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1.0 INTRODUCTION 
 

Fredholm integral equations are integral equations in which the integration limits are 

constants which do not include the variable; and whose solution gives rise 

to Fredholm theory, the study of Fredholm kernels and Fredholm operators. 

 

2.0 OBJECTIVES 

At the end of this unit, you should be able to: 

 solve Fredholm equations with degenerate kernels; and 

 derive the general method of solution of Fredholm equations. 

 

3.0 MAIN CONTENT 

3.1 Fredholm Equations with Degenerate Kernels  

Consider the Kernel of the form: 

      ybxayxK p

n

p

p



1

,  (3.6) 

where x  is finite, and the ra  and rb  form linearly independent sets. A kernel of this 

character is termed a degenerate kernel. 
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Also, consider the integral equation of the first kind 

       dyyyxKxf Q,    

        dyyybxa p

n

p

p Q
1




  (3.7) 

1. We note that no solution exist unless  xf  can be written in the 

form  


n

p

pp xaf
1

 (3.8) 

  This is essential for the equation to be self-consistent. 

2. The solution is indefinite by any function  y  which is orthogonal to 

all the  ybp  over the range of integration. 

Example 3.2 

The integral equation 

      



  xodyyyxx sin2exp  is not self-consistent and so does 

not have a solution. 

This is because  

       dyyyxdyyyx  







 cossinsin  

    



 dyyyx sincos  

which is a of form xBxA cossin   

3.2 The General Method of Solution 

Look for a solution of the form 

    yby q

n

q

q



1

  (3.9) 

If it exists, it will be a solution and if it is possible to add   y  to it. The 

solution proceeds as follows in the integral equation. 

       dyyyxKxf  ,  (3.10) 
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        dyybybxaxaf qqp

n

p

p

n

p

pp 


 
11

  (3.11) 

  



n

q

pq

n

p

p xa
1

1

1

  (3.12) 

Where     dyybyb qppq    (3.13) 

and so the s  are defined by 

 

 npf q

n

q

pqp  


1
1

  (3.14) 

Since the pb  are linearly independent, the determinant pq  does not vanish 

and the q can be found uniquely. Also,  y  in such that  

     0,  dyyxKy  (3.15) 

Example 3.3 

Consider the solution of the integral equation  

      



  xdyyyxxx sincos2sin3  

Now   xyyxyx cossincossinsin   

and so there is consistency  

Note also that 







 1

1
coscos

mif

mifo
dymyy






 

   











  1

1
sincos

mif

mifo
dymyy  

   
















   1

1
sinsin

1

10
cossin

mif

mifo
dymyy

mif

mif
dymyy










 

Hence, the integral equation in indefinite by a quantity of the form    

     





2

sincos
n

no nydnnyCCy  
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Since     odyyxy  sin



  

Now, look for a solution of the form 

   yByAy sincos    

     dyyByAyxdyyyx  









 sincoscossinsin  

     



dyyByAyx sincossincos  

   xBxA cossin   

   xx cos2sin3   

Thus, 


3A  and 


2B  

    yyyd sin2cos3   

Note that the process is similar to the idea of finding the particular integral and 

complementary function in differential equation theory. 

The solution  

       yyy sin2cos3   

May be termed a particular solution while the  y  a complementary function.  

4.0 CONCLUSION  

Fredholm equations can be solved by applying the method of degenerate kernel. 

 

5.0 SUMMARY 

Fredholm integral equations have limits which are constants and not the variable as in 

the Volterra integral equations. 

 

6.0 TUTOR-MARKED ASSIGNMENT 

1. What kind of kernel is of the form      ybxayxK p

n

p

p



1

,  where x  is 

finite, and ra  and rb  form linearly independent sets? 

 

2. Why does       



  xodyyyxx sin2exp  not have a solution 
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1.0 INTRODUCTION 

Many homogeneous linear integral equations may be viewed as the continuum 

limit of Eigenvalue equation. 

 

2.0 OBJECTIVES 

At the end of this unit, you should be able to: 

 work with Eigenfunctions and Eigenvectors; and 

 prove that symmetric and continuous Kernels that are not identically zero 

possess at least one Eigenvalue. 

 

3.0 MAIN CONTENT 

3.1 Eigenfunctions and Eigenvectors  

Eigenfunction and Eigenvectors associated with the equation:  

       dyydybxax p

n

p

p



1

  (3.16) 

can be found as follows 

Rewrite (3.16) in the form 

 

        dyyybxay p

n

p

p  



1

 (3.17) 

This equation satisfied by any function  y  such that  

     odyyybp    (3.18) 
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and ,o  but in general, we shall ignore such functions, any Eigenfunction 

must be of the form 

    xax p

n

p

p



1

  (3.19) 

Thus        dyyaybxaxa q

n

q

qp

n

p

pp

n

p

p 



111

  (3.20) 

Whence 

 pq

n

q

qp K



1

  (3.21) 

     dyyaybK qppq   (3.22) 

Example 3.4 

Find the Eigenvalue and Eigenfunction of the system defined by: 

       11
1

  xodttxtx
o

   

Solution  

Let      dttxtxx o
o

o 1

1

1 1     

  xo

o 


















322

11 



  

Whence (equating coefficients)  

    oo 
2

1 1  

  oo 







 11

32



 

Thus,    
4

1
3

1
2   

  528   

and     134:527,1 o  

Consider now the solution of the integral equation  
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        xfdyyyxKx    ,  (3.23) 

Where in this case K  in degenerate, any solution will be of the form: 

      xfxax p

n

p

p  



1

 

(Substituting, we have) 

         xfdyyybxa p

n

p

p   



1

 

           xfdyyfyaybxa
n

q

qqp

n

p

p 







 

 11

  

        dyyaybxa qq

n

p

n

q

pp   
 


1 1

 

          xfdyyfybxa p

n

p

p  
1

 

Set      dyyaybk qppq    

and      dyyfybf pp   

Thus,      xfxax p

n

p

p  



1

  

     xffkxa
n

q

pqpq

n

p

p 







 

 11

  

pq

n

q

pqp fK  



1

 (3.24) 

i.e. pq

n

q

pqp fK  



1

 (3.25) 

The above equations is a finite system of linear algebraic equations with matrix 

 .pqkA     

The solution depends on whether or not det  A is zero. 

 Set     A  det   
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Then,    is a polynomial of degree n . If    is not a roof of  , then, (3.23) 

has a unique solution. 

If you write pqd  for the cofactors you will have: 

 
  p

n

p

pqq fd



1

1


  (3.26) 

The solution of equation (3.23) is then, 

                 dyyfybdxaxfx
n

q

qpq

n

p

p 





11

1
  

          dyyfyxxf 


 ;,
1

 (3.27) 

Where  

      ybxadyx q

n

p

n

q

ppq 
 


1 1

;,   (3.28) 

and  
 
 









;,
;,

yx
yxR  (3.29) 

is the resolvent kernel 

i.e.         dyyfyxRxfx   ;,  (3.30) 

Examples 3.5 

Solve the integral equation: 

       xfdttxtx
o

  
1

1  

Let    xfxx o  1  

            xfdttftxt o
o

  1

1

1   

        xffxf o

oo 
















 1

11

322





  

Where   dttftf
o

r

r 
1

 

Equating powers of x  and solving for o  and 1  if follows that: 
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      1

22 6341216 ffoo    

      1

22

1 11261216 ffo    

The Eigenvalue, are given by the roots of the equation  

 012162    

If  is one of the Eigenvalue, say ,528  a solution is possible only if 

     












1

527
2

528

o
dxxxfO  

and the solution is indefinite by an arbitrary multiple of   x527134    

 

3.2 Symmetric Kernels   

    xykyxK ,,    and  K  is continuous  

Theorem 3.2 

Let  yxK ,  be symmetric and continuous (and not identically zero). Then, K  

has at least one Eigenvalue. 

Proof    

We note that the iterated kernels  yxku ,  are also symmetric and not identically zero. 

Suppose result is not true. 

Let us assume that  ,;, yxR  the resolvent kernel is an integral function and the 

series is also convergent for all, .   may be integrated term by term. 

Now set,   dxxxKU nn ,    

Then, .......4

4

2

2   UU  is absolutely convergent. 

Now, we have     dxdxxzKzxKU mnmn ,,   

and    dxdzzxKU nn  ,2

2                                                                  (3.40) 

Now,      odxdzzxKzxK nn  

2

11 ,,   

i.e. 
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oUUU nnn   22

2

222

2 2   (3.41) 

for all real  ,  

2222

2

2  nnn UUU  (3.4.2) 

Form equation (3.40) none of nU 2  is zero as nK  is not identically zero. 

 
22

2

2

22



 
n

n

n

n

U

U

U

U
 

Now, consider series n

nU 2

2  assumed convergent. 

The ratio of term is 

  2

2

22

2

2

22

22 




n

n

n

n

n

U

U

U

U 



    

This ration is 2

2

4 
U

U
  from  (3.43) 

Thus, for ,12

2

4 
U

U
the forms in the (3.44) series are non-increasing, so as it is 

a series of positive terms, the series is divergent. This is a contradiction.  

Thus, we have seen that poles of  ;, yxR  correspond to Eigenvalue and so K 

has at least one Eigenvalue. 

From the equation (3.44) ,12

2

4 
U

U
 the smallest Eigenvalue 1  is such that 

  
2

4
1

U

U
  (3.45) 

Theorem 3.3 

 If  yxk ,  is symmetric and continuous, the: 

  number of Eigenfunctions corresponding to each Eigenvalue is finite 

  Eigenfunction corresponding to different Eigenvalue are orthogonal  

   Eigenvalue is real. 
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4.0 CONCLUSION  

Eigenvalues and Eigenfunctions can be found for integral equations of the form 

       dyydybxax p

n

p

p



1

 . 

 

5.0 SUMMARY 

Many homogeneous equations can be solved by determination of their Eigenvalue. 

 

6.0 TUTOR-MARKED ASSIGNMENTS 

1. Under what Sturm-Liouville problem assumptions are Eigenfunction 

corresponding to different Eigenvalue orthogonal? 

 

2. Solve 

   

1

0

10);()()1( xxmfdttxtx   
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1.0 INTRODUCTION 

In this unit, we shall take a look at orthogonality of systems and show that Fourier 

coefficients exist for continuous orthogonal systems and that orthogonal system can 

be represented by a series of orthogonal functions. 

2.0 OBJECTIVES 

At the end of this unit, you should be able to: 

 state the Hilbert – Schmidt theorem; 

 state the Convergence theorem; 

 prove that functions can be represented by series of orthogonal functions;   

 expand K in a series of Eigen functions; and  

 define positive kernels.  

 

3.0 MAIN CONTENT 

3.1 Representation of a Function by a Series of Orthogonal Functions  

3.1.1 Lemma 3.4 

Let  n  be an orthogonal system, and let f be continuous. 

Set     dxxxf nn    (3.46) 

Then,   dxxfn  22  (3.4.7) 
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and s

n

1  are known as the Fourier’s coefficient. 

 

Proof: 

Take any .N  consider 

     Odxxxf
N

nn 







 



2

1

  (3.48) 

i.e.       odxxxfxf
n

nn

n

n 







  

1

2

1

2 2   

i.e.   



N

ndxxf
1

22   (3.49) 

On noting that N is arbitrary  

    



1

xxf nn  (3.50) 

We now consider that coefficients, ,n give the best fir in the sense that 

      dxxCxf nn

2

    (3.51) 

is a minimum. 

The answer is that ,nnC   the Fourier coefficients. 

To see this, set 

    dxCxf nnn

2

    (3.52) 

    dxxf nnn

2

    (3.53) 

Then, we show that .nn  For we have, 

       22 2 nnnn CdxfCdxxf   

     
22 2
nnn CCdxxf   

         222 2 nnn dxxf   

      

nnnnnnn CC  222  

      oC nn

2
  (3.54) 

As asserted.  
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Definitions 3.5 

 The set of orthogonal system  n  is said to be complete if 

    odxxf nn
n

 


2

lim   (3.55) 

for every continuous function  .xf In this case, the Bessel’s inequality 

becomes an equality  

i.e.     22

ndxxf   

If  n  is complete, we can then roughly represent any function as a sum  

    nnxf     

the convergence being in the sense of  (3.55) 

 

3.2 Expansion of K in Eigenfunctions   

We examine the possibility of expanding K  as a series of Eigenfunctions. 

Consider 

     yyxK nn ,  

where      nn dyyyxK   ,  

i.e.  xnnn  1  

Then, we will have 

  
   


n

nn yx
yxK




,  (3.56) 

This is valid independent of completeness of  n  
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3.2.1 Definitions 3.6 (Positive Kernels) 

A kernel is said to be positive if  

         odxdyyxyxKT    ,,   (3.57) 

for all   such that   odxx 
2  (3.58) 

It is easily to see that the Eigenvalues are strictly positive. 

3.2.2 Theorem 3.7: Convergence 

 If  yxK ,  is positive, then 

  
   





1

,
n

nn yx
yxK




 

the series being absolutely and uniformly convergent.  

 

3.2.3 Theorem 3.8: Hilbert – Schmidt Theorem  

Suppose  xf  can be written in the form  

       dyyyxKxf  ,  (3.59) 

where K  is symmetric and continuous,  

Then  nnf   where the series is absolutely and uniformly convergent and  

     dxxxf p

b

a
p    (3.60) 

A convergence of the above theorem is another formula for the Resolvent .R    

Consider the equation: 

        xfdyyyxKx    ,  (3.61) 

Then, 

     dyyyxkf   ,  

Thus,  f  satisfies the condition of theorem 3.8 and we can write 

       nnxfx   
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where         dxxxfx nn     

       dxxxf nnn    

Multiply 3.61 by  xn  and integrate and change order of integration. This given  

            dyyyxkdxxdxxx nn     ,  

     dxxxf n  (3.62) 

Thus, n

n

n

n 



   

i.e. ,n

n

n

n 






  Hence, n

n

n 






  

     xxfx n

n

n 



 


  

i.e.      xxfx n

n

n 



 


  (3.63) 

This gives the solution of 3.61 in terms of the Eigenfunctions of  .xn  From 3.63, we 

have 

          dyyfyxfx n

n

n




 



   

   
   

  dyyf
yx

xf
n

nn

  














  

        dyyfyxRxf   ;,  

Where  
   





n

nn yx
yxR




;,  (3.64) 

4.0 CONCLUSION  

Fourier’s coefficients exist for orthogonal systems which are continuous. 
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5.0 SUMMARY 

The Hilbert-Schmidt theorem states that when a kernel is positive, a series can be 

derived which is absolutely and uniformly convergent, and kernel can be represented 

by a series of Eigenfunctions.  

  

6.0 TUTOR-MARKED ASSIGNMENT 

1. Derive an expression for the Fourier coefficient of the continuous orthogonal 

system  n ? 

 

2. Show that the orthogonal system  n  is complete  if  

    odxxf nn
n

 


2

lim  ? 

 that is, Bessel’s inequality becomes an equality. 

 

3. If         odxdyyxyxKT    ,, , can we deduce if the associated 

kernel is positive or negative? Prove it? 
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