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1.0 INTRODUCTION

Transforms are used to solve equations for which transforms exist while the inverse
transform is a convolution. Suitable conditions exist for the transform of
a convolution to become the point-wise product of transforms which means that
convolution in one domain is the point-wise multiplication in another domain.

2.0 OBJECTIVES

At the end of this unit, you should be able to:

apply the convolution theorem;

calculate the first eigenvalue of an integral equation;

use the variational formula;

recognise Integral Laplace transforms as transforms; and

derive the solution of integral equations using inverse Laplace transform.

3.0 MAIN CONTENT

3.1 Calculation of 1% Eigenvalue

The modes of vibration in systems are often of great importance. A powerful and
simple method for finding them is provided by variational formula.

Let ¢, ¢,, ... be Eigen functions and |4,| <|4,|<...) be the corresponding Eigenvalue.
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Set
I(#¢) = [[Kx y)p(x)g(y)dxdy
Suppose now that ¢ is arbitrary. Then, by the linear formula

> . (x)4,(y)
A

n

K(x y) =
We have:

o) = | M #(x) ¢(y) dxdy

YD)

ﬂz
Ay

Then, J (4, ¢) < Zé—"| < ﬁZﬂf
< ﬁ [#°(x)dx (Bessel equation)

I 2(x)dx
J (¢ ¢)

L4 < (3.65)

where 1, is the smallest Eigenvalue and ¢ is arbitrary. Similar results may be
obtained for the higher Eigenvalues. However, the first is usually, the most
important. ¢ is chosen to make J (4, ¢) a maximum and a normal function.

This given an estimate of a bound for 4, which usually is fairly accurate.

Example 3.7
Consider the kernel T in the square

0<x<1 o<y<1 where
Txy) = l-x)y o<y<x<
Y = 0< X<
By differentiating the equation

) - A [ T(x y)g(y)dy = 0
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If is easy to see that if reduces to
¢+ Ad(x) = 0 ¢lo) = ¢1) = o
The Eigen function are /2 sinnzx (normalized and Eigenvalue are 4, = (nz)°

The linear formula given

5 Z sin n7zx sm nzy

n=.

We shall now consider the application of 3.65 to the determination of 1% Eigenvalue
(4, = 2% = 9.869)

First guess ¢ =

e, ) = J'[l xj ydy+xj y}d

12

We get A = /1 = 12
12

Second guess (R, t,)

Choose ¢ to be a step function ¢ =0except for o< x<1l—a« where ¢ = 8.

Choose ¢ normalised. Then, g = (1—2a)‘% one find that
16 ¢) = = (+20-8a2)
12

This has a maximum at o = % when

‘](¢’ ¢) = %2
1 32
Then, 4, < —— = — = 1067
Y

The estimate is considerably improved, and the choice of a nose complicated ¢
will lead to a nose accurate estimate.

129



MTH 424 MODULE 4

3.2

3.3

Integral Transforms; Laplace Transforms

If f(t) is throughout piecewise, continuous, bounded variation and of
exponential order, i.e. 3 M, so, >

fit) < M, e

and if we define

F(s) = Lw e f(t)dt (4.1)

S may be complex, then, F(s) is known as the Laplace transform of f and is

defined when the integral is absolutely convergent for some so, then, it is also
for S such that Res > Redo

The largest half-plane in which the integral is absolutely convergent is called
the half-plane of convergence. The following hold in this half-plane:

i £{af +bg} = af{f} + bE{g} (4.2)
i.  E{f20)} = s"F(s)-s"" f(o") .

. —F" (07) (4.3)
ii.  £f*f(t) = F(s-a) (4.4)
v. £t = (17 ;'S“n F(s) (4.5)

F(o*) denotes limit from right

Convolution Theorem

We define a new function h(t) by

ht)

= [ o) flt-u)du = fxg (4.6)

h(t) is called the convolution product of f and g and is written f =g so that we have

.Lw efSth(t)dt = .[:0 e’“(f*g)dt (4_7)

- f e f(t)dt j‘” e'gubdu = F(s)Cy(s)
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3.4 Inverse Laplace Transform

() = £ F6) = —— [ F(s)ds (48)

27Z-i C—ioo
- Z{residues of F(x)e™ at polesof F(s)}

Where C is some real number which is greater than the real part of all the poles of
F(s). We can however use any other alternative method to obtain f(t).

40 CONCLUSION

Kernel can be solved by applying Laplace transform if the transform exists.

5.0 SUMMARY

Laplace transform is defined only when an integral is absolutely convergent and the
largest half-plane in which the integral is absolutely convergent is called the half-
plane of convergence.

6.0 TUTOR- MARKED ASSIGNMENT

1. Write an expression for the kernel T in the square defined below and find its
first Eigenvalue?

-1 =x=2, 0=y=3

2. Do you recognise the transform below? Which transform is it?

F(s) = [ e f(t)dt

3. What is the relationship between an inverse Laplace transform and a
convolution?
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1.0 INTRODUCTION

Laplace and Fourier integral transforms are used to solve integral equations for which
the transform exists and this is demonstrated in this unit via worked examples.

2.0

OBJECTIVES

At the end of this unit, you should be able to:

3.0
3.1

apply Laplace transform through worked examples; and
solve integral equations by the method of Fourier integral transforms.

MAIN CONTENT
The Application of the Transform

Example 4.1

Solve the equation:
Pt +5 ¢t +6p = e t>0
#0) = 2, ¢'(0) =1

Now, let £(¢) = ¢(s) so that

EW} = %% - s¢0)-#'(0)=5(s)-25-1

. 1

and E{et} = m
2 7 - - 1
s?¢—25—1 + 5sf—2) + 64 = e



The residue at s=-1is Res,__ =¢®¢ )1

MTH 424

i.e. (52+55+6)¢7 = 25 + 11 + 1
s+1

2s® +13s +12
s+1)(s+2)(s+3)

i.e. ¢(s) = (

Hence, the poles are not -1, -2, -3

S=a

2-113+12 ot
1x2

1
= —e
2

—t

Thatis —2 is 6e™

and —3is —% e

Thus, ¢(t) = %{e“+12e‘2‘—9e‘3‘}

Example 4.2

Consider the Volterra equation:

f(x)- [ k(x=y) f(ydy = g(x)

(]

We want to use Laplace transform to get a solution.

The equation can be written in the form of

f—-kxf =g

Take the Laplace transform of both sides to give

—h

~kf=g
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Take k(t) = Je'for example, then

f(x) = g(x)+ﬂbj'0X e+ g(u) du.

Example 4.3

Solve the partial differential equation

2 2
99 _ 0% _ 5 (o<x<l, t=0)

ox’ ot

#(x,0) = o 0< X</
%(x,o) =0 o<x<I
¢(0,t) = o t>0
%(I,t) = a t>0

Here we want a solution for t >0 and for a finite range of x. Take Laplace
transform w.r.e t (since the t —interval is semi-infinite)

Write g(x, s)= [ e 'g(x, t)ct

Take the Laplace transform to give
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0

o 0°9 o w09
J- e tax—z(x, t)dt—.[o e t¥(X, t)dt :O

o o 0° 0% o
But jo e tan(x,t)dt =7 he "¢(x,t)dt
o0°¢
S (x3)

2

* —stﬂ _ 2 7 _ %
andjoe ~ (x,t)dt = s? g(x,5)— Se(x,0)+ at(x,O)

= S%(xs)
from the boundary condition
Hence, we get

o’
Ox?

(x,8) — s°¢(x,5)=0

This is now an ordinary differential equation for ¢ and to solve it, we need two
boundary conditions, we have

$(0.s) =0
85 _ [ —st%
and &(ﬁ, s) = L e 6)(((, t)dt

= a
= I ae 'dt = —
0 s

We this, solve the following system

The solution is

¢ = A(s)sinh sx + B(s)cosh sx
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From the first boundary condition B(s)=0and from the second condition, we have

A(s)s cosh sl = %

a
As) = —2
(s) s? coshsl
Here 5(X S) _ asinh sx
A s? cosh sl
and g(xt) = > SInh SX_ o g
' 27 % s? cosh sl

wherez lies to the sight of the poles. The integral has poles at s=0 and at the
zeros of coshsl. Consider first s =0

F(x.s)e" :%[SH (sx) +} {1_%} st ]

S

(o3}

= siz [sx+ O(sz)]

Simple pole at s =0with reside x.
Now, consider points whose coshIs =0

S_ +i (2n +1)7z
B 21

The poles are simple once. We may use the formula:

Res = fl(a)
s=a g (a)
Thus,
Sinh {(2n+1)iﬂx} i
2l
Res =

137



MTH 424 MODULE 4

Evidently, poles are complex conjugates, so we require twice the seal part. Hence,

sxt) —ax s CU Sin[@ﬂﬂ)nx}

7?3 (2n+1) 2l

The Laplace transform is suitable for problems with a semi-infinite domain for
the independent variable. It is also necessary that the (differential) equation
should have constant coefficients.

3.2 Fourier Integral Equations

If f(x)is a continuous function, then,

£(x) W (w)dw (4.10)

"l
where F(w) \/_j e ™ f(u (4.11)

Equation 4.11 gives the solution of the integral 4.10 for F and vice versa. If
f(x) is seal, using the odd property of sine, sinwxand the even property of
coswx We have, if

%
f(x) = (Ej rcoswx g(w)dw, 0<x (4.12)
P 0
Then,
2\* (o
d(w) :(—} I coswx f(x)dx, 0<w (4.13)
P 0
¢(w) and f(x) are the cosine transforms of one another. If
2V
f(x) = (—j I sinwx g(w)dw, 0<x (4.14)
T 0
Then,
2)* =
¢(w):(—j I sinwx f(x)dx, 0<w (4.15)
P 0

#(w) and f(x) are the sine transforms of one another.
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Example 4.1

Solve the integral equation

aza ~ = Loocoswx¢(w)dw, a>0
+X

2) ¢~ acoswx 1 = 2iae™
#w) :(ZJL a® +x? dx T2 a4+ x? dx

because sinwx is odd in x

Evaluation of the integral by the methods of the complex integral calculus given
gw) = e, w>0
Example 4.2
Solve the integral equation
#(x) = A[ coswx g(w)dw
¢(x)is an even function of x

Because the inverse of a cosine transform is another cosine transformation, we
look for a solution of the form

#(x) = U(x)£V(x)
where V(x) = (%)% j:coswxu(w)dw

Thus,

d(x) = U(x)=* (%j% j:coswxu(w)dw

y) I: COS WX {U (w)+ (%)% _[: coswt U (t)dt} dw

/IJ‘: cos wx U (w)dw + [%)%ﬂ U(x)
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% %
This is true if 1=+ (3) Thus, to 2 :(Ej , there corresponds a solution
T T

%
U(x)+V(x) andtod= —(%) , there corresponds a solution U(x)-V(x).
This solution will be valid, provided all the integrals exist; U is arbitrary. In

%
this case, the two Eigenvalues /”L:i(EJ , there exist an infinite of
T

Eigenfunctions.
Example 4.3

Solve the integral equation

09 = 100 + (2] [ aosry eyl

If 2=+1, there will not in generally be any solution.

This follows example 4.2

Take the transform of the equation to give

(;Y [ cos xy gy)ly = GY [ cosxy f(yHy+ 2 4(x)

It follows that

00 = 100+ 2( 2] Joosmy 1)y + 2000

(1-22)g(x) = f(x)+ﬂ[%j%fcosxy f(y)dy

and this solution is valid provided that the integral converge. Now, if 1-4* =0
and f(x)is a function such that

f(x)+ 4 (%j% I:cos xy f(y)dy=0

It follows that ¢(x) can be any function for which the integral converge.
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6.0 TUTOR- MARKED ASSIGNMENT

(1)  Solve the integral equation.

X
x? +a®

= stin WX g(w)dw a>0
(2)  Find the Eigenvalues and Eigen functions of the integral equation.
#x) = 2 sinxy g(y)dy
(3)  Find the solution of the integral equation.
#(x) = e™ + AJ.:sin xy ¢(y)dy, a>0

A2 £ 2

(4)  Find the integral equation:

Pziaz = .f:e’pt f(t)dt a>0

(5)  Solve the integral equation:
#x) = F(x)+2 [ K(x=y)g(y)dy
(6)  Solve the integral equation:

1 1 g(y)y

(x+a)) 7w x-y

4.0 CONCLUSION

Transforms are a useful mathematical tools for solving integral equations for which
the applicable transforms exist.

5.0 SUMMARY

A Laplace transformation is applicable for problems with a semi-infinite domain for
the independent variable.
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6.0 TUTOR-MARKED ASSIGNMENT

2 X2 0
= Jsin wxg(wx)dx,0 <b < 7
0

1. Solve

2. Solve ¢(t) = 4 [, sinwt ¢(f)df
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