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1.0 INTRODUCTION 

Volterra integral equations have integration limit which include the variable as 

opposed to the Fredholm integral in which the integration limits are constants. 

2.0 OBJECTIVES 

At the end of this unit, you should be able to: 

 recognise volterra integral equations; 

 comprehend that  there are the three types of volterra integral equations; and 

 arrive at the resolvent kernel of a volterra equation. 

 

3.0 MAIN CONTENT 

Volterra integrals are characterised by the limit of integration being one variable and 

of which there are three types. A common solution to Volterra integrals is to employ 

the formalism known as the Resolvent. 

3.1 Volterra Integral Equations 

A kernel  yxK , is said to be of Volterra type if   xyyxK  ,0,  (2.1) 

There are three types of Volterra integral equations. 
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These are: 

(i) The equation of the first type. 

     dyyQyxKxf
x

 0
,   (2.2) 

(ii) The equation of the second type.  

       xfdyyQyxKxQ
x

 0 ,  (2.3) 

(iii) The homogenous equation of the second type.  

     dyyQyxKxQ
x


0

,   (2.4) 

The following properties arise:  

(i) It is necessary for consistency in the equation of the first kind i.e. 

  00 f  

(ii) Any solution to the equation of the second kind cannot be correct unless 

   00 fQ   

(iii) If K  is non-singular, there are no Eigenvalue and Eigen functions 

associated with the homogenous equation (2.4) 

(iv) The equation of the first type can be differentiated to give the equivalent 

equation 

   
 

   xfyQ
x

yxK
xQxxK

x
1

0

,
, 




    (2.5) 

Example 2.1 

Solve the integral equation 

        x
x

eduyQyxxQ  0 cos3  

Solution  

 Here     100  fQ  

Differentiating w.r.t x , it follows that  

          x
x

c
edyyQyxxQxQ   sin331  

Thus,     410301  QQ  
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Differentiating w.r.t x  again, we have 

         x
x

edyyQyxxQxQ  0
111 cos33   

      xexQxQ 23 1   

This equation can simply be solved thus: 

      xexQxQQ 23 111   

Consider the homogenous equation 

  03 111  QQQ  

Let 
2

5

2

3
,0132  mmmeQ mx  

Example 2.2 

Solve the integral equation 

         dyydyxxxQ
x

 
0

211  

 

Solution  

 Differentiating once, it follows that     100  fQ  

       dyyQxQxQ
x


0

1 2  

      20101  QQ  

Differentiating again, we have  

       xQxQxQ 2111   

i.e. 02111  QQQ    Let     02102, 2  mmmmeQ mx   

2or   m  

  xx eBeAQ 2   
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3.2 Resolvent Kernel of Volterra Equation  

Let us consider the equation:  

       xfdyyQyxKxQ
x

 0 ,   (2.6) 

We can set about the solution by guessing that at least for small x  the integral 

term will be small. First approximation is then  

   xfxQ 0   (2.7) 

So that        dyyQyxKyQyxK
xx

0
00

,,    

    dyyfyxK
x


0

,  (2.8) 

The second approximation  ,1 xQ  is then 

         dyyfyxKxfxQ
x

0
0

1 ,   

                 dyyfyxKxf
x

0
0

,   (2.9) 

Repeating the argument, we obtain a sequence of approximations. 

        dyyQyxKxfxQ n

x

n 1
0

,    (2.10) 

Write equation (2.10) in the form 

  1nn QKfQ   (2.11) 

So that    21 nn QKfQ   (2.12) 

Therefore,     211 nnnn QQKQQ   (2.13) 

Now set 100  and  nnn

n QQQf   (2.14) 

then, 

   

 1

1

n

n

n

n K    

i.e.  

 11    nK nn   (2.15) 
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Now,     xfxQ 0  

        dyyfyxKx
x


0

1 ,  

           zdzzxKdyyyxKx
xx

1
0

1
0

2 ,,     

        dyyfyzKzdzxK
zx


00

,,  

        zdyzKzxKdyyf
xx

,,
00 

 

              yxKyf
x

,2
0   (2.16) 

 where     zdyzKzxK
x

y
,,2   

By repetition of the argument, we have  

     dyyfyxKx
x

nn 
0

,   (2.17) 

Where    yxKyxK ,,1   and  

      zdyzKzxKyxK n

x

y
n ,,,1   (2.18) 

 Also, from equation ,1 nnn

n QQ  so that 

      00121

0

1 QQQQeQQ nn

n

r

nnr

r  



   

     nQ  (2.19) 





n

r

r

r

nQ
0

   (2.20) 

By considering equation (2.20), (2.17), we have  

        dyyyxKxfQ
x n

r

r

r

n 







  


0

1

,  

 00 Q  (2.21) 
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Thus, it is plausible to suppose that  

     xQxQ n
n 

 lim   

     dyyfuxKxf
x

r

r 







  




0

1

,   (2.22) 

      dyyfyxRxf
x


0

,,    (2.23) 

where    yxKyrR r

r

r ,, 1

0







  .  (2.24) 

The function R  is called the Resolvent kernel. 

Let us now determine the conditions under which the power series on the right 

hand side of equation is convergent. 

Suppose that over ,,0 lyx    KyxK ,  

Then,  

      
x

y
zdyzKzxKyxK ,,,2  

          yxKyxyxK  22   (2.25) 

Also     ,0,2 yxK   xy   

Similarly, 

       
x

y
zdyzKzxKyuK ,,, 23  

     yxyxKzdzxK
x

y
 

233

2

1
  (2.26) 

and   yxyxK  ,0,3  

Proceeding in this way, it follows that:  

  
 

  yxyxK
n

yxK
nn

n 



1

1
1

1
,   (2.27) 

        yx  0  
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Thus, the series  yxKn

n ,  is dominated by the series with the n
th

 term  

 
 

  1

!1






nn
n

yxK
n


   (2.28) 

now ,2lyx   and so the later series is dominated by the series with n
th

 term  

 
 

  1
2

!1





n
n

lK
n

K
  (2.29) 

This is the typical term of an exponential series and so it follows that the series 

2.23 for  ,, yxR  always converge. 

The uniqueness of the solution follows easily because, if    xQxQ BA ,  are 

both solution, then,  

           dyyQyQyxKxQxQ BA

x

AA 
0

,,   (2.30) 

Since the resolvent kernel series converges for all values of  is the original 

kernel n  bounded. 

This is equivalent to saying that there is no Eigenvalue. Thus,    xQxQ Bn   

Example 2.3 

 Solve the integral equation  

        vu

x y

ddvuQvyuxyxfyxQ ,exp,,
0 0     

   vyuxvuyxK  exp,;,1  

      111111

2 ,,,,,,,;, dydxvuyxKyxyxKvuyxK
x

u

u

v   

       vyuxvyuxdydxvyux
y

v

x

u
  expexp 11  

Similarly, 

           1111

3 exp,;, dydxyyxxvyuxvuyxK
x

u

y

v
     

        11

2

1 12

exp dyyyxxvyux
x

u

y

v

x    
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    



























2222
exp

22
2

22
2 v

vy
y

y
u

xu
x

xvyux  

       vyuxvyux  exp
2

1 22

2
 

Hence, 

   
   

  
 vyux

u

vyux
vuyxK

nn

n 







exp
!1

,;,
2

11

 

and so 

     





1

,;,,,;,
u

n vuyxKvuyxR  

   
   

 








0
2

!
exp

u

xu

u

vyux
vyux  

The solution is therefore, given as 

          dudvvufvuyxRyxf
x

o

y

o
,,;,,yx,Q    

4.0 CONCLUSION  
 

Certain properties arise as a consequence of the three types of Volterra integrals. 

 

5.0 SUMMARY 

There are three types of Volterra integral equations, and can be solved using the 

Resolvent kernel. 

 

6.0 TUTOR-MARKED ASSIGNMENTS 
 

1. How many different type of Volterra Integrals are there. 1, 2, 3 or 4? 

2. Which of these three is a Volterra integral equation of the first type? 

     dyyQyxKxf
x

 0
,  

        dyyQyxKxQ
x


0

,  

          xfdyyQyxKxQ
x

 0 ,  

3. And which is a Volterra integral of the third type? 
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1.0 INTRODUCTION 

Laplace transformation serves as a powerful tool in the solving of integral equations. 

Convolution, the inverse of Laplace transformation, is necessary to transform the 

solution back to the originating domain. 

 

2.0 OBJECTIVES 

At the end of this unit, you should be able to: 

 describe how convolution type kernels of the Volterra integral can be solved 

using Laplace transform; 

 solve Fredholm equations; and 

 identify a Neumann series. 

 

3.0 MAIN CONTENT 
 

3.1 Convolution Type Kernels  

If the kernel of the Volterra integral is of the form  ,yxK  the equation is said to be 

of convolution type and may be solved by using the Laplace transform. The method of 

solution depends upon the well known result in Laplace transform that: 

      dxdyyGyxFe
x

oo

px

 


      

     dxxGedxxFe
o

px

o

px







   (2.36) 

The term         
x

o

x

o
dyyxGyFduyGyxF  (2.37) 

is the convolution, (faltung) of the two functions  xF  and  .xG  
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Let us denote   ,dxxGe
o

px




 the Laplace transform of  xG  byG . 

Consider the integral equation of the first kind. 

      dyydyxKxf
x

 
0

 (2.38) 

On taking the Laplace transform, it follows that,  

 QKF   (2.39) 

Thus, kfQ , (2.40) 

 

provided the transforms exist. 

The solution is found by finding the inverse transform of Q . It is also possible 

to solve the inhomogeneous Volterra equation of the 2
nd

 kind with the 

convolution kernels in exactly the same way. 

The equation  

         dyyyxkxfx
x

o  QQ transforms into 

 QQ KF   

where   fK
1

1Q


  (2.41) 

and  xQ  may be found. 

Example 2.5 

 Solve the integral equation 

      xdyydyxx
x

o
cos1sin   

Note that the equation in self-consistent  

Taking the Laplace transform, we have 

  
 22

222

2222

1
Q

















 pp

pp

pp

p

pp
 

Thus,  
 
  22

22

22

222

Q















 







p

p

ppp

p
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Therefore, x



 cosQ

22








 
  

Example 2.6 

 Solve the integral equation 

       axxdyayyyx
x

o
cossin2QQ   

Solution  

 Taking the transform if follows that 

  
 222

22

22

2
QQ

ap

ap

ap

a















  

           ff
dp

d
xfx

n

u
u

12 NB  

Thus,  axax cossinQ   

are the two possible solutions  

Example 2.7 

 Solve the integral equation 

      dyyexx
x

o

yx


 QQ 33   

Solution  

 It follows that 

Q
3

1

4

!3
Q




pp
 

4

!3

3

1
1Q

1

pp













  

Hence,  
















4

1
1

4

!3

4

!3

4

3
Q

pppp

p
 

        
 44

!3

4

!3




ppp
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 



x

yx dyyex
0

343Q  

Example 2.8 

 Solve the integer-differential equation   

        1QQ 1211  
 dyyex

x

o

yx  

where      oooo  1Q,Q  

Solution  

 Taking the Laplace transforms, it follows that 

  
  






















22

2

1

2
Q

1

2

Q
Q

pp

p

PP

P
P   

and 
    pppppp

21

1

2

1

1

1

1
Q

2222









  

Hence, 

    22Q  xexex xx  

Cossection 

  
pp

p
p

1

2
Q 2 










   

 i.e.  
 

pp

pp 1

2

1
Q

2













 

 
   2222 1

1

1

323

1

2
Q

















pppppp

p
 

     xexx 323Q xex  

[Reuse partial fraction] 

NB:  
   2222 111

2











p

D

p

C

p

B

p

A

pp

p
 

 223223 222 DpcpcpBBpBppAApApp   
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3.2 Fredholm Equations 

The Volterra equations considered are a special case of the equation. 

            xoxfdyyyxkx Q,Q
1

0
  (3.1) 

Evidently, the special case is where   oyxk , for xy       

We shall take the interval  1,0  as standard and for simplicity write the integrals 

without the limit. 

Put           xxxfx 2

2

1Q   (3.2) 

where        dyyfyxkx ,1  

       dyyyxkx 12 ,    

        dzzfzykdyyxk  ,,  

      dyyfyxk ,2  

and       dzyzKzxKyxK ,,,2   

        dyyfyxKx uu ,  

where  

        dzyzkzxKyxK uyu ,,,   

The series (3.2) is called the Neumann series  just as we consider the series for 

the resolvent kernel.  

        yxkyxKyxR ,,;, 2    (3.3) 

This series may be proved convergent for a certain sample of values of   

under a variety of conditions. We consider one set of these conditions. 

 

3.3 Lemma 3.1  

 Suppose  yxK ,  is continuous and 

   MyxK

yo

xo 



 ,

1

1

sup
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Then, the series (3.3) is uniformly convergent for  .1 M  It is continuous 

and the series may be integrated term by term. Also,  ;, yxR  is for each 

 yx,  an analytic function of the complex variable   inside .1 M  

Proof 

 We have 

       
2

2 ,,,
o

dzyzKxxKyxK  

       yzKzxK ,,sup  

        2,sup,sup MyzKzxK   

By repeating this, we get 

   n

n MyxK ,  (3.4) 

Then, the series (3.3) is dominated by .nnM The result follows as before by 

Weierstrass .M  test in region .1M The analyticity is obvious since we are 

considering each  yx,  the given series nna  where  yxKa nn , . The 

radius of convergence is not less than 1M . Note that in this case we have only 

proved convergence for ,1 M  whereas the Volterra equations are true for 

all  finite. 

Example 3.1     

 Consider the integral equation: 

      xfdyyx
o

 
1

QQ   

In this case,   1, yxK  and   1, yxKn  

Thus,  
1

1
;,


 



 


or

ryxR  

Also,   .1,sup yxK  Since 
1

1


 has a pole at 1, the result may not in general be 

extended to smaller M  

If  
1

,Q
o

dxxA  and integrate over  ,1,0  the equation 

       xfdyyx  QQ   
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      dxxfAdxxfA  


1

0

1

0 1

1
1


  

Suppose first that .1 Then,  

         dxxfxfAxfx
o


1

1
Q




  

The equation had thus a unique solution. 

Suppose on the other hand that .1   

Then, from the equation     dxxfA
o
1

1   the original equation will only 

have a solution if   .0
1

 dxxf
o

 

If f does not satisfy this condition and ,1  the equation has an infinite 

number of solutions     cxfx Q  where c is a constant and 1  if an 

Eigenvalue with corresponding Eigenfunction Q  constant. 

Theorem 3.1  

Suppose K  is continuous in the square 
1

1:





yo

xoS
 and set .sup MK

s

  

The resolvent kernel R is given by 

   





0

1 ,;,
r

r

r yxKyxR   (3.5) 

Where the series is uniformly convergent for 1 m  

R is continuous and the series may be integrated term by term. In the domain 

 where  is analytic. The following relation holds 

         dzyzRzxKyxRyxK  ;,,;,,   

        dzyzKzxR ,;,   

Suppose that f is integrable, then, the unique solution for  of  (3.1) is 

         dyyfyxRxfx 
1

0
;,Q   
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4.0 CONCLUSION  

Convolution type integrals may be solved by the use of Laplace transform provided 

the transform exists. 

 

5.0 SUMMARY 

It is possible to determine if a Volterra integral is of the convolution type and then 

solve it using the method of Laplace where the final solution is found by finding the 

inverse transform. This applies also to the inhomogeneous Volterra equation of the 2
nd

 

kind which convolution kernels can be solved in exactly the same way. 

6.0 TUTOR-MARKED ASSIGNMENT 

1. State the name of the integral equation in which the integration limits are 

constants and do not include the variable? 

2. What is the relationship between F(x), G(x) and this term? 

         
x

o

x

o
dyyxGyFduyGyxF  
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