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1.0 INTRODUCTION 

 

In integral equations, an unknown function which is the subject seeking a solution 

always appears under an integral sign. These equations bear a close kinship with 

differential equations suggesting that a differential equation can be formulated as an 

integral equation and vice-versa. 

The analytical method remains the standard method of solving integral equations, 

however, where the analytical method fails; the equation can be solved numerically. 

 

Let us commence with two common problems to illustrate the basic concepts of linear 

integral equations; loaded elastic string and the shop stocking problem. 

 

2.0 OBJECTIVES 

At the end of this unit, you should be able to: 

 explain the basic concepts underlying linear integral equations; 

 investigate the equations which describe the displacement of a loaded elastic 

sting; and  

 treat the shop stocking problem. 

 

 

  

3.0 MAIN CONTENT 
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3.1 Linear Integral Equation: Preliminary Concepts 
 

Let us take a look at some problems, the types of which we encounter every day and 

which give rise to integral equation.  

3.1.1 A Loaded Elastic String 

 

 

 

 

 

Consider a weightless elastic string as shown in the above figure, stretched between 

two horizontal points O and A and suppose that a weight W is hung from the elastic 

string and that in equilibrium the position of the weight is at a distance  from O and 

at a depth Y below OA. If W is small compared to the initial tension T in the string, it 

can be assumed that the tension of the string remains T during the further stretching. 

The vertical resolution of forces gives the equilibrium equation 

     OWaTT    

Where aAO   (1.1) 

The drop Y due to a weight W situated a distance   along the string from O is 

given by  

   TaaWY   (1.2) 

The drop Y in the string at a distance x  from O is given by 

   xyxY 0,  (1.3) 

     axaxay   ,  (1.4) 

Eliminating y, these two results can be written in the form 

   TxGWy ,  (1.5) 

where  

       xaaxxG 0,,  

     axaxa   ,  (1.6) 

O A 

Y 

W 

Q a  

β  

η 
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Suppose now that the string is loaded continuously with a weight distribution  xW  

per unit length, the elementary displacement at the point distance x  from O, due to the 

weight distribution over   x  is  

     TxGWy  ,  

 ax  ,0  (1.7) 

On integrating, displacement due to the complete weight distribution is given by  

       axdWxGTxy
a

 
 0,,

0

1   (1.8) 

Thus, the displacement of the string is given in terms of the weight distribution. 

However, if we are given the displacement of the string, what is the weight 

distribution? 

In this case, we can sew site to equation. (1.8) the form  

            




   

 x a

x
DWxaWaxTaxy

0

1
  (1.9) 

Different this twice, we obtain 

      xWTaxy
1

''


  

i.e.

 

   xyTaxW ''  (1.10) 

 

3.1.2 The Shop Stocking Problem 

A shop starts selling some goods. It is found that a proportion  tK   remains unsold at 

time t after the shop has purchased the goods. It is required to find the stock at which 

the shop should purchase the goods so that the stock of the goods in the shop remains 

constant (all processes are deemed to be continuous). 

Suppose that the shop commences business in the goods by purchasing an amount A 

of the goods at zero time, and buys at a rate  tQ  subsequently. Over the time interval  

     dQtK   (1.11) 

Thus, the amount of goods remaining unsold at time t, and which was bought up to 

that time, is given by.        dQtKtAK
t

 
0

 (1.12) 

This is the total stock of the shop and is to remain constant at its initial value and so  

        dQtKtAK
t

 
0

  (1.13) 
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And the required stocking rate  tQ is the solution of this integral eqn. 

4.0 CONCLUSION  

You have learnt the processes involved in the two illustrative problems. It is easy to 

formulate similar solutions for a vast array of problems. 

5.0 SUMMARY 

The two problems presented demonstrate how to formulate and derive an integral 

equation for a suitably structured problem. It also demonstrates the process of solving 

the integral equation developed. 

 

 Apart from the Loaded Elastic String and the Shop Stocking Problem, can you 

make a list of 5 different types of problems which can be solved using integral 

equation? 

 

 A transport company distributed workshops within a metropolis which receives 

and repairs its broken down vehicles. The workshop manager discovers that he 

must always reroute a Y (t)% of his workshop allocation of vehicles to 

alternative location every day as he cannot accommodate them in his workshop 

overnight, and he calls you in to tell him the optimum number of requests for 

repairs he should entertain every day such that the workshop is 100%  utilised 

when all related processes are assumed to be continuous. Formulate an integral 

equation to help the workshop manager. 
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1.0 INTRODUCTION 

 
There are many ordinary differential equations which can be converted into 

corresponding integral equations and we shall proceed to study how these 

transformations can be carried out; particularly in the classical case of the Sturm 

Lowville problems and a host of others illustrative of this transformation process. 

2.0 OBJECTIVES 

At the end of this unit, you should be able to: 

 convert ordinary differential equations into integral equations; 

 transform  Sturm- Liouville problems to integral equations; and 

 work through a series of examples of transformations and conversions, and 

their solutions. 

 

3.0 MAIN CONTENT
 

 

3.1 Conversion of Ordinary Differential Equations into Integral 

Equations  

 

            xfxyxaxyxaxy  2

1

1

11  (1.14) 

with the initial condition,  

    1

1

0 0,0 yyyy   (1.15) 

 Let    xyx 11                                                                                     (1.16) 

Then,     1
0

1 yduuxy
x

    (1.17) 
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       01
0

yxyduuuxxy
x

     (1.18) 

Substituting the relations 1.16 to 1.18 into the differential equation, it follows that 

            duuuxxaxax
x

 
0

21   

        xayxaxyxayxf 202111   (1.19) 

Equation (1.19) can be written in the form  

        xgduuuxKx
x

  
0

,  (1.20) 

Which is an integral equation for  x  

Example 1.1 

 Form the integral equation corresponding to  

     00,10,02 1111  yyyxyy  

Solution 

 Let    duuyxy
x

x 
0

111
,   

     1
0

  duuuxy
x

  

Thus,         012
00

  duuuxduuxx
xx

  

 i.e.
 

      013
0

  uuxx
x

  

3.2 Transformation of Sturm - Liouville Problems to Integral Equation 

A problem which is associated with an expression of the form 

     21, xxxyxq
dx

dy
xP

dx

d
Ly 








  (1.21) 

and boundary condition of the form 

     01

1

111  xybxya   (1.22) 

 

     02

1

222  xybxya  
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is said to be of Sturm-Louville type. 

There are two problems which are of interest here, namely: 

   21 xxxxfLy   (1.23) 

and 

   210 xxxyxrLy    (1.24) 

 are continuous in the interval 21 xxx  , and in addition  xP has a continuous 

derivative and does not vanish. 

The differential equation (1.23) corresponds to a displacement y caused by 

some forcing function ,f  and the differential equation (1.24) forms together 

with the boundary condition, an Eigenvalue problem.  

Suppose that 21, QQ are solutions of the equation 0Ly   

with        0111111  xQbxQa   

    02

1

22222  xQbxQa  (1.25)  

then,  

 21120 LQQLQQ   

 


















dx

dd
P

dx

d
Q

dx

d
P

dx

d
Q 2

1
1

2


 

 

















dx

dQ
Q

dx

dQ
QP

dx

d 2
1

1
2  

Thus,  











dx

dQ
Q

dx

dQ
QP 2

1
1

2  constant  (1.26)  

Using the method of variation of parameters, look for a solution of the form 

         xQxzxQxzxy 2211   (1.27) 

where 21  and zz  are to be determined. 

Thus,  

 1

22

1

112

1

211
11 QzQzQzQzy    (1.28) 
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Let     ,02

1

21

1

1  QzQz  so that  

            xQxzxQxzxP
dx

d
Ly 1

21

1

11   

             xQxzxQxzzxq 2211   

  1

2

1

2

1

1

1

1 QzQzP   (1.29) 

Since 021  LQLQ  

Thus, 1z  and 2z  are given by the solutions of equations 

 02

1

21

1

1  QzQz  (1.30) 

    xfQzQzP  1

2

1

2

1

1

1

1  (1.31) 

 Whence, 
   1

21

1

12

11

21

21

1

12

21

1
QQQQP

fQ
z

QQQQP

fQ
z







  (1.32) 

The denominator in these two expressions is constant by (1.26) and by a 

suitable scaling of 1  and 2  may be taken as 1 . 

Thus,  

 ,2

1

1 fQz           1

1

2 fQz   (1.33) 

It follows that  

       duufuQxz
x

x 21  (1.34) 

       duufuQxz
x

p 12  (1.35) 

where the unspecified limits of integration are the equivalent of the arbitrary 

constants of integration and are determined by the necessity of y  satisfying the 

boundary condition. 

Now, 

   1

22

1

11122111

1

11 QzQzbQzQzaybya    (1.36) 

 Since 02

1

2

1

1  QzQz  

 Also     01

1

11111  xQbxQa   (1.37) 

Hence, 



MTH 424   MODULE 1 

81 

           1

1

21121121

1

1110 xQbxQaxzxybxya   (1.38) 

First let us assume that neither 1Q nor 2Q  satisfies both boundary condition, 

hence, it follows that   012 xz  and so  

       duufuQxz
x

x 1
12

 (1.39) 

Similarly, 

     1

222

1

2

1

111

1

1222112

1

22 QzQzQzQzbQzQzaybya   

     1

22

1

11222112 QzQzbQzQza   

     1

12121

1

22222 QbQazQbQaz   

Since     ,02

1

2222  xQbxQa we have  

            2

1

12212212

1

2220 xQbxQaxzxybxya   

Thus, it follows that   021 xz  and so 

       duufuQxz
x

x
2

21  

              duufuQ
x

x
2

2   (1.39) 

Hence  

           xQxzxQxzxy 2211   

             duufuQxQduufuQxQ
x

x

x

x  
1

2

1221  

     
2

1

,
x

x
duufuxGxy  (1.40) 

where 

     xQuQuxG 21,     xux 1  (1.41) 

The quantity  uxG ,  is termed the Green’s fin associated with the operate L 

and the boundary condition specified. 

We would see that the Eigenvalue problem (1.24) defined and the boundary 

condition (1.25) can be reformulated as the integral equation 
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        0,
2

1

  duuyuruxGxy
x

x
  (1.42)  

by just replacing  xf by    .xyxr  

Let us now consider the case where one of the solutions 1 and 2Q of 0Ly  do 

satisfy both boundary condition while the other will not satisfy either boundary 

condition. Then, following the provided argument, if follows that 

             duufuQxduuuxQxy
x

x

x  


  (1.43) 

where x  and   are arbitrary and here  x does not satisfy either boundary 

conditions.  

Since both y and Q  satisfy the boundary condition, if follows that 

            duufuQxbxaxybxya
x



1

1

1

111111

1

1110  (1.44) 

          duufuQxaxybxya
x



2

2222

1

2220  (1.45) 

 x  does not satisfy either boundary condition and so if follows that from 

(1.44) ,x  and from (1.45) we have  

    0
2

1

 duufuQ
x

x
 (1.46) 

and the solution is only possible when this relation exists between f  and .Q  

Thus, the integral equation formulation becomes  

      duufuxGxQAy
x

x
2

1

,  (1.47) 

Wher       +e     duufuA
x

x
1

 is an arbitrary constant and  

       xuQuxG ,  xux 1  

   uxQ   2xux    (1.48) 

Example 1.2 

Find an integral equation formulation for the problem defined by 

   
4

04
2

2

 xxfy
dx

yd
,  0y  at ,0x  and 0y  at 

4
x  
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Solution  

The solutions of 04
2

2

 y
dx

yd
 which satisfy the boundary condition at 

0x and 
4

x  are xSin2  and xCos2 respectively. 

Neither satisfies both boundary conditions. 

Let,  xzxwy 2cos2sin   

 xzxwxzxwy 2sin22cos22cos2sin 111   

      02cossin if 2sin2cos2 11  xzxwxzxw  

    xzxwxzxwy 2cos42sin42sin22cos2 1111   

Thus,  

  fyy  411  

becomes  

  fxzxw  2sin22cos2 1  

whence, 

  ,2sin
2

11 xfz   xfw 2cos
2

11   

Thus,  

      uduufxz
x

2sin
2

1



 and     uduufxw
x

2cos
2

1



 

     udusuf
x

uduuf
x

y
xx

2
2

2cos
2cos

2

2sin
 


 

Now ,0at  0  xy so that 

      .2sin
2

1
00

0

uduuf


 

0   

Also, ,
4

at  0  xy  so that 
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    02cos
2

1
0

4

  uduuf



 

.
4

     Thus, 

     uduufxuduufxy
x

x
2sin2cos

2

1
2cos2sin

2

1

0

4

 


 

     duufuxG
4

0
,



 

where     uxuxG 2sin2cos
2

1
,


   xu 0  

     ux 2cos2sin
2

1
  .

4
 ux  

Example 1.3 

 Transform the problem defined by 

  0
2

2

 y
dx

yd
  

when 0y  at 0x  and 01 y  at 1x  into integral equation form. 

Solution  

The solution to this problem is 

  
    2

2

12
,

2

12
sin 







 








 nxn
y      ,3,2,1n  

The two solutions 0
2

2


dx

yd
 which satisfy the boundary conditions are 

respectively xy  and 1y . (neither satisfies both b.c) 

Following through the usual process, if follows that the solution of 

   xf
dx

yd


2

2

 under the boundary condition specified is  

     duufuduufxy
x

x

 
0

1
 

and so the integral formulation is  
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       duuyuxKxy 
1

0
,   

where  

  
 

1             

0,





xuu

uxxuxK









0

1

ux

xu
 

Example 1.4 

Transform the problem by  xfy
dx

yd


2

2

 

and the boundary condition 0y   at 0x  and x  into integral equation 

form and indicate what condition must be satisfied by  xf . 

Solution  

Now xsin  satisfies the equation 0
2

2

 y
dx

yd
 and both boundary condition  

The second solution of the differential equation 0
2

2

 y
dx

yd
 is ,cos x  and this 

satisfies neither boundary conditions  

Let xwxzy cossin   

Following the same process, it follows that  

     duufuxduufuxy
x

x

  sincoscossin  

Now y is to vanish at ,0x  and so the limit of integration on the second 

integral is zero y  must also vanish x  and it follows therefore, that 

      0sincos
0

 duufuy


  

Thus, for a solution to be possible 

    0sin
0

 duufu


 

and      duufuxGxAxy 


0
,sin  

where A  is arbitrary and  

    xuuxG cossin,   uu 0  



MTH 424   MODULE 1 

86 

  ux cossin  . ux  

4.0 CONCLUSION  
 

A Sturm–Lowville differential equation with boundary conditions may be solved by a 

variety of numerical methods on most occasions; however, there are situations where 

it becomes necessary to carry out intermediate calculations. 

 

5.0 SUMMARY 

Ordinary differential equations can be transformed into integral equations. 

 

6.0 TUTOR-MARKED ASSIGNMENT 
 

1. Transform the problem defined by y’’ – Ky = 0 when y=0 at x=2 and y’=0 at 

x=4 into integral equation? 

2. A Sturm-Lowville type problem can be associated with an expression of the 

form 

     21, xxxyxq
dx

dy
xP

dx

d
Ly 








  (1.21) 

Write down the form of the second boundary condition when the first is of 

this form. 

    01

1

111  xybxya ? 
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1.0 INTRODUCTION 
 

Integral equations are classified according to Limits of integration, placement of 

unknown function and nature of known function. These result in Fredholm and 

Volterra equations on the one hand, and integral equations on the other hand. Finally, 

the homogeneous and non-homogeneous falling into the last class – making a total of 

eight distinct classes of integral equations. 

 

2.0 OBJECTIVES 

At the end of this unit, you should be able to: 

 classify Linear integral equations; and 

 find approximate solutions for integral equations. 

 

3.0 MAIN CONTENT 

3.1 Classification of Linear Integral Equation 
 

Let  yxK ,  be a function of two variables x and y  defined and let  xf  and  xQ  be 

two functions of the variable x  continuous in the interval ,bxa   which are 

connected by the functional equation  

       dyyQyxKxQxf  ,  (1.49) 

The functional equation (1.49) is called a linear integral equation of the 2
nd

 kind with 

the kernel  yxK , . In this equation, every continuous function  xQ is transformed into 

another continuous function  ;xf  the transformation is linear, since to ,2211 QcQc   

there corresponds the analogous combination .2211 fcfc    

If the function  xf  vanishes identically, we are dealing with a homogenous integral 

equation. If a homogenous equation possesses a solution other than the trivial solution 
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,0Q the solution may be multiplied by an arbitrary constant factor and may 

therefore, be assumed normalised. 

If nQQQ ,,, 21   are solutions of the homogenous equation, then, all linear 

combination nn QCQC 11  are solutions. 

It can also be proved that linearly independent solutions of the same homogenous 

internal equation are orthornormal. A value     for which the homogenous equation 

possesses non-vanishing solutions is called an Eigen function of the kernel for the 

Eigenvalue . Their number is finite for each Eigenvalue.  

The integral equation      xfdyyQyxK
b

a
 ,   (1.50) 

1
st
 kind. The integral equation  

        xfdyyQyxKxQ
b

a
  , ,  bxa   (1.51) 

is termed a Fredholm equation of the 2
nd

 kind.  

If   ,0, xyyxK    (1.52) 

the kernel is said to be of Volterra type. 

The integral equation 

     xfdyyQyxK
x

a
 ,  xa    (1.53) 

is termed a Volterra integral equation of the 1
st
 Kind. 

If    ,, xyKyxK   the kernel is said to be of convolution form. 

The integral equation 

        xaxfdyyQyxKxQ
x

 0 ,    (1.54) 

is termed a Volterra integral equation of the 2
nd

 kind.  

In general, it is a Volterra integral equation of the integral equation of the 2
nd

 kind. 

If we differentiate equation (1.53) w.r.t ,x  it follows that  

   
 

   xfdyyQ
x

yxK
xQxxK

x

a

1,
, 




   (1.55) 

If  xxK ,  is non-zero, it is possible to divide through by it, and it is clear that it is an 

associated Volterra integral equation of the 2
nd

 kind. 
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The kernel is said to be symmetric. 

 if    xyKyxK ,,    

The kernel is said to be anti-symmetric  

 if    xyKyxK ,,   

The kernel is said to be Hermitian  

 if    xyKyxK ,,   

 

3.2 Approximate Solutions  

We split the interval into n equal sub-interval, and suppose that we may write 

approximately 

    















n

s
y

n

s

n

r
x

n

r
KyxK rs

1
,

1
,  

where Krs  are constants. 

Similarly, when we write  

    












n

r
x

n

r
fxf r

1
 

the equation (1.54) becomes  

   dyyQKfxQ
n

s

rsr

n
s

n

s 





1
1

   (1.56) 

  
m

r
x

n

r


1
 

This shows that Q  also will be a step function taking the values ,rQ  say. 

Equation (1.56) becomes 

rs

n

s

rsr fQK
n

Q  
1


  (1.57) 

Let K  be the nn matrix with elements 
n

K rs  and let Q be n  vectors, then, we have  

  fQKI    (1.58) 
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The system has thus been reduced approximately to a set of linear algebraic equations. 

For these, the theory is well-known and a computational solution is straight forward. 

In a sense, the solution of (1.54) may be regarded as the limit of (1.57) as n . 

Exercises  

Solve the equation  

(i)     2
1

0
2 xdyyQxyxQ    

(ii)       00
1

0
 

 QxdttQexQ tx  

approximately at the parts. 1,,0  and 1,,0 2
1

2
1  yx   

Compare your results with the exact solution in case (ii). 

4.0 CONCLUSION  

Linear integral equations can be classified into several groups and sub-groups 

such as: Fredholm, Hermitian, Volterra integral equation and those integral 

equations which are either symmetric or anti-symmetric. 

5.0 SUMMARY 

 Linear integral equations can be classified according to their common 

characteristics. 

 

6.0 TUTOR-MARKED ASSIGNMENT 

1. In how many ways can integral equations be classified? 

2. What type of integral equations has a fixed (constant) limit of integration? 

3. Distinguish a Volterra type of integral equation from a Fredholm integral 

equation. 

4. A homogeneous equation is identically non-zero. True or False? 
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