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1.0 INTRODUCTION 

Transforms are used to solve equations for which transforms exist while the inverse 

transform is a convolution. Suitable conditions exist for the transform of 

a convolution to become the point-wise product of transforms which means that 

convolution in one domain is the point-wise multiplication in another domain. 

 

2.0 OBJECTIVES 

At the end of this unit, you should be able to: 

 apply the convolution theorem;  

 calculate the first eigenvalue of an integral equation; 

 use the variational formula; 

 recognise Integral Laplace transforms as transforms; and 

 derive the solution of integral equations using inverse Laplace transform. 

 

3.0   MAIN CONTENT 
 

3.1 Calculation of 1
st
 Eigenvalue  

The modes of vibration in systems are often of great importance. A powerful and 

simple method for finding them is provided by variational formula. 

Let ...,, 21   be Eigen functions and ...21    be the corresponding Eigenvalue.  
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Set  

          dxdyyxyxKJ   ,,    

Suppose now that   is arbitrary. Then, by the linear formula 
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where 1  is the smallest Eigenvalue and   is arbitrary. Similar results may be 

obtained for the higher Eigenvalues. However, the first is usually, the most 

important.   is chosen to make  ,J  a maximum and a normal function. 

 This given an estimate of a bound for 1  which usually is fairly accurate. 

 

Example 3.7 

 Consider the kernel T in the square  

  1,1  yoxo  where  

   
 

 








11

11
,

yxoxy

xyoyx
yxT  

By differentiating the equation 
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If is easy to see that if reduces to  

        oox  1,0"   

The Eigen function are xnsin2 (normalized and Eigenvalue are  2
 nn   

The linear formula given 
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We shall now consider the application of 3.65 to the determination of 1
st
 Eigenvalue  

   869.92
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Second guess  3tRi   

Choose   to be a step function 0 except for  1xo  where .   

Choose   normalised. Then,   2
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   one find that 
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The estimate is considerably improved, and the choice of a nose complicated   

will lead to a nose accurate estimate. 
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3.2 Integral Transforms; Laplace Transforms  

If  tf  is throughout piecewise, continuous, bounded variation and of 

exponential order, i.e. ,oM  so,   

   sot

o eMtf   

and if we define  

     dttfesF
o

st




  (4.1) 

S may be complex, then,  sF  is known as the Laplace transform of f and is 

defined when the integral is absolutely convergent for some so, then, it is also 

for S  such that Res > Redo  

The largest half-plane in which the integral is absolutely convergent is called 

the half-plane of convergence. The following hold in this half-plane: 

i. £  abgaf  £   g£bf   (4.2) 

ii.        ofSsFStf nn 12
£  . 

   oF n 1...  (4.3) 

iii.     asFtf ate£  (4.4) 

iv.       sF
ds

d
tft

n

n
nn 1£   (4.5) 

   toF  denotes limit from right  

 

3.3 Convolution Theorem  

We define a new function  th  by  

      gfduutfugth
t

o
   (4.6) 

 th  is called the convolution product of f and g  and is written gf  so that we have 
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3.4 Inverse Laplace Transform  

         dssFsFtf
ic

ic
i







2

1
£ 1-  (4.8) 

       sFexF st  of polesat ofresidues  

Where C is some real number which is greater than the real part of all the poles of 

 .sF  We can however use any other alternative method to obtain  .tf  

4.0 CONCLUSION  
 

Kernel can be solved by applying Laplace transform if the transform exists. 

 

5.0 SUMMARY 
 

Laplace transform is defined only when an integral is absolutely convergent and the 

largest half-plane in which the integral is absolutely convergent is called the half-

plane of convergence. 

 

6.0 TUTOR- MARKED ASSIGNMENT 
 

1. Write an expression for the kernel T in the square defined below and find its 

first Eigenvalue? 

 

2. Do you recognise the transform below?  Which transform is it? 

     dttfesF
o

st




   

 

3. What is the relationship between an inverse Laplace transform and a 

convolution? 
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1.0 INTRODUCTION 
 

Laplace and Fourier integral transforms are used to solve integral equations for which 

the transform exists and this is demonstrated in this unit via worked examples. 

2.0 OBJECTIVES 

At the end of this unit, you should be able to: 

 apply Laplace transform through worked examples; and 

 solve integral equations by the method of Fourier integral transforms. 

 

3.0 MAIN CONTENT 

3.1 The Application of the Transform  

Example 4.1 

Solve the equation: 

  ote t   65 111  
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i.e.  
1
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Hence, the poles are not 3,2,1   

The residue at 1s  is    
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That is 2  is te 26   

and 3 is te 3
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Thus,     ttt eeet 32 912
2
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Example 4.2 

Consider the Volterra equation: 

          
x

o
xgdyyfyxkxf  

We want to use Laplace transform to get a solution.  

The equation can be written in the form of 

  gfkf   

Take the Laplace transform of both sides to give 

  gfkf     
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Take   tetk  for example, then 
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Example 4.3 

 Solve the partial differential equation 
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Here we want a solution for ot   and for a finite range of x. Take Laplace 

transform w.r.e t  (since the t interval is semi-infinite) 

Write    dttxesx st ,,
0

 


   

Take the Laplace transform to give  
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from the boundary condition 
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This is now an ordinary differential equation for  and to solve it, we need two 

boundary conditions, we have 
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We this, solve the following system  
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The solution is  

      sxsBsxsA coshsinh   
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From the first boundary condition   0sB and from the second condition, we have  
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where  lies to the sight of the poles. The integral has poles at 0s  and at the 
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Evidently, poles are complex conjugates, so we require twice the seal part. Hence, 
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The Laplace transform is suitable for problems with a semi-infinite domain for 

the independent variable. It is also necessary that the (differential) equation 

should have constant coefficients. 

 

3.2 Fourier Integral Equations 

If  xf is a continuous function, then,  

    dwwFexf iwx







2

1
 (4.10) 

where     duufewF iwu







2

1
 (4.11) 

Equation 4.11 gives the solution of the integral 4.10 for F and vice versa. If 

 xf  is seal, using the odd property of sine, wxsin and the even property of 

wxcos  we have, if  

     xdwwwxxf 
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 (4.12) 

Then, 

     wdxxfwxw 
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  (4.13) 

 w  and  xf  are  the inecos transforms of one another. If  
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Then, 
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  (4.15) 

   xfw  and   are the sine transforms of one another. 
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Example 4.1 

Solve the integral equation 

    0,cos
022
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because wxsin  is odd in x  

Evaluation of the integral by the methods of the complex integral calculus given 

    0,   wew wa  

 

Example 4.2 

Solve the integral equation 

     dwwwxx  



0

cos  

   x is an even function of x  

Because the inverse of a cosine transform is another inecos transformation, we 

look for a solution of the form 

       xVxUx   
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This is true if 
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xVxU  there corresponds a solution    xVxU  . 

This solution will be valid, provided  all the integrals exist; U is arbitrary. In 

this case, the two Eigenvalues ,
2 2
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  there exist an infinite of 

Eigenfunctions. 

Example 4.3 

Solve the integral equation  

       dyyxyxfx 
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If ,1  there will not in generally be any solution. 

This follows example 4.2 

Take the transform of the equation to give  
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and this solution is valid provided that the integral converge. Now, if 01 2   

and  xf is a function such that 

      0cos
2

0

2
1









 



dyyfxyxf


  

It follows that  x  can be any function for which the integral converge. 
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6.0 TUTOR- MARKED ASSIGNMENT 

  

(1) Solve the integral equation. 

    0sin
022


 



adwwwx
ax

x
  

(2) Find the Eigenvalues and Eigen functions of the integral equation. 

     dyyxyx 



0

sin   

(3) Find the solution of the integral equation.  

      0,sin
0

 


 adyyxyex ax   

  22   

(4) Find the integral equation:  
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P pt  

(5) Solve the integral equation: 

         dyyyxKxfx 



   

(6) Solve the integral equation: 

  
 

 



 


 yx

dyyg
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11
2

 

 

4.0 CONCLUSION  

Transforms are a useful mathematical tools for solving integral equations for which 

the applicable transforms exist.  

  

5.0 SUMMARY 
 

A Laplace transformation is applicable for problems with a semi-infinite domain for 

the independent variable. 
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6.0 TUTOR-MARKED ASSIGNMENT 

1. Solve      bdxwxwx
b

xb
0,)(sin

0

22







 

2. Solve   
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