MODULE 3

- Unit 1 Fredholm Equations with Degenerate Kernels
- Unit 2 Eigenfunctions and Eigenvectors
- Unit 3 Representation of a Function by a Series of Orthogonal Functions

UNIT 1 FREDHOLM EQUATIONS WITH DEGENERATE KERNELS

CONTENTS

- 1.0 Introduction
- 2.0 Objectives
- 3.0 Main Content
 - 3.1 Fredholm Equations with Degenerate Kernels
 - 3.2 The General Method of Solution
- 4.0 Conclusion
- 5.0 Summary
- 6.0 Tutor-Marked Assignment
- 7.0 References/Further Reading

1.0 INTRODUCTION

Fredholm integral equations are integral equations in which the integration limits are constants which do not include the variable; and whose solution gives rise to Fredholm theory, the study of Fredholm kernels and Fredholm operators.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

- solve Fredholm equations with degenerate kernels; and
- derive the general method of solution of Fredholm equations.

3.0 MAIN CONTENT

3.1 Fredholm Equations with Degenerate Kernels

Consider the Kernel of the form:

$$K(x, y) = \sum_{p=1}^{n} a_{p}(x)b_{p}(y)$$
(3.6)

where x is finite, and the a_r and b_r form linearly independent sets. A kernel of this character is termed a degenerate kernel.

Also, consider the integral equation of the first kind

$$f(x) = \int K(x, y) Q(y) dy$$

=
$$\sum_{p=1}^{n} a_p(x) \int b_p(y) Q(y) dy$$
 (3.7)

1. We note that no solution exist unless f(x) can be written in the form $\sum_{p=1}^{n} f_p a_p(x)$ (3.8)

This is essential for the equation to be self-consistent.

2. The solution is indefinite by any function $\psi(y)$ which is orthogonal to all the $b_p(y)$ over the range of integration.

Example 3.2

The integral equation

 $\exp(2x) = \int_{\pi}^{\pi} \sin(x+y) \phi(y) dy \qquad o \le x \le \pi \text{ is not self-consistent and so does}$ not have a solution.

This is because

$$\int_{\pi}^{\pi} \sin(x+y) \ \phi(y) \, dy = \sin x \ \int_{\sigma}^{\pi} \cos y \ \phi(y) \, dy$$
$$+ \ \cos x \ \int_{\pi}^{\pi} \sin y \ \phi(y) \, dy$$

which is a of form $A \sin x + B \cos x$

3.2 The General Method of Solution

Look for a solution of the form

$$\phi(y) = \sum_{q=1}^{n} \phi_{q} b_{q}(y)$$
(3.9)

If it exists, it will be a solution and if it is possible to add $\psi(y)$ to it. The solution proceeds as follows in the integral equation.

$$f(x) = \lambda \int K(x, y) \phi(y) \, dy \tag{3.10}$$

$$\sum_{p=1}^{n} f_{p} a_{p}(x) = \lambda \sum_{p=1}^{n} a_{p}(x) \int b_{p}(y) \sum \phi_{q} b_{q}(y) dy \qquad (3.11)$$

$$= \sum_{p=1}^{n} a_{p}(x) \sum_{q=1}^{n} \beta_{pq} \phi_{1}$$
(3.12)

Where $\beta_{pq} = \lambda \int b_p(y) b_q(y) dy$ (3.13)

and so the ϕ_s are defined by

$$f_p = \sum_{q=1}^n \beta_{pq} \phi_q \qquad 1 \le p \le n \tag{3.14}$$

Since the b_p are linearly independent, the determinant $|\beta_{pq}|$ does not vanish and the ϕ_q can be found uniquely. Also, $\psi(y)$ in such that

$$\int \psi(y) K(x, y) dy = 0 \tag{3.15}$$

Example 3.3

Consider the solution of the integral equation

$$3\sin x + 2\cos x = \int_{-\pi}^{\pi} \sin(x+y)\phi(y)dy - \pi \le x \le \pi$$

Now $\sin(x+y) = \sin x \cos y + \sin y \cos x$

and so there is consistency

Note also that $\int_{-\pi}^{\pi} \cos y \cos my \, dy = \begin{cases} o \ if \ m \neq 1 \\ \pi \ if \ m = 1 \end{cases}$

$$\int_{-\pi}^{\pi} \cos y \sin my \, dy = \begin{cases} o & \text{if } m \neq 1 \\ \pi & \text{if } m = 1 \end{cases}$$
$$\int_{\pi}^{\pi} \sin y \cos my \, dy = \begin{cases} 0 & \text{if } m \neq 1 \\ \pi & \text{if } m = 1 \end{cases} \int_{-\pi}^{\pi} \sin y \sin my \, dy = \begin{cases} o & \text{if } m \neq 1 \\ \pi & \text{if } m = 1 \end{cases}$$

Hence, the integral equation in indefinite by a quantity of the form

$$\psi(y) = C_o + \sum_{n=2}^{\infty} [C_n \cos ny + dn \sin ny]$$

Since
$$\int_{-\pi}^{\pi} \psi(y) \sin(x+y) dy = o$$

Now, look for a solution of the form
 $\phi(y) = A \cos y + B \sin y$
 $\therefore \int_{-\pi}^{\pi} \sin(x+y) \phi(y) dy = \sin x \int_{-\pi}^{\pi} \cos y (A \cos y + B \sin y) dy$
 $+ \cos x \int_{-\pi}^{\pi} \sin y (A \cos y + B \sin y) dy$
 $= \prod A \sin x + \pi B \cos x$
 $\equiv 3 \sin x + 2 \cos x$
Thus, $A = \frac{3}{\pi}$ and $B = \frac{2}{\pi}$

$$\therefore \quad d(y) = (3\cos y + 2\sin y)/\pi$$

Note that the process is similar to the idea of finding the particular integral and complementary function in differential equation theory.

The solution

$$\phi(y) = (3\cos y + 2\sin y)/\pi$$

May be termed a particular solution while the $\psi(y)$ a complementary function.

4.0 CONCLUSION

Fredholm equations can be solved by applying the method of degenerate kernel.

5.0 SUMMARY

Fredholm integral equations have limits which are constants and not the variable as in the Volterra integral equations.

6.0 TUTOR-MARKED ASSIGNMENT

1. What kind of kernel is of the form $K(x, y) = \sum_{p=1}^{n} a_p(x)b_p(y)$ where x is finite, and a_r and b_r form linearly independent sets?

2. Why does
$$\exp(2x) = \int_{\pi}^{\pi} \sin(x+y) \phi(y) dy$$
 $o \le x \le \pi$ not have a solution

7.0 REFERENCES/FURTHER READING

- Kendall, E. A. (1997). *The Numerical Solution of integral Equations of the Second Kind*. Cambridge Monographs on Applied and Computational Mathematics.
- Arfken, G. & Hans, W. (2000). *Mathematical Methods for Physicists*. Port Harcourt: Academic Press.
- Andrei, D. P. & Alexander, V. M. (1998). *Handbook of Integral Equations*. Boca Raton: CRC Press.
- Whittaker, E. T. & Watson, G. N. *A Course of Modern Analysis*. Cambridge Mathematical Library.
- Krasnov, M., Kiselev, A. & Makarenko, G. (1971). Problems and Exercises in Integral Equations. Moscow: Mir Publishers.
- Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. (2007). "Chapter 19. Integral Equations and Inverse Theory". Numerical Recipes: The Art of Scientific Computing. (3rd ed.). New York: Cambridge University Press.

UNIT 2 EIGENFUNCTIONS AND EIGENVECTORS

CONTENTS

- 1.0 Introduction
- 2.0 Objectives
- 3.0 Main Content
 - 3.1 Eigenfunctions and Eigenvectors
 - 3.2 Symmetric Kernels
- 4.0 Conclusion
- 5.0 Summary
- 6.0 Tutor-Marked Assignment
- 7.0 References/Further Reading

1.0 INTRODUCTION

Many homogeneous linear integral equations may be viewed as the continuum limit of Eigenvalue equation.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

- work with Eigenfunctions and Eigenvectors; and
- prove that symmetric and continuous Kernels that are not identically zero possess at least one Eigenvalue.

3.0 MAIN CONTENT

3.1 Eigenfunctions and Eigenvectors

Eigenfunction and Eigenvectors associated with the equation:

$$\phi(x) = \lambda \int \sum_{p=1}^{n} a_p(x) b_p(y) d(y) dy \qquad (3.16)$$

can be found as follows

Rewrite (3.16) in the form

$$\mu \phi(y) = \int_{p=1}^{n} a_{p}(x) b_{p}(y) \phi(y) dy$$
(3.17)

This equation satisfied by any function $\phi(y)$ such that

$$\int b_p(y)\phi(y)\,dy = o \tag{3.18}$$

and $\mu = o$, but in general, we shall ignore such functions, any Eigenfunction must be of the form

$$\Phi(x) = \sum_{p=1}^{n} \phi_p \ a_p(x)$$
(3.19)

Thus
$$\sum_{p=1}^{n} \phi_p a_p(x) = \lambda \sum_{p=1}^{n} a_p(x) \int b_p(y) \sum_{q=1}^{n} \phi_q a_q(y) dy$$
 (3.20)

Whence

$$\phi_{p} = \sum_{q=1}^{n} \phi_{q} K_{pq}$$
(3.21)

$$K_{pq} = \lambda \int b_p(y) a_q(y) dy$$
(3.22)

Example 3.4

Find the Eigenvalue and Eigenfunction of the system defined by:

$$\phi(x) = \lambda \int_{o}^{1} (1+xt) \phi(t) dt \qquad o \le x \le 1$$

Solution

Let
$$\Phi(x) = \phi_o + \phi_1 x = \lambda \int_o^1 (1 + xt) (\phi_o + \phi_1 t) dt$$

$$= \lambda \left(\phi_o + \frac{\phi_1}{2} \right) + \lambda \left(\frac{\phi_o}{2} + \frac{\phi_1}{3} \right) x$$

Whence (equating coefficients)

$$(\lambda - 1)\phi_o + \lambda \frac{\phi_1}{2} = o$$
$$\frac{\lambda \phi_o}{2} + \left(\frac{\lambda}{3} - 1\right)\phi_1 = o$$

Thus, $(\lambda - 1)(\lambda/3 - 1) = \lambda^2/4$ $\lambda = 8 \pm \sqrt{52}$

$$\lambda = 8 \pm \sqrt{52}$$

 $\phi_1, \phi_o = -(7 \pm \sqrt{52}): (4 \pm \sqrt{13})$ and

Consider now the solution of the integral equation

$$\phi(x) = \lambda \int K(x, y) \phi(y) dy + f(x)$$
(3.23)

Where in this case K in degenerate, any solution will be of the form:

$$\phi(x) = \lambda \sum_{p=1}^{n} a_{p}(x)\phi_{p} + f(x)$$

(Substituting, we have)

$$= \lambda \int \sum_{p=1}^{n} a_p(x) b_p(y) \phi(y) dy + f(x)$$

$$= \lambda \sum_{p=1}^{n} a_p(x) b_p(y) \left[\lambda \sum_{q=1}^{n} \phi_q a_q(y) + f(y) \right] dy + f(x)$$

$$= \lambda \sum_{p=1}^{n} a_p(x) \lambda \sum_{q=1}^{n} \int b_p(y) a_q(y) \phi_q dy$$

$$+ \sum_{p=1}^{n} a_p(x) \int b_p(y) f(y) dy + f(x)$$

Set $k_{pq} = \lambda \int b_p(y) a_q(y) dy$ and $f_p = \int b_p(y) f(y) dy$

Thus, $\phi(x) = \lambda \sum_{p=1}^{n} a_p(x) \phi_p + f(x)$

$$= \lambda \sum_{p=1}^{n} a_{p}(x) \left[\lambda \sum_{q=1}^{n} k_{pq} \phi_{q} + f_{p} \right] + f(x)$$

$$\therefore \quad \phi_p \quad = \quad \lambda \sum_{q=1}^n K_{pq} \phi_q + f_p \tag{3.24}$$

i.e.
$$\phi_p - \lambda \sum_{q=1}^n K_{pq} \phi_q = f_p$$
 (3.25)

The above equations is a finite system of linear algebraic equations with matrix $A = (k_{pq})$.

The solution depends on whether or not det $(I - \lambda A)$ is zero.

Set
$$\wp(\lambda) = \det(I - \lambda A)$$

Then, $\wp(\lambda)$ is a polynomial of degree *n*. If λ is not a roof of $\wp(\lambda)$, then, (3.23) has a unique solution.

If you write d_{pq} for the cofactors you will have:

$$\phi_q = \frac{1}{\wp(\lambda)} \sum_{p=1}^n d_{pq} f_p \tag{3.26}$$

The solution of equation (3.23) is then,

$$\phi(x) = f(x) + \lambda[\wp(\lambda)]^{-1} \sum_{p=1}^{n} a_p(x) d_{pq}(\lambda) \int \sum_{q=1}^{n} b_q(y) f(y) dy$$
$$= f(x) - \lambda[\wp(\lambda)]^{-1} \int \wp(x, y; \lambda) f(y) dy \qquad (3.27)$$

Where

$$\wp(x, y; \lambda) = -\sum_{p=1}^{n} \sum_{q=1}^{n} d_{pq} a_{p}(x) b_{q}(y)$$
(3.28)

and $R(x, y; \lambda) = + \frac{\wp(x, y; \lambda)}{\wp(\lambda)}$ (3.29)

is the resolvent kernel

i.e.
$$\phi(x) = f(x) - \lambda \int R(x, y; \lambda) f(y) dy$$
 (3.30)

Examples 3.5

Solve the integral equation:

$$\phi(x) = \lambda \int_{0}^{1} (1+xt) \phi(t) dt + f(x)$$

Let $\phi(x) = \phi_o + \phi_1 x + f(x)$

$$= \lambda \int_{o}^{1} (1+xt) [\phi_{o} + \phi_{1}t + f(t)] dt + f(x)$$
$$= \lambda \left(\phi_{o} + \frac{\phi_{1}}{2} + f_{o}\right) + \lambda x \left(\frac{\phi_{o}}{2} + \frac{\phi_{1}}{3} + f_{1}\right) + f(x)$$

Where $f_r = \int_0^1 t^r f(t) dt$

Equating powers of x and solving for ϕ_o and ϕ_1 if follows that:

(3.40)

$$\phi_o(\lambda^2 - 16\lambda + 12) = \left[-4\lambda(\lambda - 3)f_o + 6\lambda^2 f_1\right]$$

$$\phi_1(\lambda^2 - 16\lambda + 12) = \left[6\lambda^2 f_o - 12\lambda(\lambda - 1)f_1\right]$$

The Eigenvalue, are given by the roots of the equation

 $\lambda^2 - 16\lambda + 12 = 0$

If λ is one of the Eigenvalue, say $8 + \sqrt{52}$, a solution is possible only if

$$O = \int_{o}^{1} f(x) \left[\frac{8 + \sqrt{52}}{2} - \left(7 + \sqrt{52}\right) x \right] dx$$

and the solution is indefinite by an arbitrary multiple of $4 + \sqrt{13} - (7 + \sqrt{52})x$

3.2 Symmetric Kernels

K(x, y) = k(y, x) and K is continuous

Theorem 3.2

Let K(x, y) be symmetric and continuous (and not identically zero). Then, K has at least one Eigenvalue.

Proof

We note that the iterated kernels $k_u(x, y)$ are also symmetric and not identically zero.

Suppose result is not true.

Let us assume that $R(x, y; \lambda)$, the resolvent kernel is an integral function and the series is also convergent for all, λ . may be integrated term by term.

Now set, $U_n = \int K_n(x, x) dx$

Then, $U_2 \lambda^2 + U_4 \lambda^4 + \dots$ is absolutely convergent.

Now, we have $U_{n+m} = \iint K_n(x, z) K_m(z, x) dx dx$

and

$$U_{2n} = \iint K_n^2(x, z) \, dx \, dz$$

Now, $\iint \left[\alpha K_{n+1}(x, z) - \beta K_{n-1}(x, z) \right]^2 dx dz \ge o$

i.e.

$$\alpha^{2} U_{2n+2} - 2\alpha\beta U_{2n} + \beta^{2} U_{2n-2} \ge o$$
(3.41)

for all real α , β

$$\therefore \ U_{2n}^2 \leq U_{2n+2} U_{2n-2} \tag{3.4.2}$$

Form equation (3.40) none of U_{2n} is zero as K_n is not identically zero.

 $\therefore \quad \frac{U_{2n+2}}{U_{2n}} \geq \frac{U_{2n}}{U_{2n-2}}$

Now, consider series $\sum \lambda^{2n} U_{2n}$ assumed convergent.

The ratio of term is

$$\frac{U_{2n+2}\lambda^{2n+2}}{U_{2n}\kappa^2} = \frac{U_{2n+2}}{U_{2n}}\lambda^2$$

This ration is $\geq \frac{U_4}{U_2} \lambda^2$ from (3.43)

Thus, for $\frac{U_4}{U_2} \lambda^2 \ge 1$, the forms in the (3.44) series are non-increasing, so as it is a series of positive terms, the series is divergent. This is a contradiction.

Thus, we have seen that poles of $R(x, y; \lambda)$ correspond to Eigenvalue and so K has at least one Eigenvalue.

From the equation (3.44) $\frac{U_4}{U_2} \lambda^2 \ge 1$, the smallest Eigenvalue λ_1 is such that

$$\lambda_1 \leq \sqrt{\frac{U_4}{U_2}} \quad (3.45)$$

Theorem 3.3

If k(x, y) is symmetric and continuous, the:

- number of Eigenfunctions corresponding to each Eigenvalue is finite
- Eigenfunction corresponding to different Eigenvalue are orthogonal
- Eigenvalue is real.

4.0 CONCLUSION

Eigenvalues and Eigenfunctions can be found for integral equations of the form $\phi(x) = \lambda \int \sum_{p=1}^{n} a_p(x) b_p(y) d(y) dy.$

5.0 SUMMARY

Many homogeneous equations can be solved by determination of their Eigenvalue.

6.0 TUTOR-MARKED ASSIGNMENTS

- 1. Under what Sturm-Liouville problem assumptions are Eigenfunction corresponding to different Eigenvalue orthogonal?
- 2. Solve

$$\phi(x) = \lambda \int_{0}^{1} (1+xt)\phi(t)dt + mf(x); 0 \le x \le 1$$

7.0 REFERENCES/FURTHER READING

- Kendall, E. A. (1997). *The Numerical Solution of Integral Equations of the Second Kind*. Cambridge Monographs on Applied and Computational Mathematics.
- Arfken, G. & Hans, W. (2000). *Mathematical Methods for Physicists*. Port Harcourt: Academic Press.
- Andrei, D. P. & Alexander, V. M. (1998). *Handbook of Integral Equations*. Boca Raton: CRC Press.
- Whittaker, E. T. & Watson, G. N. A Course of Modern Analysis. Cambridge Mathematical Library.
- Krasnov, M., Kiselev, A. & Makarenko, G. (1971). Problems and Exercises in Integral Equations. Moscow: Mir Publishers.
- Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. (2007). "Chapter 19. Integral Equations and Inverse Theory". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press.

UNIT 3 REPRESENTATION OF A FUNCTION BY A SERIES OF ORTHOGONAL FUNCTIONS

CONTENTS

- 1.0 Introduction
- 2.0 Objectives
- 3.0 Main Content
 - 3.1 Representation of a Function by a Series of Orthogonal Functions 3.1.1 Lemma 3.4
 - 3.2 Expansion of *K* in Eigenfunctions
 - 3.2.1 Definitions 3.6 (Positive Kernels)
 - 3.2.2 Theorem 3.7: Convergence
 - 3.2.3 Theorem 3.8: Hilbert Schmidt Theorem
- 4.0 Conclusion
- 5.0 Summary
- 6.0 Tutor -Marked Assignment
- 7.0 References/Further Reading

1.0 INTRODUCTION

In this unit, we shall take a look at orthogonality of systems and show that Fourier coefficients exist for continuous orthogonal systems and that orthogonal system can be represented by a series of orthogonal functions.

2.0 **OBJECTIVES**

At the end of this unit, you should be able to:

- state the Hilbert Schmidt theorem;
- state the Convergence theorem;
- prove that functions can be represented by series of orthogonal functions;
- expand *K* in a series of Eigen functions; and
- define positive kernels.

3.0 MAIN CONTENT

3.1 Representation of a Function by a Series of Orthogonal Functions

3.1.1 Lemma 3.4

Let $\{\phi_n\}$ be an orthogonal system, and let *f* be continuous.

Set
$$\alpha_n = \int_{\Gamma} f(x)\phi_n(x)dx$$
 (3.46)

Then,
$$\sum \alpha_n^2 \leq \int_{\Gamma} f^2(x) dx$$
 (3.4.7)

and α_n^{1s} are known as the Fourier's coefficient.

Proof:

Take any N. consider

$$\int_{I} \left[f(x) - \sum_{1}^{N} \alpha_{n} \phi_{n}(x) \right]^{2} dx \ge 0$$
(3.48)

i.e.
$$\int \left[f^{2}(x) - 2 \sum_{n=1}^{n} \alpha_{n} \int f(x) \phi_{n}(x) + \sum_{n=1}^{n} \alpha_{n}^{2} \right] dx \ge o$$

i.e.
$$\int_{\Gamma} f^{2}(x) dx \ge \sum_{n=1}^{N} \alpha_{n}^{2}$$
(3.49)

On noting that N is arbitrary

$$f(x) = \sum_{1}^{\infty} \alpha_n \phi_n(x)$$
(3.50)

We now consider that coefficients, α_n , give the best fir in the sense that

$$\int \left[f(x) - \sum C_n \phi_n(x) \right]^2 dx \tag{3.51}$$

is a minimum.

The answer is that $C_n = \alpha_n$, the Fourier coefficients.

To see this, set

$$I_{n}^{*} = \int \left[f(x) - \sum C_{n} \phi_{n} \right]^{2} dx \qquad (3.52)$$

$$I_n = \int \left[f(x) - \sum \alpha_n \phi_n \right]^2 dx \qquad (3.53)$$

Then, we show that $I_n^* \ge I_n$. For we have,

$$I_n^* = \int f^2(x) dx - 2 \sum C_n \int f \phi_n dx + \sum C_n^2$$

$$\int f^2(x) dx - 2 \sum \alpha_n C_n + \sum C_n^2$$

$$I_n = \int f^2(x) dx - 2 \sum \alpha_n^2 + \sum \alpha_n^2$$

$$\therefore I_n^* - I_n = \sum [(C_n^2 - \alpha_n^2) - 2\alpha_n (C_n - \alpha_n)]$$

$$= \sum (C_n - \alpha_n)^2 \ge o$$
(3.54)

As asserted.

Definitions 3.5

The set of orthogonal system $\{\phi_n\}$ is said to be complete if

$$\lim_{n \to \infty} \int_{\mathbf{I}} \left[f(x) - \sum \alpha_n \, \phi_n \right]^2 \, dx = o \tag{3.55}$$

for every continuous function f(x). In this case, the Bessel's inequality becomes an equality

i.e.
$$\int f^2(x) dx = \sum \alpha_n^2$$

If $\{\phi_n\}$ is complete, we can then roughly represent any function as a sum

$$f(x) = \sum \alpha_n \phi_n$$

the convergence being in the sense of

(3.55)

3.2 Expansion of *K* in Eigenfunctions

We examine the possibility of expanding K as a series of Eigenfunctions.

Consider

$$K(x, y) = \sum \alpha_n \phi_n(y)$$

where $\int K(x, y) \phi_n(y) dy = \alpha_n$

i.e. $\alpha_n = \lambda_n^{-1} \phi_n(x)$

Then, we will have

$$K(x, y) = \sum \frac{\phi_n(x)\phi_n(y)}{\lambda_n}$$
(3.56)

This is valid independent of completeness of $\{\phi_n\}$

3.2.1 Definitions **3.6** (Positive Kernels)

A kernel is said to be positive if

$$T(\phi, \phi) = \iint K(x, y) \ \phi(x) \phi(y) \, dx \, dy > o \tag{3.57}$$

for all
$$\phi$$
 such that $\int \phi^2(x) dx \neq o$ (3.58)

It is easily to see that the Eigenvalues are strictly positive.

3.2.2 Theorem 3.7: Convergence

If K(x, y) is positive, then

$$K(x, y) = \sum_{1}^{\infty} \frac{\phi_n(x)\phi_n(y)}{\lambda_n}$$

the series being absolutely and uniformly convergent.

3.2.3 Theorem **3.8:** Hilbert – Schmidt Theorem

Suppose f(x) can be written in the form

$$f(x) = \int K(x, y)\phi(y) \, dy \tag{3.59}$$

where K is symmetric and continuous,

Then $f = \sum \alpha_n \phi_n$ where the series is absolutely and uniformly convergent and

$$\alpha_p = \int_a^b f(x)\phi_p(x)dx \qquad (3.60)$$

A convergence of the above theorem is another formula for the Resolvent R.

Consider the equation:

$$\phi(x) - \lambda \int K(x, y) \phi(y) dy = f(x)$$
(3.61)

Then,

$$\phi - f = \lambda \int k(x, y) \phi(y) dy$$

Thus, $\phi - f$ satisfies the condition of theorem 3.8 and we can write

$$\phi(x) - f(x) = \sum \alpha_n \phi_n$$

where
$$\alpha_n = \int [\phi(x) - f(x)] \phi_n(x) dx$$

= $\beta_n - \gamma_n = \int f(x) \phi_n(x) dx$

Multiply 3.61 by $\phi_n(x)$ and integrate and change order of integration. This given

$$\int \phi(x) \phi_n(x) dx - \lambda \int \phi(x) dx \int k(x, y) \phi_n(y) dy$$

= $\int f(x) \phi_n(x) dx$ (3.62)

Thus, $\beta_n - \frac{\lambda \beta_n}{\lambda_n} = \gamma_n$ i.e. $\beta_n = \frac{\lambda_n}{\lambda_n - \lambda} \gamma_n$, Hence, $\alpha_n = \frac{\lambda}{\lambda_n - \lambda} \gamma_n$ $\therefore \phi(x) - f(x) = \lambda \sum \frac{\gamma_n}{\lambda_n - \lambda} \phi_n(x)$ i.e. $\phi(x) = f(x) + \lambda \sum \frac{\lambda_n}{\lambda_n - \lambda} \phi_n(x)$ (3.63)

This gives the solution of 3.61 in terms of the Eigenfunctions of $\phi_n(x)$. From 3.63, we have

$$\phi(x) = f(x) - \lambda \sum \frac{\phi_n}{\lambda - \lambda_n} \int \phi_n(y) f(y) dy$$

= $f(x) - \lambda \int \left[\sum \frac{\phi_n(x) \phi_n(y)}{\lambda - \lambda_n} \right] f(y) dy$
= $f(x) - \lambda \int R(x, y; \pi) f(y) dy$
Where $R(x, y; \lambda) = \sum \frac{\phi_n(x) \phi_n(y)}{\lambda - \lambda_n}$ (3.64)

4.0 CONCLUSION

Fourier's coefficients exist for orthogonal systems which are continuous.

5.0 SUMMARY

The Hilbert-Schmidt theorem states that when a kernel is positive, a series can be derived which is absolutely and uniformly convergent, and kernel can be represented by a series of Eigenfunctions.

6.0 TUTOR-MARKED ASSIGNMENT

- 1. Derive an expression for the Fourier coefficient of the continuous orthogonal system $\{\phi_n\}$?
- 2. Show that the orthogonal system $\{\phi_n\}$ is complete if

 $\lim_{n \to \infty} \int_{\Gamma} \left[f(x) - \sum \alpha_n \phi_n \right]^2 dx = o?$

that is, Bessel's inequality becomes an equality.

3. If $T(\phi, \phi) = \iint K(x, y) \phi(x)\phi(y) dxdy > o$, can we deduce if the associated kernel is positive or negative? Prove it?

7.0 REFERENCES/FURTHER READING

- Kendall, E. A. (1997). *The Numerical Solution of integral Equations of the Second Kind*. Cambridge Monographs on Applied and Computational Mathematics.
- Arfken, G. & Hans, W. (2000). *Mathematical Methods for Physicists*. Port Harcourt: Academic Press.
- Andrei, D. P. & Alexander, V. M. (1998). *Handbook of Integral Equations*. Boca Raton: CRC Press.
- Whittaker, E. T. & Watson, G. N. A Course of Modern Analysis. Cambridge Mathematical Library.
- Krasnov, M., Kiselev, A. & Makarenko, G. (1971). Problems and Exercises in Integral Equations. Moscow: Mir Publishers.
- Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B.P. (2007). "Chapter 19. Integral Equations and Inverse Theory". Numerical Recipes: The Art of Scientific Computing (3rd ed.). New York: Cambridge University Press.