX:U=4gorif x € U, there exists B € B such that x € B c U}

(vii1) The collection
B:={UxV :UisopeninX andV isopeninY }

is a basis for the product topology on X x Y.

(1x) The collection

S={L{n YU): Uisopenin X} {rn (V) :V is o }1inY

1s a subbasis for the product topologyon X xY. Wheremy : X xY - X andm :
XxY = Y are the projection maps defined on X Y by m(x. y) = x and my(x. y) = y.

(x) if Y is a subset of a topological space (X. t). the collection
vy ={YnU:Ue 1t}

is a topology on Y, called the subspace topology. Y is called a subspace of X, its open sets
consists of all intersection of open sets of X with Y.
(xi) A subset A of a topological space X is said to be closed in X if X r A, (the complement
of A in X) is open.
(xii) if X'is a topological space, then
(a) D and X are closed.
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(b) an arbitrary intersection of closed sets is closed.
(c) a finite union of closed sets is closed.
(xiii) if Y is a subspace of X, then a set A is closed in Y if and only if it equals the
intersection of a closed set in X with Y.
* is the union of all open sets contained in A, while the closure of A denoted by A is
the intersection of all closed sets contained in A.
(xv) if V is asubset of a topological space X and x € X such that x € V, then V is called a
neighbourhood of x if there exists an open set U of X such that
xeUcV.

(xvi) 1 (x) denotes the collection of all neighbourhoods of x.

(xvii) if Ais a subset of a topological space X, an element x of X is called a limit point of
Aif forallV eN(X),Vn(Ar{x})=0@.
(xviii) asubset of a topological space is closed if and only if it contains all its limit point.

6.0 TUTOR MARKED ASSIGNMENTS

Exercise 6.1

1. In the following. answer true or false.
(a) The collection
1. ={U : X 2~ U 1s infinite or empty or all X }
is a topology in X7

(b) The union T, of a family {1, } of topology on X is a topology on X.

(¢) The countable collection

B= {(a.b):a <<b,a.be Q}

15 a basis for a topology on R.
(d) If A is a subset of a topological space X. and suppose that for each x € A. there

exists an open set U such thatx € U € A, then A is an open set in X.

2. Let R be with the standard topologyand let A € R. Then A 1s open in R if there exist an
mterval I such that I € A. Fora.be R. which of the following forms 1s is the interval I

(a) I =1(a.b)
(b) I = (a. b]
(¢) I =[a.b)
(d) I =[a.b]
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3. If T is a topology on a set X. which of the following is not true about 17

(a) Finite union of elements of T is in .

(b) Finite intersection of elements of T are in 1. (c)
The empty set & and the whole set X are in 1. (d)

Arbitrary intersection of elements of T are in T.

4. Answer true or false. The collection
B={UxV :UisopeninX andV isopeninY }
is
(a) a topology on the product space X xY.
(b) a basis for a topology on the product space X xY.

5. Letm; : X xY - Xandnm, : X xY — Y be the projection maps defined by
m(x. y) =x and ma(x. ¥) = ¥.
S={n '(U)|U openin X} u Lz~ '(V)|V openinY }

1s for the product topology on X xY.

(a) a collection of open sets
(b) a basis

(c) a subbasis
(d) a topology

6. Let R be endowed with the standard topology. Considerthe set Y = [— 1. 1] as a subspace
of R. Which of the following sets are openin Y ?

A=Lx:=-=|x]| <=1

2
1
Bq:x:i
C= x:lS |x|:‘tl
{ 1.2
D= x:l Ixl = 1
2
(a) A.B and C only
(b) A only
(¢) B and C only.
(d) D only.
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7. With the standard topology of R. which of the sets in question 6 above are open in R?

(a) A.B and C only

(b) A only
(¢) B.C and D only.

(d) D only.

8. Let R be endowed with the standard topology. Considerthe set Y = [— 1.1] as a subspace
of R. Which of the following sets are closedin Y ?

A={x: L

A
£l
/
—

Rl = 1= b= b
£ .
A
_
H_J

(a) A.B.C and D.
(b) B and C only

(¢) B. C and D only.
(d) D only.

9. With the standard topology of R. which of the sets in question 8 above are closed in R?

(a) A. B and C only
(b) B. C and D only
(¢) B and C only.

(d) D only.

10. If Ac X, atopological space. then the boundary of A. denoted by /A of Bd A by:
A=AnX 1A
The folowing are true:

1. A and QA are disjoint, and A = AU JA.

b

. 0A = set if and only if A is both open and closed.
3. Uis openif and only if 9U = U 2~ U.
Justify.

11. Hence or otherwise compute the boundary and interior of each of the following subsets
of R
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@ A={(xy):y=0}

(b) B={(x.y):x>0andy =0}
(¢c) C=Au B.

(d) D = {(x.x) : x is rational }

12. If R. the real line is endowed with the indiscrete topology. Let A = [0, 1). What is A?

(a) [0.1]

(b) R

(€ [0.1)

d) @

[Hint: Use theorem 3.7]
13. If R. the real line is endowed with the usual metric topology. and let A = (0. 1). What is

OA?

(a) R

(b) [0, 1]

(c) {0, 1}

(d) (0, 1]
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